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5
Correcting nonlinear

damping effects in
HAADF-STEM tomography

5.1 Introduction
In materials science, electron tomography (ET) is commonly used to characterize
the three-dimensional (3D) structural and compositional information of nanomate-
rials. The 3D image is usually reconstructed from a tilt series of two-dimensional
(2D) projections (projection images). The projection images should have a mono-
tonic relationship between the measurement intensity and the integrated physical
property of the specimen, which is referred to as the projection requirement in ET
[Mid+01; Küb+05]. Strictly speaking, the relationship should be linear, as most
tomographic reconstruction algorithms are based on a linear mathematical model
– the line integral model. It assumes that the projection is a measurement of a
physical property integrated along the projection orientation [KS88, Chapter 3].

High angle annular dark field (HAADF) scanning transmission electron mi-
croscopy (STEM) is commonly used for ET [Mid+01; MW03] under the implicit

This chapter is based on:
Z. Zhong, R. Aveyard, B. Rieger, S. Bals, W. J. Palenstijn, and K. J. Batenburg.
“Automatic correction of nonlinear damping effects in HAADF-STEM tomography for
nanomaterials of discrete compositions”. Ultramicroscopy 184.Part B (2018), pp. 57–
65.
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assumption that the projection requirement can be approximately satisfied. The
image intensity approximates to be proportional to the mass-thickness weighted
by ∼ Z2, where Z is the atomic number [MW03]. However, this approximation is
not always valid. One example is that when projections of a crystalline material
are acquired at zone-axis orientations, fringes and large overall intensity differences
can be observed. Thus the tilts at zone-axis are usually excluded from the tomo-
graphic reconstruction step [Ave+17]. Another example is that the image intensity
damps at high sample thickness due to the multiple scattering events redirecting
electrons outside the annular detector, which can occur in all projection orienta-
tions. While the zone-axis effects can be easily identified, intensity damping is not
easily seen in individual projections. In this chapter, we aim at addressing the
nonlinear effects of intensity damping for tomographic reconstruction.

The consequence of intensity damping appears as the cupping artifact in tomo-
graphic reconstruction: the gray levels in the center of the reconstructed sample
are underestimated while overestimated on the exterior [van+12]. In Figure 5.1
(a), an example of the cupping artifact is given. It is a 2D cross section of an
Au-Ag core-shell nanoparticle [Zho+17], reconstructed using the SIRT algorithm
[GB08]. If we look at the line-profile of the 2D image (Figure 5.1 (b)), the curve
appears in a concave “cup” shape, while ideally it should be flat. The cupping
artifacts are caused by the strong damping effects of Au at large thickness, which
is illustrated by the simulated relationships between measurement intensity and
sample thicknesses using the multislice simulation method [Ave+17] in Figure 5.2.
In this example, the linear approximation is only valid for thickness smaller than
8 nm due to the clear damping effect for larger thickness.

(a) (b)

Figure 5.1: (a): A 2D slice of the SIRT reconstruction of an Au-Ag nanoparticle. (b): Gray
levels of the line-profile located at the dash line of the 2D slice.

It is important to correct the nonlinear effects and the subsequent cupping
artifacts for three reasons. First of all, compositional analysis based on gray levels
becomes difficult when the cupping artifacts occur, as gray levels are not propor-
tional anymore to density and atomic numbers. Second, morphological analysis
based on segmentation of reconstruction images is hindered by the cupping arti-
facts. Some straightforward segmentation methods, e.g. Otsu’s method [Ots79],
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Figure 5.2: Normalized HAADF signal intensity w.r.t the thickness of Au slabs mistilted 10
degrees from the [100] zone axis about the <100> axis, simulated using the multislice method
[Ave+17]. The accelerating voltage is 200 kV, the convergence angle is 10 mrad and the detector
angular range is 50 - 250 mrad. The intensities are scaled by the incident beam intensity. The
red lines indicate the region where intensity is approximately linear to thickness.

require that for each chemical composition there should be one constant gray level.
Third, the nonlinear effects limit applying advanced reconstruction algorithms to
address a critical issue of ET – the missing wedge artifacts caused by the limited
tilt range of the sample. Algorithms such as total variation minimization [Gor+12]
reduce the missing wedge artifacts by incorporating prior knowledge i.e. sparsity
of the unknown sample. Nevertheless, these algorithms have an even stronger re-
quirement for the linear forward model which is inaccurate due to the nonlinear
effects.

