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Chapter 1

Introduction

We live an era of unprecedented data challenges. These challenges have been
fuelled by technological developments in storage, communication and collec-
tion of data. A good example of such developments can be recognized in
sensor networks. Most people are not aware of such sources of data but they
are around us, in our houses, means of transportation and even with our-
selves, fitted into smartphones, watches and other wearables. These sensors
have been inserted ubiquitously into our daily lives, producing large amounts
of data with the potential for extensive analysis. If seen as a whole, most
sensor systems produce multiple variables, derived from one or more sensors.
This source of data, that we refer to as multivariate time series, forms the
main focus of this thesis.

Mining multivariate time series is both the title and the core of this thesis.
As a data mining thesis, there is a focus on the algorithmic solutions for
the challenges related to multivariate time series. We envision these tasks in
three different dimensions: developing methods that solve a particular mining
task, providing tools that embody data mining methodologies and developing
applications were temporal data plays a central role. Each dimension poses
its unique challenges on how to process multivariate time series data.

1.1 Motivation

We start by introducing the main motivation behind our research in mul-
tivariate time series and the challenges that we found for the field of data
mining as a field that needs to interact with other disciplines.
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1.1.1 Data Science

Data-related challenges represent a major scientific effort these days. Such
challenges cut across many disciplines, making the data paradigm the broad-
est of nowadays in terms of disciplines it can potentially affect. This context
encourages the blooming of buzzwords and research hypes, such as big data
and data science. These buzzwords are so strong that they boosted the focus
of computer scientist towards data. As an example, over the last fifteen years,
my own institute, the Leiden Institute of Advance Computer Science redi-
rected its educational and research focus mostly towards challenges related
to data, such as optimization, data mining, bioinformatics, and computer vi-
sion. More recently, terms such as big data fuelled multidisciplinary partner-
ships and a general understanding that not only statistics, but also computer
science needs to support other scientific fields in their data analysis.

Let us start with the term big data. There are no strict definitions for what
big data really is. This can cause considerable ontological confusion, when
different disciplines get together to discuss this term and its challenges. With-
out pretending to have the best definition of big data, here is a (somewhat
simplistic) attempt: Big data refers to the challenges created by the fact that
our present technological capacity to measure and collect data outperforms in
great measure our capacity to explore and exploit it. But then, how big is big
data for most? Furthermore, does our present incapacity to deal with big
data represent all the challenges around the paradigm of data?

Firstly, when talking about data, size matters. Let us start with the most
extreme case, the World Wide Web. Today, if we were to collect and store
all the data transferred during one day over all the World Wide Web, this
would amount to a pile of burned CDs of data (roughly 700 Mb each) that
would stack from Earth to Mars and back [l But this is not the case in the
majority of data science challenges, where the scale of what is considered to
be a challenging amount of data is determined by the tools available. Most
of the data mining research around the term big data is about developing
new computational methodologies that can upscale fairly standard analyses
to Gbs or Tbs of data. Without reducing the merits of this line of research, in
fact most fields of research are struggling with datasets in the order of Mbs.
This struggle is in many cases due to the usage of standard tools, which are
incapable of loading a large file for analysis or are simply not able to plot
the data for a first inspection. Research projects need better tools, either for
general purposes or in some cases tailored for a specific project.

http://www.imdb.com/title/tt5275828/
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So is there more to the challenges surrounding data than scalability? I believe
there are, and they are multidisciplinary in nature. For a complete approach
to any current data project, the scientist’s background should include a good
domain of databases design and management, algorithm design and perfor-
mance, statistics, machine learning systems, and optimization, just to name
a few. The broader field that involves this multidisciplinary knowledge has
been commonly referred as data science.

The multidisciplinary nature of data science can be seen as a natural exten-
sion of data mining. Data mining is a field that marries methods both from
mathematics such as machine learning and statistics with computer science
techniques such as databases and design of efficient algorithms. The primary
goal of data mining is to extract valuable information from data and turn it
into a models that can be further used. Data science extends this modeling
challenge both with challenges upstream and downstream.

Upstream data science challenges include turning the attention towards bet-
ter data collection protocols, efficient data collection systems, faster data
communication and data storage solutions (short period, long term storage,
work-in-progress storage, multiple user access). For example, recently most
of the principal funding agencies of Dutch research institutes (e.g. NWO,
H2020 and ERC), started asking project applicants to write a data manage-
ment plan for each proposal. Increasingly, domain experts in many areas
of research are dealing with large amounts of generated data. Among the
different research communities, one can find the social sciences, life sciences,
arts and design, among others. Many of these domain experts may not have
a computer science background, but often they find themselves dealing with
data challenges.

Consider now the challenges downstream. They include the development of
tools that include other data analysis. Such tools need to be easily available
and designed for a broad audience. Additionally, there is a need to transform
results of models (predictive and descriptive) into decision support systems,
such that results turn into possible actions.

This thesis seeks to provide methods and methodologies for domain experts
using sensor data, by building data mining algorithms tailored to sensor
data. We are also developing easy-to-use standalone tools where visualiza-
tion, analysis and building models of time series does not require program-
ming skills.

The research of this thesis has been developed in multiple sensor-related
projects. Referencing such projects should enforce the idea that data mining
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can be the common ground for multidisciplinary projects. The following
sections relate to projects in the areas of civil engineering, medical sciences,
life sciences (sports) and social sciences.

InfraWatch

Infrastructures such as bridges are built to endure harsh conditions, for in-
stance as heavy traffic or extreme weather conditions. However, it is known
that they do not last forever: in the long run, infrastructures deteriorate very
gradually and eventually they need to be repaired or replaced. In order to
keep traffic moving, bridge owners need to do maintenance. How to predict
the necessity for maintenance? The current approach is to do ad-hoc external
inspections.

InfraWatch is a project that joins asset managers, contractors and academia
(both civil engineering and computer sciences) to change the current practice
of bridge maintenance. A large sensor network (approximately 145 sensors)
was installed on a highway bridge near Amsterdam, collecting data since 2008
at a sampling rate of 100 Hz, generating big data. At the Leiden Institute of
Advanced Computer Science, we have been developing algorithms that build
data-driven models of the bridge [102 103, 67, 15] and new visualization
tools [I0T], [65], T3], for large multivariate time series.

Leiden Longevity Study

The baby boomers of the fifties and sixties are aging and as a consequence in
Europe, health has become a major concern for people themselves [96], policy
makers [92] and science [104, O4]. The Leiden Longevity Study is designed
to identify genetic and phenotype markers that relate to longevity. A total
of 421 families were recruited, consisting of long-lived white siblings, their
offspring and the offspring’s partners (who act as controls). The collection
of data was vast and for some cohort studies, the data collection protocol
included unsupervized sensor data (accelerometers and bioharness) for long
periods of free living. The question became then: how to extract valuable
information about physical activity that can help explaining the aging pro-
cess.

In order to explore the unsupervized data, first a validation study (GOTOv)
produced a dataset with a set of activities that have been annotated (hence
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a supervised dataset). The participants of this study have the same char-
acteristics as the population as the Leiden Longevity Study studies. Using
a method described in this thesis [14], we have been able to create tools
(see Chapter [5) and highly reliable activity recognition models [74]. This
will allow us to explore the data from the cohorts that have unsupervized
data.

Social Competence

Social interactions in the playground have been considered important learn-
ing opportunities, for children to learn social skills at preschool years. Specif-
ically, all forms of social play (fantasy, role, exercise, or rough-and-tumble)
have been related to children’s social competence [21]. The research team
Focus on Emotions, of the Faculty of Social and Behavioural Sciences of Lei-
den University and the Human Motion Faculty of the University of Lisbon
have been studying child’s play in the playground.

As data science partners, we designed a new data collection protocol to mea-
sure interactions in the playground, based on Radio-Frequency Identification
Devices. Using active RFIDs as badges, the interactions could be measured
for all the children at the same time at a fairly high sampling rate (4 Hz).
This partnership resulted in several new analyses [99, [100], as well as a first
place in a smart city competition [I]. Collection of additional datasets is
ongoing.

Sports Analytics: MASS project

The MASS project focuses on the monitoring and analysis of elite Dutch
speed skaters during several training seasons. The goal is to consider a wide
range of aspects, in order to find effective patterns in their training routines,
which might lead to more effective training and better competition perfor-
mance. The project builds on a unique collection of daily data about Dutch
speed skaters. Collected over the last ten years, this data comes from within
LottoNL-Jumbo, the top-level team of coach Jac Orie [73].

In order to mine this data, first we set up a database infrastructure to store
the data and developed a web-based tool where one can make data and model
analysis on the fly with ease. The research resulted in a high profile article
[53] (see Chapter [6]) as well as considerable publicity.
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1.1.2 Research Questions

The applied projects outlined above, as well as many similar projects pro-
ducing complex, multivariate time series, offer many opportunities for new
research in the area of data science. The following is a list of research ques-
tions inspired by these projects that motivate the work outlined in this thesis.
The first two questions have to do with the multivariate nature of the data
itself:

Q1 How can we find unsupervised patterns in multivariate time
series?

Q2 Can we find dependencies between variables in multivariate
data that occur intermittently?

These two questions relate to applications where the observed system can
be in different states with different observed behaviour, but it is not quite
clear yet which are the states it can be in. In other words, this is a so-
called unsupervised setting, where one would like the data to be clustered
into a finite number of states, but the states should be reasonably steady,
and not switch from one time point to the next. This setting is for example
relevant in the Leiden Longevity Study, where one would like to recognise
various activities in a person’s behaviour. Additionally, research question Q2
relates to the possibility that different states show different phenomena with
respect to the measured variables involved. Research questions Q1 and Q2
are addressed in Chapter [2]

The unsupervised setting is attractive if one is unfamiliar with the dataset
and domain it captures. However, in many cases, one is dealing with a
supervised task, and either regression or classification models need to be
induced from multivariate data. A specific challenge, that was also present
in some of the projects mentioned above, is that the supervised ‘labels’” are
not always available at the same rate as the detailed multivariate data was
recorded. For example, it is easy to capture activity data at high sampling
rates, e.g. by means of an accelerometer, but obtaining the activity of a
person can realistically not be recorded more often than once per second, if
not much slower. This inspires the following research questions, which are

addressed in Chapters [, [5 and [6}

Q3 How can we learn classification and regression models from
multivariate time series with mixed sampling rates, taking into

account the different temporal scales at which dependencies might
hold?
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Q4 How can we automatically derive good time series features
that take into account delays and temporal aggregation?

In the field of sports analytics, one is interested in reliable models, but also
in finding patterns that are actionable and interpretable for a coach, in order
to optimise the effectiveness of their training routines. The MASS project
above motivated research question Qb:

Q5 How can interpretable and simple patterns be extracted from
multivariate training data, while considering the complexities of
elite sports and of how the human body responds to various train-
ing impulses?

The above research questions relate to key data science methods that are
required to deal with the data challenges described, but they over-simplify
the process of data science. In practice, a project requires a methodology
and tools to support the analysis of complex data. The following research
question addresses this issue, which is also the topic of Chapters [3] [} and
parts of Chapter [6]

Q6 How can the non-trivial analysis of multivariate times series
by supported by a methodology and a tool?

1.2 Multivariate Time Series

In this section, we introduce the fundamental concepts used throughout this
thesis. To start, consider a univariate time series, defined as follows:
Definition 1. A univariate time series t is a finite sequence of values (t1, ..., t,)
ordered in time, where i represents an index of the sequence i € {1,...,n}
and t; is a real value: Vi t; € R.

Consider now the properties of a single time series, t. In this univariate
setting, the sequence of data points ¢;,7 € {1,...,n} represents a process
measured over a period of time.

Across all the projects mentioned above and chapters following this introduc-
tion, there is a data structure that is common to all: the multivariate time
series. Continue to assume that our time series is of finite length n. The
extension to the definition above is that now we have m variables to con-
sider. We formalize a multivariate time series as a matrix T of size n x m,
as follows:
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Ti1 T2 T

T — Ty T?72 T,
: : T;; :

Tn 1 Tn,2 e Tn,2

)

Please note that in this matrix, there is a temporal order: T;; represents
a measurement at time point ¢ for variable 5. The temporal order of the
data can be represented as a sequence {1,2,...,4,...,n}. Note that this
representation assumes that all measurements for the different variables j
are performed at the same time.

1.2.1 Sampling Rates

Definition [1)is an abstract formalization of a time series without specifications
of the exact timing of the data. It is abstract because the series is just ordered
by an index from {1,...,n}. In reality, however, each row in the series is
actually measured at a specific moment in time, which we refer to as the
timestamps of the measurement. A timestamp can be seen as a function w(7)
that maps the index 7 to a specific point in time.

Having the timestamps, one important property to know is which is the
temporal spacing between consecutive measurements. For consecutive mea-
surements, this spacing is simply:

w(i) —w(@—1),¥ie{2,...,n}.

A more informative measure of how measurements are spaced is actually the
sampling rate, which is the average number of samples per unit of time:

n—1

/= w(n) —w(l)

The sampling rate is a frequency with unit s=! (per second), more gener-

ally referred to as Herz (Hz). The sampling rate f is an average statistic
that holds for the entire series. In contrast, the sampling rate can also be
computed locally, as follows:

1 .
fi= w(i)—w(i—l)’w €{2,...,n}.
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Fixed Sampling Rate The most desirable situation is when the sampling
rate is fixed, so the temporal spacing between measurements is always the
same. Note that well-behaved periodicity of the data will allow us to ignore
time stamps and simply use indexes. We refer to fixed sampling rate when
the sampling rate f; is always constant, such that

1

f=fi= w(i)—w(@'—n’\ﬁe {2,...,n}.

Variable Sampling Rate When the statement above does not hold, we
refer to it as wariable sampling rate. Notice that variable sampling rate
is often the case, sometimes due to imprecision in measuring, other times
because the measured phenomena does not have a constant periodicity.

There are multiple standard approaches to deal with variable sampling rates.
If the differences between sampling rates f; is very small, then one can just
opt to ignore it. Alternatively, one could find solutions either from the data
perspective or from the design of the algorithm. From the perspective of
the data, one can have a pre-processing step to make the sampling rate con-
stant, by using standard techniques such as interpolation or repeating values
[105], 83]. From the algorithmic perspective, one can design and implement
solutions to deal with variable sampling rates, with techniques such as buffer-
ing [9].

1.2.2 Machine Learning Tasks

The machine learning literature identifies a range of standard tasks. These
differ in terms of nature of the data, such as the traditional tabular data,
as opposed to structured data (e.g. time series). Machine learning tasks
can also differ in terms of aim, such as classification, regression, biclustering,
subgroup discovery and segmentation. This suggests a landscape of problems
and solutions where it is easy to get lost.

One good way to categorize machine learning tasks is to divide them into
two learning paradigms: unsupervized and supervized. This nomenclature
separates tasks with a clear, known and measurable target (supervized) and
tasks that try to make sense of data without having a prior target (unsuper-
vized). This thesis focuses on tasks from both paradigms that are relevant
for multivariate time series, as mentioned bellow.
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Unsupervized Learning

The field of unsupervized learning is vast, and reflects the different ways one
could extract meaningful information from data. As for time series, examples
of well-known machine learning tasks are whole time series clustering [22,
49, 2], segmentation [35, [46], [47) and motif discovery [72, [20] [71, [103] 88, 70,
g3].

Whole time series clustering applies when one is facing a dataset where the
same variable was measured in multiple systems, under the same protocol.
Take as an example measuring the core body temperature of a person. If
this would be done for multiple persons, then we could cluster the different
types of metabolism in terms of temperature [22]. Although common, this
setting does not apply to our definition of multivariate time series, where it
is assumed that we are measuring only one system.

Let us now focus on the situation of measuring one system over time. In such
situations, the most well-known tasks are segmentation and motif discovery.
On the one side, segmentation aims to cut a time series into a set of segments,
where the data inside each segment is homogeneous. On the other side, motif
discovery finds recurrent patterns or motifs in the time series, allowing the
possibility of selecting only some parts of the time series. Both segmentation
and motif discovery are tasks that typically are applied to univariate data,
not easily to multivariate time series.

In this thesis, we introduce an unsupervized task that is applicable to multi-
variate data collected from a single system: biclustering of multivariate time
series. Biclustering is a well-known task in the machine learning literature,
but cannot be readily applied to time series data. We reinterpret this task
into a scenario of multivariate time series. An introduction to this task, a
formal definition, an algorithmic solution and tool can be found in Chapters

2] and Bl

Supervized Learning

Consider now that we have a known and measurable target to model. In such
a case, we are dealing with a different paradigm from the one above, known as
supervized learning. In such a case, one wants to predict a target. In the case
of this thesis, we will focus on predictions in a multivariate scenario.

Before moving on to the definition of the target, let us make an important
distinction between prediction of future data (forecast a system) and pre-
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diction of current and past data (understand a system). Forecasting is to
estimate future values given past values of a time series. Please note that
forecasting can be done both in univariate and multivariate settings. Unlike
forecasting, prediction of existing data seeks ways to explain some target in
terms of other variables. This sort of prediction can be divided into regres-
sion or classification problems. Such models are invariably multivariate. The
fundamental difference to forecast resides in the error. The regression or clas-
sification error is the difference between the actual value of the estimation
and the prediction of such value. We focus on this set of tasks and formalize
them bellow.

Consider that besides the m independent variables present in T, we have a
dependent variable r. Having r as a target, the general task in this situation
is to find a model F, such that:

r, = F(Tz) + €;

Please note that e; represents the error of the model for the prediction of
existing data as mentioned a couple of paragraphs above. For both classifi-
cation and regression models, the objective is to minimize this error.

Classification A problem can be categorized as a classification problem
when the dependent variable r is categorical. When categorical, the domain
of r assumes a finite number ¢ of possible, such that r; € {1,...,¢}. To
evaluate a classification model, normally one would use accuracy as a metric.
To define the accuracy, please consider a binary classification problem (¢ =
2), with the following terminology in terms of prediction.

number of cases correctly predicted

accuracy =
number of cases

Please note that this accuracy rate can be generalized to a multiclass classifi-
cation problem where ¢ > 2. The accuracy reflects the quality of a classifica-
tion model, due to its capability to correctly predict the classes. The closer
to unity, the better are the predictions performed by the classifier.

Regression Next to classification problems, we have regression problems.
A regression problem is recognized as such when the dependent variable r is
numeric, such that r; € R. In such a numeric setting, the error can be either
an overestimation or an underestimation and is calculated as follows:

€; = (JT'-(TZ) — I‘Z')2
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Please note that as measure of quality for a regression model, one would want
a normalized measure to be able to compare methods across different datasets
or just to avoid the interpretation using the domain size of the dependent
variable r. For such a measure, we normally adopt r-squared (R?), which is
defined as follows:

R2 — nZ?:l 67:2_ ,
> i (ri —T)?

where T is the average of the dependent variable. R-squared is a measure of
quality of the regression model by comparison with a simple average estima-
tion. The closer to unity, the best is the model and the further is from being
an average estimation.

Mixed sampling rates In many cases, the sampling rate for T is very
high or at least higher than desired as an output. Here as output, we refer
to the result of a regression or classification task as defined above. As an
example, please consider the InfraWatch bridge mentioned previously, with
an installed sensor network that measures at 100 Hz and where at best, we
want to know the traffic intensity every minute. For such situations, we
aim to deal with modeling tasks where the sampling rate of the dependent
variable f, is (much) lower than that of the independent variables T

fr S fT-

Please note that a consequence of such an assumption is that the length of r
is not n anymore but |r|. The differences of sampling rates imply differences
in the number of samples between T and r, where |r| < n. The regression or
classification models as stated above won’t hold under such circumstance and
one would need to change the data such that for each value of the dependent
variable r, there is only one vector of values as independent variables.

The transformation of independent variables we normally call feature con-
struction. As described above, in the supervized settings we are looking for
a function F that is able to explain r. In the case of mixed sampling rates,
we have a situation that T cannot be used to model r directly. To model r,
we need to transform T into a feature set F, such that for any of the features
that belong to the set F have length |r|. We approach this transformation of
T by means of aggregation, which is described below.
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1.2.3 Aggregation of Time Series

In this section, we discuss the relevance of so-called aggregation functions to
deal with time series. Starting from the beginning, one could ask what an
aggregation function does. In short, it takes a vector of numbers and trans-
forms it into a lower dimension, typically a single value. As an example, let’s
consider a univariate time series t according to definition [I} An aggregation
function summarizes t as follows:

a:R" — R

Please note that the usage of an aggregation function such as a, intends
not only to perform a dimensionality reduction but also to summarize some
particular informative aspect of t.

There are many ways to summarize sequences of measurements. To consider
such variety, we assume a set of aggregation functions A, where a € A.
Although the set A can theoretically be defined to include an infinite number
of functions, we will restrict A to a very manageable number. We consider A
to be a family of well-known aggregation functions, normally designated as
descriptive statistics, such as a minimum, a maximum or an average. More

on A can be found in Chapter [4

Let’s now focus on how to properly use aggregation functions in the context
of time series. Above, we considered applying such functions to summarize
the whole time series t. Although it works well as an example, this is not how
aggregation is applied in most practical cases. More commonly, a is applied
to subsequences of a time series, informally referred to as a window. A time
series subsequence is defined as follows:

Definition 2. Given a univariate time series t as in Definition |1, a sub-

sequence Sg;; 15 a subset of 1,...,n, containing | contiguous values. We
consider sy ;; to be represented by a vector (ti_iy1,...,ti—1,t;), and:

e ic{l...,n},

o Vi t; € R,

o 1 <[ <n.

Aggregation functions, when applied to time series subsequences, will sum-
marize a particular period of time. Such usage of aggregation function in
subsequences of time series is normally intended for feature construction. In
the context of this thesis, the need for feature construction has already been
motivated above, while discussing how to mine multivariate time series with
mixed sampling rates.
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One could now consider how a feature is constructed in the context of a time
series. For the purpose of simplicity, let us start by considering a feature that
has the same sampling rate as the original time series. This implies that the
aggregation function slides orderly through the subsequence (one data value
in, one out). A feature can then be constructed as follows:

fraili] = a(se,iy)

A more generic definition of time series feature (aggregate feature) is given in
Chapter[d Please note that we assumed for now that features are constructed
with subsequences of the same length [. Such an assumption works fine when
we have a fixed sampling rate. As presented in Section[1.2.1] it can also occur
that one faces data with variable sampling rates. In such a scenario, there
are two solutions to consider:

e [f the variation of the sampling rate is considerable, one could fix a
time interval and include all the data that falls into that window of
time.

e If the variation of the sampling rate is insignificant, one could just do
some pre-processing to adjust the sampling rate and still fix the size of
the window based on the index.

