
Methods and tools for mining multivariate time series
De Gouveia da Costa Cachucho, R.E.

Citation
De Gouveia da Costa Cachucho, R. E. (2018, December 10). Methods and tools for mining
multivariate time series. Retrieved from https://hdl.handle.net/1887/67130

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/67130

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/67130

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/67130

Author: de Gouveia da Costa Cachucho, R.E.
Title: Methods and tools for mining multivariate time series
Issue Date: 2018-12-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/67130
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Biclustering Multivariate Time
Series

Ricardo Cachucho, Siegfried Nijssen, Arno Knobbe

in Proceedings of Intelligent Data Analysis (IDA), 2017

Abstract

Sensor networks are able to generate large amounts of unsupervized multi-
variate time series data. Understanding this data is a non-trivial task: not
only patterns in the time series for individual variables can be of interest, it
can also be important to understand the relations between patterns in different
variables. In this paper, we present a novel data mining task that aims for a
better understanding of the prominent patterns present in multivariate time
series: multivariate time series biclustering. This task involves the discovery
of subsets of variables that show consistent behavior in a number of shared
time segments. We present a biclustering method, BiclusTS, to solve this
task. Extensive experimental results show that, in contrast to several tradi-
tional biclustering methods, with our method the discovered biclusters respect
the temporal nature of the data. In the spirit of reproducible research, code,
datasets and an experimentation tool are made publicly available to help the
dissemination of the method.

19

20 CHAPTER 2. BICLUSTERING

2.1 Introduction

Multivariate time series are becoming increasingly available, mostly through
the rapid development of measurement systems. More and more, machin-
ery, infrastructures and humans use sensors, collecting data synchronously
over time. The continuous measuring of these systems also means that most
datasets produced by them are unsupervized. These datasets contain a range
of phenomena, from recurring phenomena recognizable across all the sensors,
to some phenomena that are only recognizable in some of the signals or even
random events that do not reoccur at all. The nature of multivariate time se-
ries data offers a big opportunity for pattern recognition. As a consequence,
there is a considerable need for unsupervized methods that can provide in-
sight in this data.

Among unsupervized tasks that have been studied in the time series field
are the segmentation and motif discovery tasks [103]. These tasks aim to
either identify recurring patterns in the time series, or to partition the time
series into segments. Most of this earlier work is however biased towards
univariate time series. Unlike the univariate setting, mining multivariate
time series poses the following challenges:

• understanding the relationship between different variables is highly im-
portant;

• the relationships between different variables may alternate at different
moments in time;

As a result, there is a need for new methods that identify subsets of variables
with consistent behavior over subsets of time. Which methods can identify
such subsets? We consider biclustering to be a good approach to solve this
pattern recognition problem.

Biclustering is a well-known task in the literature [19, 61, 79, 51, 7, 91, 72,
42, 43]. Essentially, it aims at discovering subsets of rows with correspond-
ing subsets of columns, such that the submatrix selected by these rows and
columns satisfies a certain cohesiveness requirement. Biclustering can be
seen as a generalization of clustering where not only the rows are clustered,
but the columns as well. Please note that one bicluster is the result of the
biclustering task. Furthermore, biclusters can overlap each other and not
all rows or columns need to be included in the biclusters. However, as we
will point out throughout the paper, traditional biclustering methods are not
well-suited for analysing multivariate time series.

2.1. INTRODUCTION 21

The traditional methods for biclustering ignore the temporal aspect of the
data in the analysis. The possibility to shuffle the rows and include rows
individually, imply that the time series will no longer be ordered. Traditional
biclustering algorithms can include an arbitrary subset of time points in a
bicluster; there is no guarantee that contiguous time points are included in
the bicluster. As a result, very small segments of the time series, or even
individual time points, may be selected in the bicluster.

We argue that discovering biclusters is also useful on time series data. Using
the smartphone as an example, we know that people will walk and might
cycle at some point through the day. To capture walking, we only need ac-
celerometry data, while for cycling, we would likely to benefit from additional
GPS data. However, as we will point out throughout the paper, traditional
biclustering methods are not well-suited for analysing multivariate time se-
ries, as they ignore in the analysis the temporal aspect of data. They can
include an arbitrary subset of time points in a bicluster; there is no guarantee
that contiguous time points are included in the bicluster. As a result, very
small segments of the time series may be included in the bicluster.

In this paper, we propose a new biclustering method that finds recurring
patterns over time for multivariate time series. The distinguishing feature of
our biclustering method is that it finds biclusters spanning sufficiently long
segments of time. As a result, the biclusters that are found can be see as re-
curring motifs in multivariate time series data. Our algorithm includes:

• a search strategy for finding biclusters in time;

• the definition of a coherence measure to score the quality of biclusters
in time;

Key advantages of our method compared to other methods include:

• the ability to deal with numeric data in a continuous scale (no dis-
cretization is needed);

• interpretability of the results.