Despite these shortcomings of using uncorrected data, there are few publica-
tions addressing the nonlinearity issue in ET [Ave+17; van+12]. Nonlinear effects
are usually ignored or mitigated during image acquisition by increasing the inner
angle of the HAADF detector but at the cost of losing signal strength [Ave+17].
An alternative to adjusting the acquisition parameters is to correct the measured
data in a post-processing step by linearizing the projection data, provided that
the incident beam intensity is known [van+12]. The method described here re-
quires only the HAADF signal, consequently, it can be applied to correct cupping
artifacts in many existing datasets acquired in a conventional manner. The math-
ematical model of nonlinearity and the concept of linearization in [van+12] are
also used in this chapter, which will be explained in Section 5.2.1.

Here, we propose an iterative algorithm to automatically correct the nonlinear
effects and the cupping artifacts. It does not require the extra measurement of the
incident beam intensity as in [van+12]. Instead, it automatically models the non-
linear effects given the projection data. The algorithm iteratively searches for the
minimal distance between the acquired projections and the nonlinear re-projections
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of chemical compositions by varying the nonlinear model and the reconstruction
image, so as to estimate a nonlinear relationship between the measured HAADF-
STEM intensities and sample thickness for all chemical compositions. The algo-
rithm contains the following steps in every iteration: first a reconstruction image
with continuous gray levels is made; then the image is segmented into several
binary images, each of which corresponds to a chemical composition; after that,
the nonlinear effects are modeled by minimizing the projection distance; based
on the model, the projection data is linearized at last. The concept of iterative
correction has been used to correct beam hardening artifacts for X-ray computed
tomography, which is similarly caused by nonlinear intensities [van+11; Hsi+00;
van+02].

Our approach is only applicable to samples consisting of several chemical com-
positions with uniform densities, such as homogeneous or core-shell particles. It is
assumed that for these samples the volumetric distributions of the compositions
can be approximated well by segmenting the reconstructed image based on gray
levels and that this segmentation improves as the correction model applied to the
measured data becomes more accurate. In fact, these kinds of samples are com-
monly studied in materials science. For example, the samples typically studied in
the context of discrete tomography [Bat+09; ZPB16] match the requirements.

In Section 5.2, the correction algorithm is explained in detail. In section 5.3,
we demonstrate how the nonlinear effects are corrected using this algorithm for
real experimental data and phantom simulations.

5.2 The nonlinear model and the correction algorithm

5.2.1 The nonlinear model
To linearize the projections, we first need to define a model that describes the
nonlinear relationship mathematically. A precise mathematical model is possible
but does not fit as a subroutine of the correction algorithm. The computation
of a sophisticated model, such as the one used in multi-slice simulations which
take into consideration the multiple scattering of electrons [Ave+17], is extremely
time-consuming and costly. Therefore, a simple model is preferred here.

Here, we choose a model that has already been used for describing the non-
linear relationship. In [van+12; WC16], it is illustrated we can assume that the
HAADF detector collects electrons complementary to the electrons scattered to
angles smaller than its inner detector angle. The electrons can also be scattered to
angles beyond the outer detector angle, but the proportion is negligibly small. By
pragmatically applying a simple Beer-Lambert description of electron scattering
we can state that the number of electrons scattered to small angles pt decreases
exponentially to the sample thickness t along the beam direction. The pt-t rela-
tionship is

pt = I0 exp(−
K∑
e

µet), (5.1)
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where I0 is the incident beam intensity, e is the index of chemical composition, K
is the total number of chemical compositions, µe is the attenuation coefficient of
chemical composition e. Therefore, the complementary HAADF signal intensity p
at sample thickness t is:

p = I0(1 − exp(−
K∑
e

µet)) + pb, (5.2)

where pb is the bias signal, which is influenced by the dark current, carbon grid,
and possibly other factors.