A feature as defined above captures some particular aspect of a time se-
ries. Following this idea, we identify the following applications of aggregate
features:

e Feature engineering: capture or extract some specific aspect of the time
series that can potentially be informative, and is not apparent in the
original time series.

e Smoothing: transform the time series into a smoother version of itself.
Here the idea is to reduce the noise that naturally occurs in data.

e Integration over time: with integration over time we mean extracting
some aspect of the data that exhibits an influence over some time.

e Delays: the idea of capturing delays is important in time series because
sometimes the causal effect is not instantaneous. Being able to capture
information with delays might help to do such integration over time.
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1.3 Main Contributions

In this section, we describe the main contributions of this thesis. The con-
tributions will be organized by chapters that follow this introduction. Each
chapter corresponds to one article. Three of the chapters have been pub-
lished in the proceedings of computer sciences conferences, one in a high
impact journal and a remaining one that is under submission process.

biclusTS: Biclustering Multivariate Time Series In Chapter 2| we
introduce biclustering as a relevant task for multivariate time series data.
Although biclustering is well-established as a machine learning task, it is
primarily considered in the context of classical tabular data [19] [61) [79].
Existing solutions do not work with multivariate time series because such
algorithms may pick single rows (in this context, timestamps). When applied
to multivariate time series, a classical algorithm will produce biclusters with
cluster members scattered across all the time series, with little or no relevance
when seen from a temporal perspective.

Our algorithm uses as coherence measure between segments, namely a one-
step estimation of the density difference between distributions of values within
different segments. Such an estimation of the density difference differs from
the traditional two-step approach that first estimates the probability den-
sity functions and then calculates the estimated density difference of the two
distributions. The work in this chapter was published as follows:

Ricardo Cachucho, Siegfried Nijssen, Arno Knobbe, Bicluster-
ing Multivariate Time Series, in Proceedings of Intelligent Data
Analysis (IDA), 2017

Bipeline: Bisclustering tool In Chapter (3] we introduce a working tool,
easily accessible to everyone that wants to experiment with biclustering meth-
ods in multivariate time series. We called this tool Bipeline, due to the
main idea of allowing users to follow easily an experimental pipeline. Such a
pipeline means that this tool can be used to load, visualize, preprocess and
bicluster multivariate time series. In terms of biclustering, the intention of
Bipeline is not only to share the algorithm biclusTS (Chapter , but also to
compare it to other standard biclustering algorithms. The following paper
describes the tool own detail:
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Ricardo Cachucho, Kaihua Liu, Siegfried Nijssen, Arno Knobbe,
Bipeline: a Web-based Visualization Tool for Biclustering of Mul-
tivariate Time Series, in Proceedings of the European Conference

on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD), 2016

Accordion: Mining Mixed Sampling Rates In Chapter [4, we change
the learning paradigm to a supervized scenario. Here, we introduce a new
method that deals with multivariate time series with mized sampling rates.
We named this algorithm Accordion. Accordion automatically searches for
good aggregate features for a given dataset with mixed sampling rates. As a
result, Accordion returns a set of aggregate features at the sampling rate of
the dependent variable.

What sets our method apart from many has to do with the way good descrip-
tive features are searched automatically. While the majority of classification
and regression algorithms see the feature construction as an independent pre-
processing step, we see it as a machine learning problem. The construction of
good aggregate features is an optimization procedure, and as a result, good
features will lead to good models. The obvious question is then, what is a
good feature? We consider a feature to be good, when it is able to properly
discriminate target classes (classification) or when it has a good correlation
with a numeric target (regression). This work was publishes as:

Ricardo Cachucho, Marvin Meeng, Ugo Vespier, Siegfried Ni-
jssen, Arno Knobbe, Mining Multivariate Time Series with Mized
Sampling Rates, in Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp),
2014

ClaRe: Classification and Regression tool In Chapter 5] we introduce
a web-based tool (ClaRe) to build regression and classification models using
features from the Accordion algorithm (Chapter [4]).

Our tool aims to make Accordion accessible in a SaaS (Software as a Service)
environment. Given a multivariate time series dataset, it allows users to
easily access Accordion’s features. The upside of such a SaaS is the ability to
access Accordion embedded in a data mining methodology: load, pre-process,
visualize and evaluate. The following paper is under submission:
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Ricardo Cachucho, Stelios Paraschiakos, Kaihua Liu, Benjamin
van der Burgh, Arno Knobbe, ClaRe: Classification and Regres-
sion Tool for Multivariate Time Series, in Proceedings of the
European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD),
2018

Speed Skating Analytics Chapter [0] reports on a cooperation between
an elite speed skating team (LottoNL-Jumbo) and Leiden University, where
the objective is to analyze and optimize the speed skating performance of
individual athletes. To look into performance, we accessed daily training
and competition results data, collected over a period of over 15 years.

From a modeling perspective, the challenge was to find meaningful aggregate
features to avoid situations of under- or overtraining in the athletes’ training
schedules. The challenge from the data science perspective was on how to
weigh such aggregate periods and on how to deal with variable sampling rates
in multivariate time series. The models presented represent a mixture of
linear models and subgroup discovery (step functions) that should provide a
platform of analysis for personalized performance optimization. The content
of this chapter appears in the following publication:

Arno Knobbe, Jac Orie, Nico Hofman, Benjamin van der Burgh,
Ricardo Cachucho, Sports Analytics for Professional Speed Skat-
ing, in journal of the Data Mining and Knowledge Discovery,
Volume 31, Issue 6, pp 1872-1902, Springer, 2017

Please note that, in the the case of this publication I am not the first author.
In this case, I designed and developed the application where the experiments
ran, conducted the experiments to find meaningful aggregate features used
in the performance models and lead LTACS data scientist.

1.4 Thesis outline

Following this introductory chapter, this thesis presents a series of papers.
These are papers that have been published and peer reviewed, with the ex-
ception of Chapter [5| that has been submitted for publication. The papers
are presented in the form of self-contained chapters. Although being self-
contained chapters, one could divide the work into chapters on unsupervized
tasks and chapters on supervized tasks.
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Unsupervized learning Chapter [2] Biclustering Multivariate Time Se-
ries [I5], presents a method on how to select subsets of rows (time periods)
and subsets of columns (variables) under a coherence measure. This paper
was published at the Intelligent Data Analysis 2017 conference.

Chapter [3, Bipeline: a Web-based Visualization Tool for Biclustering of Mul-
tivariate Time Series [13], presents a web-based tool where users can test

different biclustering algorithms in multivariate time series. This paper was
published at the ECML-PKDD 2016 conference.

Supervized learning In Chapter 4] we change to a supervized learning
setting. This chapter, Mining Multivariate Time Series with Mixed Sampling
Rates [14], presents a method to search for good aggregate features to build
decision trees and linear regression models. This paper has been submitted
and presented at the Ubiquitous Computing 2014 conference.

Chapter [5] ClaRe: Classification and Regression Tool for Multivariate Time
Series, presents a web-based tool where the users can experiment with aggre-
gate features as presented in Chapter 4] within a data mining methodology
framework. This paper was published at the ECML-PKDD 2016 confer-

ence.

As for Chapter |§|, Sports Analytics for Professional Speed Skating [53], we
present an empirical study on how to apply data science techniques to a pro-
fessional sports environment. This paper was published in the Data Mining
and Knowledge Discovery journal.

Finally, in Chapter [7] we give an overview of the findings and contributions
that this thesis proposes.



Chapter 2

Biclustering Multivariate Time
Series

Ricardo Cachucho, Siegfried Nijssen, Arno Knobbe
in Proceedings of Intelligent Data Analysis (IDA), 2017

Abstract

Sensor networks are able to generate large amounts of unsupervized multi-
variate time series data. Understanding this data is a non-trivial task: not
only patterns in the time series for individual variables can be of interest, it
can also be important to understand the relations between patterns in different
variables. In this paper, we present a novel data mining task that aims for a
better understanding of the prominent patterns present in multivariate time
series: multivariate time series biclustering. This task involves the discovery
of subsets of variables that show consistent behavior in a number of shared
time segments. We present a biclustering method, BiclusTS, to solve this
task. Extensive experimental results show that, in contrast to several tradi-
tional biclustering methods, with our method the discovered biclusters respect
the temporal nature of the data. In the spirit of reproducible research, code,
datasets and an experimentation tool are made publicly available to help the
dissemination of the method.

19
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2.1 Introduction

Multivariate time series are becoming increasingly available, mostly through
the rapid development of measurement systems. More and more, machin-
ery, infrastructures and humans use sensors, collecting data synchronously
over time. The continuous measuring of these systems also means that most
datasets produced by them are unsupervized. These datasets contain a range
of phenomena, from recurring phenomena recognizable across all the sensors,
to some phenomena that are only recognizable in some of the signals or even
random events that do not reoccur at all. The nature of multivariate time se-
ries data offers a big opportunity for pattern recognition. As a consequence,
there is a considerable need for unsupervized methods that can provide in-
sight in this data.

Among unsupervized tasks that have been studied in the time series field
are the segmentation and motif discovery tasks [103]. These tasks aim to
either identify recurring patterns in the time series, or to partition the time
series into segments. Most of this earlier work is however biased towards
univariate time series. Unlike the univariate setting, mining multivariate
time series poses the following challenges:

e understanding the relationship between different variables is highly im-
portant;

e the relationships between different variables may alternate at different
moments in time;

As a result, there is a need for new methods that identify subsets of variables
with consistent behavior over subsets of time. Which methods can identify
such subsets? We consider biclustering to be a good approach to solve this
pattern recognition problem.

Biclustering is a well-known task in the literature [19, 61], 79 511 [7, 0T, [72]
42, [43]. Essentially, it aims at discovering subsets of rows with correspond-
ing subsets of columns, such that the submatrix selected by these rows and
columns satisfies a certain cohesiveness requirement. Biclustering can be
seen as a generalization of clustering where not only the rows are clustered,
but the columns as well. Please note that one bicluster is the result of the
biclustering task. Furthermore, biclusters can overlap each other and not
all rows or columns need to be included in the biclusters. However, as we
will point out throughout the paper, traditional biclustering methods are not
well-suited for analysing multivariate time series.
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The traditional methods for biclustering ignore the temporal aspect of the
data in the analysis. The possibility to shuffle the rows and include rows
individually, imply that the time series will no longer be ordered. Traditional
biclustering algorithms can include an arbitrary subset of time points in a
bicluster; there is no guarantee that contiguous time points are included in
the bicluster. As a result, very small segments of the time series, or even
individual time points, may be selected in the bicluster.

We argue that discovering biclusters is also useful on time series data. Using
the smartphone as an example, we know that people will walk and might
cycle at some point through the day. To capture walking, we only need ac-
celerometry data, while for cycling, we would likely to benefit from additional
GPS data. However, as we will point out throughout the paper, traditional
biclustering methods are not well-suited for analysing multivariate time se-
ries, as they ignore in the analysis the temporal aspect of data. They can
include an arbitrary subset of time points in a bicluster; there is no guarantee
that contiguous time points are included in the bicluster. As a result, very
small segments of the time series may be included in the bicluster.

In this paper, we propose a new biclustering method that finds recurring
patterns over time for multivariate time series. The distinguishing feature of
our biclustering method is that it finds biclusters spanning sufficiently long
segments of time. As a result, the biclusters that are found can be see as re-
curring motifs in multivariate time series data. Our algorithm includes:

e a search strategy for finding biclusters in time;

e the definition of a coherence measure to score the quality of biclusters
in time;
Key advantages of our method compared to other methods include:

e the ability to deal with numeric data in a continuous scale (no dis-
cretization is needed);

e interpretability of the results.

In the following sections, we define the biclustering problem for multivariate
time series, present our biclustering method and experimental results and at
last a conclusion. Our experiments show promising results, both in terms of
the quality of the results and scalability of the method. For reproducibility
purposes, we make our code and datasets freely available. Additionally, we
also developed and published an experimentation tool [I3] with intuitive
GUI, where all the experiments described can be easily tested and applied
to various datasets.
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2.2 Preliminaries

In this section, we define the main concepts of our problem: multivariate
time series (Section , followed by the problem statement of biclustering
multivariate time series (Section and the definition of the similarity
measure (Section used both to segmentation and biclustering of mul-
tivariate time series.

2.2.1 Multivariate Time Series

We assume that we are given a multivariate time series of length n over m
variables. This time series is represented in an n X m matrix T. In this
matrix, T;; represents the measurement at time point ¢ for variable j.

We will often need to identify parts of this data matrix. We introduce some
notation to make this easier. Let I C {1,...,n} be a subset of time points
and let J C {1,...,m} be a subset of variables, then T;; defines the following
submatrix:

Trnn Tnn Tr .,

Trnn Trnn T,
TIJ — . )

Tnn Trs, - Ty

where I, is the uth element in the set I, k = |J| and ¢ = |I|. Furthermore,
we will use T}, as a shorthand for Ty, with I = {i} and J = {1,...,m} and
T,.; as a shorthand for 77; with I = {1,...,n} and J = {j}.

2.2.2 Problem Statement

As discussed in the introduction, we are interested in identifying biclusters
in time series data. More formally, we define the problem at hand as fol-
lows.

Definition 3. One bicluster in time series data consists of:

o sclected segments T = {Iy,...,1,}, where each segment consists of

contiguous measurements I, = {a;,a, +1,...,b.}, for some a,,b, €
{1,...;n} and I, N I, = @ if v # y;

e selected variables J C {1,...,m},

such that:
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o the selected segments and variables satisfy the following requirement:
H(Z,J) <,

where

H(Z, A |ZZd T, Tuz;); (2.1)

jeJ Iel

here UZ = Urerl and d(tq,ts) measures how similar two time series tq
and to are; i.e., it is required that each selected segment is similar to
the union of the other selected segments, for all chosen variables;

e J is maximal: no variable can be added such that the similarity con-
straint remains satisfied;

e 7 is maximal: no segment can be added such that the similarity con-
straint remains satisfied;

e cach segment I € T has a sufficient length, i.e., |I| > .

Notice that H(I,J) is set to capture the coherence for each column inde-
pendently. This allows biclusters to be coherent, even if two variables do
not share their distribution. This way, two variables can measure the same
phenomenon in different ways, depending on the system characteristics and
measuring system setup. As an example, high levels of body activity can be
measured by high levels of heart rate or sinusoidal patterns of acceleration.
For each selected variable in a bicluster, each selected segment is similar to
the other selected segments for that variable, and we are interested in the
largest such bicluster.

2.2.3 Probabilistic divergence score

Many alternatives are possible for the definition of the similarity, d(t, t), be-
tween two subsequences. In this paper, we propose to measure the similarity
of two subsequences by determining the divergence between the distributions
of measurements in these subsequences.

Definition 4. Given two probability densities p(x) and p'(x) over the same
domain, a divergence score d(p,p') is a score with the following properties:

o d(p,p) =2 0;
e d(p,p') =0 iff p(x) = p'(z) for all .
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Definition 5. Given two time series subsequences t1 and to, where t1 con-
tains samples from probability density p(x) and to contains samples from
probability density p'(z), a divergence score for these subsequences is an esti-
mate of the divergence of these distributions, i.e., d(ti,ts) is an estimate of
d(p,p') as calculated from t1 and ts.

2.3 Biclustering Multivariate Time Series

The problem formalized in the previous section is hard to solve exactly. In
order to solve it, we propose a heuristic method. Our algorithm iteratively re-
moves segments or columns until a bicluster is obtained with the desired qual-
ity. Unlike the traditional biclustering algorithm of Cheng and Church [19],
our method is designed for multivariate time series, stressing solutions for
the temporal aspect of multivariate time series data in a bicluster.

In our setting, given the length of most time series, removing individual rows
is not a feasible approach; converging on a bicluster would take too long.
Furthermore, it is unlikely that a heuristic that removes rows one by one is
likely to lead to segments of good quality. For these reasons, we propose a
new approach that works as follows:

1. Identify segment boundaries in the time series of each variable.

2. Combine the segment boundaries of the different attributes to obtain
segment boundaries across all variables.

3. Perform a node deletion biclustering algorithm where either columns
and all rows between segment boundaries are removed at the same time.

Below, we will discuss the details of this approach.

2.3.1 Time Series Segmentation

The process we propose for segmentation is detailed in Alg.[I] This algorithm
computes the density differences between consecutive subsequences of time
series using a sliding window approach. The user-defined parameters for this
algorithm are as follows. The size of each subsequence (window) is defined
by the parameter w. The window is moved over the time series in steps of
size jump. This parameter is intuitively bounded by 1 < jump < w. Note
that by setting jump > ¢, we can ensure that segments are never of length
shorter than ¢.
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Algorithm 1 Segmentation.

Input: multivariate time series t, threshold for local maximum selection 6,
window size w, jump between consecutive windows jump, 1 < jump < w.
C + {1}
for each column of T do

for eachi€{0,1,...,|(n —w)/jump—1]} do
S 4— 1 Jump
dli] < d(t[s+1,...;s+w|, t[s+ jump+1,... s+ jump + w])
end for
for each i € {2,...,[(n —w)/jump — 2]} do
ifdli — 1] <d[i] Nd[i + 1] < d[i] Ad[i] > 6
C<«+CU{i-jump+w}
end for
end for
return segment start indices C

Having decided on how to go through the data, one needs to calculate the
divergence scores between consecutive windows of data, d(ti,t2). A solution
for this divergence score is proposed in Section After calculating the
divergence score for all consecutive windows, we extract all local maxima to
find the segment boundaries. The risk of using local maxima is that too many
boundaries might be found, creating too many segments. For this purpose,
a threshold @ for the selection of local maximum divergences is introduced.
Only local maxima above 6§ will be selected as segment boundaries. A rea-
sonable solution for this threshold is to normalize each variable and have the
boundaries rescaled between 0 and 1 such that 0 < 8 < 1.

Alg. [T] returns a set C consisting of the segment boundaries. This set is the
union of all the segments found for each of the m variables. Note that we seg-
ment the variables independently of each other; this is important as in biclus-
tering, we assume that the behavior of different variables over time may be
different. To consider independency between variables, we need a univariate
divergence measure. Alternatively, one could consider a multivariate version
of the divergence measure. This would be suitable if the purpose would be to

m
only segment multivariate time series (+ >~ divergence; ;). However, a multi-
m (2% )
1

variate divergence seems counter-intuitive in the case of biclustering, once we
are looking both for subsets of segments and subsets of variables to include in
the matrix T;;. Experiments in Section present the difference between
univariate and multivariate divergence scores.
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2.3.2 Biclustering

In this section, we present the BiclusTS algorithm to solve the problem of
finding multiple biclusters given a multivariate time series. We will discuss
the main challenge of recognizing interesting subsets of rows and columns
(Tzs), while respecting the temporal nature of time series. We then move
into the details of how to find a bicluster and how to explore the data in
order to find multiple biclusters.

BiclusTS: Single node deletion

The BiclusTS algorithm is described in Algorithm 2] The algorithm assumes
an initial set of segments in the data, as computed by Alg.[I] Then, a greedy
process removes segments and variables (columns) that present the largest
divergence to the bicluster. During this repeated process, the difference
H(Z, J) reduces monotonically until it drops below the acceptability bound
0. The remaining subset of segments Z and columns J is returned as a
bicluster. The difference measure H(Z,J) is defined as follows:

H(I, il |ZZd Ts;, Tozj) (2.2)

jeJ IeT

Notice that H(I,.J) is a probabilistic measure, not interested in the correla-
tion between variables. Instead, it is set to account coherence of each column
independently (see Deﬁnition. This allows biclusters to be coherent, even
if the behavior between variables is not correlated, as we consider desirable.
This is because time series can measure the same phenomenon in different
ways, depending on the system characteristics and measuring system setup.
As an example, high levels of body activity can be measured both by high
levels of heart rate and sinusoidal patterns of acceleration.

The requirements of our method to find a bicluster is to provide a segmented
time series, composed of the time series T itself and the boundaries of each
segment (as produced by Alg. . This will ensure a faster biclustering pro-
cedure and results consistent with the temporal aspects of the multivariate
time series. Another requirement of Alg. 2| is a parameter § that ensures a
certain similarity for all segments within each column of the bicluster.
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Algorithm 2 BiclusTS: Find One Bicluster.

Input: initial set of segments Z, acceptability threshold 4.
let J be the set of all variables
calculate H(Z, J)
while H(Z,J) > § do
for all segments I and variables j do
calculate d(T;;, Tuz)
end for
for each segment I of Z do
calculate ﬁ > ier (T, Tuzy)
end for
for each variable j of J do
calculate ﬁ > orer A(Trj, Tug))
end for
find maximum margin divergence; remove the corresponding segment or
variable
recalculate H(Z, J)
end while
return Tz, a bicluster that is a submatrix of T

Finding a given number of biclusters

Having described the process of finding one bicluster, the challenge of finding
a number of biclusters remains. For this task, we propose Alg. [3, which finds
k non-overlapping biclusters by iteratively looking for biclusters in those seg-
ments that have not been selected yet. As input, we must have an initial
segmented multivariate time series T' and acceptability bound ¢ already in-
troduced in Section [2.3.2] Additionally, this algorithm requires k, which is
the number of potential biclusters to be found.

In the first iteration, Alg. [3| starts using all the segments Z to find the first
bicluster. After finding a bicluster, we add it to the set of biclusters B and
remove all the segments that have been biclustered from the initial set of
segments, Z. This process is iterated until no segments are left to be included
in a new bicluster or the number of potential biclusters, k is reached. We
use the word “potential” because there are situations where & is not reached,
due to unavailable segments to bicluster, or when the acceptability bound o
is too low to produce any results.
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Algorithm 3 Find k biclusters.

Input: initial set of segments Z, acceptability threshold d, the desirable
number of biclusters k.
B + @, an empty set of biclusters
while |B| < k and 7 # @ do
B« BU BiclusTS(Z,9)
Remove all segments in B from 7
end while
return B, a set of biclusters found in matrix T’

2.3.3 Density-Difference Estimation (LSDD)

An important choice that remains to be specified is which divergence score
to use. Time series can assume many different shapes, depending on the
phenomena and measurement system, making the comparison between sub-
sequences a non-trivial problem. Obvious solutions for comparing time se-
ries would be two-step approaches. For instance, one could first estimate
the probability density distributions (PDFs) of both subsequences, and then
compare these using an f-divergence measure. As pointed out by [86], the
drawback of such approaches is that good estimations will smoothen the
PDF's and thus result in under-estimations of density-differences.

Instead of taking such a step-wise approach, we here propose to use a more di-
rect approach, based on calculating a least-squares density-difference (LSDD) [86].
LSDD measures the similarity between two time series by directly estimat-

ing density-differences (f(z)) between time series subsequences. This method
does not require a separate estimation of the time series distributions. LSDD
directly estimates the density-difference between two samples, f(z), by fitting

a density-difference model gg(x) that minimizes:

argmin/ (gg(x) - f(:L’))2 dt + \070. (2.3)

0

Note that the second term in this formula is a regularization term. The
model gy(t) that is used to estimate the difference is a mixture model of
Gaussians:

e

x — ¢
o)=Y trexp(- 12—l
=1

where ¢ is a random sample of measurements in both time series t; and
t.
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To fit the model, the equivalence of Equation [2.3] with the following formula
is exploited:

arg;nin/gg(:v) dx — 2/gg(x)f(x) dx + \070. (2.4)

Given that f(z) is unknown, an empirical estimate is used for the second
term:

[t2]

:Z%Z (- |th;2ce||>_|t2|z o - |752z—266||)

The resulting minimization problem can be solved analytically, as shown by
the authors of LSDD [86]. Note that this model fitting procedure has two
parameters: the Gaussian kernel width o and the regularization parameter
A. The authors of LSDD propose to optimize these parameters using cross-
validation. When LSDD is used on a large scale, this cross-validation becomes
too demanding.