In the following sections, we define the biclustering problem for multivariate
time series, present our biclustering method and experimental results and at
last a conclusion. Our experiments show promising results, both in terms of
the quality of the results and scalability of the method. For reproducibility
purposes, we make our code and datasets freely available. Additionally, we
also developed and published an experimentation tool [13] with intuitive
GUI, where all the experiments described can be easily tested and applied
to various datasets.

22 CHAPTER 2. BICLUSTERING

2.2 Preliminaries

In this section, we define the main concepts of our problem: multivariate
time series (Section 4.2.1), followed by the problem statement of biclustering
multivariate time series (Section 4.2.3) and the definition of the similarity
measure (Section 2.2.3) used both to segmentation and biclustering of mul-
tivariate time series.

2.2.1 Multivariate Time Series

We assume that we are given a multivariate time series of length n over m
variables. This time series is represented in an n × m matrix T. In this
matrix, Tij represents the measurement at time point i for variable j.

We will often need to identify parts of this data matrix. We introduce some
notation to make this easier. Let I ⊆ {1, . . . , n} be a subset of time points
and let J ⊆ {1, . . . ,m} be a subset of variables, then TIJ defines the following
submatrix:

TIJ =


TI1J1 TI1J2 · · · TI1Jk

TI2J1 TI2J2 · · · TI2Jk
...

...
. . .

...
TI`J1 TI`J2 · · · TI`Jk

 ,

where Iu is the uth element in the set I, k = |J | and ` = |I|. Furthermore,
we will use Ti• as a shorthand for TIJ with I = {i} and J = {1, . . . ,m} and
T•j as a shorthand for TIJ with I = {1, . . . , n} and J = {j}.

2.2.2 Problem Statement

As discussed in the introduction, we are interested in identifying biclusters
in time series data. More formally, we define the problem at hand as fol-
lows.
Definition 3. One bicluster in time series data consists of:

• selected segments I = {I1, . . . , Iq}, where each segment consists of
contiguous measurements Ix = {ax, ax + 1, . . . , bx}, for some ax, bx ∈
{1, . . . , n} and Ix ∩ Iy = ∅ if x 6= y;

• selected variables J ⊆ {1, . . . ,m},

such that:

2.2. PRELIMINARIES 23

• the selected segments and variables satisfy the following requirement:

H(I, J) < δ,

where

H(I, J) =
1

|I||J |
∑
j∈J

∑
I∈I

d(TIj,T∪Ij); (2.1)

here ∪I = ∪I∈II and d(t1, t2) measures how similar two time series t1
and t2 are; i.e., it is required that each selected segment is similar to
the union of the other selected segments, for all chosen variables;

• J is maximal: no variable can be added such that the similarity con-
straint remains satisfied;

• I is maximal: no segment can be added such that the similarity con-
straint remains satisfied;

• each segment I ∈ I has a sufficient length, i.e., |I| ≥ `.

Notice that H(I, J) is set to capture the coherence for each column inde-
pendently. This allows biclusters to be coherent, even if two variables do
not share their distribution. This way, two variables can measure the same
phenomenon in different ways, depending on the system characteristics and
measuring system setup. As an example, high levels of body activity can be
measured by high levels of heart rate or sinusoidal patterns of acceleration.
For each selected variable in a bicluster, each selected segment is similar to
the other selected segments for that variable, and we are interested in the
largest such bicluster.

2.2.3 Probabilistic divergence score

Many alternatives are possible for the definition of the similarity, d(t1, t2), be-
tween two subsequences. In this paper, we propose to measure the similarity
of two subsequences by determining the divergence between the distributions
of measurements in these subsequences.
Definition 4. Given two probability densities p(x) and p′(x) over the same
domain, a divergence score d(p, p′) is a score with the following properties:

• d(p, p′) ≥ 0;

• d(p, p′) = 0 iff p(x) = p′(x) for all x.

24 CHAPTER 2. BICLUSTERING

Definition 5. Given two time series subsequences t1 and t2, where t1 con-
tains samples from probability density p(x) and t2 contains samples from
probability density p′(x), a divergence score for these subsequences is an esti-
mate of the divergence of these distributions, i.e., d(t1, t2) is an estimate of
d(p, p′) as calculated from t1 and t2.

2.3 Biclustering Multivariate Time Series

The problem formalized in the previous section is hard to solve exactly. In
order to solve it, we propose a heuristic method. Our algorithm iteratively re-
moves segments or columns until a bicluster is obtained with the desired qual-
ity. Unlike the traditional biclustering algorithm of Cheng and Church [19],
our method is designed for multivariate time series, stressing solutions for
the temporal aspect of multivariate time series data in a bicluster.

In our setting, given the length of most time series, removing individual rows
is not a feasible approach; converging on a bicluster would take too long.
Furthermore, it is unlikely that a heuristic that removes rows one by one is
likely to lead to segments of good quality. For these reasons, we propose a
new approach that works as follows:

1. Identify segment boundaries in the time series of each variable.

2. Combine the segment boundaries of the different attributes to obtain
segment boundaries across all variables.

3. Perform a node deletion biclustering algorithm where either columns
and all rows between segment boundaries are removed at the same time.