This mathematical model has been used to correct the cupping artifacts suc-
cessfully in [van+12], which is applicable only if the incident beam intensities can
be measured. An advantage of this simple model is that it can easily be trans-
formed into a linear relationship by taking logarithms so that we can avoid solving
nonlinear least-squared problems for tomographic reconstruction.

In the practice of ET, a series of projections are taken at different angles. The
image intensity of each pixel corresponds to the electrons scattered for an electron
beam transmitting through the sample, which is called a line projection here. In
total, there are M pixels for all the images. The image intensity of the ith pixel is
now written as an entry pi in p ∈ RM . In addition, the space of reconstruction is
a cubic volume partitioned into N voxels.

We also assume the chemical compositions are not mixed and voxels are small
enough to resolve every chemical composition, which means that in each voxel only
one element is present. As stated in the introduction, this algorithm is applied to
samples with uniform density. Thus we assume that each chemical composition
is either present (1) or absent (0) in each voxel. The distribution of chemical
composition e is described by binary variables sej , where j = 1, . . . , N is the index
of voxel.

Now we define the nonlinear relationship in the discrete form. For pixel i, the
corresponding sample thickness of chemical composition e is now written as the
ray-sum

∑N
j=1 wijsej , where the factor wij is determined by the area of intersec-

tion between the ith line projection and the jth voxel. The relationship between
projection intensities and binary volumes are:

pi = I0(1 − exp(−
K∑

e=1
µe

N∑
j=1

wijsej)) + pb, (5.3)

where i = 1, . . . , M .

5.2.2 The correction algorithm
The basis of the correction algorithm is to estimate the nonlinear relationship of
Eq. 5.3 based on the reconstructed distributions of chemical compositions. The
procedures of the automatic correction algorithm are given in the flowchart (Figure
5.3). The correction is realized iteratively through the following steps: (1) make a
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reconstruction image based on the linear model from the projections; (2) segment
the reconstruction into a series of binary images, one for each chemical compo-
sition; (3) estimate the parameters of the nonlinear model in Eq. 5.3 given the
projections and the binary images; (4) reduce the nonlinearities in the projections
through a rescaling of the intensities based on the nonlinear model.

Figure 5.3: Flowchart of the correction algorithm

Before we explain the steps explicitly, we establish an objective function which
will be used to guide the optimization in the correction algorithm. We define it as
the l2 norm of the distance between the acquired projections and the re-projection
of binary images based on our nonlinear model:

C (I0, pb, µ, S) =∥ p − I0(1 − exp(−W
K∑

e=1
µese)) − pb ∥2

2, (5.4)

where W = {wij}, µ = {µe} and S = {sej}.
We also define a stopping criterion. The cost value at the rth iteration is

denoted as the cr. The loop is terminated if the cost is stable, which is when the
following criterion is met:

cr + cr−1

cr−2 + cr−3 > t, (5.5)

where 0 < t < 1 is a thresholding value. Note that although we minimize the
cost function in some steps of the algorithm, the cost is not guaranteed to reach a
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global minimum in the end.

Step 1: Reconstruction
As the first step, a reconstruction with continuous gray levels is made for de-

termining the binary images in the next step. Though it is possible to reconstruct
binary images directly using some discrete tomography algorithms (e.g. [Bat+09]),
these algorithms will possibly not give better results than basic algorithms given
an inaccurate forward model. Thus, we choose to first make a reconstruction x
with continuous gray levels based on a linear model and then segment the recon-
struction into binary images S.

The reconstruction is computed using the simultaneous iterative reconstruction
technique (SIRT) [GB08] which solves the following least-squares problem:

x∗ = argmin
x

∥ plin − Wx ∥2
2 . (5.6)

The widely used SIRT algorithm is chosen for its robustness to noise and its easy
implementation.

The input for this step is a set of “inearized” projections plin. For the first
iteration, they are just the acquired projections. For the other iterations, they are
adopted as the projections that have been rescaled in the previous iteration, which
will be explained in Step 4.