After a study of LSDD’s behaviour, reported in Section [2.4.1] in which we
compare different subsequences of the same time series, we found that the
parameters of LSDD are very stable, i.e., the optimal choice for the param-
eters values does not change very often for the same time series. Thus, we
propose that the parameters are estimated with cross-validation a certain
number of times at the beginning of the segmentation task (Alg. . Then,
we fix these parameters for the rest of the LSDD calculation processes, thus
speeding up computational efficiency while keeping the quality as a density
difference estimation measure.

LSDD is also considered now the biclustering process for the calculation
of H(Z,J). The advantage of using LSDD for computing H(Z,J) is that
it allows rich descriptions of the segments to be taken into account in the
process of finding each bicluster. From the computational perspective, fixing
the parameters of LSDD is beneficial to speed up the process of finding each
bicluster, due to the extensive amount of calculations of LSDD in Algorithm
2l This can be seen in Alg. 2| where for all the segments and variables
LSDD is used as a divergence measure between two time series subsequences
(e.g. d(Tyj,Tuzj)). Thus, making of H(Z,J) a mean density difference
score.
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2.4 Experiments

In this section, we divide the experiments in two parts: segmentation and
biclustering. We present experimental results of the segmentation task in-
cluding how to do LSDD estimation (normalization and cross-validation of
parameters) and univariate versus multivariate segmentation. The second
part is about biclustering with several experiments comparing traditional
biclustering with our proposed method.

We evaluate our method on four datasets, details of which are given in the ta-
ble below. The datasets were selected for their length and their multivariate
nature (with datasets having up to 119 variables). Except for Accelerometry,
the datasets also have variables that can be grouped in different categories,
such that each group will show considerably different behaviour. For exam-
ple, the InfraWatch data [103] is collected from three types of sensor (each
sensitive to different phenomena and time scales): strain gauges, vibration
sensors, and temperature sensors.

dataset | # variables # time points sampling rate  duration
Accelerometry 3 176 700 85 Hz 34.6 min
Snowboarding 21 21180 1 Hz 5.88 hrs
Running 6 951 200 100 Hz 2.64 hrs
InfraWatch 119 17996 1/3600 Hz  749.8 days

All experiments were performed with an implementation in R. A demo tool
called Bipeline [13], demonstrates this implementation and is easily acces-
sible online (http://fr.liacs.nl:7000/)). Using Bipeline, one can repli-
cate experiments and can try the various settings and choices. The code is
also made available (https://github.com/kainliu/ShinyDashboard). The
four datasets mentioned above have also been made available, (in accordance
with reproducible research standards) and can be found at:

e www.openml.org/data/download/1854941/accelerometry.csv
e www.openml.org/data/download/1854942/infrawatch.csv
e www.openml.org/data/download/1854943/running.csv

e www.openml.org/data/download/1854944/snowboard. csv.


http://fr.liacs.nl:7000/
https://github.com/kainliu/ShinyDashboard
www.openml.org/data/download/1854941/accelerometry.csv
www.openml.org/data/download/1854942/infrawatch.csv
www.openml.org/data/download/1854943/running.csv
www.openml.org/data/download/1854944/snowboard.csv
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Figure 2.1: Two graphs showing the segmentation obtained on the X-axis vari-
able of Accelerometry dataset, for the original time series (above) and the normal-
ized one.

2.4.1 Segmentation

In Section [2.3.1] we proposed a solution to segment multivariate time series
in order to bicluster them. Here, we present the experimental results that
support our decisions on how to solve this segmentation task.

Normalization

Before considering aspects of the actual segmentation, we examine the effect
of normalization. As was argued in Section the usage of LSDD estima-
tion as a divergence score in the multivariate setting requires normalization
of each variable. To segment multivariate time series as described in Alg. [1]
all the datasets were normalized and the parameter 6 was fixed at a value of
0.75. Here, we study the effect of normalization on Alg. [1| results.

In this experiment, we performed comparisons on each variable, to see whether
the produced segmentation is notably different, before and after normaliza-
tion. These experiments demonstrated that this effect is marginal. Fig.
shows two segmentations produced on the X-axis accelerometer variable of
dataset Accelerometry. Note that the differences in segmentations in the two
settings are minimal, thus indicating that one could normalize the time series
as a pre-processing step, ensuring comparable LSDD results across variables
during the tasks of segmentation and biclustering.
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LSDD estimation

The method we used to compare consecutive subsequences is a single-shot
estimation of the difference between probability densities (LSDD), defined in
Section [2.3.3] This method is based on fitting a Gaussian model where two
parameters, A and o, need to be estimated. As was mentioned in Section
2.3.3] we estimate reasonable values for these parameters prior to the LSDD
estimation for the entire time series, and then work with these fixed values.
Clearly, we are trading off computational speed over accuracy of setting A
and o always with cross-validation.

Here, the experiments consist of running Alg. [I|for all the datasets, with non-
overlapping data windows of 100 samples (w = jump = 100), and considering
two setups. In one setup, for each iteration we estimate LSDD with cross-
validation. All the parameter estimations and computation times are saved.
In the other setup, we cross-validate LSDD the first 100 iterations and then
fix the parameters, by choosing the median ¢ and .

First, we consider the penalty in time produced by the cross-validation at
each subsequence, compared to fixing the parameters at the start. For each
dataset, the penalty of computing LSDD with cross-validation was calcu-
lated. For each setup of running Alg. [T all the LSDD estimation times are
summed up over all LSDD estimations per variable, and over all variables.
Thus, the penalty is the time ratio of computing LSDD with cross-validation
to LSDD with fixed parameters (so how many times faster the second is). In
other words, how many times slower it is to perform cross-validation as op-
posed to fixing the parameters. The following time penalties were obtained
for the four datasets:

Dataset Penalty
Accelerometry 172
Snowboarding 62
Running 91
InfraWatch 93

Clearly, doing cross-validation at each subsequence is prohibitively expensive,
while our choice to fix parameters at the start of each LSDD estimation is
much more realistic.

While clearly being much faster, there is the risk of producing sub-optimal
values for A and 0. We test this end of the trade-off by examining the
stability of parameter values when LSDD is estimated using cross-validation.
If these values remain mostly the same throughout the LSDD estimation,
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then we can safely pre-compute the values and fix them. For this experiment,
we test parameter settings from a fixed range, identical to that proposed
originally [86]: A € {0.001,0.003,0.01,0.031,0.1,0.316,1,3.162,10} and o €
{0.25,0.5,0.75,1,1.2,1.5,2,3,5}. For the four datasets and both parameters,
the percentage of values found that deviate from the median were obtained,
and averaged over all variables:

Dataset Deviation
Accelerometry 1.2%
Snowboarding 1.5%
Running 0.7%
InfraWatch 3.1%

As seen in the table above, the LSDD parameters (A and o) are extremely
stable. Here, we do not argue the fact that this solution to fix the parameters
is a sub-optimal heuristic, when considering an alternative such as cross-
validation. Our argument for the decision of fixing both A and o is related
with the trade-off between accuracy and computational efficiency. The lost in
accuracy is low, with a residual deviation from the cross-corelated parameters
and on the other hand the computational efficiency gains are in orders of
magnitude of at least two digits. To conclute, the parameters are extremely
stable and can be safely estimated and fixed prior to LSDD estimation, with
considerable efficiency gains.

Univariate or multivariate segmentation

One choice that influences the segmentation (that can be configured in our
online tool) is whether to choose segment boundaries based on density differ-
ences in individual variables, or whether to compute them from the average
density distances over all variables. Figs. and demonstrate the ef-
fect that this choice has on the boundaries produced. Clearly, segmentation
over the combined density differences produces fewer boundaries, and only
in locations where clear changes are visible in the majority of the time series.
The multivariate segmentation, on the other hand, is much more sensitive to
changes only observable in individual time series, and as a result produces
more boundaries and thus smaller segments on average. Although either op-
tion is available and has its advantages and disadvantages, we feel that the
univariate, more detailed approach to segmentation is more in line with the
philosophy of biclustering and our goals to discover temporal phenomena in
subsets of the variables. For that reason, we adopt the univariate option for
all further experiments.
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Figure 2.3: Univariate segmentation example.

2.4.2 Biclustering

As a reference point for reproduction of experiments, the parameter settings
of our proposed method is presented in the table below.

Datasets | Window Jump Delta
Accelerometry 500 100  0.01

Snowboarding 90 30 0.01
Running 500 100 0.01
InfraWatch 120 24 0.01

For all the experimental settings, all parameters defaults can be found in the
online tool. Additionally, we present results to further compare with other
methods. We observe how many segments were created and the segment’s
average size. Notice that we want a relatively small number of segments with
rather large sizes.
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Datasets | Duration Number segments Average segment size
Accelerometry | 7.55 s 14 642.5 (0.36%)
Snowboarding | 81.5's 24 81.5 (0.38%)

Running | 16.7 s 103 1671.8 (0.18%)

InfraWatch | 36.2 hrs 21 36.2 (0.20%)

At this point, it is important to understand the differences between the results
produced by our approach and those produced by traditional biclustering
algorithms, such as the Cheng & Church algorithm. In this experiment,
we apply to our four datasets all the available algorithms in the biclust
package [42] in R. This means that experiments were run to compare BiclusTS
with the following biclustering algorithms: Cheng & Church (C&C) [19], the
Xmotifs biclustering algorithm [72], the Plaid model [91], Bimax [79], and
Questmotif [43] [72].

In the table below, we present the number of segments created by each al-
gorithm. Please note that some algorithms are not even able to deal with
large datasets (represented by -). The numbers of segments are in most case
more than those resulting from BiclusTS, showing that fragmentation is a
systematic problem of the traditional biclustering algorithms.

Number segments
Datasets | C&C Xmotifs Plaid Bimax Questmotif | BiclustTS

Accelerometry | 4034 1863 1641 141 3338 14
Snowboarding | 22 047 1 - 13 24
Running | 3852 3852 9 - 34791 103
InfraWatch | 17 64 - 1 98 21

Complementary to the number of segments, one should look at the average
size of the segments biclustered. The average size of the segments created by
the traditional biclustering algorithms is in most cases very small. Interest-
ingly, in two cases (indicated by the *), the biclustering algorithms produced
segments stretching the entire length of the time series, thus failing to iden-
tify any meaningful segmentation into different activities. Notice that Plaid
has some exceptions. Still, take as an example the Snowboarding dataset.
For this dataset, Plaid created a bicluster containing all the data.
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Average segments size
Datasets | C&C Xmotifs Plaid Bimax Quest | BiclustTS

Accelerometry | 13.6 16.8 44.5 1.1 204 642.5
Snowboarding | 2.8 15.1 21 180" - 1420.4 81.5

Running | 1.5 2.8 105688 - 2.7 1671.8
InfraWatch | 5.7 2.3 - 17996*  83.1 36.2

Capturing distributions

The biclustering component of our method compares different segments, in
order to cluster similar ones. Central to our approach is the choice to cap-
ture such similarity by differences in the distribution within each segment, by
means of LSDD. A distribution is a fairly rich way to describe a set of mea-
surements, and one could argue that simpler descriptions of segments could
work as well, and might be more efficient also. In this experiment, rather
than relying on the one-shot LSDD, we describe each segment of a time se-
ries simply by the average value, and apply biclustering to this simplified
intermediate representation.

As can be expected, representing segments with only an average tends to
cluster together segments that have very little in common, except for an
average value that happens to be similar. Fig. shows two examples of
segments that were clustered in such an undesirable way. Note that for
steady time series, this solution will actually work just fine. The problem
only occurs with sinusoidal or other more complex periodic shapes, which
are in fact very common in time series. The corresponding clustering by
BiclusTS does not produce these meaningless groupings of segments.

Demonstration

Our method was designed to find biclusters that avoid very short segments
of consecutive time points. However, having good subsets of time periods
represented in the bicluster is not enough. BiclusTS also aims to capture
interesting phenomena involving complex patterns. These patterns can be
observed visually.

In order to show what can be expected from BiclusTS, we applied it to the
Snowboarding dataset. With 21 variables, this dataset measures a person
using a BioHarness chest sensor while riding a snowboard. The sensor mea-
sures vital signs such as heart rate, breath rate and body temperature, as
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Figure 2.4: Two examples of undesirable clustering of segments.

Figure 2.5: Examples of biclusters produced with BiclusTS.



38 CHAPTER 2. BICLUSTERING

well as acceleration. The dataset covers various sorts of activities common
for a day of snowboarding in the high mountains.

Figure shows two examples of biclusters related to alternating time peri-
ods of rest and downhill snowboard activities. As for the selected variables,
one bicluster shows high levels of physical activity and different postures, dur-
ing the periods of snowboarding. The other bicluster identifies resting periods
in between snowboarding. These resting periods are recognized only using
the activity levels measured by the sensor system (Activity and PeakAcceler-
ation). As expected, our biclustering method makes use of different subsets
of variables to describe different phenomena.

2.5 Related Work

Biclustering has received a lot of attention in the last decade and has be-
come a well established task [19, 5], 611, [79, 29], with important real-world
application, especially in the bioinformatics research field. The most cited
biclustering algorithm is the Cheng & Church algorithm [19], making it an
obvious benchmark. All these algorithms were not build to consider time
series and perform badly due to the shuffling of rows without concern for the
temporal nature of time series.

Adaptations for time series have been proposed [108], 62], 29], specifically for
gene expression data. These adaptations focus on finding biclusters that
consist of one contiguous segment in time, representing similar amounts of
concentration for a given period of measurements. This means that these bi-
clusters are mostly shaped-based and not repeatable over time. Adaptations
of biclustering for general time series have not been proposed yet.

We believe our work presents novelty when by designing a generic solution
to bicluster multivariate time series. The focus of our study is on defining a
good optimization criterion for a new problem setting, and studying how to
evaluate this evaluation criterion efficiently; developing a search algorithm
for this criterion is just one of the components of our study. The difference
with standard biclustering is that our data is ordered in time. In our set-
ting, a bicluster is required to cover sufficiently long consecutive stretches of
time. Also, our optimization criterion is different: it evaluates similarities in
distributions. Moreover, the proposed clustering algorithm (part of a larger
approach) is designed specifically to work with segments of time series and
to allow the calculation of H(I, J) as described in Definition 1.
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Still considering biclustering, one could also consider to carry out a compar-
ison between our heuristic method and a complete enumeration approach.
We considered this option, but initial results were such that complete enu-
meration was not a feasible approach for the datasets of realistic size and
complexity. The proposed evaluation criterion has a high computational
complexity; evaluating it for an exponential number of biclusters is not fea-
sible within reasonable runtimes. Consider that our largest data has 951 200
time measurements, for 6 attributes. A naive enumeration of all subsets of
time measurements is clearly not possible. We would also like to point out
that, while exhaustive solutions to biclustering have been studied in the lit-
erature, they are not commonly used or accepted. Most common are greedy
algorithms, such as the one studied in our work.

The task of motif discovery is similar to the task studied here [20, [7T], [103].
In most cases, motif discovery algorithms focus on the univariate setting.
Nevertheless the tasks are similar, as both motif discovery and biclustering
aim at finding subsequences in a time series with a certain similarity. The
difference is that motif discovery methods are mostly shape-based [71], 103].
The most cited approach [20] also uses probabilistic metrics, but requires the
discretization of data for efficiency reasons. We propose to make full use of
the richness of the time series by using LSDD [86] to compare segments.

A number of studies have considered the multivariate setting [88|, [7(), O3].
These also propose to find non-overlapping subsequences in a multivariate
setting. The difference here is that [88, [93] propose a two-step approach,
where the univariate setting is extended to the multivariate setting by group-
ing motifs using principle component analysis or coincidence rates. As for
[70], they propose shape-based motif discovery in the multivariate setting,
without considering the independence between variables. With our biclus-
tering approach, we allow the discovery of subsets of both time periods and
variables, without discretizing the measurements, thus allowing richer prob-
abilistic descriptions to find more complex patterns.

One step further is to look into the problem of updating projections in a
stream of tensors [87]; it incrementally maintains projections in these streams
and is not capable of finding patterns that reoccur for the same sensors in
different unconnected fragments of time. The optimization criterion that [87]
used is a global optimization criterion that favors obtaining an as accurate
representation of the data as possible, while instead, we focus on finding local
patterns. Arguably, here, our problem setting compares to [87] problem
setting as biclustering compares to matrix factorization: the problems are
related, but have a different focus that justifies both’s existence.
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2.6 Conclusions and Future Work

This paper introduced the task of biclustering multivariate time series. In
this context, respecting the temporal order is absolutely critical. Given that
the traditional biclustering setting assumes that all samples are independent,
the shuffling process of finding subsets of rows and columns will lead to
useless biclusters in the time series context. We showed the importance of an
algorithmic solution to bicluster multivariate time series. First, we proposed
the creation of segments of sufficient length; second, we argued for the use of
an LSDD divergence score [86] to ensure that for each selected variable, all
selected segments have a similar distribution.

We presented an algorithm for solving this biclustering task. It consists of
two stages: first, a stage in which the time series are segmented in segments
of sufficient length; second, a stage in which a selection of segments and
variables is made. In both the first and second stage, we used LSDD with
fixed parameters. Experiments showed that LSDD produces stable results,
and that the probabilistic descriptions of each segment can be used to accept,
or reject a bicluster during the node deletion process.

This paper introduced the task of biclustering multivariate time series. In
this context, respecting the temporal order is absolutely critical. Given that
the traditional biclustering setting assumes that all samples are indepen-
dent, the shuffling process of finding subsets of rows and columns will lead
to useless biclusters in the time series context. With this paper, we show
the importance of an algorithmic adaptation of traditional methods when
biclustering multivariate time series.

We proposed two modifications of the traditional biclustering task. First,
we proposed the creation of segments of sufficient length; second, we argued
for the use of an LSDD divergence score [86] to ensure that for each selected
variable, all selected segments have a similar distribution.

We presented an algorithm for solving this biclustering task. In this algo-
rithm, we distinguished two stages: first, a stage in which the time series
are segmented in segments of sufficient length; second, a stage in which a
selection of segments and variables is made. Both in the first and in the sec-
ond stage we used LSDD with fixed parameters. Experiments showed that
LSDD produces stable results, and that the probabilistic descriptions of each
segment can be used to accept, or reject a bicluster during the node deletion
process.
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As for the problem of setting multiple parameters, although the algorithms
have some parameters, several of them are either fixed or estimated auto-
matic. As for the parameters presented in Algorithms 1, 2 and 3, we have
decided to fix most of them to the same value in all the experiments, except
for window size, w, and jump between consecutive windows, jump. All the
other parameters are fixed, because the results are not very sensitive to their
setting. The default values can be found in the online tool (see Chapter |3)).
Additionally, we would like to point out that the parameters from Section
(0 and o) are estimated automatically, and justified experimentally in
Section (LSDD estimation).

As future work, other types of biclustering in time series data can be studied.
Comparisons between segments can be based on other descriptions, such as
Fourier transforms with scores of spectral similarities, ARMA models coeffi-
cients and functional fits, both with scores on standard errors. These repre-
sentations could be effective at capturing specific phenomena in the data that
are not recognized by comparing distributions or other representations. Our
algorithm can be improved as well. One could consider the use of multiple
node deletion and addition to speed-up the search, and could modify it to
allow for biclustering. This would be highly beneficial to both speed up the
biclustering procedure and capture overlapping phenomena.
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Abstract

Large amounts of multivariate time series data are being generated every
day. Understanding this data and finding patterns in it became a contempo-
rary and relevant task. To find prominent patterns present in multivariate
time series, one can use biclustering, that is looking for patterns both in sub-
sets of variables that show coherent behavior and in a number of time periods.

For this, an experimental tool is needed.

Here, we present Bipeline, a web-based visualization tool that provides both
experts and non-experts with a pipeline for experimenting with multivariate
time series biclustering. With Bipeline, it is straightforward to save experi-
ments and try different biclustering algorithms, enabling users to intuitively

go from pre-processing to visual analysis of biclusters.

43
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3.1 Introduction

The development of sensing technology lead to an explosion of sensor-based
applications, commonly known as the internet of things. Such applications
strive mainly due to factors such as, flexibility of design (smaller sensors),
lower costs of production (cheaper sensors) and ease in terms of deployment
and communication (interactive sensors). In many cases, such sensor systems
measure complex phenomena without any sort of supervision, where variables
are collected synchronously over time. As a result, there is an explosion of
unsupervized multivariate time series.

As a motivating example take the case of a monitoring project for a highway
bridge in the Netherlands [52, [102]. In this project, about 150 sensors were
deployed on one span of the Hollandsebrug bridge, during an overall refur-
bish procedure to increase the life time of an important highway bridge. The
intent of the project is to develop structural health monitoring methodolo-
gies for such a concrete bridge and find key performance indicators (KPIs)
that could lead to a predictive maintenance. The fact is that the bridge is
exposed to environmental elements (temperature, wind, rain, salt...) and is
also subject to multiple events due to the traffic passing on the bridge. All
these factors put together, result in a complex phenomena that were mea-
sured and materialized as multivariate time series. To discover patterns in
such a multivariate and unsupervized setting, one would need sophisticated
pattern recognition methods.

Pattern mining of multivariate time series is becoming highly relevant, both
in scientific research and industrial applications. There are multiple tasks
to deal with pattern mining for time series, such as segmentation and motif
discovery. In the case of motif discovery, the task is set to find recurrent
patterns over time. The motif discovery solutions normally focuses on the
univariate case. Note that in the multivariate setting, not only recurrent
patterns in one variable over time are relevant, but also relationships between
multiple variables could provide useful insights. This task, is both clustering
for time periods and variables, also know as biclustering [19] 61, [15].

Given a multivariate time series, it could be useful to try different biclustering
algorithms. Also, one needs to optimize parameters across different steps,
such as pre-processing, segmentation and biclustering itself. For each of
these steps, there are many parameters to be optimized, leading to a large
number of experiments. Furthermore, at each step, visual inspection is highly
important for researchers to validate their findings. However, there is a lack
of tools for this process.
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We propose Bipeline, a web-based visualization tool that provides a pipeline
for applying biclustering to multivariate time series. This tool is readily
accessible to anyone via a web-based interface, allowing them to navigate
through multiple experimental settings. Parameters can be interactively
tuned, with web components such as checkboxes, sliders and drop-down
menus. At each step of the biclustering process, feedback is provided be
means of visualizations, with plots such as pre-processed time series, seg-
mentation boundaries and biclusters. One or more biclusters can be plotted
with a simple selection procedure.

