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4
Algorithmic recipes of

numerical methods

4.1 Introduction

In materials science, the compositional characterization in three dimensions (3D)
is important for understanding the properties of nanomaterials. Energy-dispersive
X-ray spectroscopic (EDS) STEM allows mapping of the distributions of chemical
elements in 2D by detecting the X-rays emitted from the specimen. A 3D volu-
metric image of these chemical distributions can then be reconstructed from a tilt
series of the 2D maps [Sag+07; Lep+13; WC16]. Such a technique is referred to as
EDS tomography. However, EDS tomography is limited by many practical issues
[Sla+16b; Kra+17; Bur+16]. One of the most significant issues is the limited num-
ber of detected X-ray counts caused by low emission rates and small solid angles of
detectors. As a result, strong Poisson noise is present in the tilt series of elemental
maps, which leads to reconstructions with low signal-to-noise ratios (SNRs). In
addition, the number of tilt images is often small due to the long data acquisition
time. The limited number of tilts results in an ill-posed inverse problem, which,
together with the high levels of noise, strongly limits the accuracy of the recon-
structed volume. The possibilities for improving the quality of the measured data
are often limited by the electron dose that the sample can withstand.

This chapter is based on:
Z. Zhong, W. J. Palenstijn, N. R. Viganò, and K. J. Batenburg. “Numerical methods
for low-dose EDS tomography”. Ultramicroscopy 194 (2018), pp. 133–142.
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58 CHAPTER 4. ALGORITHMIC RECIPES OF NUMERICAL METHODS

Ill-posed inverse problems have been studied extensively in (electron) tomogra-
phy, and various reconstruction methods have been developed ([WC16, Chapter 7],
[BL08]). However, choosing the most appropriate algorithm in the context of a
specific sample and specific imaging conditions is currently problematic for prac-
titioners in EDS tomography.

The aim of this chapter is to provide guidelines for using and combining three
different types of methods: statistical modeling, variational regularization and
bimodal tomography. These modules are chosen based on the assumptions made
for data statistics, sample structures and instrumental setups respectively. As a
result, we provide the possibility to tailor the reconstruction algorithm as a recipe
composed of ingredients chosen for each module.

First of all, we describe how the tomographic reconstruction process can be
modeled as an inverse problem with Poisson statistics, whereas the conventional
alternative is based on Gaussian-statistic data. For instance, the simultaneous iter-
ative reconstruction technique (SIRT) [GB08], used in [Lep+13; Sla+16b], actually
solves an inverse problem assuming Gaussian noise. Poisson noise is addressed in
a separate denoising step and by the smoothing effects introduced by SIRT. How-
ever, smoothing blurs the images and reduces the resolution. Also, inaccurate
modeling may introduce artifacts in the reconstructed images. For EDS mapping
with low X-ray counts, it is reasonable to assume the image intensities as measure-
ments of Poisson processes like in many other photonic imaging modalities, e.g.
positron emission tomography (PET). Image reconstruction with Poisson statistics
has already been studied extensively [SV82; HW16].

Secondly, we present the module for variational regularization methods. These
have been developed to address the issue of overfitting (to noise) present in di-
rect modeling methods such as maximum likelihood estimation (MLE) [SV82] in
situations with extremely low counts [HW16; YF02; Bar10]. For instance, total
variation (TV) regularization is widely adopted. It encourages sparsity of gradi-
ents, which helps to suppress noise, promote piecewise constant structures and
reduce the artifacts caused by missing data [Gor+12; BO13].

In addition, for EDS tomography, the reconstructions for different chemical
elements often share image features, such as edges. Total nuclear variation (TNV)
regularization – an expansion of TV – encourages such common edge locations
of correlated reconstructions in addition to promoting sparse gradients [Hol14;
Dur+16]. There are many other regularization methods such as total generalized
variation which encourages piecewise smooth structures [BKP10]. In this chapter,
we focus on TV and TNV as our ingredients for the purpose of demonstration.

Thirdly, even with regularization, the reconstructions may still be highly inac-
curate when lacking accurate data. In situations with strong noise, TV regulariza-
tion may introduce staircasing artifacts in the reconstruction [BO13]. The third
module augments the reconstruction with additional accurate data by combining
EDS tomography with other imaging modalities. Here, we use the HAADF-EDS
bimodal tomography (HEBT) technique that was proposed in Chapter 2 and our
paper [Zho+17]. HEBT considers the HAADF-STEM projection images, which
usually have higher SNRs and resolution, to be the weighted sum of the EDS
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maps for all present elements. In Chapter 2, HEBT is based on a Gaussian noise
model. In this chapter, we contribute to HEBT by introducing the formulation
for reconstruction with Poisson statistics.