Step 2: Segmentation
The binary images are then determined by segmenting the reconstruction image

x. As gray levels are related to atomic numbers, we segment the SIRT reconstruc-
tion by global thresholding. The thresholds for the segmentation are determined
by solving the following optimization problem:

S∗ = argmin
S∈S

C (I0, pb, µ, S). (5.7)

The solution of this problem is found by straightforward (brute-force) sampling of
the space of thresholds, each time evaluating the cost function. In practice, the
thresholds are sampled from the minimum to the maximum of gray levels of the
SIRT reconstruction in Step 1.

The first iteration is again an exception since parameters have not yet been
estimated and the objective function cannot be computed. Thus, the above seg-
mentation method is not applicable. Instead, the thresholds are determined using
Otsu’s method which finds optimal thresholds based on the gray level histograms
[Ots79].

Step 3: Nonlinear parameters estimation
Given the binary images, we can update the free parameters of the nonlinear

model I0, pb, µ by minimizing the objective function, which is a nonlinear regres-
sion problem. This nonlinear regression problem is solved using the Nelder–Mead
method [Lag+98]. To improve the stability of the regression, the three parameters
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are estimated separately and iteratively in an inner loop:

For l = 1 : L

pb
l+1 = argmin

pb

C (I l
0, pb, µl, S∗);

µl+1 = argmin
µ>0

C (I l
0, pl+1

b , µ, S∗);

I0
l+1 = argmin

I0>max(p)
C (I0, pl+1

b , µl+1, S∗). (5.8)

here l is the iteration number of the inner loop. The estimation algorithm requires
initial parameter values. In the experiments, we found that the initial values have
little influence on the convergence result but proper initial values help to converge
faster. Since we know that the beam intensity I0 should be at least the maximal
image intensity and that the attenuation coefficients µ and the bias intensity pb

are very small, we can start from I1
0 = max(p), p1

b = 0 and µ1 = 0, which were
used in all the experiments in this chapter.

Step 4: Projection intensities rescaling
Given the parameters, we rescale the measured projections p to reduce nonlin-

ear damping effects using:

p,
lin = log I0 + pb − p

I0
, (5.9)

where p,
lin is the rescaled projections and is used as the input data for Step 1. At

the last iteration, the rescaled projections are returned as the output plin. These
correspond to the linearly projected sum of the attenuation coefficients.

5.3 Experiments and simulations
We report the correction of cupping artifacts for two sets of experimental data
and three phantom simulations. The experimental data show strong nonlinear
effects because the samples consist of thick metallic materials. Two phantom
simulations resembling the experimental data were performed, as ground-truth is
missing for quality assessment of the reconstruction image due to the lack of other
measurement methods. In addition, a phantom of four chemical compositions
was simulated to investigate the robustness of the algorithm when more chemical
compositions are present, as the experimental samples consist of only one or two
chemical compositions.

5.3.1 Experiments
The first experimental sample is an assembly consisting of 16 Pt nanoparticles,
each of which has a diameter of about 60 nm (Figure 5.4 (a)) [Sán+12]. It has
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Table 5.1: Data acquisition specifications.

Specimen Nanoparticle assembly Core-shell nanoparticle
Electron microscope Tecnai G2, FEI company Tecnai Osiris, FEI company
Accelerating voltage 200 kV 120 kV
Convergence angle 16 mrad 18 mrad

HAADF detector range 82-180 mrad 54-230 mrad
Projection angles range −74o to 74o −75o to 75o

Projection angle increment 2o 5o

(a) (b)

Figure 5.4: (a): 3D volume rendering of the Pt nanoparticle assembly. (b): 3D volume rendering
of the Au-Ag nanoparticle.

only one chemical composition and a relatively more complex structure than the
second sample.

The second sample is a hetero-nanoparticle, which is an Ag nanoparticle with a
diameter of approximately 110 nm with an embedded Au octahedron [Zho+17]. It
is studied as a case where the cupping artifacts reduce the image contrast between
different chemical compositions. The specifications of data acquisition are listed
in Table 5.1.