Below, we will discuss the details of this approach.

2.3.1 Time Series Segmentation

The process we propose for segmentation is detailed in Alg. 1. This algorithm
computes the density differences between consecutive subsequences of time
series using a sliding window approach. The user-defined parameters for this
algorithm are as follows. The size of each subsequence (window) is defined
by the parameter w. The window is moved over the time series in steps of
size jump. This parameter is intuitively bounded by 1 ≤ jump ≤ w. Note
that by setting jump ≥ `, we can ensure that segments are never of length
shorter than `.

2.3. BICLUSTERING MULTIVARIATE TIME SERIES 25

Algorithm 1 Segmentation.

Input: multivariate time series t, threshold for local maximum selection θ,
window size w, jump between consecutive windows jump, 1 ≤ jump ≤ w.
C ← {1}
for each column of T do

for each i ∈ {0, 1, . . . , b(n− w)/jump− 1c} do
s← i · jump
d[i]← d(t[s+ 1, . . . , s+ w], t[s+ jump+ 1, . . . , s+ jump+ w])

end for
for each i ∈ {2, . . . , b(n− w)/jump− 2c} do

if d[i− 1] ≤ d[i] ∧ d[i+ 1] ≤ d[i] ∧ d[i] ≥ θ
C ← C ∪ {i · jump+ w}

end for
end for
return segment start indices C

Having decided on how to go through the data, one needs to calculate the
divergence scores between consecutive windows of data, d(t1, t2). A solution
for this divergence score is proposed in Section 2.3.3. After calculating the
divergence score for all consecutive windows, we extract all local maxima to
find the segment boundaries. The risk of using local maxima is that too many
boundaries might be found, creating too many segments. For this purpose,
a threshold θ for the selection of local maximum divergences is introduced.
Only local maxima above θ will be selected as segment boundaries. A rea-
sonable solution for this threshold is to normalize each variable and have the
boundaries rescaled between 0 and 1 such that 0 ≤ θ ≤ 1.

Alg. 1 returns a set C consisting of the segment boundaries. This set is the
union of all the segments found for each of the m variables. Note that we seg-
ment the variables independently of each other; this is important as in biclus-
tering, we assume that the behavior of different variables over time may be
different. To consider independency between variables, we need a univariate
divergence measure. Alternatively, one could consider a multivariate version
of the divergence measure. This would be suitable if the purpose would be to

only segment multivariate time series (1
m

m∑
1

divergence i,j). However, a multi-

variate divergence seems counter-intuitive in the case of biclustering, once we
are looking both for subsets of segments and subsets of variables to include in
the matrix TIJ . Experiments in Section 2.4.1 present the difference between
univariate and multivariate divergence scores.

26 CHAPTER 2. BICLUSTERING

2.3.2 Biclustering

In this section, we present the BiclusTS algorithm to solve the problem of
finding multiple biclusters given a multivariate time series. We will discuss
the main challenge of recognizing interesting subsets of rows and columns
(TIJ), while respecting the temporal nature of time series. We then move
into the details of how to find a bicluster and how to explore the data in
order to find multiple biclusters.

BiclusTS: Single node deletion

The BiclusTS algorithm is described in Algorithm 2. The algorithm assumes
an initial set of segments in the data, as computed by Alg. 1. Then, a greedy
process removes segments and variables (columns) that present the largest
divergence to the bicluster. During this repeated process, the difference
H(I, J) reduces monotonically until it drops below the acceptability bound
δ. The remaining subset of segments I and columns J is returned as a
bicluster. The difference measure H(I, J) is defined as follows:

H(I, J) =
1

|I||J |
∑
j∈J

∑
I∈I

d(TIj,T∪Ij) (2.2)

Notice that H(I, J) is a probabilistic measure, not interested in the correla-
tion between variables. Instead, it is set to account coherence of each column
independently (see Definition 2.1). This allows biclusters to be coherent, even
if the behavior between variables is not correlated, as we consider desirable.
This is because time series can measure the same phenomenon in different
ways, depending on the system characteristics and measuring system setup.
As an example, high levels of body activity can be measured both by high
levels of heart rate and sinusoidal patterns of acceleration.

The requirements of our method to find a bicluster is to provide a segmented
time series, composed of the time series T itself and the boundaries of each
segment (as produced by Alg. 1). This will ensure a faster biclustering pro-
cedure and results consistent with the temporal aspects of the multivariate
time series. Another requirement of Alg. 2 is a parameter δ that ensures a
certain similarity for all segments within each column of the bicluster.

2.3. BICLUSTERING MULTIVARIATE TIME SERIES 27

Algorithm 2 BiclusTS: Find One Bicluster.