3.2 Related Work

Until now, biclustering software tools with a graphical user interface have
been developed to deal with biological gene expression data. BicOverlapper
[82] is a tool for visual inspection of gene expression biclusters, introducing
a novel visualization algorithm Quverlapper to represent biclusters. Similarly,
BiCluster Viewer [34] is a visualization tool for efficient and interactive anal-
ysis of large gene expression datasets. BicAT [7] implements multiple biclus-
tering algorithms, for visualization and analysis of biclusters for expression
data. BiGGESTS [29] provides an environment for biclustering time series
gene expression data.

All tools mentioned above integrate techniques for pre-processing and biclus-
tering analysis, specifically for gene expression data. Their main purpose is to
support biologists with the analysis and exploration of the gene expression
data. However, these tools do not support biclustering analysis for multi-
variate time series. Also, most of them do not provide a pipeline experiment
environment. Bipeline provides such a pipeline, where intermediate results
can be inspected and saved. Using a friendly and interactive plotting envi-
ronment, both non-experts and experts can pre-process, segment and analyze
biclusters for multivariate time series.

Another class of tools are the machine learning experimental tool, where one
can compare algorithms and decide on which is the best solution for a partic-
ular dataset. Examples of such tools are Weka [32], Moa [10] or KNIME [g].
From the multivariate time series perspective, the setback of such tools is
that they are not tailored to experiment on biclustering or not tailored to
analyze time series. On the other hand, Bipeline is an environment where
compare multiple traditional biclustering algorithms and compare them to
the biclustering algorithm proposed in the previous chapter.
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3.3 Tool Overview

Bipeline is a web-based application that provides a pipeline to pre-process,
segment and bicluster multivariate time series. An online version is avail-
ableE], which is compatible with all modern web browsers and across different
client platforms. Both the user interface in the web browser and the server
are implemented using R Shiny package [17]. In Figure the system ar-
chitecture illustrates the experimental pipeline and how each individual step
relates to the other steps:

Importing Users can upload datasets and have a first view of the data
table and descriptive statistics (minimum, maximum, mean, ...). This
first inspection, although useful, is not enough to assess the quality of the
data.

Plotting To gain further insight into the time series, it is crucial to have
a visual inspection of the time series. The plotting panel includes multiple
interactive plotting views, using a plotting R package dygraphs [97]. An
example of these plots is illustrated in Figure [3.2l These interactive plots
allow zoom in and out functionality, which is a highly desirable functionality
for visual inspection of large time series.

This process of visual inspection is important across multiple phases of the bi-
clustering process. This need for plotting is specially important in tasks that
need human evaluation. Considering that there are multiple steps involved
(pre-processing, segmentation and biclustering), Bipeline gives the user the
flexibility to vizualize the data multiple times across different stages.

Thttp://fr.liacs.nl:7000
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Figure 3.1: A overview of Bipeline architecture.



3.3. TOOL OVERVIEW 47

127.0.01

Bipeline

port
O Impor Options

[l Plotting

X variable

Datalndex

&8 Prep

¥ variable(s)

HR BR

Plot Multi-plot Correlation

140 ‘fl
120 /
100 f

i W iMJ,&uva“wr\f”‘L'MWMMWMMMWwW WMWLMWWLMMWMNM

—HR—BR

anMMMWWWWMWWW

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Pre-processing This panel allows preliminary handling of data such as:
excluding variables, normalization, conditional removal and replacement of
data, and outlier removal. Users can alternate between plotting (Figure ,
and pre-processing (Figure until satisfied, then export the pre-processed
data by clicking the Save button.

Segmentation This allows segmentation of the data, one of the steps nec-
essary for the biclustering as suggested by the method presented in the pre-
vious chapter. By default, all variables share the same parameter settings:
window size, overlap and threshold can be easily tuned. For greater flexibility,
the user can dynamically create new tabs to set the parameters for individ-
ual variables. Additionally, a minimum segment size is customizable, and
the tool will merge short segments to its most similar contiguous segment.
Segmentation results can be visualized (Figure [3.4] saved and (re-)loaded,
allowing the results to be used during the next step (biclustering) and over
multiple user sessions.

Biclustering In Bipeline, we implement a number of biclustering algo-
rithms, grouped in three categories. The baseline algorithms allow users
to try well-known biclustering algorithms (e.g., Cheng & Church) [19] [61],
that have been implemented using R package biclust [44]. Segmentation +
Baseline biclusters the time series using an average representation of each
segment, instead of using individual rows. Segmentation + BiclusTS is a
novel algorithm [I5] introduced to recognize similarities between segments,
using probability density-difference estimation [86]. All biclusters are plotted
in colored blocks, as shown in Fig[3.5] Users can select the biclusters they
want to see, and the plot will respond with a real-time update.

The consideration of multiple biclustering algorithms in the tool, give the
possibility to experiment different settings and interpret the different results
visually. These different experimental options, place Bipeline in the group of
tools that can be used for extensive biclustering experiments.

To allow extensive experiments, multiple features are shared by both Seg-
mentation and Biclustering. Plots and parameter tables from different ex-
periments are kept in history, allowing users to navigate back and forth to
compare results and optimize parameters. During computationally expensive
tasks, the front-end displays a progress bar, while the back-end server is busy
carrying out the calculations. Furthermore, interactive web components can
be saved into images with a single click.
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3.4 Conclusion

In this chapter we propose Bipeline, a web-based visualization tool, which
provides a pipeline for applying biclustering to multivariate time series. Its
main features include: visual inspection at multiple stages, interactive zoom
in and out plotting, easy navigation, storage of results, and saving plots and
experimental settings using a single click.

Bipeline’s intuitive web-based design, makes it accessible both to experts and
non-experts, and compatible across platforms. From a user perspective, the
implementation of this tool can be found onlind?} Additionally to the online
tool, for the users with a computer science background, both the biclusTS
algorithm (see Chapter [2) and the tool implementation are open sourced and
freely availableﬂ

Zhttp://fr.Jiacs.nl:7000
3https://github.com /kainliu/Bipeline
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Abstract

Fitting sensors to humans and physical structures is becoming more and
more common. These developments provide many opportunities for ubiq-
witous computing, as well as challenges for analyzing the resulting sensor
data. From these challenges, an underappreciated problem arises: modeling
multivariate time series with mixed sampling rates. Although mentioned in
several application papers using sensor systems, this problem has been left
almost unexplored, often hidden in a pre-processing step or solved manually
as a one-pass procedure (feature extraction/construction). This leaves an op-
portunity to formalize and develop methods that address mixed sampling rates
in an automatic fashion.

We approach the problem of dealing with multiple sampling rates from an
aggregation perspective. We propose Accordion, a new embedded method that
constructs and selects aggregate features iteratively, in a memory-conscious
fashion. Our algorithms works on both classification and regression problems.
We describe three experiments on real-world time series datasets.

o1
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4.1 Introduction

This paper presents a practical modeling task in the field of multivariate time
series analysis, and algorithms to solve this task. In real-world applications
involving time series, specifically those produced by multiple sensors, one is
often confronted with the challenge of analyzing data captured at various
sampling rates. This might occur when one wants to include sensors that
measure processes at various rates, for example the vibration (high sampling
rate) and temperature (low rate) of a large windmill. In this paper, we
analyze a specific instantiation of such a problem, where the aim is to model a
target time series, that is captured at (much) lower rates than the remaining
series. To model the target series in terms of the remaining ones, we will
somehow have to ‘slow down’ the high-frequency measurements in order to
match the target.

As a motivating example, consider the problem of activity recognition. In
this problem, the task is to classify a person’s activities into a finite set of
classes, typically at a fairly slow rate. The activity will be predicted using
body-worn or environmental sensors, for example measuring physiological
parameters (e.g. heart rate), acceleration or position in space. The practical
problem here is that modern sensors tend to measure at high sampling rates
(typically 1 Hz or higher), whereas activity is registered at much lower rates
(e.g. once every 60 seconds). Therefore, each period to be classified is de-
scribed by many measurements (per sensor). The most obvious solution is to
combine multiple measurements into a single value characterising the period,
for example, the average heart rate or the highest acceleration experienced
over this period.

In this paper, we approach this challenge from an aggregation perspective:
for a given sensor and a given time interval (a window of data), an aggregate
function will summarize a sequence of sensor readings into a single numeric
value. An aggregate feature is composed of three main components: a sen-
sor measuring at high rates (the predictor), a window over which values of
the sensor are aggregated, and finally an aggregate function that combines
these values into a single outcome. Assuming a target series sampled at
low frequency f, and the remaining time series at higher frequency fs, the
proportion fs/ fr denotes the number of measurements per sensor that corre-
spond to a single target value. To allow for phenomena that involve unknown
degrees of integration over time, our algorithm will be allowed to consider
windows both longer and shorter than fs/ f;.
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To illustrate how the optimal window size may be somewhat larger or smaller
than the proportion fs/ f;, consider the challenge of modeling a person’s sleep
quality (one of our applications mentioned in the experimental section) from
various sensors, both body-worn and placed in the environment. In this
case, 24 hours of sensor data naturally correspond to a single target value
describing the sleep quality of one night. However, one can imagine that
a feature capturing the amount of strenuous activity during the four hours
prior to sleep might play an important role, which corresponds to a window
size of only 1/6th of the ‘natural’ window. Similarly, windows covering more
than 24 hours are imaginable, such as those related to the nutrition over the
last 48 hours. Clearly, a fixed window size based on the mentioned proportion
will not guarantee optimal results, and we will have to include and optimize
the size of the window as a parameter in the definition of features.

Although a feature construction step (even including aggregation) is the back-
bone of many activity recognition projects [25], all too often this step is
presented as a one-pass process [0, 69, 58|, [75], such that only a fixed set
of features becomes available for the actual modeling step. The resulting
features are static and constructed manually, either based on some domain
knowledge about the physics involved, or by making default choices. It is not
hard to imagine that this step is, in fact, the result of several iterations of
trial and error. Moreover, this fixed set is required to be relatively small, for
reasons of memory or storage. The iterative method we propose, Accordion,
is an embedded approach that does both feature construction (building can-
didate aggregate features), and feature selection automatically, allowing for
features to be created dynamically during the search process.

At each iteration in the search process, Accordion transforms high frequency
predictors into a set of candidate aggregate features at the lower frequency
of the target, searching for the best combination of the components that
compose an aggregate feature. From this set of aggregate features, only the
most promising candidate feature is selected and materialized, in a greedy
fashion. Therefore we categorize our algorithms as memory-conscious. With
the dynamic construction of features proposed here, we aim to solve both
the issue of choosing the right features and estimating their parameters, as
well as the varying requirements for the informative features that occur while
modeling the data (for example, further down in a decision tree). In order
to do so, the feature construction and selection steps are closely tied with
the final modeling process, in both the regression and classification setting.
Inspired by Brush’s challenge of enhancing reproducibility and clarity [12],
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our algorithms and activity recognition datasets are made availabldﬂ.

When thinking of the aggregate feature construction possibilities, it is good
to note that the search space is potentially very large, due to the choices of
sensor, aggregate function and window size (which may vary substantially, as
noted). Therefore, we search for (candidate) aggregate features heuristically.
We propose algorithms that consider a feasible set of candidate features by
a) limiting the actual choice of aggregate functions to a small set (min, maz,
avg, ...), b) performing a moderate search over the possible window sizes,
and c) selecting the final aggregate features at different degrees of greediness.
On top of these choices, we tackle the potentially large size of the final dataset
by materializing only the selected features.

In general, we distinguish between two types of applications, one where the
slow target series is numeric, and we are effectively dealing with a regres-
sion model, and one where the target is nominal and we need a classification
model. The feature selection algorithm works differently for either setting,
but the essence of constructing sets of candidate features using aggregation is
identical. The main difference between the two versions is the kind of mod-
eling they mimic: in the regression case, the feature construction algorithm
effectively builds a linear model in a greedy fashion. In the case of classifi-
cation, we construct a decision tree of aggregate features along the lines of
C4.5 [80].

The main contributions of this paper are as follows:

e Present and formalize a common task in the modeling of multivariate
time series, related to the target being measured at a lower rate than
the remaining series.

e Propose an embedded algorithm for the proposed task, that dynami-
cally constructs, selects and models (all in one solution), using a man-
ageable set of aggregate features in the contexts of both classification
and regression.

e Describe how both algorithms are memory-conscious, materializing only
a limited set of aggregate features, and potentially increasing the pos-
sible search space for good features.

e Algorithm implementation and datasets are made available to the re-
search community.

"http://www.liacs.nl/~cachucho/publications.html
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4.2 Preliminaries

4.2.1 Multivariate Time Series with Mixed Sampling
Rates

The data we consider is assumed to come from sensor systems. We assume
that our sensor system S = {sy,...,s,,r} consists of p+ 1 sensors. The first
p sensors will act as predictors, while the last sensor r, the response, will be
treated as the target sensor that we wish to predict or explain. [s| and |r|
indicate the length (number of data points) of s and r, respectively. While
the domain for the predictors is always the set of real numbers R, the domain
of r is either R (regression setting), or a finite set of classes (classification
setting).

We assume that all sensors register measurements synchronously and at the
same fixed sampling rate, except for the response, which is registering at a
lower sampling rate. We also assume that the predictor sampling rate is an
integer ¢ > 1 multiple of the sampling rate of the response: fs = ¢ - f;. This
leads to the following definition.

Definition 6. A time series dataset with mized sampling rates is assumed
to consist of:

o A set of time series S, representing the predictor variables, where S is
materialized as a matrix of size |s| X p. Fach time series s in S is a
vector of real numbers, where s;,i = 1,...,|s| is the ith element of s.

o A time series r, representing the response variable. This time series
has a length of || = |s|/q, where ¢ € NT Aq > 1; the ith element inr is
assumed to have been measured at the same time as the v - qth element
n s.

Note that this implies that the measurements of S and r do not start at the
same time (see Figure |4.1)).

N N N N N N N

@

~

N0\ Z

Figure 4.1: Relation between high (fs) and low (f;) sampling rates.
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4.2.2 Feature Construction with Mixed Sampling Rates

As discussed, our aim is to model the response wvariable in terms of the
predictors, over time. As the two are sampled at different rates, we will ‘slow
down’ the high frequency measurements of S using aggregate functions, and
turn them into features that are available at the sampling rate of r. In
other words, we will be taking a feature construction approach. In order to
transform the high frequency measurements into lower frequency ones, we
employ the notion of a window:

Definition 7 (Window). Given a window length w and an index 1 < w <
i < |s| in a predictor time series s, a window of length w at index i consists
of the time series of measurements sfi —w—+1,...,9] = S;_wi1,Si—wt2,-- -, S;.

For a response series measured ¢ times as slow as the predictors, it could
make sense to choose w such that w = q. Figure depicts such a situation.
However, experimental evaluation reveiled that this choice may not always
be optimal. Both window lengths w > ¢ and w < ¢ could also be argued
for. Therefore, we simply assume that w € N*. Note that when w > ¢, each
consecutive window will have the following fraction of overlap: 1—gq/w.

We will employ aggregate functions to summarize the measurements in a
window into a single value. An aggregate function a € A takes as input a time
series of measurements m, and produces a single numeric value a(m) € R.
The fixed set of aggregate functions A = {min, max,avg, ...} we use will be
described in more detail in the next section.

We can now define aggregate features as follows.

Definition 8 (Aggregate Feature). Given a choice of window size w, an
aggregate function a and a predictor time series s € S, the aggregate feature
a, is a vector of length |s|/q, defined as follows:

afs0[i'] = a(smax(1, i’ ¢ —w+1),....,"q])
where 1 <" < |s|/q.

An aggregate feature for a given dataset can hence be specified by a tuple
of parameters (s,a,w). Sometimes we will refer to these features without
reference to their parameters, just as a generic aggregate feature f.

A set of aggregate features F together with the vector of response values r
can be used to create a new data matrix. Each aggregate feature corresponds
to a column of this matrix. The number of rows in this matrix corresponds
exactly to the length of r, |r| = |s|/q.
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More formally, a data matrix S’ of dimension |r| X (|F| + 1) is obtained,
where S} s 1s the feature calculated for the ¢th target instance using the fth
feature descriptor in F.

4.2.3 Problem Statement

Our main task is to find good aggregate features for time series datasets with
mixed sampling rates. More formally, we assume we are given a time series
dataset as introduced in Definition [0 as well as a function score(F,r) that
can evaluate the quality of a set of features with respect to response variable
r. The task is to find a set of aggregate features JF, such that each feature is
described by:

e A predictor time series s € S.
e An aggregate function a € A.
e A window size w.

Furthermore, the feature set F should optimize the scoring function score(F,r).
Scoring functions in this paper can be based on regression or classification
models. The details of this will be discussed in the next section.

4.3 The Accordion method

4.3.1 Aggregation of Time Series

Aggregate functions provide a means for summarizing a series of measure-
ments in a window, in various ways, as illustrated in Figure |4.2| Different
aggregate functions capture different aspects of the measurements within a
window. Although the space of aggregate functions is conceivably very large,
we have opted for a relatively small collection of functions that represent com-
mon statistics of sets of values. The set of aggregate functions, A, considered
in this paper is composed of:

e qvg: the mean value,
e med: the median,

e maz: the maximum value,

min: the minimum value,
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Figure 4.2: Aggregate features built from heart rate logged at 1 Hz.



4.3. THE ACCORDION METHOD 29

e stdv: the standard deviation,

e the inter-quartile range: IQR = inf{xr € R : 0.75 < P(X < z)} —
inf{r e R:0.25 < P(X <ux)},

n
e the root mean squared: RMS =, /% 3" 2?2,
=1

One could argue that features of windows from the frequency domain, such
as properties of the spectrum of the data, could also be interpreted as aggre-
gate functions: they take a set of measurements (in fact, a sequence), and
summarize them into a single value. Such features would capture more peri-
odic properties of the data in the window. Because our algorithms are open
source we argue the set of aggregate functions, A, should be seen as mutable.
Domain knowledge could be used to change it. If inclined to do so, one can
change (add and remove) the aggregate functions that compose A, in order
to capture cyclical aspects or peculiarities of the data. The remainder of
this paper assumes always the same rather small list of statistical aggregate
functions, but there are no technical reasons why other aggregate functions
could not be involved also.

Algorithm 4 CalculateAF

Input: time series s, aggregate function a € A, window size w, ratio ¢ =
fS/fr-
fori' € {1,...,|r|} do
1=1-q
if © < w then
afs o [7'] < a(s[1,...,1])
else
afs o [t'] < a(sfi —w+1,...,1])
end if
end for
return an aggregated feature: afs, .,

An aggregate feature results from the use of an aggregate function a, applied
to a predictor s using a sliding window with length w, as formally described
in Algorithm [l To construct an aggregate feature, Algorithm [ slides a
window over the predictor using the reference indices ¢ € {q,2q,...,|r| - ¢}.
For each reference index i, the algorithm checks for boundary limitations.
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If 7 is smaller than the window size w, the aggregate feature’s i'th instance
takes into account only the available data from the predictor, s[1,...,1].
Otherwise, the window is s[i —w + 1,...,4]. The aggregate function is then
applied to the data in the window.

4.3.2 Feature Construction

This section describes the construction process of multiple aggregate features,
as a search problem for the optimal combinations of aggregate function a,
high frequency predictor s, and window size w. The objective of the feature
construction process is both to slow down the sampling frequency of one or
more predictors, and to transform these into good aggregate features. A
good aggregate feature should properly describe a target variable (r) at its
low sampling rate, f,.

In order to avoid brute force feature construction, and direct the search
towards an optimal choice of (s, a,w), a ranking measure ranking the feature
candidates is required. The ranking measures are obtained by the use of
scoring functions, SC(r,afs,,). To deal with classification problems, we
considered the well-known entropy-based scoring function information gain
(see for example [80]). For regression problems, the cross-correlation [63]
scoring function is selected:

Yei(7) = El(ri — i) - (Fir — ps)],

where 7 is the time lag between an aggregate feature f and a target variable
r. In the presence of a delayed relation between action (f) and reaction
(r), cross-correlation allows the identification and construction lag regression
models [31].

The process of feature construction is detailed in Algorithm[5] This algorithm
performs a grid search over the available predictor time series in S and the
aggregate functions in A (the two outer loops). The number of different
values for both these parameters of an aggregate feature is generally limited,
so all combinations will be considered exhaustively.

For each choice of s and a, the algorithm returns the best window size wyeg;.
In essence, this is a task of linear optimization of an unknown function for
a given parameter w. In order to avoid a simple exhaustive search for the
optimal window size, we sample this function iteratively, and zoom in on
a promising interval [w;, wy] at each iteration. This heuristic optimization
algorithm works as follows.
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Algorithm 5 ConstructCandidates

Input: set of predictor time series S, target variable t, scoring function SC,
decision threshold, maximum window growth w, number of steps m.
C+— o
1 IS|/]t
for alls € S do

for all a € A do
A1
Whest — 0, Scorepess — 0
Wy <— ¢, Wp < q - W
stop < false
repeat
) «— L
W O,W;core +—0
for alli € {1,...,m} do
f < CalculateAF(s,a,w; +1i- 9, q)
if SC(f,t) > score then
w—w +1-0
score < SC(f, t)
end if
end for
if scorep.s; > score then
stop < true
else
SCOTEpest $— SCOTE, Wpes — W
end if
Wy 4= Whest — ¢ A, Wy 4 Whest + ¢/ A
A= A+1
until stop
if scorep.st > threshold then
C + CU{af; 4 ,.., <CalculateAF (s, a, Wpest; q) }
end if
end for
end for
return C
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The interval is initialized based on a parameter w which indicates the largest
acceptable window growth relative to ¢ (the natural window size). At each
iteration of the repeat-until loop, a uniform sample is made of the current
interval, in m steps (specified by the user, but typically low). Each candi-
date window size is used to compute a candidate aggregate function f =
CalculateAF(s, a,w; + ¢ - §,q) and its associated score. By the end of each
iteration, the current best window size wy.s; is known, and the interval of
inspected sizes is reduced to [Wpest — ¢/, Wpest + q/A], narrowing constantly
the original interval through the iterations, around the current wy,s. This re-
peated zooming in on the best window size is continued until a more detailed
inspection does not yield a better result.

Both Algorithm [4] and [5] are built under the assumption that both target and
predictors are sampled at constant sampling rates, but this assumption can
be broken in multiple ways. First consider the situation of a target measured
at an unstable sampling rate. To overcome this limitation we would need
to recalculate ¢ by replacing |S| with the median sampling rate of S, and
recalculate the reference indexes ¢ to synchronize both target and predictors.
Secondly the predictors could be measured at an unstable sampling rate.
This would require changing the algorithms from index-based windows into
time-based windows. The indexes i’ and reference indexes i in Algorithm
need to be referenced using timestamps, and the window size w needs to be
expressed in time units.