This dataset has been used to investigate HAADF-EDS bimodal tomography
(HEBT) in Chapter 2 and [Zho+17]. In that study, the authors have noticed that
the raw data had strong intensity damping which not only limited straightforward
segmentation of the HAADF reconstructions but also undermined the validity of
HEBT based on linear models. Therefore, in [Zho+17] the data has been linearized
in the data preprocessing as mentioned in the paper.

Results: nanoparticle assembly

Figure 5.5 (a) is the initial SIRT reconstruction, based on which a binary image
(Figure 5.5 (c)) was segmented using Otsu’s method. Figure 5.5 (b) and (d) are
the reconstruction and the binary image acquired after applying the correction
algorithm. To obtain morphological information which is difficult to observe in the
reconstruction images, we plotted their edges (Figure 5.5 (e)) which are detected
using a Sobel filter that depends on the derivatives of gray levels.
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(a) (b) (c) (d)

(e)

Figure 5.5: (a) and (b): SIRT reconstructions of the Pt nanoparticle assembly from the non-
linear projections and corrected projections respectively. (c) and (d): Binary images obtained
by segmenting (a) and (b) respectively. (e) Edges of reconstructions before (white) and after
correction (green).

Figure 5.6: The nonlinear damping model fitted for projection signal intensity w.r.t. sample
thickness of the nanoparticle assembly. The error bars indicate mean intensities and the standard
deviations of the projection data.

In addition, the fidelity of the nonlinear regression for the nonlinear model was
investigated. The fitted nonlinear model w.r.t thickness is plotted in Figure 5.6,
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where the thickness was computed as the forward projection of the binary image
after correction. The error bars indicate the mean intensities and the standard
deviations of the projection intensity.

Results: Au-Ag core-shell nanoparticle

For this experimental data, the SIRT reconstructions and segmented binary images
before and after correction are shown in Figure 5.7. In addition, the line profiles
across the reconstruction images for some iterations are plotted in Figure 5.8 to
demonstrate how gray levels evolve during a run of the correction algorithm.

As discussed in the introduction, the nonlinear effects also hinder adopting
prior knowledge to reduce missing wedge artifacts. In this data, the projections
were only acquired from −75o to 75o. We thus compared reconstructions us-
ing advanced reconstruction algorithms: total-variation minimization (TV-min)
[Gor+12], discrete algebraic reconstruction technique (DART) [Bat+09] and total
variation regularized DART (TVR-DART) [ZPB16], which incorporate the prior
knowledge of image sparsity, discrete gray levels and image sparsity combined with
discrete gray levels respectively. The images reconstructed from the nonlinear pro-
jections and the corrected projections are given in In Figure 5.9.

Finally, we plotted the normalized residuals of the cost function w.r.t. itera-
tions for the two experimental data (Figure 5.10). For the first and second ex-
periments, the cost values converge to stable minimums after 16 and 12 iterations
respectively.

(a) (b) (c) (d)

Figure 5.7: (a) and (b): SIRT reconstructions of the Au-Ag nanoparticle from the nonlinear
projections and corrected projections. (c) and (d): Binary images segmented based on the
reconstruction images (a) and (b) respectively.
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Figure 5.8: Cross-section line profiles of the SIRT reconstructions of the Au-Ag nanoparticle at
different iterations.

(a) (b) (c) (d)

(e) (f)

Figure 5.9: (a)/(b), (c)/(d) and (e)/(f) are the TV-min, DART and TVR-DART reconstructions
of the Au-Ag nanoparticle from projections before/after the correction respectively.

5.3.2 Phantom simulations
First of all, two phantom simulations were made resembling the two experimental
datasets. Note that the purpose of the simulation is not to validate the nonlinear
model, but to assess the quality of nonlinear correction assuming the nonlinear for-
ward model is accurate once all model parameters have been accurately obtained.
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Figure 5.10: The residuals of cost function (Eq. 5.10) w.r.t. iterations for the two experimental
datasets.