Input: initial set of segments I, acceptability threshold δ.
let J be the set of all variables
calculate H(I, J)
while H(I, J) > δ do

for all segments I and variables j do
calculate d(TIj,T∪Ij)

end for
for each segment I of I do

calculate 1
|J |
∑

j∈J d(TIj,T∪Ij)
end for
for each variable j of J do

calculate 1
|I|
∑

I∈I d(TIj,T∪Ij)
end for
find maximum margin divergence; remove the corresponding segment or
variable
recalculate H(I, J)

end while
return TIJ , a bicluster that is a submatrix of T

Finding a given number of biclusters

Having described the process of finding one bicluster, the challenge of finding
a number of biclusters remains. For this task, we propose Alg. 3, which finds
k non-overlapping biclusters by iteratively looking for biclusters in those seg-
ments that have not been selected yet. As input, we must have an initial
segmented multivariate time series T and acceptability bound δ already in-
troduced in Section 2.3.2. Additionally, this algorithm requires k, which is
the number of potential biclusters to be found.

In the first iteration, Alg. 3 starts using all the segments I to find the first
bicluster. After finding a bicluster, we add it to the set of biclusters B and
remove all the segments that have been biclustered from the initial set of
segments, I. This process is iterated until no segments are left to be included
in a new bicluster or the number of potential biclusters, k is reached. We
use the word “potential” because there are situations where k is not reached,
due to unavailable segments to bicluster, or when the acceptability bound δ
is too low to produce any results.

28 CHAPTER 2. BICLUSTERING

Algorithm 3 Find k biclusters.

Input: initial set of segments I, acceptability threshold δ, the desirable
number of biclusters k.
B ← ∅, an empty set of biclusters
while |B| ≤ k and I 6= ∅ do
B ← B ∪BiclusTS(I, δ)
Remove all segments in B from I

end while
return B, a set of biclusters found in matrix T

2.3.3 Density-Difference Estimation (LSDD)

An important choice that remains to be specified is which divergence score
to use. Time series can assume many different shapes, depending on the
phenomena and measurement system, making the comparison between sub-
sequences a non-trivial problem. Obvious solutions for comparing time se-
ries would be two-step approaches. For instance, one could first estimate
the probability density distributions (PDFs) of both subsequences, and then
compare these using an f -divergence measure. As pointed out by [86], the
drawback of such approaches is that good estimations will smoothen the
PDFs and thus result in under-estimations of density-differences.

Instead of taking such a step-wise approach, we here propose to use a more di-
rect approach, based on calculating a least-squares density-difference (LSDD) [86].
LSDD measures the similarity between two time series by directly estimat-
ing density-differences (f(x)) between time series subsequences. This method
does not require a separate estimation of the time series distributions. LSDD
directly estimates the density-difference between two samples, f(x), by fitting
a density-difference model gθ(x) that minimizes:

argmin
θ

∫ (
gθ(x)− f(x)

)2
dt+ λθT θ. (2.3)

Note that the second term in this formula is a regularization term. The
model gθ(t) that is used to estimate the difference is a mixture model of
Gaussians:

g(x) =

|c|∑
`=1

θ` exp(−||x− c`||
2σ2

),

where c is a random sample of measurements in both time series t1 and
t2.

2.3. BICLUSTERING MULTIVARIATE TIME SERIES 29

To fit the model, the equivalence of Equation 2.3 with the following formula
is exploited:

argmin
θ

∫
g2θ(x) dx− 2

∫
gθ(x)f(x) dx+ λθT θ. (2.4)

Given that f(x) is unknown, an empirical estimate is used for the second
term:

|c|∑
`=1

θ`
|t1|

|t1|∑
i=1

exp
(
− ||t1i − c`||

2σ2

)
− θ`
|t2|

|t2|∑
i=1

exp
(
− ||t2i − c`||

2σ2

)
.

The resulting minimization problem can be solved analytically, as shown by
the authors of LSDD [86]. Note that this model fitting procedure has two
parameters: the Gaussian kernel width σ and the regularization parameter
λ. The authors of LSDD propose to optimize these parameters using cross-
validation. When LSDD is used on a large scale, this cross-validation becomes
too demanding.

After a study of LSDD’s behaviour, reported in Section 2.4.1, in which we
compare different subsequences of the same time series, we found that the
parameters of LSDD are very stable, i.e., the optimal choice for the param-
eters values does not change very often for the same time series. Thus, we
propose that the parameters are estimated with cross-validation a certain
number of times at the beginning of the segmentation task (Alg. 1). Then,
we fix these parameters for the rest of the LSDD calculation processes, thus
speeding up computational efficiency while keeping the quality as a density
difference estimation measure.

LSDD is also considered now the biclustering process for the calculation
of H(I, J). The advantage of using LSDD for computing H(I, J) is that
it allows rich descriptions of the segments to be taken into account in the
process of finding each bicluster. From the computational perspective, fixing
the parameters of LSDD is beneficial to speed up the process of finding each
bicluster, due to the extensive amount of calculations of LSDD in Algorithm
2. This can be seen in Alg. 2, where for all the segments and variables
LSDD is used as a divergence measure between two time series subsequences
(e.g. d(TIj,T∪Ij)). Thus, making of H(I, J) a mean density difference
score.