Although exhaustive search over window sizes guarantees finding the abso-
lute maximum, the computational costs of this approach would be unaccept-
able. For this reason, our algorithm employs heuristic optimization to find
the optimal window size efficiently. As the score of aggregate functions is
generally well-behaved, this heuristic algorithm will typically find the global
optimum, rather than a local one. As an example, Figure [£.3] shows an ex-
haustive scoring landscape for different window sizes, given a low frequency
(days) numeric target, a high frequency predictor (1 Hz) and an aggregate
function (RMS). The vertical line represents the best window size wpes;, as
determined by Algorithm [5|in a fraction of the time taken by the exhaustive
search. Note how this graph also provides a good example of how the optimal
window size may differ substantially from the naive choice represented here
by 1 on the horizontal scale.

Each combination of s and a results in a single wp.s. The associated aggre-
gate feature is then added to the result set of candidate features C, under
the condition that its score is higher than a certain threshold.
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Figure 4.3: Landscape of scoring measure for one of the regression datasets. The
horizontal scale indicates multiples of ¢ (in this case 24 hours), the vertical scale
the correlation with the target. Note how the optimal window size is almost twice
(44 hours) that of the naive choice of w = q.

Throughout our experiments, the threshold value was set to 0.5 for infor-
mation gain, and 0.2 for cross-correlation. For ease of implementation, our
algorithms will always assume the number of steps m to be equal to the max-
imum window growth divided into ¢ steps, w/q, thus effectively removing one
parameter.

An important characteristic of our algorithm is that it is memory-conscious.
This sets it apart from other feature construction methods [6l 25], because it
does not simultaneously materialize most of the inspected features. Keeping
only the scores SC(t,afs,.,) gives us concise information about how good
an aggregate feature could perform, relatively to a target variable t. Every
time Algorithm 5] is called, the end result is a collection of at most p - | A|
candidate features, which is an acceptable number in most cases.

4.3.3 Feature Selection: Embedded approach

In order to increase the chances of finding dependencies between the aggre-
gate features and the response, we developed an embedded feature selection



64 CHAPTER 4. ACCORDION

Algorithm 6 Aggregate Features Selection: Regression

Input: set of predictor time series S, response variable r, scoring function
SC, maximum window growth w, number of steps m.
F o
tr
while —whiteNoise(t) do
C «ConstructCandidates(S, t, SC,w,m)

if C = @ then
return F
end if

frest < arg maxgee SC(f,t)
F <+ FU {fbest}
[ < fitLM(F,r)
t<r—I(F)

end while

return F

method, such that at each iteration of the final modeling algorithm, we do
not work with a static set of features. At each iteration, Accordion per-
forms a new feature construction step, and searches for the best aggregate
feature.

Regression problems

As the search space of candidate aggregate features can grow too large to
explore exhaustively, we resort to a heuristic search that only constructs a
subset of promising candidate features, C. When the set C is large (> 40),
a wrapper-based search for the optimal subset becomes impractical [33]. As
for backward-stepwise selection in linear models, if the number of candidate
features is larger than the number of instances, the use of the least squares
method for coefficient estimation becomes impossible [84]. To overcome these
potential problems, we employed a forward-stepwise selection process [39]. As
described in Algorithm [0 at each iteration, we add a new aggregate feature
creating a nested sequence of models, until one of the following stopping
criteria is satisfied:

e The set of candidate aggregate features C returned by Algorithm [3] is
empty.

e The decomposed target variable is considered white noise.
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Algorithm 7 BuildAFTree

Input: set of predictor time series S, nominal response variable r, maximum
window growth w, number of steps m, minimum leaf size minsup.
C + ConstructCandidates(S,r, IG,w, m)
if C = @ or |r| < minsup then

return g
end if
frest < arg maxgec IG(f, 1)
¢ < findSplit(fyes, 1)
v, v, « {rerlc(r)}, {r € rl-c(r)}
Fi < BuildAFTree(S, r;, w, m, minsup)
F < BuildAFTree(S, r,, w, m, minsup)
return F; U F, U {feq }

At each iteration of feature selection, new candidate aggregate features are
generated according to the current approximation of the target. In the first
iteration, Algorithm [6] uses the response r as a target to build a set of can-
didate aggregate features. From this set, it chooses the one with the highest
score to add to the set of proposed features F. A linear model is then fitted
(fitLM) to the response variable r, using the set of proposed features F. In
the following iterations, the residual (the part of the signal that cannot be
predicted by the current model) becomes the new target variable, t. At the
end of the process, only a small subset of the constructed aggregate features
is returned.

Classification problems

Decision trees are among the most popular classification models in machine
learning, and one of its best-known characteristics is the ability to deal with
multiple types of data [80], including trend-less time series. Growing a deci-
sion tree involves a divide-and-conquer strategy where each node splits the
data into subsets according to conditions on the predictors, until splitting
no longer increases the separation between classes. To explore time series
with mixed sampling rates, we designed an embedded feature construction
and selection method for decision trees, where at each split new features are
constructed such that the scoring function information gain (/G) is maxi-
mized.
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In our method, trees are built recursively. Algorithm [7] shows that at each
iteration, a new set C of candidate aggregate features is constructed, through
a search process looking for the best combinations of aggregate features and
response variable r. From C, only the aggregate feature that maximizes IG
will be used to produce a split: findSplit(fyest, r). The split is then used
to create two branches, corresponding to the decomposition of the response
variable r, into two subsets r; and r,.. The subsets are then used recursively to
create more splits until one of the following stopping criteria is satisfied:

e The set of candidate aggregate features C, is returned empty from Al-
gorithm [5]

e The target subset (r; or r,) is smaller than a minimum support, minsup €
N+,

Note that we specifically do not use pruning techniques during feature con-
struction, to avoid getting too small a feature set. Decisions about pruning
strategies can be applied during the final stage of model building by the tree
induction method of choice.

4.4 Experiments

In this section, we test our method experimentally, presenting results on the
raw data of three datasets collected using multiple sensor systems. The first
dataset features a classification problem, involving snowboarding in the Alps.
The second and third dataset involve several regression problems, one related
to the running speed estimation of an athlete as captured by a GPS sensor,
and one describing the amount of sleep of different kinds, as a function of a
person’s daily routines. The algorithms described in the previous section and
further data mining techniques described in this section were implemented
in R [81].

In each experiment, we not only compute the results for our embedded
method, but also consider traditional two-step alternatives: construction and
then selection. Feature construction alternatives include a baseline aggrega-
tion method, and grid search feature construction. The baseline aggregates
over a non-overlapping window of size fs/ f by simple averaging. For the grid
search approach, we materialize a rather large amount of aggregate features.
The grid search is bounded, such that it generates an aggregate feature ma-
trix of approximately 5 million cells, allowing an absolute comparison across
datasets.
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Figure 4.4: The plot shows the autocorrelation behaviour for two randomly
sampled aggregate features, from the Routines dataset.

The alternative feature construction methods are followed by well-known fea-
ture selection methods, specifically Lasso for regression [89] and C4.5 for clas-
sification. For Lasso, we used the default options proposed in the glmnet [26]
package in R. To choose the penalty parameter, we employed cross-validation
on the training set, and chose the penalty parameter that minimizes the mean
squared error.

In most cases, time series have a natural temporal structure. This prohibits
us from assuming that subsequent aggregate feature instances are iid (inde-
pendent and identically distributed). This follows from the fact that closer
observations have a stronger relation than those further apart. Figure [4.4]
shows the autocorrelations of two aggregate features sampled randomly from
Accordion’s candidate features, F. As expected, all of them have a clear
temporal structure. Breaking the 7id assumption restricts the model evalua-
tion methods that can be applied. For example, cross-validation should only
be applied when features can be assumed to be iid. Consequently, we split
the data into 66% of data before a selected point in time (the training set),
and 34% for testing.
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4.4.1 Snowboard Data

This experiment involves sensors collecting physiological signals from a sub-
ject while doing winter sports in the Alps. To collect this physiological data,
we used a Zephyr BioHarness iﬂ sensor system, that is worn on the subject’s
chest. The BioHarness incorporates multiple sensors (ECG, chest expansion,
temperature and tri-axial acceleration), that are embedded in a monitoring
module and a lightweight strap. The system samples at multiple sampling
rates for the different sensors, and derives from them a total of 25 physio-
logical parameters (heart rate, breath rate, posture, peak acceleration, ...),
logged at 1 Hz. The dataset used in this experiment was collected during
353 minutes of snowboarding. During the collection period, the subject used
the BioHarness and a GoPro Hero3 HD camera. Afterwards, the video data
was used to label the activities for each minute, from the following available
labels: lift, lying, sitting, snowboarding, standing and towlift.

The baseline consists of 25 averaged predictors, with a sliding window of size
60, at 1/60 Hz (once per minute), matching the frequency of the target labels.
Table presents information for each decision tree built, where the base-
line achieved a predictive accuracy of 67.1%. We used an implementation
of C4.5 from the package rWeka[’] which allows R users to use Weka’s"] ma-
chine learning algorithms. Reduced error pruning was used as post-pruning
strategy.

We employed the classification version of Accordion (Algorithm . The al-
gorithm used information gain as scoring function, and was allowed to grow
windows up to 5 minutes in length. After considering 30 180 candidate aggre-
gate features, only 15 were selected to compose the set of aggregate features
(F). Figure presents the resulting decision tree, with a prediction accu-
racy of 84.7% on the test set. At the root of the tree, active activities are
separated from passive ones based on the minimum heart rate over the last
minute. The right side of the tree distinguishes between active or recently
active activities using heart rate, acceleration and breathing as input pre-
dictors. The left side of the tree predominantly uses acceleration variables
to classify between the different passive activities. Since the predictors were
logged at 1 Hz, the window sizes can be interpreted as the number of seconds
aggregated. The variety of window sizes and aggregate functions (see Figure
reveal features with multiple degrees of integration over time.

2http:/ /www.zephyranywhere.com /products/bioharness-3/
3http://cran.r-project.org/web/packages/RWeka/index.html
4http:/ /www.cs.waikato.ac.nz/ml/weka/
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Figure 4.5: Decision Tree C4.5 implemented in Weka, built with the features proposed by Accordion.




4.4. EXPERIMENTS 71

The grid search approach materialized 17 150 aggregate features and fed it
to C4.5 to build a model from a subset of these. The number of features
constructed corresponds to a matrix of 5 million cells, as described before.
This involved trying 80 different window sizes for each pair of aggregate
function and predictor. Table shows that Accordion outperforms grid
search both in computation time and model accuracy.

4.4.2 Speed Estimation

This dataset was collected in the context of an athlete training for the Am-
sterdam marathon. In this context, two accelerometerﬁ were worn by the
athlete during four training sessions, one strapped to the right wrist and the
other to the right ankle. A Garmin Forerunnei| device was used to measure
distance and speed.

The dataset considered here has as input about 2 hours and 40 minutes of
running measurements from 2 triaxial accelerometers (2 x 3 x 951200 data
points), at a constant sampling rate of 100 Hz. For the same measurement
period, the target speed values were extracted from the Garmin Forerunner
GPS, of which the median sampling rate is 0.2 Hz. The speed (in m/s)
turned out to be captured at an unstable rate, with time lapses between
measurements ranging from 1 to 10 seconds. Having an unstable target
sampling rate is a specific challenge of this dataset, but one that can fairly
easily be handled by our algorithms.

The design of our algorithms assumes that all the measurements are done at
constant sampling rates. Note that, as long as the predictors are collected
at a constant sampling rate, having an unstable target sampling rate (as is
the case here) is not a problem. We used this specific challenge to show
how our algorithms can be made to work on a broader set of tasks. In fact
only two changes are needed. First, in Algorithm [5] recalculate the relation
between predictors and target sampling rates to ¢ = 100/0.2 = 500, to reflect
the median sampling rate of the target. Second, as a minor modification
of Algorithm {4} we calculate beforehand the reference indices 4, such that
predictors and target variable can be synchronized properly.

As baseline experiment, we aggregated 6 variables (2 accelerometers x 3
axes) over non-overlapping windows of variable sizes. With the predictors

Shttp:/ /www.geneactiv.co.uk/
Shttps://buy.garmin.com/en-US/US /into-sports/running/cIntoSports-cRunning-
pl.html
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Figure 4.6: Predicted value (black) vs. real speed (gray).

and target variable synchronized, the Lasso regression selected only 3 fea-
tures, with a fairly low coefficient of determination (R? = 0.388). As for grid
search, using the limit of creating a feature dataset bounded to 5 million cells,
we materialized 2394 aggregate features in about 1141 seconds, and subse-
quently submitted them also to Lasso. The achieved R? = 0.508, although
higher than baseline, could not outperform Accordion (R?* = 0.986).

The scoring function chosen in this experiment was cross-correlation, en-
abling so-called lag regression, and the maximum window size was set to 60
seconds. During the iterative process of construction and selection, 11 580 ag-
gregate features were constructed, from which only two were selected (thus,
two iterations). The resulting predictions on hold-out data are shown in
Figure 4.6l The final lag regression model is as follow:

speed[i'] = 1.198 - afankiey,rMs,200[7 ]
+0.495 - a fanklez, stdv,5836 [i" — 4] + e[d']

Interestingly, the accelerometer strapped to the wrist was never selected to
model the speed of the athlete. Also, the selected features use both short
term (window size of 200 equals 2 seconds of accelerometer data) and long
term information (window size of 5886 aggregate approximately 1 minute).
Both these observations can help domain experts redefining future data col-
lections and understanding multiple temporal phenomena. All this insight
can be leveraged by the usage of aggregation functions well known to specific
domains.
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4.4.3 Daily Routines Data

Subsequently, we tested our method on another dataset involving three re-
gression targets, related to the amount of time spent in light sleep, REM
and deep sleep. During the course of 15 days, a subject produced data in
the context of a self-tracking experiment, collected using various sensoring
systems: a) the Zephyr BioHarness (see above), used during the day (except
during bathing), b) OpenBeacon, an RFID wireless sensor system to moni-
tor the time spent at different locations of the home, and ¢) a Beddilﬂ sleep
monitoring system to monitor the nights. This last system is used both for
recording the breath and heart rate during the night, as well as determining
the different sleep stages at night (a computation that is part of the black-box
service of Beddit).

The dataset used for this experiment consisted of 34 input attributes, sam-
pled at 1 Hz, of which 24 are physiological variables from both the BioHar-
ness, and Beddit. The remaining 10 variables are binary. They refer to the
subject’s location and were extracted both from the OpenBeacon and Beddit
sensor systems. Table summarizes the experimental setup for all targets,
as well as the information about results.

As baseline experiment, we used the same idea of feature construction for
the previous baselines. Although the baseline is quite fast in terms of com-
putation, the R? results (on the test dataset) show that it is a naive solution.
As for the grid search solution, we materialized 323400 aggregate features
after about 17 hours of computation, which is considerably slower than what
Accordion took to construct and select its aggregate features. After per-
forming Lasso to all the targets, the R? results show that this alternative
was outperformed by Accordion in two of the three targets.

For Accordion, we used cross-correlation as a scoring function, and the max-
imum window size allowed was 3 days. With our method, the target that
took the longest to compute (about 50 minutes) was the REM stage of sleep.
REM sleep is considered the lightest stage of sleep [36]. Figure shows
the stack of nested models created by forward selection. For this target,
the algorithm constructed 23610 aggregated features, from which only 5 (5
iterations) are proposed to explain REM linearly.

7 Available from http://beddit.com
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Figure 4.7: Predicted value (black) vs. real amount of REM sleep (gray), for
models based on the first single, two and five (all) features, respectively.
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Figure 4.8: High frequency time series can be transformed into aggregated fea-
tures, resulting in a linear lag regression between these and the target variable.
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From the three targets addressed in this experiment, time spent in deep sleep
gives a good example of both failure and success of our method. Accordion
model scored lower than the one produced Lasso with grid search in terms
of R?, where Lasso wins over our forward-stepwise selection process in terms
of model accuracy. On the other hand, Accordion is faster and produced an
interpretable model (two selected aggregate features), whereas Lasso with
grid search fails to deliver an interpretable model (check Table : R?* and
#Features selected). Our method produced 11710 candidate features, from
which only two were selected to explain the amount of deep sleep, resulting
in the following linear model:

deepSleep[i’] = —120.8 4 0.99 - a fposture, RMs, 1584007 |
+0.11 - afHR, avg,155200[7 — 1] + e[i]

Figure[4.8 helps us to interpret the deepSleep model. Both aggregate features
have window sizes of about two days, with almost 50% of overlapping.

For each moment 4, deep sleep can be explained with posture over the last
two days afposture, RMS,158400(7), and the heart rate of almost two days with
a delay of one day afur, avg155200(%" — 1).

4.5 Related Work

The problem of activity recognition is commonly tackled with a two-stage
process [6, 69, [58]: first, manually construct aggregate features and then
apply a machine learning technique to discriminate between different activ-
ities. The task of feature construction is so central that surveys of feature
construction techniques became necessary [25]. As the choices in feature
construction influence all the experiments, this often leads to solutions that
are overly specific to the experimental setup (sensors used, data collection,
application). As a result, most methods are not generic [12]. Our algorithm
embeds feature construction into the learning process, which increases the
feature search space, reduces the time spent pre-processing data and avoids
overly specific solutions, which makes it widely applicable.

From a data mining perspective, the use of time series as a data source has
received considerable attention, and has developed into different areas of
research [48] [102] 60], e.g. classification, summarization, subsequence clus-
tering, motif discovery and anomaly detection. As for the challenge of mining
time series with mixed sampling rates, this still remains underappreciated.
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To the best of our knowledge, this paper is the first attempt to develop a
data-driven generic solution to this problem, and to focus on the importance
of optimizing the automatic and dymanic construction and selection of ag-
gregate features with respect to a target variable, as opposed to static feature
construction.

In econometrics, regression models are commonly used to relate variables
at the same sampling frequency, even when the data sources are being col-
lected at different rates. When dealing with mixed sampling rates, the most
common technique is still to downsample the predictors [4], or upsample the
target variable [3]. Recent work proposes solutions to forecast directly from
variables with mixed sampling rates, both for univariate [28] and multivariate
time series [57]. These proposed methods still rely mostly on the expertise
and creativity of the economists (domain knowledge-driven), leaving no room
for data-driven knowledge discovery, which our algorithm is capable of do-
ing.

4.6 Conclusions and Future Work

When modeling time series for activity recognition, a drawback is the con-
siderable amount of time required to pre-process them into good features, a
process that often calls on domain knowledge about the underlying problem.
Accordion shortens the pre-processing time, generating candidate aggregate
features automatically by optimization of its components, (s, a,w). We still
believe that domain knowledge can play a big role when modeling, but this
effort could be redirected to higher level questions, such as which set of
aggregate functions (A) to use. One of the directions for future work is nat-
urally to extend the set of aggregate functions, especially to the frequency
domain.

We also motivate the idea of embedding automatic feature construction into
the machine learning process. The idea here is to stop relying on static
sets of features, and at each iteration of feature selection direct the search
for good candidate features. Making use of scoring functions, Accordion is
able to test many candidate features, and return only a small set of selected
features. Especially when quick but reliable results are required, or large
datasets dictate a memory-conscious method, our algorithm is clearly a good
choice. As future work, we would like to mimic the learning process of other
supervized methods, both in regression and classification, keeping the idea
of learning algorithms that do not rely on a static set of features.



4.6. CONCLUSIONS AND FUTURE WORK 7

One of the achievements of our approach is that it outputs interpretable ag-
gregate features. The ability to interpret our aggregate features follows from
the combinations of input variables, well-known aggregate functions and dif-
ferent window sizes. Interpretation of different window sizes come from the
fact that our method searches for different phenomena by expanding or con-
tracting the window size for each feature. In contrast, the standard approach
in activity recognition is to take a more or less arbitrary choice about a win-
dow sizes [6l 69, 58, 37]. In the future, we would like to deal with unstable
sampling rates, both of predictors and target, multiple sampling rates for the
predictors, and targets at a higher sampling rate than the predictors.
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Abstract

As sensing and monitoring technology becomes more and more common,

multiple scientific domains have to deal with big multivariate time series data.
Whether one is in the field of finance, life science and health, engineering,
sports or child psychology, being able to analyze and model multivariate time
series has become of high importance. As a result, there is an increased
interest in multivariate time series data methodologies, to which the data
mining and machine learning communities respond with a vast literature on
new time series methods.
Howewver, there is a major challenge that is commonly overlooked; most of the
broad audience of end users lack the knowledge on how to implement and use
such methods. To bridge the gap between users and multivariate time series
methods, we introduce the ClaRe dashboard. This open source web-based tool,
provides to a broad audience a new intuitive data mining methodology for
regression and classification tasks over time series.

79
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5.1 Introduction

Over the past few years, there is an increased interest in the analysis of
multivariate time series data. A great deal of this interest is motivated by
advances in sensor technology. In many application areas, deploying sensors
for continuous monitoring has become a common strategy. Over the last 10
years, sensors are becoming more accurate, with better data communication
protocols, smaller and last but not least, cheaper.

As a motivating example of the great developments in sensing technology,
consider the UvA BiTS sensor system [I1]. This bird tracking system cur-
rently weighs around 10 grams, is powered by a solar panel, and integrates a
GPS and a tri-axial accelerometer. This bio-logger, designed for birds with
at least 300 grams is capable of collecting, saving and transmitting the ani-
mal movements and overall migration. This sensor system ends up weighing
less than < 3% of the bird body mass. This is an example of a system
that is less invasive than traditional sampling methods in ecology, which
normally involve multiple captures and releases. Therefore, both the possi-
bilities for ecology studies and the amount of available data has expanded:
more species, exact migrations, flight strategies, bird activities and foraging
strategies. But how to efficiently and intuitively explore sensor data, still
remains a data science challenge.

From the data science perspective, sensor systems will produce time series
data. In the case of sensor networks, multiple variables are collected simulta-
neously, producing multivariate time series. Adding to that, when collected
continuously, these datasets lead to big data challenges. This raized chal-
lenges to the data mining community, on how to deal with large multivariate
time series. These challenges have attracted the attention of many researcher
and lead to a vast literature on time series mining [24, 14]. With the excep-
tion of a few good examples [32] [10], there is still a gap between most of these
methods and the potential end users, who may lack a technical background
to implement them.

Most of the sciences based on empirical observations have the potential to
benefit from technological advances in sensor systems:

e children can be monitored continuously to study their social compe-
tence [99, 100];

e environmental sciences can benefit from continuous sensing [11];
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e civil engineering can develop predictive maintenance of infrastructures
using sensor networks [68], 08|, [67];

e life sciences and health are already heavily supported by machinery
that uses sensors to measure all sort of phenomena [40, 106, O5].

A common link between all the above-cited publications is that they rely on
sensor monitoring systems for their continuous sampling methodologies. The
continuous nature of the measurements, lead to large multivariate time series
datasets. As a consequence, the traditional data analysis tools based on clas-
sical statistics are commonly not applicable to this kind of data. This leads
to an opportunity to shorten the gap between the data science community
and empirical sciences, if we are able to create the appropriate tools.