For each sample, we first applied the correction algorithm to the experimental data
to obtain binary images and nonlinear forward models. Afterwards, projections
were simulated by projecting the binary images based on the nonlinear model.
In addition, Gaussian noise was added to the projections to make the simulation
more realistic.

The simulations provide ground-truth to quantify the quality of reconstruc-
tions. Here, the error metric is defined as the mean difference between the recon-
structed and the ground-truth binary images:

err = 1
K

K∑
e

N∑
j

∥ sej − gej ∥ /

N∑
j

gej , (5.10)

where {gej} are the ground-truth binary images.
The third phantom simulation, focused on the correction for more than two

chemical compositions, was made using the same shapes as the nanoparticle assem-
bly phantom. What is different is that instead of having one composition for all
particles, there are particles of four different compositions, each having a different
atomic number. Then projections were made by projecting the particles based on
the nonlinear model.

Results of simulations

The first phantom resembles the nanoparticle assembly, whose contours are plotted
in Figure 5.11 (c) and (d). Figure 5.11 (a) is the initial SIRT reconstruction before
correction, based on which a binary image (Figure 5.1 (c)) was segmented. Figure
5.11 (b) and (d) show the SIRT reconstruction and the binary image after applying
the correction algorithm. The error metrics of the binary images are respectively
5% and 2% before and after correction.

The results of the second phantom simulation are shown in Figure 5.12, where
(a) and (b) are the SIRT reconstructions before and after correction respectively.
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The binary images in Figure 5.12 (c) and (d) were segmented from the SIRT
reconstruction images. The ground-truth phantom is plotted using red and green
contours for Au and Ag respectively. The error metrics of the binary images are
respectively 56% and 1% before and after correction.

Table 5.2: Errors Metrics of Binary Images.

Before correction After correction
Nanoparticle assembly phantom 5% 2%

Au-Ag nanoparticle phantom 56% 1%
Phantom of four chemical compositions 69% 20%

(a) (b) (c) (d)

Figure 5.11: (a) and (b): SIRT Reconstruction images of the nanoparticle assembly phantom
simulation before and after the nonlinearity correction. (c) and (d): Binary images segmented
based on (a) and (b) respectively. The red contour shows the shape of the phantom.

(a) (b) (c) (d)

Figure 5.12: (a) and (b): SIRT reconstructions of the Au-Ag nanoparticle phantom simulation
before and after the nonlinearity correction. (c) and (d): Binary images segmented based on (a)
and (b) respectively. The red and green contours show the shape of the phantoms of Au and Ag
respectively.

The third phantom simulation presents the case when four chemical compo-
sitions exist in the same phantom. The SIRT reconstruction images before and
after correcting the nonlinearity are shown in Figure 5.13 (a) and (b) respectively,
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while the corresponding binary images are given in Figure 5.13 (c) and (d). The
error metrics of the binary images are respectively 69% and 20% before and after
correction.

(a) (b)

(c) (d)

Figure 5.13: (a) and (b): SIRT reconstructions of the phantom simulation with four chemical
compositions before and after correcting the nonlinear effects. (c) and (d): Binary images seg-
mented based on (a) and (b) respectively. The colorful contours show the shape of the phantom
particles of four different chemical compositions.

5.3.3 Discussion
In the initial reconstruction of the nanoparticle assembly (Figure 5.5 (a)), the
artifacts appear, on one hand, as dark streaks elongated from the gaps between
particles. On the other, they appear as underestimated gray levels in the interior,
for which we see missing pixels in the binary image (Figure 5.5 (c)).

The correction algorithm successfully reduced these artifacts and produced
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images easier to interpret. The correction algorithm also changed the morphology
of the reconstruction image (Figure 5.5 (b)), as can be seen from the plot of
edges. The change may be due to the removal of the overestimated gray levels
on the background. The plot of fitting (Figure 5.6) shows that the experimental
data matches our nonlinear model, demonstrating a damping effect following the
exponential rule. It is also noticeable that the standard deviations decrease at
large thickness, which can be explained by noting that the errors introduced by
segmentation are relatively smaller at larger thickness.