30 CHAPTER 2. BICLUSTERING

2.4 Experiments

In this section, we divide the experiments in two parts: segmentation and
biclustering. We present experimental results of the segmentation task in-
cluding how to do LSDD estimation (normalization and cross-validation of
parameters) and univariate versus multivariate segmentation. The second
part is about biclustering with several experiments comparing traditional
biclustering with our proposed method.

We evaluate our method on four datasets, details of which are given in the ta-
ble below. The datasets were selected for their length and their multivariate
nature (with datasets having up to 119 variables). Except for Accelerometry,
the datasets also have variables that can be grouped in different categories,
such that each group will show considerably different behaviour. For exam-
ple, the InfraWatch data [103] is collected from three types of sensor (each
sensitive to different phenomena and time scales): strain gauges, vibration
sensors, and temperature sensors.

dataset # variables # time points sampling rate duration
Accelerometry 3 176 700 85 Hz 34.6 min
Snowboarding 21 21 180 1 Hz 5.88 hrs

Running 6 951 200 100 Hz 2.64 hrs
InfraWatch 119 17 996 1/3600 Hz 749.8 days

All experiments were performed with an implementation in R. A demo tool
called Bipeline [13], demonstrates this implementation and is easily acces-
sible online (http://fr.liacs.nl:7000/). Using Bipeline, one can repli-
cate experiments and can try the various settings and choices. The code is
also made available (https://github.com/kainliu/ShinyDashboard). The
four datasets mentioned above have also been made available, (in accordance
with reproducible research standards) and can be found at:

• www.openml.org/data/download/1854941/accelerometry.csv

• www.openml.org/data/download/1854942/infrawatch.csv

• www.openml.org/data/download/1854943/running.csv

• www.openml.org/data/download/1854944/snowboard.csv.

http://fr.liacs.nl:7000/
https://github.com/kainliu/ShinyDashboard
www.openml.org/data/download/1854941/accelerometry.csv
www.openml.org/data/download/1854942/infrawatch.csv
www.openml.org/data/download/1854943/running.csv
www.openml.org/data/download/1854944/snowboard.csv

2.4. EXPERIMENTS 31

−8

−4

0

4

0.0
0.2
0.4
0.6

0 5000 1000 1500 2000 2500 3000 3500

Figure 2.1: Two graphs showing the segmentation obtained on the X-axis vari-
able of Accelerometry dataset, for the original time series (above) and the normal-
ized one.

2.4.1 Segmentation

In Section 2.3.1, we proposed a solution to segment multivariate time series
in order to bicluster them. Here, we present the experimental results that
support our decisions on how to solve this segmentation task.

Normalization

Before considering aspects of the actual segmentation, we examine the effect
of normalization. As was argued in Section 2.3.3, the usage of LSDD estima-
tion as a divergence score in the multivariate setting requires normalization
of each variable. To segment multivariate time series as described in Alg. 1,
all the datasets were normalized and the parameter θ was fixed at a value of
0.75. Here, we study the effect of normalization on Alg. 1 results.

In this experiment, we performed comparisons on each variable, to see whether
the produced segmentation is notably different, before and after normaliza-
tion. These experiments demonstrated that this effect is marginal. Fig. 2.1
shows two segmentations produced on the X-axis accelerometer variable of
dataset Accelerometry. Note that the differences in segmentations in the two
settings are minimal, thus indicating that one could normalize the time series
as a pre-processing step, ensuring comparable LSDD results across variables
during the tasks of segmentation and biclustering.

32 CHAPTER 2. BICLUSTERING

LSDD estimation

The method we used to compare consecutive subsequences is a single-shot
estimation of the difference between probability densities (LSDD), defined in
Section 2.3.3. This method is based on fitting a Gaussian model where two
parameters, λ and σ, need to be estimated. As was mentioned in Section
2.3.3, we estimate reasonable values for these parameters prior to the LSDD
estimation for the entire time series, and then work with these fixed values.
Clearly, we are trading off computational speed over accuracy of setting λ
and σ always with cross-validation.

Here, the experiments consist of running Alg. 1 for all the datasets, with non-
overlapping data windows of 100 samples (w = jump = 100), and considering
two setups. In one setup, for each iteration we estimate LSDD with cross-
validation. All the parameter estimations and computation times are saved.
In the other setup, we cross-validate LSDD the first 100 iterations and then
fix the parameters, by choosing the median σ and λ.

First, we consider the penalty in time produced by the cross-validation at
each subsequence, compared to fixing the parameters at the start. For each
dataset, the penalty of computing LSDD with cross-validation was calcu-
lated. For each setup of running Alg. 1, all the LSDD estimation times are
summed up over all LSDD estimations per variable, and over all variables.
Thus, the penalty is the time ratio of computing LSDD with cross-validation
to LSDD with fixed parameters (so how many times faster the second is). In
other words, how many times slower it is to perform cross-validation as op-
posed to fixing the parameters. The following time penalties were obtained
for the four datasets:

Dataset Penalty
Accelerometry 172
Snowboarding 62
Running 91
InfraWatch 93

Clearly, doing cross-validation at each subsequence is prohibitively expensive,
while our choice to fix parameters at the start of each LSDD estimation is
much more realistic.