One could argue that the data mining community is already encouraging the
publication of source code and data associated with publications. However,
without a deep knowledge on the published method and the language used
to implement the code, such released source code targets only a limited au-
dience. Another very significant effort to make machine learning methods
more accessible is the release of packages with collections of algorithms, such
as Scikit-learn [77] for Phyton or Caret [56] for R. The downside of such
packages is the need to be proficient both in the programming language that
implements the package of methods and the need to know how to build a
data science methodology around the chosen method. At last, there are tools
for a broad audience such as Weka [32], MOA [10], Knime [8], JMulTi [55]
and SPSS [38], which are intuitive and provide graphical user interfaces. The
problem with such tools is that upon the development of a new method, these
tools are not flexible enough to easily incorporate them. Furthermore, focus-

ing on multivariate time series, most of them are not designed to analyze this
kind of data.

Our proposal to bridge the gap between new methods and a broad audience,
is to build easily accessible web-based tools, with a user interface. Such tools
require no installation, are platform-independent and can be highly intuitive.
Intuitive, because most people already have been exposed to hundreds of
web pages and know how to read and navigate them. With an accessible
GUI, these tools will broaden the potential audience to non-experts in data
science. Additionally, using the web interface allows us to present such tools
as Software as a Service (SaaS).

As a motivation, consider the example of a healthy aging study, developed
by a team with a biomedical background [95]. The study used multiple
sensor platforms in order to predict the participant’s activities and energy
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expenditure. This resulted in a dataset where a team of life science researcher
is left to deal with multivariate time series. Therefore, it is essential to have at
their disposal a tool that implements a data mining methodology that allows
them to run experiments and model such multivariate time series data.

In this paper, we propose ClaRdl] a Classification and Regression tool to
model supervized multivariate time series. This SaaS tool adopts the Ac-
cordion algorithm from the previous chapter, to learn informative features
and allows users to learn regression and classification models from multivari-
ate time series with mixed sampling rates. Its intuitive web-based interface
provides options of importing, pre-processing, modeling and evaluating mul-
tivariate time series data. In every step, plotting and saving data or results
are allowed. Adding to the aforementioned, both source code and experi-
mental data?] are made openly available.

5.2 Tool Overview

ClaRe is a web-based tool that incorporates all the necessary steps for model-
ing time series with mixed sampling rates. Such time series are often collected
from a network of sensors that measures complex phenomena. The output of
such sensors are often multiple files that have variables measured at different
rates and thus have special needs:

e pre-processing needs to include synchronization and merging;

http://fr.liacs.nl:7500
Znttps://github.com/parastelios/Accordion-Dashboard

[ Import Data ] — [ Pre-process ] ﬂ

e ﬂﬂ
I 5 [ Build Model ]

[ Export Model ] — [ Evaluation ] a

Figure 5.1: An overview of ClaRe tool architecture.
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e plotting needs to be done using sampling techniques due to the size of
such time series;

e learning strategies that take into account the temporal nature of the
data;

e evaluation alternatives to cross-validation that reflect the true accuracy
of the time series models.

Our tool is novel due to the capacity to deal with the challenges above, which
are recurrent when dealing with sensor data.

From a technical perpective, ClaRe also presents benefits in terms of devel-
opment and deployment. Both front end and server are developed with R,
using the R Shiny package [18]. This package provides a framework to inter-
act between client and server side through R-scripts. As a result, the tool was
easy to implement since only one programming language is used to manage
both server and front end. From the deployment perspective, ClaRe’s main
advantage is its compatibility with all modern web browsers.

ClaRe’s design presents an experimental methodology as shown in Figure[5.1]
One can import and pre-process time series data, build regression or classi-
fication models, evaluate them, and export the results. The user can follow
the proposed methodology intuitively, using web components that adjust to
the user choices and guides the user troughout the data mining method-
ology. Each panel will be enumerated and explained below, following the
CRISP-DM standards of the data mining methodology [107].

Import: When the user accesses the tool online, they are welcomed to the
tool by the Import panel. To start, the user can upload predictors and target
in a single or separate files (see Figure . In this panel the user can get
a preview of the data available and descriptive statistics for all the variables
available.

Pre-processing: Having imported the data, the user will be intuitively
guided to the following panel: Pre-processing. Here, the user can choose
from multiple pre-processing tasks, both generic for all sorts of datasets and
specific to sensor-based multivariate time series. The generic tasks include
selecting the variable the user wants to consider as a target, normalizing
datasets, removing outliers. As for tasks that are more specific to multi-
variate time series datasets, one can merge multiple files into one dataset,
synchronize data from different sensors and manage missing values.
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Figure 5.3: ClaRe dashboard user interface: Pre-processing tab.

As an example of a common pre-processing task in multivariate time series,
consider a sensor network where the predictors (e.g. accelerometers) are col-
lected and saved into one file and the target (e.g. a persons activities) into
a different file. The user would want to select the target and merge both
files into one synchronized dataset. For that purpose, with ClaRe the user
can choose the relevant variables and merge them with ease (see Figure .
Please note that when the user selects the target, there is a selection of which
model will be used: if the target is nominal the following panel turns into
a Classification panel (see Figure ; if the target is numeric the following
panel turns into a Regression panel (see Figure .
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Figure 5.5: ClaRe dashboard user interface: Model tab.

Furthermore, there are multiple options to deal with missing values for time
series, such as interpolation and repeating values. The panel of pre-processing
is also allows more common tasks such as outlier removal, data normalization
and conditional selection of variables.

In every step of the pre-processing, there are two useful inspection panels
worth mentioning; plotting and saving. The plotting panel has multiple
interactive functionalities, such as real time zoom in/out and target shading

(see Figure . These plots are implemented using R’s dygraphs package

[97], which is capable of dealing with large datasets. At any time, the pre-
processed dataset can be previewed and saved for further usage, allowing the
experiments to continue over multiple user sessions.
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Model: As mentioned before, after choosing a numeric or nominal target,
this panel changes into a regression or classification setup, respectively. The
available regression models are a linear regression model and a lag regres-
sion model. As for the classification task, the available model is a decision
tree. Both classification and regression models construct and select aggregate
features as described in the previous chapter.

Accordion can be tuned with multiple parameters, which are available in the
Regression or Classification panels (see Figure . For both classification
and regression, one can tune the target’s sampling rate, the maximum win-
dow size and the number of samples used to perform a greedy search for
aggregate features. Additionally, in regression there is an option for which
regression method to use (linear or lag). To ease the users mining process, the
parameter defaults are computed automatically, according to the sampling
rates in the original files.

After having the parameters tuned, the users can start the learning proce-
dure of each model by clicking a Go-button. Then, ClaRe starts running the
Accordion algorithm on the server side of the tool and in the front end a
loading-cycle is displayed until the model is constructed. After the model is
built, the user can have a first inspection of the selected features by visualiz-
ing them, inspecting descriptive statistics or checking which are the variables,
aggregation function and window sizes that have been selected.

Evaluation: This panel allows the users to obtain detailed cross-validated
evaluations of the constructed model. An added feature is cross-validation
with Leave One Participant Out (LOPO) for models using multiple partici-
pants. Such type of scenarios can be found in applications such as activity
recognition for multiple people [12, [14] or birds in the examples given in the
introduction. With LOPO, the model is built multiple times, leaving each
time one participant out of the learning process to validate. This evaluation
method is especially important to assess the real accuracy of models, when
the dataset instances are not independent and identically distributed.

The evaluation of results is different for regression and classification models.
For regression, it provides a full summary of the computed coefficients and
model errors. For classification, it returns the confusion matrix and the
associated accuracies. Furthermore, a visualization panel is available, as
presented in Figure 5.7 For both regression and classification, the user
can plot the dataset with the aggregated features and the predicted target.
Please note that the resulting dataset with aggregate features, has the same
sampling rate as the target, which can be specified as a parameter in the
Regression and Classification panel.
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There are other functionalities that expand the evaluation possibilities. For
a start, one can export the constructed model and the associated dataset.
Additionally, an existing model can be evaluated using new datasets, creating
a train and test evaluation scenario (see Figure . Finally, the user has
the option to directly evaluate both the existing model and new datasets.
All these options give the flexibility to re-visit the evaluation over multiple
user sessions.
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5.3 Conclusion

This paper presents an easily accessible web-tool designated as ClaRe. ClaRe
is a Software as a service (SaaS), which provides any user interested in min-
ing multivariate time series, a methodology for supervized learning. More
specifically, it allows users to deal with cases when the multivariate time se-
ries data have mixed sampling rates. Making use of intuitive menus, one can
easily load one of multiple files, pre-process properly sensor systems data,
learn time series models and evaluate the results. Additionally, ClaRe is a
freely distributed and open source software, that allows reproducible research
in a SaaS environment.

At any stage of the mining process, interactive plotting and saving options
(for models and data) are available. Being built with such options, the tool
allows the mining process to be revisited over multiple user sessions, giving
additional flexibility to the users. The plotting facilities of the tool are built
to deal with large datasets and to give further insights at each step to the
users.
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Abstract

In elite sports, training schedules are becoming increasingly complezx, and a
large number of parameters of such schedules need to be tuned to the specific
physique of a given athlete. In this paper, we describe how extensive analysis
of historical data can help optimize these parameters, and how possible pitfalls
of under- and overtraining in the past can be avoided in future schedules.
We treat the series of exercises an athlete undergoes as a discrete sequence
of attributed events, that can be aggregated in various ways, to capture the
many ways in which an athlete can prepare for an important test event. We
report on a cooperation with the elite speed skating team LottoNL-Jumbo, who
have recorded detailed training data over the last 15 years. In this project, we
analyse this data, and extract actionable and interpretable patterns that can
provide input to future improvements in training. We present two alternative
techniques to aggregate sequences of exercises into a combined, long-term
training effect, one of which based on a sliding window, and one based on a
physiological model of how the body responds to exercise. Next, we use both
linear modeling and Subgroup Discovery to extract meaningful models.

39
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6.1 Introduction

This paper describes research challenges related to a recent Sports Analytics
project between a leading Dutch professional speed skating team and data
scientists from Universiteit Leiden and Hogeschool van Amsterdam. During
its history, the athletic team, currently called LottoNL-Jumbo, has included
numerous Dutch skaters that competed at the European, world, and Olympic
level, and presently includes a world record holder and two Olympic medal-
ists. The project involved 15 years of detailed training data kept by the
coach of the team (second author of this paper) with the aim of improving
the training program and further optimising the performance of current and
future skaters of the team. In this paper, we report on the data science
techniques required to analyse this non-trivial data, and showcase findings
for specific athletes. A number of novel techniques are introduced to deal
with the specifics of the recorded data, and to produce interpretable and
actionable results that can help fine-tune the training programs.

Speed skating is a winter sport where athletes compete on skates to cover a
given distance on an oval (indoor) ice rink. In this paper we focus here on
long-track speed skating events, which involves a 400 meter oval track with
two lanes. Events over multiple distances exist, ranging from 500 meters to
10 000 meters, with each skater typically specialising in one or two distances,
depending on their physiology and training. Although each race in an event
involves two skaters, the final standing is determined by the overall ranking of
times of all participants. This effectively makes each race a time trial, where
the outcome of a given skater is only determined by their own performance.
From a data mining point of view, this is attractive since all results can be
assumed independent, and one can simply collect all race results of an athlete
without having to consider the influence of the ‘opponent’.

The available data, painstakingly collected by the coach, involves primarily
descriptions of the daily training activities, partly structured and partly free
text. The structured part of the description is very consistent, and cap-
tures a classification of the nature of the training (e.g. “cycling extensive
endurance”), as well as numeric values indicating the duration (in minutes)
and intensity (on a subjective scale of 1 to 10) of the session. Training data is
specific to individual athletes, and the intensity of the training was obtained
from the athlete, post hoc. With six training days per week, and potentially
two sessions per day, this amounts to roughly 450 sessions per season, mak-
ing for a substantial data collection per athlete/season. Next, race results
are available that capture test events which will stand as our target. These
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were scraped from the internetl] As a result, the problem is essentially a
regression task, since target and predictors are both numeric variables.

While evidently being in the regression domain, it is not immediately clear
what the independent variables of our task might be. Clearly, the indepen-
dent variables should capture aspects of the training program prior to the
events in question. However, the available data is a long sequence of events
with a small number of characteristics (type, duration, intensity, ...), so some
form of transformation is necessary to arrive at an attribute-value represen-
tation that is amenable to main-stream regression analysis. In this paper, we
take an aggregation-based feature construction approach, inspired by earlier
work in [I4], in order to derive a fairly extensive set of features that cap-
ture the preparation (training, but also absence thereof) from various angles,
for example focussing on specific periods prior to the test event, or on spe-
cific intensity zones. In its basic form, the aggregation will take place over
windows of varying lengths (ranging from one day to several weeks) using
different aggregate functions and variables, with specifiers such as training
type and intensity zones. In a more elaborate approach, developed for this
specific purpose, the aggregation will take the form of convolution with a
physiology-inspired kernel consisting of several exponential decay functions
of varying half times. This kernel is inspired by the so-called Fitness-Fatigue
model [16], that tries to capture how the human body responds to a specific
training impulse over the course of time.

After having obtained a suitable attribute-value representation with poten-
tially predictive features, the next challenge is to produce meaningful models
from this dataset. The overall aim of this project is to provide the coaching
staff with easy-to-understand, actionable pointers as to how to fine-tune the
training routines, and avoid pitfalls of under and over-training. Therefore, we
specifically intend to discover interpretable patterns, that are relatively easy
to understand by the domain experts, and ideally do not involve a great many
variables. We will be working with two types of regression techniques. As-
suming mostly linear dependencies between the aggregated features and the
target variable, reqularized linear regression methods such as LASSO [27), 00]
are attractive since they select features and produce relatively concise models
of the data. However, with the physiological domain at hand, it is likely that
non-linear dependencies will also exist, and rather, one expects thresholds to
exist on the features, where too large or too low a value (e.g. training load)
will produce sub-optimal results. For such phenomena, we expect Subgroup
Discovery [50, [30, 5, [78] to produce more useful results.

"http://www.osta.nl
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This Sports Analytics paper has two sides. On the Sports side, we present
some interesting findings that are of practical relevance to the team, with
the following key contributions:

e The application of the Fitness-Fatigue model and the fitting of this
model to individual skaters, where the parameters of the model convey
key properties of each skater.

e Various demonstrative, interpretable patterns concerning improved train-
ing practices.

e The presentation of results relating to competitions.
e The capability to produce detailed findings for other skaters.

On the Analytics side, we introduce a number of new ways to exploit detailed
training data, of relevance not just in the speed skating discipline, and in
some cases applicable to other analytics domains also. In this domain the
key contributions are:

e Introduction of (conditional) aggregation as a way of aggregating dis-
crete sequences of events, and producing a range of features that cap-
ture various aspects of those sequences.

e Aggregation by means of two options: one that is easy to compute and
interpret (uniform window), one that is more physiologically plausible,
and at the same time harder to compute (the Fitness-Fatigue model).

e Application of linear modeling and Subgroup Discovery in order to
select key features and produce interpretable models. 5) Evaluation
of models in terms of R? and p-values, that makes linear models and
subgroups immediately comparable.

6.2 Speed Skating and Sports Analytics

The (long-track) speed skating takes place on an oval track 400 meters in
length. Races are typically held with two participants at each time (skating in
separate lanes), but each participant is ranked on their individual time. Both
men and women compete, in separate competitions. Races come in various
distances, but the most common distances at major events are 500 m, 1000
m, 1500 m, 3000 m, 5000 m and 10000 m, of which the last distance only
applies to men, who in turn do not skate the 3000 m. These disciplines are
usually divided into sprint, medium, and long distance, and skaters typically
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specialize in one of these, and compete in only a few of these disciplines,
although participation is facultative. Each category requires a specific type of
physiology, which explains the specialization of athletes. Furthermore, each
distance requires a specific type of training, and exercises for one distance
may actually harm the performance on other distances [64} [45]. This implies
that our analysis will often be specific to a small number of similar distances,
or even be specific to individual athletes. Since the training programs are
well-developed, and the senior athletes will have several years of experience
working with the coach, the produced findings may be subtle, which will
often call for an athlete-specific approach.

Even though races for a specific event can be considered time trials, there
will be a level of variance in the race results that cannot be explained by
differences in race preparation and training. It is a well-know fact within
speed skating that times are determined to a reasonable degree by the ice
rink. First of all, the ice properties will differ from one venue to the next,
and top venues will have better ice maintenance techniques and experience.
Another factor that influences the times, besides ice quality, is the altitude
of the venue, with higher ice rinks tending to be faster due to the lower air
resistance. In order to compensate for the difference in rink speeds, we have
opted to work with relative times rather than recorded times.

Definition 9 (Relative time). For a race of distance d, by a skater of gender
g, at ice rink r, finishing in time t (in seconds), the relative time t,o is

defined as
2frel = t/trec(da g, T)

where tre.(d, g,r) is the record for a specific discipline and ice rink.

Relative time will produce race results slightly above 1.0 or exactly 1.0 if a
race either produced or replicated a rink record. The use of relative time not
only allows comparisons between results at different venues, but theoretically
also comparisons between results in different disciplines or even between men
and women, although one might be comparing apples and oranges here on
other aspects of the data. The rink records were scraped from the Dutch
Wikipedia pageE] that collects local records. Note that the use of records
to estimate the speed of a rink is not flawless. First of all, records are
continuously subject to improvement, such that the definition of relative
time is sometimes problematic. Next, some venues rarely host international
events, such that their records do not fairly represent the theoretical speed of
the rink, and actually produce under-estimates of the relative times athletes
set (meaning they appear faster than they are). In order to avoid constantly

2https://nl.wikipedia.org/wiki/Lijst_van_snelste_ijsbanen_ter_wereld
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having to update the list of records and subsequent analyses, which is rather
time-consuming, we choose to fix the records at a particular point in time.
A minor side effect of this is that some newer results may actually have a
relative time below 1.0. Our collected list of international rink records will
be made avaﬂableﬂ as part of this publication.

6.3 Feature Construction by Aggregation

As explained in the introduction, the training data takes the form of a se-
quence of annotated events, corresponding to the individual exercises an
athlete performs. While being valuable information, this sequential repre-
sentation will require certain transformations in order to elicit general char-
acteristics of an athlete’s preparation for a race. Individual exercises will
generally not play a deciding role in the outcome (unless of very extreme
nature), and it is the combined nature of exercises that determines the effect
of the training program. Therefore, some form of aggregation is required to
draw out the various aspects of training that potentially play a role. Al-
though there is a large body of knowledge about the effect of certain types of
exercise in the sports physiology literature, it is still uncertain what aspects
of training and preparation determine the variance in race results that still
remains, as for example exemplified in Figure [6.1] For this reason, our fea-
ture construction approach will include a rather large collection of features,
with the aim of including many angles and leaving room for discovery in later
stages of the analysis. Furthermore, it is not quite clear how long the effect
of specific exercises lasts for individual athletes, and thus what period prior
to the test event should actually be included in the aggregation. Our set of
constructed features will therefore involve time windows of various lengths,
ranging from one day to several weeks.

In this paper, we will consider two general aggregation approaches, the first
of which involves uniform aggregation over the various windows. The second
based on convolution using a kernel that is based on the exponential decay
function.

3http://datamining.liacs.nl/rink-records.txt
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time_relative
Figure 6.1: Distribution of relative times over 1000 m as estimated by kernel
density estimation (based on 75 results, with a Gaussian kernel of o = 0.0051).
The probability density estimate continuing below 1.0 is an artefact of the KDE.
The best time in the list is actually a rink record in the Hague (the Netherlands)
at 1.0.

6.3.1 Uniform Aggregation

Before defining the notion of a (time) window, we first formalize the events
to be aggregated, as they appear in the data of our application.

Definition 10 (Exercise). An exercise is defined as a tuple e = (t,ampm, dur,
int,load), where t is the date of the exercise, ampm is a binary variable indi-
cating the morning or afternoon session. Numeric values dur, int, and load,
indicate the duration (in minutes), the subjective intensity (on a scale of 1
to 10), and the load (in intensity-minutes) of the exercise, respectively.

The three crucial numeric attributes of an exercise specify the following:

e The duration simply specifies the length of the exercise. Durations tend
to be rounded to quarters of hours (especially for longer exercises),
but this is deliberate, and athletes generally adhere to the required
duration.

e The intensity indicates how heavy the exercise was, as perceived by the
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athlete, with 10 being the intensity of a race itself. During training,
values of 9 or 10 are rare. Although intensity is a subjective measure,
the athletes are very used to it, and will rate specific trainings fairly
consistently.

e The load is defined as the product of duration and intensity, with the
intention of capturing the total energy expenditure during the exercise.
Although load is actually a derived attribute (it does not appear in our
normalized database, for that reason), we include it in the definition of
an exercise because it plays a crucial role both in the modeling as in
the reasoning behind the training programﬁ.

Note that the races themselves also appear as exercises in the database, since
it is crucial to include the training load produced by such intense events, when
considering the preparation for other races. In speed skating, several races
often take place in a single weekend, such that later races are influenced by
earlier ones.

Definition 11 (Time Window). A (time) window wy,, is a set of exercises
€1,...,6n, Such that all dates e;.t are before t, and not more than 2m — 1
days before t: t —2m +1 < e;t <t.

Note that day t itself is not part of the window. For reasons that will become
clear in later sections, we have opted to define the length of a window in terms
of its middle m, essentially indicating the ‘centre of mass’ of the window. A
window w;; will thus include the one day prior to ¢, w; s indicates the three
days prior to t, and so on.

For a window w, the following primitive aggregates will be considered:
Count Simply the number of exercises in w: |w].

Sum(duration) The sum of durations of the exercises in w: ), e;.dur.
Sum (intensity) The sum of intensities of the exercises in w: ), e;.int.
Sum(load) The sum of loads of the exercises in w: ), e;.load.
Avg(duration) The average duration of the exercises in w: ), e;.dur/|w|.

Avg(intensity) The average intensity of the exercises in w: ), e;.int/|w].

4Note that the definition in terms of a product of duration and intensity might be too
simplistic, since neither duration nor intensity may be a linear scale. Doubling the length
of an exercise may have an exaggerated effect if the intensity is (too) high, and doubling
the intensity makes the exercise entirely different in nature, addressing different metabolic
systems.
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Avg(load) The average load of the exercises in w: ). e;.load/|w]|.
Max(duration) The maximum duration of the exercises in w: max; e;.dur.
Max(intensity) The maximum intensity of the exercises in w: max; e;.int.
Max(load) The maximum load of the exercises in w: max; e;.load.

Aggregation using the minimum was deemed senseless, since a very light
training has little effect, and one could interpret daily rest periods as very
light exercises anyway.

Specifiers

Each primitive aggregate listed above can be applied to all the exercises in a
given window, or just to subsets of exercises from specific categories. These
subsets are specified by what we will refer to as specifiers. We apply the
following specifiers:

Morning/afternoon sessions By specifying am, pm or no specifier at all,
the aggregate can include only the morning sessions, only the after-
noon sessions, or all sessions, respectively. Note that during the winter,
the coach will plan exercises on the ice in the morning, and alterna-
tive training in the afternoon, so distinguishing between those may be
fruitful.