In the initial SIRT reconstruction image of the Au-Ag nanoparticle (Figure 5.7
(a)), the cupping artifacts caused the loss of contrast between Au and Ag, even
though Au and Ag have a large difference in atomic number. As a result, many
pixels were misclassified in the binary images (Figure 5.7 (b)). The algorithm
corrected the experimental data and enhanced the contrast between Au and Ag.
Demonstrated in Figure 5.8, the contrast between Au(center) and Ag(outskirts)
was enhanced step by step. At last, the Au and Ag particles were segmented
correctly based on gray levels.

The Au-Ag nanoparticle should be suitable for incorporating prior knowledge to
correct missing wedge artifacts. It contains two distinct compositions with uniform
densities, and thus the reconstruction image should be sparse and have constant
gray levels. However, before the correction, incorporating different variants of prior
knowledge in the reconstruction actually appears to be detrimental to the image
quality, as can be seen in Figure 5.9. Especially the tip of the Au particle was
expanded. The expanded tip probably is a mixture of cupping artifacts and missing
wedge artifacts. After correcting the nonlinear effects, the linearized projection
data was suitable for using the advanced algorithms as the reconstructions show.

The first two phantom simulations show artifacts (in Figure 5.11 (a) and Figure
5.12 (a)) very similar to those from the experimental data, which indicates that the
modeling of nonlinear effects is accurate. Both reconstructions after correction are
free of these artifacts, and are in good agreement with the ground-truth phantom,
as the error metrics were reduced (Table 5.2).

For the third simulation, we see cupping artifacts (Figure 5.13 (a)) with features
observed in the previous two cases. First, there are dark streaks and underesti-
mated gray levels. Second, the contrast between different chemical compositions
is blurred. These artifacts were corrected after applying the correction algorithm
(Figure 5.13 (b)).

The segmented binary images after correction (Figure 5.13 (d)) show a stack
of different chemical compositions at the borders of some particles. However,
these misclassified pixels are not caused by the cupping artifacts, but due to the
limitation of the global thresholding [BS09]. The gray levels in the reconstruction
image are continuously dropping at the borders. These pixels were classified into
particles of smaller gray levels. Despite the imperfect segmentation, the correction
algorithm converged to a result free from cupping artifacts, which also indicates
the good robustness of the algorithm.
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5.4 Conclusion
In this chapter, we proposed an iterative algorithm to automatically correct the
cupping artifacts in tomographic reconstructions from HAADF-STEM projections
with nonlinearly damping intensities using only the projection data. The correction
is based on modeling the nonlinear relationship between projection intensities and
sample thickness as an exponential function.

We showed that the algorithm is an effective tool in achieving better tomo-
graphic reconstructions. It successfully corrected the nonlinear damping effects
and the subsequent cupping artifacts in three cases where one, two and four chem-
ical compositions are present respectively. The correction is useful for improving
the accuracy of morphological analysis and compositional analysis for 3D nanos-
tructures and nanomaterials. In addition, users can benefit from it in enhancing
the Z-contrast between chemical compositions as well as in facilitating incorporat-
ing prior knowledge to correct the missing wedge artifacts.

For limited data (e.g. with only a small range of tilts), the correction algo-
rithms may fail due to the inaccurate segmentation caused by the dominant miss-
ing wedge artifacts. Potentially, this issue may be addressed by replacing SIRT
and possibly the segmentation step by an advanced reconstruction algorithm (e.g.
TVR-DART). However, it is still an unsolved question how to automatically set
the parameters of the reconstruction algorithms, which has to be done in each
iteration of the correction algorithm.

Note that the algorithm is only applicable to samples consist of several chem-
ical compositions with homogeneous densities that can be segmented based on
images gray levels. This is because the graylevel-based segmentation method fails
easily when the chemical compositions are mixed or have similar atomic numbers.
Moreover, this segmentation method is a global thresholding method. It may
lead to poor initial segmentation results and consequently failed corrections when
the cupping artifacts are very strong. Consequently, the next step of improving
the algorithm is to incorporate advanced segmentation methods or spectroscopic
techniques to determine the distributions of chemical compositions.
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