While clearly being much faster, there is the risk of producing sub-optimal
values for λ and σ. We test this end of the trade-off by examining the
stability of parameter values when LSDD is estimated using cross-validation.
If these values remain mostly the same throughout the LSDD estimation,

2.4. EXPERIMENTS 33

then we can safely pre-compute the values and fix them. For this experiment,
we test parameter settings from a fixed range, identical to that proposed
originally [86]: λ ∈ {0.001, 0.003, 0.01, 0.031, 0.1, 0.316, 1, 3.162, 10} and σ ∈
{0.25, 0.5, 0.75, 1, 1.2, 1.5, 2, 3, 5}. For the four datasets and both parameters,
the percentage of values found that deviate from the median were obtained,
and averaged over all variables:

Dataset Deviation
Accelerometry 1.2%
Snowboarding 1.5%
Running 0.7%
InfraWatch 3.1%

As seen in the table above, the LSDD parameters (λ and σ) are extremely
stable. Here, we do not argue the fact that this solution to fix the parameters
is a sub-optimal heuristic, when considering an alternative such as cross-
validation. Our argument for the decision of fixing both λ and σ is related
with the trade-off between accuracy and computational efficiency. The lost in
accuracy is low, with a residual deviation from the cross-corelated parameters
and on the other hand the computational efficiency gains are in orders of
magnitude of at least two digits. To conclute, the parameters are extremely
stable and can be safely estimated and fixed prior to LSDD estimation, with
considerable efficiency gains.

Univariate or multivariate segmentation

One choice that influences the segmentation (that can be configured in our
online tool) is whether to choose segment boundaries based on density differ-
ences in individual variables, or whether to compute them from the average
density distances over all variables. Figs. 2.2 and 2.3 demonstrate the ef-
fect that this choice has on the boundaries produced. Clearly, segmentation
over the combined density differences produces fewer boundaries, and only
in locations where clear changes are visible in the majority of the time series.
The multivariate segmentation, on the other hand, is much more sensitive to
changes only observable in individual time series, and as a result produces
more boundaries and thus smaller segments on average. Although either op-
tion is available and has its advantages and disadvantages, we feel that the
univariate, more detailed approach to segmentation is more in line with the
philosophy of biclustering and our goals to discover temporal phenomena in
subsets of the variables. For that reason, we adopt the univariate option for
all further experiments.

34 CHAPTER 2. BICLUSTERING

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

Figure 2.2: Multivariate segmentation example (Snowboarding data).

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

time series index

Figure 2.3: Univariate segmentation example.

2.4.2 Biclustering

As a reference point for reproduction of experiments, the parameter settings
of our proposed method is presented in the table below.

Datasets Window Jump Delta
Accelerometry 500 100 0.01
Snowboarding 90 30 0.01

Running 500 100 0.01
InfraWatch 120 24 0.01

For all the experimental settings, all parameters defaults can be found in the
online tool. Additionally, we present results to further compare with other
methods. We observe how many segments were created and the segment’s
average size. Notice that we want a relatively small number of segments with
rather large sizes.

2.4. EXPERIMENTS 35

Datasets Duration Number segments Average segment size
Accelerometry 7.55 s 14 642.5 (0.36%)
Snowboarding 81.5 s 24 81.5 (0.38%)

Running 16.7 s 103 1671.8 (0.18%)
InfraWatch 36.2 hrs 21 36.2 (0.20%)

At this point, it is important to understand the differences between the results
produced by our approach and those produced by traditional biclustering
algorithms, such as the Cheng & Church algorithm. In this experiment,
we apply to our four datasets all the available algorithms in the biclust

package [42] in R. This means that experiments were run to compare BiclusTS
with the following biclustering algorithms: Cheng & Church (C&C) [19], the
Xmotifs biclustering algorithm [72], the Plaid model [91], Bimax [79], and
Questmotif [43, 72].

In the table below, we present the number of segments created by each al-
gorithm. Please note that some algorithms are not even able to deal with
large datasets (represented by -). The numbers of segments are in most case
more than those resulting from BiclusTS, showing that fragmentation is a
systematic problem of the traditional biclustering algorithms.

Number segments
Datasets C&C Xmotifs Plaid Bimax Questmotif BiclustTS

Accelerometry 4 034 1 863 1 641 141 3 338 14
Snowboarding 22 547 1 - 13 24

Running 3 852 3 852 9 - 34 791 103
InfraWatch 17 64 - 1 98 21

Complementary to the number of segments, one should look at the average
size of the segments biclustered. The average size of the segments created by
the traditional biclustering algorithms is in most cases very small. Interest-
ingly, in two cases (indicated by the ∗), the biclustering algorithms produced
segments stretching the entire length of the time series, thus failing to iden-
tify any meaningful segmentation into different activities. Notice that Plaid
has some exceptions. Still, take as an example the Snowboarding dataset.
For this dataset, Plaid created a bicluster containing all the data.