Intensity intervals Exercises at different intensities will trigger different
parts of the system, and hence will produce a different training stim-
ulus. As specifier, we optionally select only exercises within specific
intensity intervals [/, u], where [ € [1,10] and u € [I, 10].

Note that each type of specifier will introduce multiple variants of the primi-
tive aggregates. For ampm, adding specifiers will raise the number of aggre-
gates (per window size) from 10 to 30. For the intensity-intervals, there will
be 1/2-10 - (10 + 1) = 55 variants of each primitive. However they are only
applied to the 4 primitive aggregates that do not involve intensity and load,
producing 55 - 4 = 220 aggregates. In order to avoid combinatorial explosion
of the aggregate collection, we do not include combinations of specifiers (such
as low intensities in morning sessions). In total, there will be 250 aggregates
per window.



98 CHAPTER 6. SPORTS ANALYTICS

Aggregation and Convolution

Observe that such uniform aggregation over a window can be seen as a form
of convolution with a rectangular kernel [85]. The convolution of a time series
x(t) (in this case any of the training parameters that are aggregated) applies
a kernel to the series to obtain a new series y(t) as follows:

y(t) = h*z(t) = ’Z h(i)x(t — )

1=—00

Here, h refers to the kernel, which is required to sum to 1 over its domain. In
the case of a uniform window, the kernel is essentially a rectangular function
(remember that 2m — 1 is the length of the window):

1/2m—1) if0<t<2m-—1
h(t) = )
0 otherwise

Since the rectangular kernel is zero over a large part of its domain, the
convoluted function y(t) can be computed much faster. In the next section,
we will introduce a kernel that is both more natural and more expensive to
compute.

6.3.2 The Fitness-Fatigue Model

Although uniform aggregation is intuitive and straightforward to implement
(and as we will see, provides fairly good models), it is somewhat unnatural.
First of all, it is unlikely that all exercises over a period of, say, four weeks
will have the same influence on the level of fitness at a race. Rather, one
would expect that exercises several weeks ago have a much smaller influence
than more recent ones. Second, the hard distinction between an exercise 28
days ago, and one 29 days ago seems unnatural, and may introduce minor
artefacts in the constructed features. Finally, there is a general pattern
where the initial effect of an exercise is negative, while after a short period of
rest and recuperation, the effect is positive. Ideally, the aggregated features
should exhibit such behaviour.

In this section, we introduce a type of aggregation based on convolution with
a more natural gradually progressing kernel. We will use a multi-component
kernel that is taken from the physiology literature [16] and aims to model the
complex way in which a human body responds to exercise by initial fatigue,
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followed by a slight improvement in performance, the effects of which die
out gradually over the course of several week, returning to a state of fitness
comparable to that prior to the exercise.

The core of this kernel is based on the exponential decay function, as fol-
lows:
he(m) =e ™, m >0

The parameter A\ here determines the speed with which this kernel decays
towards zero, in other words, the speed with which the effects of exercise
diminish over time. Although the exponential decay is defined in terms of
A (with unit s7!), we will primarily define a specific kernel in terms of the
parameter 7 (in units s, or more conveniently, in days), which corresponds to
the ‘mean lifetime’ of the kernel, and as such can be interpreted as the centre
of mass of the kernel. This makes this parameter immediately comparable
to parameter m of a uniform window, which is also the centre of mass of the
kernel. The simple relationship between 7 and A is as follows:

T=1/\

The exponential decay function effectively models the diminishing positive
effect of an exercise as time passes. However, it does not include the tiring
effects of exercise in the few days after training, which may outweigh the
positive influence of training. For this reason, [16] introduced the so-called
Fitness-Fatigue model, which models these two effects as two components of
a kernel with different weights and different decay factors, as follows:

ho(m) = e Mit™ — Ke Aat™ iy > ()

Arie determines the speed with which the positive effects of training (the
fitness) diminish, and typically corresponds to a 7y; in the order of months,
while A, determines the shape of the fatigue curve immediately after the
exercise. The associated T4 is typically in the range of two weeks. Initially,
the influence of fatigue is about twice as big as that of the improved fitness
(determined by the value of K).

The fitness in the above two-component model is assumed to be immedi-
ately improved after the exercise, which in practice is not the case. The
desired adaptation in various metabolic systems will not take effect until
several days after the exercise, such that the fitness will need to be modeled
with an additional component [16], producing the following three-component
kernel:

hyp(m) = (e7Mit™ — g7 ety — [Le=Aat™ -y > ()
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Figure 6.2: The three-component Fitness-Fatigue kernel (in solid black) as a
function of time after the exercise (in days). The fitness and fatigue parts are also
shown, in solid grey and dashed, respectively.

where )y affects the exponential function that reduces the initial fitness. In
Figure [6.2] the combination of fitness and fatigue into this kernel is demon-
strated. In [16], values are given for the associated parameters, obtained by
fitting the convolved function to athletic data, producing the values below.
Although these values seem reasonable, they will be athlete- and specialism-
specific, such that we will fit these values to specific datasets collected, in
the experimental section. The published values for the parameters are as
follows:

Trie = 00 days, 7 = 5 days, Tpe = 15 days, K =2.0

6.4 Modeling Approaches

6.4.1 Regularized Linear Regression

In the previous section, we explained the procedures to build large sets of
interpretable features about the training, that might be able to explain the



6.4. MODELING APPROACHES 101

target variables of performance. These target variables might be a linear
function of a subset of the aggregate features, but we do not know which
ones beforehand. In order to find a good subset of aggregate features for
each target variable, we use LASSO [90], a method for estimating gener-
alized linear models using convex penalties (l;) to achieve sparse solutions
[217].

Assume ¢ is the mean of the target variable:

The coefficient of determination R? is now defined as:

2 Zz(tz —/ z‘)2

where > .(t; — f;)? is the sum of squared differences between the actual and
predicted target value, and Y ,(t; — ) is the sum of squared differences
between the target value and the constant function ¢t = ¢. Note that R? is
between 0 and 1 whenever the model f is produced using the Ordinary Least
Squares method, but may be lower than 0 for functions derived differently.
R? is often interpreted as the explained variance, where a value of 0 means
that no variance in the dependent variable can be explained by variance in
the independent variable(s), and a value of 1 means that all variance can
thus be explained (a perfect fit of the data).

6.4.2 Subgroup Discovery

The previous section focussed on linear models, assuming that the depen-
dencies we hope to discover are indeed linear in nature. Unfortunately, in
the domain we are focussing on, it is quite likely that the relationship be-
tween (extent of) training and performance is non-linear. When doing a
certain training routine, it can be expected that the relationship is in fact
curved, with peak performance being achieved at a certain optimal load on
the human body. Doing too little will not achieve the right effect, but doing
too much of the training also produces sub-optimal performance. Specifi-
cally, one can expect thresholds in the training load above (or below) which
performance will rapidly diminish. Therefore, we will also experiment with
modeling techniques that are more local in nature, and find subsets of the
data where performance was surprisingly low, as well as finding variables and
thresholds that will identify such sub-optimal subsets.
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Our paradigm of choice for such (potentially) non-linear data is that of Sub-
group Discovery [50] 54]. Tt is a data mining framework that aims to find
interesting subgroups satisfying certain user-specified constraints. In this pro-
cess, we explore a large search space to find subsets of the data that have
a relatively high value for a user-defined quality measure. We consider con-
straints on attributes, and determine which records satisfy these constraints.
These records then form a subgroup. The constraints on the attributes (the
description) form an intensional specification of a part of our dataset, and
the subgroup forms its extension (that is, an exhaustive enumeration of the
members of the subgroup).

A number of papers in the literature discuss SD variants for regression tasks,
which to some extent are applicable to our case. One group of techniques
focusses on finding subgroups where the target shows a surprisingly high
(or conversely, low) average value [30], Bl [78, [59]. Typical proposed quality
measures use statistical tests to capture the level of deviation within the
subgroup, often weighted by the size of the subgroup, for example the mean
test or z-score [78],

0.(5) = /|| e
o5

where pg and g stand for the subgroup and database means of the target,
respectively, and og denotes the standard deviation within the subgroup S.
Other works consider the distribution of target values within the subgroup
[41], and use statistical measures for assessing distributional differences.

In the majority of these quality measures, the interestingness is computed
from the distribution of the subgroup alone, or when compared to that of the
entire dataset. Here, we take a slightly different approach, and consider the
subgroup description a dichotomy of the data, where both the distribution
of the subgroup as well as of the complement play a role in determining the
quality of the dichotomy. Therefore, we introduce a new quality measure for
numeric targets in SD. This quality measure uses the well-known notion of R?
to capture how well a subgroup and its corresponding complement describe
the data, in comparison to the distribution of the entire dataset, so ignoring
the dichotomy. Hence, we treat the subgroup as a model of the data, to be
more specific a step function of two parts. The following two averages over
the target ¢t provide the constant prediction for, respectively, the subgroup
and its complement:

_ 1
tsubg - m Z l;

€S
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These two average values now lead to the following step function:

. tsu ifieS
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teomp ifi ¢S

The quality measure Fxplained Variance is now simply defined as follows:

ppv(S) = R*(t, fs)

This quality measure uses the definition of R? given in the previous section,
which was independent of the nature of the model f. Note that by using
this quality measure, we have a way of directly comparing the discovered
subgroups (with corresponding step functions) to the linear models, which is
a clear benefit over the traditional quality measures. We furthermore observe
that the step functions, despite representing dichotomies, can be based on
subgroups of multiple conditions. Therefore, the resulting step functions will
be multi-dimensional (involving potentially multiple features). The quality
measure introduced here was implemented in the Cortana Subgroup Discov-
ery tool [66].

6.5 Experimental Results

In order to demonstrate the kinds of analyses and results of the proposed
methods on actual data, and to test the benefits of individual techniques
proposed above, we experiment with data from four athletes of the LottoNL-
Jumbo team, two male and two female. All experiments were performed
using three software components:

1. A relational database that organizes all the different datasets and meta-
data concerning exercise and competition: the Performance Sports
Repository (PSR).

2. A dashboard accessible over the Internet, that provides various views
and visualizations of the data, and allows online aggregation and linear
modeling of the data.

3. The generic Subgroup Discovery tool Cortanal] which was extended

5Sources in Java and an executable of this tool can be downloaded from http://
datamining.liacs.nl/cortana.html.
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Table 6.1: Dataset details for competition results of four skaters.

Gender Distance Competitions Sessions

M1  Male 1000 m 75 2758
M2  Male 500 m 142 2930
F1 Female 1500 m 60 2230
F2 Female 500 m 22 1095

for this purpose with a direct database connection to the PSR, and the
Explained Variance quality measure [66].

We will demonstrate the results on the datasets listed in Table [6.1} collected
from four athletes. Next to competition data, we also have physical test data,
for which we provide results for one of the athletes (M1 in the table below),
for which we have 146 records.

We will generally describe three types of modeling of the data: 1) univariate
models, either using a linear or a step function, where we rank all features
by R?, 2) multivariate models using LASSO, and 3) Subgroup Discovery
using Cortana. Note that univariate step models can also be interpreted as
subgroups with a single condition, such that results between settings 1 and
3 overlap to some extent. When mining for subgroups, we use beam search
to a fairly shallow depth, typically to a maximum depth of three or less,
depending on the experiment. When not further specified, the subgroups (or
their step functions) presented involve a single feature (d = 1). The width
of the beam is set to a default of w = 100 (candidates that proceed to the
next level). For the numeric attributes, the Cortana setting ‘best’ is applied,
which means that for each attribute, all numeric threshold are considered and
the optimal split point is selected. The resulting locally optimal subgroup is
added to the result list if of sufficiently quality, and conditionally added to
the beam for further refinement.

Before considering more systematic experiments, for example, testing the
merits of the Fitness-Fatigue model, we first present results for a single skater,
and demonstrate the kinds of input given to the coach concerning possible
changes to the training schedule.
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6.5.1 Demonstration of results

This section discusses results for female skater F1 who specializes in the
medium to long distances. We first focus on 1500 m races, for which we have
60 examples over a period of five years. The average relative time for this
skater was 1.0391, so 3.91% above the track record. We have training details
for the entire five years, such that we can aggregate the preparation for each
of these races easily.

Uniform features We start with univariate results in the simplest set-
ting: uniform aggregates without specifiers and simple linear models. The
best-fitting aggregate that was found was max load 1 with the following
model:

y = —0.000014x + 1.042

The explained variance of this model is a mere R* = 0.0563. The model
starts with a reasonable intercept, and encourages a high load (the product
of duration and intensity) on the day prior to the race. Although the effect is
minor, this suggests that a peak right before a race (possibly due to another
race in the same weekend) is beneficial. The step function associated with
this aggregate function, with a threshold around 360, has a more pronounced
R? = 0.1233. The two levels are t, = 1.043 for low maximum loads vs.
1.031.

The second-best aggregate is avg_intensity_19, with model
y = —0.003952z + 1.052

which suggests that the intensity should be kept high over a period of almost
three weeks to improve race times. This aggregate actually scores highest on
explained variance of the step function, with a minimum average intensity
of 3.93 (low to moderate intensity). Lower intensities suggest an expected
relative time of .., = 1.044, whereas higher values on average lead to relative
times of ¢, = 1.028 (R?* = 0.2231). For clarity, details of these three features
are listed in Table 6.2

Specifiers The addition of specifiers does a great deal to the quality of the
univariate models. The following aggregate scores the best on R*:

e max duration int5 17 (the largest period spent at intensity 5 for the
last 17 days prior to the race)



106 CHAPTER 6. SPORTS ANALYTICS

1.1 .
]
:
H .
:
:
]
1.08 !
]
:
]
: .
]
. i
1.06 . ] .
Q
£ «
g ’ * :
',5\’ '
z . ' :
1.04 $ M
4 . M
’ . !
. . |
: H i
. . . !
1.02 . : i
. i
* i
]
i
1 # 1
0 10 20 30 40 50 60 70 80 90

max_duration_int5_17

Figure 6.3: Graph showing the relation between max duration_int5_17 and
the relative time of the subsequent race. The vertical dashed line indicates the
threshold (inclusive to the left) and the solid horizontal lines the two average times
for subgroup and complement. The black line with a slope indicates the best-fitting
simple linear equation.

Exaggerating this type of training has a detrimental effect on the race out-
come: longer durations of this specific training type lead to higher times.
The step function (R? = 0.3080) caps this value at 70 minutes. With longer
durations of intensity 5, relative times of ¢,.; = 1.074 are expected, compared
to t,es = 1.035 below this threshold (Fig. |6.3]).

Fitness-Fatigue model Switching from uniform to FF features, we note
that the following parameters provide the best (linear) aggregate, based on
the sum of duration: 74y = 39,74 = 4.0, 75 = 7.0, K = 2.0. The cor-
responding kernel is the one featured in Fig. [6.2| earlier in this paper. The
associated explained variance is R% = 0.1002.

Multi-variate model The individual features presented so far do not lead
to very well-fitting models, despite their role in informing the coach of ways to
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Figure 6.4: Obtained results (actual) over 60 historical races, compared to the
predicted results of a relatively simple LASSO model based on the training sessions
prior to each race.

Table 6.2: Overview of selected uniform features.

feature linear model R? linear R?step low  high
max_load 1 —0.000014x 4+ 1.042  0.0563 0.1233 1.043 1.031
avg intensity_19 —0.003952x + 1.052  0.0557 0.2231 1.044 1.028

max_duration_int5.17  0.000211z + 1.029 0.1491 0.3080 1.035 1.074

optimize the training and avoiding some pitfalls of under- and overtraining.
More precise models can of course be obtained by involving multiple features.
The graph in Fig. presents the 60 results achieved by the skater, as well
as the predicted times, by a multi-variate linear model. The model, induced
by the LASSO procedure, involves 18 features, selected from the larger pool
of uniform aggregates (ignoring the specifiers). The quality of the model is
R? = 0.721, obtained on the training setﬂ Although such models (and more
accurate models involving more complex aggregates) can be used to predict
the outcome of an upcoming race, this particular prediction is of limited
value. Rather, the model is more valuable from a knowledge discovery point
of view, pointing to the features that matter most. In this case, the 18
features mostly include duration over short windows (one to five days), and
intensities over longer windows (approx. two weeks).

6No distinction between training and test set was made for these experiments.
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Subgroups In the above text, we have already presented the following
three subgroups't

e max load 1 < 360 (R* =0.1233)
e avg_intensity_19 > 3.93 (R? = 0.2231)
e max duration int5 17 < 70 (R? = 0.3080)

The first two subgroups relate to the experiment with just uniform aggre-
gates, where the second subgroup is the optimal step function found at depth
1. The third subgroup relates to the experiment involving specifiers. While
subgroups at depth 1 are interesting since they point to individual predic-
tive features, they capture only shallow effects. We now present subgroups
at greater depth, that indeed describe more complex concepts. The best
subgroup found on the uniform windows (without specifiers) by Cortana at
depth d < 2 is

avg_intensity 20 > 3.94 V sum_duration 2 > 170 (R* = 0.4232)

Although Cortana produces subgroups as conjunctions of conditions, for rea-
sons of presentation this was logically invertedﬁ in the above subgroup. The
subgroup, covering 17 cases, describes races with an average of 1.0299, com-
pared to 1.0526 for the remainder. It specifies that whenever the average
intensity over the last 20 days is too low, and the total duration of exercises
over the last 2 days is also low, this has a negative effect on the race result.
Note how the explained variance has almost doubled at d < 2. Adding a third
feature to the subgroups only produced a marginal improvement, which is
not uncommon in SD.

The addition of specifiers in combination with deeper subgroups produced
slightly better results, with the top subgroup being as follows:

avg_duration_int5_17 < 60 V sum_duration_ int6789_10 > 115 (R? = 0.446)

Note that compared to the d = 1 result of R? = 0.3080, this is a reasonable
improvement. The subgroup specifies that a lower duration of intensity 5
exercises over 17 day, or a higher duration of high-intensity exercises over 10
days, is good.

"Although subgroups are interpreted here as dichotomies, we present them as either
lower or upper thresholds, such that cases meeting the condition(s) specified correspond
to the faster races.

8The original subgroup discovered, avg_intensity_20 < 3.94 A sum_duration_2 < 170,
covers the complement.
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Validation of results For the results above, one could wonder to what ex-
tent each result is statistically significant. For individual models, be it linear
or step function, it is possible to compute a p-value that indicates to what
extent the model might be due to chance. Such p-values will be reported in
the detailed experiments in the next section. However, we should note that
we are generating a substantial number of features, such that we are in fact
testing multiple hypotheses. The best ranked result may thus appear to be
significant, even though this is just a consequence of the many models consid-
ered. [23] presents a method for validating the results of an SD algorithm, by
means of a distribution of false discoveries. This distribution is obtained by
running the algorithm repeatedly on the data after swap-randomising the tar-
get attribute, thus capturing what maximum qualities can be obtained from
random data (that resembles the original data). Using the distribution, it is
possible to set a lower bound on the quality (in this case explained variance)
as a function of the desired significance level a. Assuming a significance level
a = 0.05, this validation method produces a lower bound of R?, = 0.2907
for the uniform data without specifiers, searching for subgroups at depth
d = 1. This means that our optimal subgroup

avg intensity 19 > 3.93 (R? = 0.2231)

is not actually significant at & = 0.05. It is good to note that the lower bound
produced by the swap randomization depends on the specific settings of the
SD run. Specifically, if the extent of the search is bigger, more hypotheses
will be tested, such that the lower bound will increase in order to account for
the higher probability of finding a seemingly interesting subgroup by chance.
When increasing the search depth to d < 2, the procedure produces a lower
bound of R?, = 0.4212. This makes the earlier depth 2 result (without

specifiers)
avg_intensity_20 > 3.94 V sum_duration 2 > 170 (R* = 0.4232)

just barely significant.

6.5.2 Fitness-Fatigue model

In this section, we analyse the specific merits of the Fitness-Fatigue model in-
troduced in Sec.[6.3.2l We start by considering the four parameters the model
involves, in order to fit the kernel to the specific physiological properties of
the individual athlete. Rough values for the optimal setting were determined
by informal experimentation, after which an extensive grid search was used
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Table 6.3: Optimal parameters for the Fitness-Fatigue model for four speed
skaters.

Input context Optimal parameters

Gender Distance Time N Trit Tde  Tfat K
M1  Male 1000m 1.0207 75 13 2.0 2.0 2.00
M2  Male 500m 1.0212 142 21 2.0 2.0 3.75

F1 Female 1500m 1.0391 60 39 4.0 7.0 2.00
F2  Female 500m 1.0691 22 29 4.0 4.0 2.00

to determine the optimal values for each athlete involved. These results are
demonstrated in Table [6.3] for four athletes and their respective distance of
speciality. The left columns indicate the gender of the athlete, the preferred
distance, the average relative time, and the number of races n available. The
remaining columns indicate the optimal values for 7, Tger, Tror and K. The
three decay parameters are in days. As an optimization criterion, we select
the R? of the (univariate) linear model of the best feature found.

In order to analyse the stability of these parameters, we selected the third
athlete (the one with the most available data), and varied each parameter in-
dividually, fixing the remaining the parameters to the optimum found earlier.
The R? of the best feature was recorded for each setting of the parameters.
Fig. demonstrates for each parameter how sensitive it is to change, in
terms of quality of fit of the FF model. We note that all functions are very
well-behaved and smooth over the domains considered, with the selected
optimum clearly being undisputed. Furthermore, observe that the functions
appear to be convex, making them fairly straightforward to optimize. Hence,
the relatively simple grid search used in the pragmatic setting can be easily
replaced by a more efficient hill-climber.

Let’s consider the table of FF parameters in more detail. First of all, the
rough numbers are very plausible from a physiological point of view. Clearly,
the fatigue and (delayed) gain in fitness should be in the order of a few days,
while the prolonged benefit of the exercise remains for a longer period in the
order of several weeks. Also, the optimal values clearly differ per athlete,
as a function of the different physiology and type of training the athlete
is subjected to generally. Table also suggests a difference between men
and women, with men having a shorter time scale than women, both for
the recuperation and how long the benefit lasts, although such conclusions
are hard to draw from only four cases. Note also that the values reported
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Figure 6.5: Analysis of sensitivity of the features to varying the four parameters
Ttit> Tdels Tfar a0d K (from top left to bottom right). Clearly, these functions are
smooth and well-behaved.

here are somewhat different from the ones reported in [16], which are: 7p; =
50, Tger = 5,Tfar = 15, K = 2.0. As a last observation, we note that 74
and T4 tend to assume very similar values. What impact this has from a
physiological perspective (the fatigue and beneficial adaptation of the body
go hand in hand?) is hard to say, but at least from a modeling perspective, it
is a good opportunity to dispense with one parameter, and make the fitting
of models more efficient.