36 CHAPTER 2. BICLUSTERING

Average segments size
Datasets C&C Xmotifs Plaid Bimax Quest BiclustTS

Accelerometry 13.6 16.8 44.5 1.1 20.4 642.5
Snowboarding 2.8 15.1 21 180∗ - 1420.4 81.5

Running 1.5 2.8 105 688 - 2.7 1671.8
InfraWatch 5.7 2.3 - 17 996∗ 83.1 36.2

Capturing distributions

The biclustering component of our method compares different segments, in
order to cluster similar ones. Central to our approach is the choice to cap-
ture such similarity by differences in the distribution within each segment, by
means of LSDD. A distribution is a fairly rich way to describe a set of mea-
surements, and one could argue that simpler descriptions of segments could
work as well, and might be more efficient also. In this experiment, rather
than relying on the one-shot LSDD, we describe each segment of a time se-
ries simply by the average value, and apply biclustering to this simplified
intermediate representation.

As can be expected, representing segments with only an average tends to
cluster together segments that have very little in common, except for an
average value that happens to be similar. Fig. 2.4 shows two examples of
segments that were clustered in such an undesirable way. Note that for
steady time series, this solution will actually work just fine. The problem
only occurs with sinusoidal or other more complex periodic shapes, which
are in fact very common in time series. The corresponding clustering by
BiclusTS does not produce these meaningless groupings of segments.

Demonstration

Our method was designed to find biclusters that avoid very short segments
of consecutive time points. However, having good subsets of time periods
represented in the bicluster is not enough. BiclusTS also aims to capture
interesting phenomena involving complex patterns. These patterns can be
observed visually.

In order to show what can be expected from BiclusTS, we applied it to the
Snowboarding dataset. With 21 variables, this dataset measures a person
using a BioHarness chest sensor while riding a snowboard. The sensor mea-
sures vital signs such as heart rate, breath rate and body temperature, as

2.4. EXPERIMENTS 37

Figure 2.4: Two examples of undesirable clustering of segments.

Figure 2.5: Examples of biclusters produced with BiclusTS.

38 CHAPTER 2. BICLUSTERING

well as acceleration. The dataset covers various sorts of activities common
for a day of snowboarding in the high mountains.

Figure 2.5 shows two examples of biclusters related to alternating time peri-
ods of rest and downhill snowboard activities. As for the selected variables,
one bicluster shows high levels of physical activity and different postures, dur-
ing the periods of snowboarding. The other bicluster identifies resting periods
in between snowboarding. These resting periods are recognized only using
the activity levels measured by the sensor system (Activity and PeakAcceler-
ation). As expected, our biclustering method makes use of different subsets
of variables to describe different phenomena.

2.5 Related Work

Biclustering has received a lot of attention in the last decade and has be-
come a well established task [19, 51, 61, 79, 29], with important real-world
application, especially in the bioinformatics research field. The most cited
biclustering algorithm is the Cheng & Church algorithm [19], making it an
obvious benchmark. All these algorithms were not build to consider time
series and perform badly due to the shuffling of rows without concern for the
temporal nature of time series.

Adaptations for time series have been proposed [108, 62, 29], specifically for
gene expression data. These adaptations focus on finding biclusters that
consist of one contiguous segment in time, representing similar amounts of
concentration for a given period of measurements. This means that these bi-
clusters are mostly shaped-based and not repeatable over time. Adaptations
of biclustering for general time series have not been proposed yet.

We believe our work presents novelty when by designing a generic solution
to bicluster multivariate time series. The focus of our study is on defining a
good optimization criterion for a new problem setting, and studying how to
evaluate this evaluation criterion efficiently; developing a search algorithm
for this criterion is just one of the components of our study. The difference
with standard biclustering is that our data is ordered in time. In our set-
ting, a bicluster is required to cover sufficiently long consecutive stretches of
time. Also, our optimization criterion is different: it evaluates similarities in
distributions. Moreover, the proposed clustering algorithm (part of a larger
approach) is designed specifically to work with segments of time series and
to allow the calculation of H(I, J) as described in Definition 1.

2.5. RELATED WORK 39

Still considering biclustering, one could also consider to carry out a compar-
ison between our heuristic method and a complete enumeration approach.
We considered this option, but initial results were such that complete enu-
meration was not a feasible approach for the datasets of realistic size and
complexity. The proposed evaluation criterion has a high computational
complexity; evaluating it for an exponential number of biclusters is not fea-
sible within reasonable runtimes. Consider that our largest data has 951 200
time measurements, for 6 attributes. A naive enumeration of all subsets of
time measurements is clearly not possible. We would also like to point out
that, while exhaustive solutions to biclustering have been studied in the lit-
erature, they are not commonly used or accepted. Most common are greedy
algorithms, such as the one studied in our work.

The task of motif discovery is similar to the task studied here [20, 71, 103].
In most cases, motif discovery algorithms focus on the univariate setting.
Nevertheless the tasks are similar, as both motif discovery and biclustering
aim at finding subsequences in a time series with a certain similarity. The
difference is that motif discovery methods are mostly shape-based [71, 103].
The most cited approach [20] also uses probabilistic metrics, but requires the
discretization of data for efficiency reasons. We propose to make full use of
the richness of the time series by using LSDD [86] to compare segments.

A number of studies have considered the multivariate setting [88, 70, 93].
These also propose to find non-overlapping subsequences in a multivariate
setting. The difference here is that [88, 93] propose a two-step approach,
where the univariate setting is extended to the multivariate setting by group-
ing motifs using principle component analysis or coincidence rates. As for
[70], they propose shape-based motif discovery in the multivariate setting,
without considering the independence between variables. With our biclus-
tering approach, we allow the discovery of subsets of both time periods and
variables, without discretizing the measurements, thus allowing richer prob-
abilistic descriptions to find more complex patterns.

One step further is to look into the problem of updating projections in a
stream of tensors [87]; it incrementally maintains projections in these streams
and is not capable of finding patterns that reoccur for the same sensors in
different unconnected fragments of time. The optimization criterion that [87]
used is a global optimization criterion that favors obtaining an as accurate
representation of the data as possible, while instead, we focus on finding local
patterns. Arguably, here, our problem setting compares to [87] problem
setting as biclustering compares to matrix factorization: the problems are
related, but have a different focus that justifies both’s existence.

40 CHAPTER 2. BICLUSTERING

2.6 Conclusions and Future Work

This paper introduced the task of biclustering multivariate time series. In
this context, respecting the temporal order is absolutely critical. Given that
the traditional biclustering setting assumes that all samples are independent,
the shuffling process of finding subsets of rows and columns will lead to
useless biclusters in the time series context. We showed the importance of an
algorithmic solution to bicluster multivariate time series. First, we proposed
the creation of segments of sufficient length; second, we argued for the use of
an LSDD divergence score [86] to ensure that for each selected variable, all
selected segments have a similar distribution.

We presented an algorithm for solving this biclustering task. It consists of
two stages: first, a stage in which the time series are segmented in segments
of sufficient length; second, a stage in which a selection of segments and
variables is made. In both the first and second stage, we used LSDD with
fixed parameters. Experiments showed that LSDD produces stable results,
and that the probabilistic descriptions of each segment can be used to accept,
or reject a bicluster during the node deletion process.

This paper introduced the task of biclustering multivariate time series. In
this context, respecting the temporal order is absolutely critical. Given that
the traditional biclustering setting assumes that all samples are indepen-
dent, the shuffling process of finding subsets of rows and columns will lead
to useless biclusters in the time series context. With this paper, we show
the importance of an algorithmic adaptation of traditional methods when
biclustering multivariate time series.

We proposed two modifications of the traditional biclustering task. First,
we proposed the creation of segments of sufficient length; second, we argued
for the use of an LSDD divergence score [86] to ensure that for each selected
variable, all selected segments have a similar distribution.

We presented an algorithm for solving this biclustering task. In this algo-
rithm, we distinguished two stages: first, a stage in which the time series
are segmented in segments of sufficient length; second, a stage in which a
selection of segments and variables is made. Both in the first and in the sec-
ond stage we used LSDD with fixed parameters. Experiments showed that
LSDD produces stable results, and that the probabilistic descriptions of each
segment can be used to accept, or reject a bicluster during the node deletion
process.

2.6. CONCLUSIONS AND FUTURE WORK 41

As for the problem of setting multiple parameters, although the algorithms
have some parameters, several of them are either fixed or estimated auto-
matic. As for the parameters presented in Algorithms 1, 2 and 3, we have
decided to fix most of them to the same value in all the experiments, except
for window size, w, and jump between consecutive windows, jump. All the
other parameters are fixed, because the results are not very sensitive to their
setting. The default values can be found in the online tool (see Chapter 3).
Additionally, we would like to point out that the parameters from Section
2.3.3 (θ and σ) are estimated automatically, and justified experimentally in
Section 2.4.1 (LSDD estimation).

As future work, other types of biclustering in time series data can be studied.
Comparisons between segments can be based on other descriptions, such as
Fourier transforms with scores of spectral similarities, ARMA models coeffi-
cients and functional fits, both with scores on standard errors. These repre-
sentations could be effective at capturing specific phenomena in the data that
are not recognized by comparing distributions or other representations. Our
algorithm can be improved as well. One could consider the use of multiple
node deletion and addition to speed-up the search, and could modify it to
allow for biclustering. This would be highly beneficial to both speed up the
biclustering procedure and capture overlapping phenomena.