Having a stable and physiologically plausible FF model of the training re-
sponse, it is now time to turn to the question whether the model indeed
produces a better fit, compared to our baseline of uniform aggregates. To
this end, we again consider the explained variance R? of the linear model
on the best feature found, first for uniform features, then for the exponen-
tially decaying features. Since above, the FF model was optimized without
specifiers (intensity zones and morning/afternoon distinction), we compare
the results with a similar setting for the uniform features. Table [6.4] presents
these results. The columns marked “R? linear” indicate the explained vari-
ance of the simple linear model. The indicated p-values for each result refer
to the statistical significance of a linear regression t-test: the significance
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Table 6.4: Comparison of goodness of fit of best univariate linear model for
(middle) the uniform aggregates and (right) the Fitness-Fatigue model.

Uniform Fitness-Fatigue
Gender Distance R? linear p-value R? linear  p-value
M1  Male 1000m  0.41  4.16x107'°  0.30 3.85x10°7
M2  Male 500m  0.17 2.46x1077  0.23  7.02x10°1°

F1 Female 1500 m 0.06 9.95%x10 3 0.11 1.69x10°3
F2 Female 500 m 0.54 0.53x10° 0.50 2.58%10°

of the best model, testing the hypothesis that the coefficient of the model
is not 0 (in other words, testing whether the dependent variable is indeed
influenced by the independent variable).

Based on these numbers, there is clearly not a consistent benefit of the FF
model, over the less natural uniform features. Especially in the case of the
first athlete, the uniform features are in fact more accurate. The feature
in question (although there are multiple variants of similar score) concerns
the sum of the duration over 9 days, which is an indication of too intense
training and hence too high levels of fatigue as a result. Also for the fourth
athlete, the uniform features come out on top. Still, for individual athletes
the FF model may show a considerable improvement in fit over the unnatural
uniform features.

Alternative aggregate functions The presentation of the FF model in
terms of convolution translates into SQL as the SUM aggregate function. If
features based on SUM have a potential benefit, so might the alternative func-
tions AVG and MAX. We present an additional experiment in Table that
investigates the added value of these two aggregates to the plain implemen-
tation of the FF model used so far. The last two columns of the table show
that in two cases, AVG or MAX do outperform the standard convolution. This
is interesting, since there is clearly the potential to improve the models in this
way. However, the features are less intuitive to understand since they are not
based on the standard definition of convolution in terms of summation.
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Table 6.5: Analysis of the benefit of adding AVG and MAX as aggregates to the
Fitness-Fatigue model.

SUM SUM, AVG, MAX

Gender Distance R? linear p-value R? linear  p-value
M1  Male 1000 m 0.30 3.85x10°7 0.30 3.85x10°"7
M2  Male 500m 024  7.02x10°*  0.28  1.60x10 '

F1 Female 1500 m 0.11 1.69x10°3 0.15 5.22%x10 %
F2 Female 500 m 0.50 2.58%x10°° 0.50 2.58%107°

6.6 Conclusion

We have presented a general approach to the modeling of training data in elite
sports, with a specific application to speed skating in the LottoNL-Jumbo
team. Our approach computes the combined effect of a training schedule by
aggregating details of the individual training sessions, and thus capturing a
considerable number of aspects of training and how one prepares for impor-
tant test moments, such as physical tests and races. Since it is not entirely
clear from the literature what aspects of training contribute the most, and
what parameters individual athletes need to tweak in order to optimize the
training to their specific physique and specialization, we produce a reasonably
large collection of promising features. The most relevant features are then
selected by a number of techniques, specifically univariate linear regression,
the LASSO regression process and Subgroup Discovery. The linear modeling
methods assume that the dependencies of interest are indeed monotonic and
linear, that is, adding more load to the exercise will increase the (long-term)
fitness of the athlete’s body. Clearly, this is not generally the case, and
one would expect there to be certain thresholds, above which training is no
longer beneficial. For each aspect of training, there is an optimal volume,
above or below which training is ineffective. This suggests that non-linear
models, or models that are able to represent thresholds (such as subgroups)
will outperform linear models.

As mentioned in our introduction, we aim to discover interpretable and ac-
tionable patterns in the data, such that the coach can immediately incor-
porate the most significant findings in the preparation for upcoming events,
as well as in future training schedules. We believe that our presented ap-
proach, that deliberately presents simple results, and gives clear guidelines
and boundaries on training load, makes this possible. In fact, individual
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findings on the athletes of the team have led to (subtle) modifications in
training regimens, most notably where sprinters were sometimes subjected
to too much aerobic exercise. It is good to stress again the athlete-specific
nature of our analyses. Luckily, for a reasonable number of skaters, we have
a long enough history to have a substantial database of training-response
examples, where natural variation in preparation has produced a produc-
tive dataset. Athlete-specific data leads to athlete-specific findings, and one
should therefore not interpret any discovered pattern as a general rule of ex-
ercise physiology, but rather as an opportunity to optimize training for that
athlete.

We have presented a number of anecdotal results for a specific skater, demon-
strating that interpretable and actionable results can be found. The best-
fitting subgroup suggests that for a good result, this skater should avoid
longer exercises at intensity 5 (over a longer window), as well as (slightly)
increase the exposure to intensities 6 to 9. Although separate results appear
very significant, a more thorough analysis using swap-randomization is nec-
essary to account for the many features and models being considered. For
this specific skater, statistically significant results could be obtained, despite
there only being 60 available races. With up to 142 race results, other skaters
will allow for much more significant findings.

The Fitness-Fatigue model, introduced as a more natural way to aggregate
training impulses over time, produced reasonable results. After experiment-
ing with four different skaters, two male and two female, very consistent
and realistic values were found for the four parameters of this model. Al-
though slight variations did occur, most notably between the male and fe-
male skaters, the general picture did match that of the coach. Knowing these
(athlete-specific) parameters in detail allows the coach to mix exercise and
recuperation in a more precise manner. From a modeling point of view, we
also demonstrated that the optimal values of these parameters can be found
efficiently, due to their well-behaved nature.

In a number of detailed experiments, we compared different choices in our
modeling approach. A first experiment compared the uniform window to the
Fitness-Fatigue kernel. Given the unnatural nature of a rectangular kernel,
one would expect the FF model to be superior. Somewhat surprisingly, our
data did not support this hypothesis. The FF model did indeed produce
superior models for two athletes, but the uniform window performed equally
superior on the remaining two, leaving this comparison unresolved.

Finally, we considered an experiment whether using the aggregate functions
MAX and AVG, alongside the more obvious SUM, would be beneficial. This was
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indeed sometimes the case, although not by a large margin. Whether such
slightly more accurate models are in fact attractive is questionable, since the
combination with the non-trivial FF kernel does not lead to very interpretable
patterns.






Chapter 7

Conclusions

In this thesis, we addressed data mining methods, tools and applications for
multivariate time series. The sequential nature of time series imposes specific
algorithmic solutions to address this type of data. Additionally, this thesis
narrows the focus to multivariate time series. The multivariate aspect of the
data reflects the complexity and multi-faceted nature of the system under in-
vestigation. Whether one is measuring infrastructures, athletic performance,
monitoring human activities or analysing life style, there are numerous as-
pects that can be measured. This increasing growth of data frequency and
sources stimulate this data centric era. But with new opportunities also come
several challenges from the perspective of the methods and tools used.

In this chapter, we reflect on our main contributions to meet some of the
knowledge discovery challenges surrounding multivariate time series. We
can separate our contributions into two sides: unsupervised and supervised
learning. Next to these two paradigms, we focus on a group of three aspects
of data science: methods, tools and applications, which for lack of a better
term, we refer to as the data science triad. Aside from these contributions,
we take the opportunity to reflect on two research directions in this era of
data science. Firstly, machine learning as an optimization process in two
directions: better data representation and better model learning algorithms.
Secondly, data science as a paradigm shift of scientific process: scarcity of
data versus big data.

Unsupervised Multivariate Time Series In Chapter 2| we introduced
a data mining method to find biclusters in multivariate time series, which
addresses research questions Q1 and Q2. This task addresses the situation of
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a system that has some recurring patterns over time in a subset of variables.
In contrast with traditional biclustering algorithms, our method is able to find
significant periods of time (larger sequences) where multiple variables deviate
in a coherent manner. By coherent in this context, we mean that for each
selected variable all segments have similar probability distributions.

We argue that framing this pattern recognition challenge as a biclustering
task offers considerable benefits. Firstly, pattern recognition tasks in time
series have been focusing primarily on the univariate scenario and this ne-
glects relationships between variables. Take as an example the monetary
exchange market. We know that the exchange rate of different currencies are
connected, but which currencies are strongly related to the Brazilian real and
which are related to the Singapore dollar? Furthermore, are these relations
always present, or are they triggered by specific events? How long do these
relationships last? The same analogy holds for almost any system measured
over time. We claim that biclustering multivariate time series can playing
an important role in finding such patterns.

Supervised Multivariate Time Series In order to tackle research ques-
tions Q3 and Q4, in Chapter 4] we introduced Accordion, a greedy search
algorithm that produces good aggregate features, both for regression and
classification. With such features, one has a better data representation and
this leads to better models. In the supervised learning setting, Accordion is
a wrapper algorithm that integrates the feature construction and selection
into the learning process. Our method differs from the common practice
of considering feature construction as an isolated pre-processing step. We
demonstrated the positive effects of searching for good aggregate features
automatically by optimizing the selection of three components: time series
variable, aggregate function and window size.

Our method automates a feature construction and selection processes, com-
bining multivariate time series with mixed sampling rates. Normally such
optimization processes come at the expense of producing features which are
not interpretable. We decided to focus on the automatic construction and
selection of interpretable aggregate features. By interpretable, we mean the
combinations of input variables, aggregate functions and different window
sizes. Our optimization process, for each combination of variable and ag-
gregation function, expands and contracts the window size, capturing phe-
nomena that work on different time scales. We believe this method to be
highly promising for further development and implementation in efficient
computation architectures, and better exploration of functional properties of
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Figure 7.1: The triad of data science projects.

different aggregations. This will allow us to get faster and better results in
larger search spaces.

Data Science Triad In addition to the machine learning methods intro-
duced in Chapters [2] and [4] we observe that such methods stand at the
intersection between tools and applications. In fact, data science can be
seen as the integration of methods, tools and applications. Thus, relevant
data science is the implementation of relevant methods, tailored to a specific
application, while using the appropriate tools.

We illustrate the data science triad in Figure [7.1], by representing a generic
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scheme of what a data science project normally entails. Unlike other fields
such as data mining, data science is finding an equilibrium between designing
generalized machine learning methods and focusing on specific applications
with efficient tools. Examples of such relationships can also be found in this
thesis. For each of the methods (Chapters [2/ and [4]) there are corresponding
easy to access and intuitive tools in Chapters[3|and 5] respectively. Such tools
address research question Q6. Additionally, Chapter [6] focuses on a specific
application of analyzing and improving the performance of elite speed skating
athletes (research question Q5). This is done by using tailored features and
models for each athlete and a relational database designed for elite sports
performance monitoring.

Machine Learning: Optimizing Two Complementary Directions
The machine learning process is typically characterized as by being a process
of exploration and exploitation of the data. Thus, names for the field such
as data mining become intuitive to understand. Maybe the best explanation
for this tendency has to do with the uncountable data sources and numerous
data structures that exist. Here one could make an analogy with the proverb
of Muhammad and the mountain, the machine learning algorithms being
Muhammad and the mountain being the data (big data). It makes sense to
see the challenge of creating an algorithm that is able to deal with different
mountains, an algorithm that is adaptable to different datasets, reliable in
its findings and fast in the construction of a new model.

An alternative to the view above is to have an algorithm that is able to
describe properly the data. The process of improving a model outcome can
be solved with good representations of the decision space. This space is de-
scribed with the input data or transformations of it. These variable transfor-
mation we normally refer to as feature construction, extraction and selection.
In the light of Muhammad and the mountain, instead of the mountain itself,
maybe the model can be improved by knowing the height of the mountain,
the soil properties, a vast photo gallery of the mountain from different per-
spectives and exposure. If only one could define an algorithm that searches
for such descriptions automatically, maybe linear models could solve the ma-
jority of modeling challenges.

The experimental results in Chapter [4indicate that there are significant gains
to be had from focusing on the data representation. In the case of this the-
sis, the focus was on improving decision trees and linear regression models.
Probably many more well-known algorithms can benefit from a layer of data
transformation to reach the appropriate representation of the input space.
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In fact, some years back, it would have been difficult to motivate such an al-
gorithm for a task that is commonly seen as a pre-processing task. Presently,
with developments in fields such as convolutional neural networks, motivat-
ing automatic data transformation has become more acceptable. As it seems
with the advances in convolutional neural networks, these two optimization
directions are actually perfectly complementary.

Data Science as a Scientific Paradigm Shift Data science being a
discipline at the intersection of multiple other disciplines, it brings together
multiple empirical sciences, which depend on observations to draw founded
conclusions. In order to avoid drawing incorrect conclusions from observa-
tions, traditionally hypothesis testing is put forward as an essential, if not
the only, scientific paradigm. With the current wealth of data, the field of
data science is put at the center of a great scientific discussion. Is hypothesis
testing presently still a sufficient scientific paradigm for research?

Hypothesis testing has been at the core of empirical sciences. This impor-
tance is due to two main reasons: data was scarce and costly to gather,
and starting from a fixed, prior hypothesis is traditionally how to determine
causality. As a start, in this period of data abundance, we are often ana-
lyzing the whole population instead of only a tiny sample. Concepts such
as big data could trigger a deeper discussion about our present capacity for
inference. Secondly, hypothesis testing is still considered the golden standard
to determine causality. But many new developments in data science, for ex-
ample causal inference [70] are demonstrating that there are in fact ways to
avoid the post hoc ergo propter hoc fallacies. This makes the analysis of ob-
servational data, the predominant setting in data science, a very acceptable
approach for scientific discovery.

So how could a research project be designed according to this new scientific
paradigm? Take the speed skating example of Chapter [6] The central ques-
tion there is how to increase the performance of elite athletes and win more
medals. Following the data science rationale, we need to decide on what all
can be monitored that can conceivably influence the performance of the ath-
lete. One could measure training sessions, daily state of mind, eating logs,
sleeping habits, metabolic variables, you name it. What and how to mea-
sure is no longer governed by preconceived ideas about what is expected to
be the principle driver of athletic performance (the ‘hypothesis’), but rather
by technological, ethical and pragmatic considerations. If it can be practi-
cally, ethically and realistically measured, let’s just include it in the analysis.
After data collection, machine learning will consider numerous promising hy-
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potheses in an exploratory manner, followed by a host of robust evaluation
methods and experts to validate any scientific discoveries.
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Nederlandse Samenvatting

Time is a core dimension to understand the evolution of many phenomena.
The economic situation of a given country, the current behavior of a custo-
mer, the diagnosis of a disease, are just a few examples that can be better
understood by looking into time-ordered data.

With the consolidation of the digital development era, the collection and
storage of time series data became ubiquitous. Making sense of such time
series data can provide insights that help us understand better the present
phenomena, extract trends and, in stationary cases, predict future events.
Now, in a world increasingly connected by sensors and tractable behaviors,
extracting meaningful explanations from time series can be a difficult task.
This is why machine learning methods (or more generically, artificial intelli-
gence) became so central nowadays.

Mining time series is a machine learning subfield that focuses on a particular
data structure, where variables are measured over (short or long) periods of
time. In this thesis we focus on multivariate time series, with multiple va-
riables measured over the same period of time. In most cases, such variables
are collected at different sampling rates. As a practical example, consider
studying the health of an individual. Variables can be activity behaviors
(number of steps, number of floors climbed), biometrics (weight, heart rate),
medical records (historical of diseases, metabolites) and economical situa-
tion (house owner, contractual situation, income level). When combined,
these variables can be explored with machine learning methods for multiple
purposes.

In this Ph.D. thesis, we analyze and propose both supervised and unsuper-
vised machine learning methods, which deal with multivariate time series.
Firstly, we consider the possibility of unsupervised learning. In this case,
we propose a pattern recognition method that discovers subsets of variables
that show consistent behavior in a number of shared time segments. Fur-
thermore, when in a supervised setting, given a dependent variable (target),
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we propose a method that aggregates independent variables into meaningful
features. This method wraps both preprocessing and model learning tasks
and generalized to work both for regression and classification problems. Ex-
perimental results show the potential of both supervised and unsupervised
approaches mentioned.

Additionally to the methods above, we provide two tools in the form of
Software as a Service, where users without programming background can
intuitively follow the learning and testing methodologies for both methods.
The intuition behind these tools is to explore the present role of a data
scientist. The machine learning methods we implement are just one of the
components of these tools, while the focus is on the user of the tool. The
users of such tools are guided trough the whole process of importing data,
preprocessing, learning and evaluating results.

Finally, we present an applied study of machine learning to improve speed
skating athletes performance. More concretely, we report on a cooperation
with the LottoNL-Jumbo team, who have an extensive asset of detailed trai-
ning data. Here, we make a deep analysis of historical data, in order to help
optimize performance results. We combine training and competition results
data and make a production ready implementation of a machine learning sy-
stem to optimize training schedules. In other perspective, we help avoiding
under- and overtraining before a given competition.



English Summary

Time is a core dimension to understand the evolution of many phenomena.
The economic situation of a given country, the current behavior of a cus-
tomer, the diagnosis of a disease, are just a few examples that can be better
understood by looking into time-ordered data.

With the consolidation of the digital development era, the collection and
storage of time series data became ubiquitous. Making sense of such time
series data can provide insights that help us understand better the present
phenomena, extract trends and, in stationary cases, predict future events.
Now, in a world increasingly connected by sensors and tractable behaviors,
extracting meaningful explanations from time series can be a difficult task.
This is why machine learning methods (or more generically, artificial intelli-
gence) became so central nowadays.

Mining time series is a machine learning subfield that focuses on a particular
data structure, where variables are measured over (short or long) periods of
time. In this thesis we focus on multivariate time series, with multiple vari-
ables measured over the same period of time. In most cases, such variables
are collected at different sampling rates. As a practical example, consider
studying the health of an individual. Variables can be activity behaviors
(number of steps, number of floors climbed), biometrics (weight, heart rate),
medical records (historical of diseases, metabolites) and economical situa-
tion (house owner, contractual situation, income level). When combined,
these variables can be explored with machine learning methods for multiple
purposes.

In this Ph.D. thesis, we analyze and propose both supervised and unsuper-
vised machine learning methods, which deal with multivariate time series.
Firstly, we consider the possibility of unsupervised learning. In this case,
we propose a pattern recognition method that discovers subsets of variables
that show consistent behavior in a number of shared time segments. Fur-
thermore, when in a supervised setting, given a dependent variable (target),
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we propose a method that aggregates independent variables into meaningful
features. This method wraps both preprocessing and model learning tasks
and generalized to work both for regression and classification problems. Ex-
perimental results show the potential of both supervised and unsupervised
approaches mentioned.

Additionally to the methods above, we provide two tools in the form of
Software as a Service, where users without programming background can
intuitively follow the learning and testing methodologies for both methods.
The intuition behind these tools is to explore the present role of a data
scientist. The machine learning methods we implement are just one of the
components of these tools, while the focus is on the user of the tool. The
users of such tools are guided trough the whole process of importing data,
preprocessing, learning and evaluating results.

Finally, we present an applied study of machine learning to improve speed
skating athletes performance. More concretely, we report on a cooperation
with the LottoNL-Jumbo team, who have an extensive asset of detailed train-
ing data. Here, we make a deep analysis of historical data, in order to help
optimize performance results. We combine training and competition results
data and make a production ready implementation of a machine learning sys-
tem to optimize training schedules. In other perspective, we help avoiding
under- and overtraining before a given competition.



Resumo

O tempo é uma dimensao fundamental para a explicagao de muitos fenomenos.
A situacao econémica de um determinado pais, o comportamento expectavel
de um cliente, ou o diagnéstico das causas de uma doenca sao so alguns exem-
plos de fenémenos que podem ser melhor entendidos com dados ordenados
temporalmente (séries temporais).

Com a consolidacao da era digital, a recolha e armazenamento de series
temporais tornou-se omnipresente. Um correcta interpretagao de series tem-
porais possibilita uma melhor compreensao de fenémenos actuais, a extracao
de tendéncias e a previsao de eventos futuros. Agora, num mundo cada
vez mais conectado através de sensores e monitorizacao de comportamentos
digitais, a extracao de conhecimento de séries temporais podera tornar-se
uma grande desafio. Foi este desafio que tornaram os métodos de aprendi-
zagem automética (normalmente denominados de inteligéncia artificial) em
ferramentas essenciais nos dias que correm.

A extracao de conhecimento de séries temporais é um campo especializado
num tipo de estrutura de dados onde, para cada sistema ou sujeito, as
variaveis sao medidas varias vezes ao longo de um determinado periodo de
tempo. Nesta tese focamos nesta estrutura de dados e consideramos o caso de
séries temporais multivariadas. Na maioria dos casos, consideramos também
que as variaveis sao medidas a diferentes frequéncias (uma vez por cada dia,
hora, minuto, segundo...). Por exemplo, varidveis poderao ser indicadores
de actividade fisica (nimero de passos, numero de patamares subidos a pé,

.), registos médicos (historial médico, varidveis metabdlicas, ...) e indi-
cadores econémicos (proprietério de imobilidrio, saldrio bruto, ...). Quando
combinadas, estas variaveis podem ser exploradas com muiltiplos fins, através
de métodos de inteligéncia artificial.

Nesta tese de doutoramento, propomos métodos supervisionados e nao super-
visionados de aprendizagem automatica (algoritmos), capazes de lidar com
séries temporais. Primeiro, propomos um método de anédlise de clusters (bi-
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clustering). Este, foi capaz de encontrar conjuntos de varidveis que mostram
um comportamento similar e consistente num determinado ntimero de seg-
mentos temporais. Alternativamente, numa situacao supervisionada, dada
uma variavel dependente e um conjunto de varidveis independentes, propo-
mos um outro método que transforma e agrega as variaveis independentes
de forma inteligente. Os resultados experimentais apresentam o potencial de
ambos os métodos acima referidos.

Para além dos métodos de aprendizagem automatica, nesta tese introduzi-
mos duas ferramentas de Software enquanto servigo (Software as a Service).
Nestas ferramentas, utilizadores sem conhecimentos de programacao podem
seguir de forma intuitiva, o processo de aprendizagem automaética e teste dos
métodos mencionados no paragrafo anterior. Estas ferramentas permitem
efectuar todo o processo de um cientista de dados, comecando pelo pro-
cesso de tratamento de dados, aprendizagem, optimizagao e availiacao de
modelos. A principal contribuicao destas ferramentas nao sao os métodos de
inteligéncia artificial, mas sim o apoio aos utilizadores destes métodos.

Por fim, apresentamos um método de inteligéncia artificial aplicado a um
desporto de alta competicao. O objectivo deste estudo é a melhoria dos re-
sultados nas competicoes de atletas de patinagem de velocidade, um desporto
com uma grande dimensao econémica e social na Holanda. Mais concreta-
mente, utilizando os dados de treino de uma equipa de alta competicao,
construimos modelos que optimizam os resultados competitivos através de
ajustamento nos treinos. O nosso estudo mostra que, através de modelos
personalizados, podemos evitar o treino excessivo ou defecitario.
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