All these ingredients can be implemented as solving minimization problems in
the reconstruction process. In this chapter, we combine the ingredients of different
modules into a single optimization problem that can be solved by a generic algo-
rithm. Choosing the right combination of ingredients can lead to complementary
effects. For example, HEBT implies a constraint that may suppress the staircasing
artifacts introduced by the variational regularization.

The remainder of this chapter is structured as follows. In Section 4.2, we il-
lustrate the theory and the guidelines for choosing ingredients of an algorithmic
recipe. In Section 4.3, we investigate and compare the performance of different
recipes on simulation and experimental data. In the last section, we draw a con-
clusion for this chapter. We do not discuss the pre-processing steps in the spectral
domain, while in practice these should be carefully considered for the influence
on the data statistics. Also, other issues e.g. detector shadowing effects and X-
ray self-absorption strongly affect the reconstruction results, but are addressed in
other papers [Sla+16b; Kra+17; Bur+16].

4.2 Method

In this section, we will describe the notation for the inverse problem with Gaussian
or Poisson statistics, the regularization methods as well as the adapted HEBT
method. After that, we will discuss the guidelines for constructing recipes.

4.2.1 Notation of EDS tomography

In EDS tomography, the tilt series of projection images, called elemental maps, are
extracted from tilt series of spectrum images, which contain a spectrum of X-ray
counts for every pixel position. The intensities of the elemental map correspond
to the detected X-ray counts emitted from the chemical element.

We first formulate the relationship between the reconstructed image and the
ideal measurement data without noise corruption. Under the thin-film assump-
tion, the ideal data are proportional to the expected numbers of X-ray counts
that are in turn proportional to the concentration of the corresponding element
probed by the focused beam [WW06]. Thus the ideal data are proportional to the
linear projection of the reconstructed quantities, which are expressed as a vector
ge ∈ RMe . Here Me denotes the total number of pixels for all angles for element
e (e = 1, · · · , L). Consider the specimen to be located in a 3D volume space dis-
cretized into N voxels. The reconstructed quantities, which are proportional to
the concentration of the element, are expressed as a vector xe ∈ RN . This linear
relationship is modeled by the system of equations:
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ge
i =

N∑
j=1

we
ijxe

j . (4.1)

The ith pixel position is determined by the beam position and the tilt angle
of the specimen. The weight factor we

ij is determined by the area of voxel j
intersected by the focused beam of pixel i. The matrix We = (we

ij) describes the
EDS imaging setup.

The real data, which are corrupted by noise, are expressed as a vector pe ∈
RMe . The reconstruction problem is then to determine the unknown xe such that if
we compute the projection of xe, the discrepancy between the real and computed
data is minimized. It is common to assume that the real data are ideal data
corrupted by Gaussian distributed noise, which is a valid approximation when
the number of X-ray counts is large. In this case, we take the sum of squared
errors between the measurement data and the ideal data as the data discrepancy,
expressed as:

DL2(Wexe; pe) =∥ Wexe − pe ∥2
2, (4.2)

which is denoted as L2 data discrepancy in this chapter, named after the l2 norm
(∥ · ∥2).

However, when the number of X-ray counts is small, the Gaussian model is
not an accurate approximation anymore. A more solid assumption is to consider
the real data as Poisson distributed measurements taking the ideal data as the ex-
pected values. We then use the Kullback-Leibler (KL) divergence [Ber+10; Csi91]
to define the data discrepancy, which is expressed as:

DKL(Wexe; pe) =
Me∑
i=1

(pe
i − ge

i + ge
i log(ge

i

pe
i

))

=
Me∑
i=1

(pe
i −

N∑
j=1

we
ijxe

j +
N∑

j=1
we

ijxe
j log(

∑N
j=1 we

ijxe
j

pe
i

)), (4.3)

for xe ⪰ 0.
Given the data discrepancy D defined by either Eq. 4.2 or Eq. 4.3, the recon-

struction is computed by minimizing the discrepancy:

xe∗ = argmin
xe
D(Wexe; pe). (4.4)

Minimizing KL divergence DKL is equivalent to maximizing the log-likelihood of
the Poisson distributions for pe [Csi91], while minimizing L2 discrepancy DL2 cor-
responds to solving a least-squares problem. The popular reconstruction algorithm
SIRT in fact solves the problem of minimizing a weighted version of L2 discrepancy
[GB08].
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4.2.2 Variational regularization
To incorporate TV regularization, we add a regularization term to the minimiza-
tion problem:

xe∗ = argmin
xe
D(Wexe; pe) + λRTV(xe), (4.5)

where λ is the parameter determining the strength of regularization. RTV(xe) is
a regularization term giving the total variation of image xe, defined as:

RTV(xe) =
N∑

j=1
∥ ▽xe

j ∥2, (4.6)

where ▽ is the discrete approximation of the gradient operator. If the reconstruc-
tion image is 3D, ▽ approximates the gradients in the X, Y and Z directions
respectively using the forward difference as ▽xj = (▽Xxj , ▽Y xj , ▽Zxj)T . Note
that reconstructions can also be performed by stacking 2D reconstructions of each
slice, for which the gradients are only computed in the X and Y directions. In
practice, it is more preferable to directly reconstruct in 3D to also incorporate reg-
ularization in the Z direction. The TV defined in this chapter is called isotropic
TV [BO13], for which the gradient magnitude at pixel location j is computed as
the l2 norm of the gradient.

In addition to sparse gradients, we can use TNV regularization to incorporate
the correlation between reconstructions, such as the reconstructions for multiple
elements in the same sample. It is an extension of TV regularization from one-
channel images to multi-channel images, which encourages the images in multiple
channels to have common edge locations and parallel/antiparallel gradient direc-
tions. Suppose there are Q reconstructions that share the same volume space,
we can formulate them as a single multi-channel image {xk} (k = 1, . . . , Q). The
TNV regularization term is defined as the nuclear norm of the Jacobian matrix of
the multi-channel image:

RTNV({xk}) =
N∑

j=1
∥ (J{xk})j ∥⋆ . (4.7)

The Jacobian matrix at pixel position j is given by:

(J{xk})j =

 ▽Xx1
j ▽Y x1

j ▽Z x1
j

...
▽XxQ

j ▽Y xQ
j ▽Z xQ

j

 , (4.8)

where the nuclear norm ∥ · ∥⋆ is given by the l1-norm of the vector consisting of
the matrix’ singular values. Minimizing TNV encourages the rank-sparsity of the
Jacobian matrix, which leads to parallel or anti-parallel gradient vectors.
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To apply TNV regularization on the EDS reconstructions for all chemical el-
ements, we can set {xk} = {xe} for e = 1, . . . , L. In this case, the optimization
problem is:

{xe∗} = argmin
{xe}

L∑
e=1
D(Wexe; pe) + λRTNV({xe}), (4.9)

where the reconstructions for all elements are computed simultaneously.
TNV allows to correlate multiple reconstructions in a flexible manner. In

addition to promoting common features between multiple elemental volumes, it is
also possible to relate EDS tomography to other tomographic modalities, such as
HAADF-STEM tomography. This is subject to having the HAADF reconstruction
sharing common edges with the EDS reconstructions. More details are discussed
in Chapter 3 and [Zho+18b]. It is even possible to use the TNV regularization to
correlate with EELS-STEM tomography [Hab+14]. Despite the many possibilities
to apply TNV, in this chapter, we focus on the TNV regularization defined by Eq.
4.9 that correlates the EDS reconstructions for all elements.

4.2.3 HAADF-EDS bimodal tomography
HEBT is used to perform reconstructions simultaneously from the EDS data and
the HAADF-STEM data. The elemental reconstructions are made by minimizing
the sum of HAADF-STEM data discrepancy and EDS data discrepancy, based on
the assumption that the HAADF-STEM projection data are the weighted sum of
the EDS maps for all present elements. The weights are referred to as the response
ratio factors.

The HEBT method in Chapter 2 is defined for least-squares. Here, we modify
the formula so that the KL divergence can be used. The reconstruction problem
of HEBT is expressed as:

{xe∗} = argmin
{xe}

αDL2(
L∑

e=1
Whrexe; ph) + (1 − α)

L∑
e=1
D(Wexe; pe),

subject to ph =
L∑

e=1
repe,

xe ⪰ 0, e = 1, . . . , L, (4.10)

where the first term is the L2 data discrepancy for the tilt series of HAADF-
STEM images ph ∈ RMh , and Mh denotes the total number of pixels for all
HAADF-STEM tilt images. The matrix Wh ∈ RMh×N is the HAADF-STEM
projection matrix that describes the HAADF-STEM imaging setup. re’s are the
response ratio factors for different chemical elements. The second term is the
sum of EDS data discrepancies for all the elements. The EDS data discrepancy
can be chosen between KL divergence and L2 discrepancy, depending on how the



4.2. METHOD 63

noise is modeled. The parameter α ∈ [0, 1) is the trade-off weight between the
HAADF-STEM and EDS data discrepancies.

Note that in Chapter 2, the EDS map intensities are scaled by the response
ratio factors re, which changes the EDS data statistics. Here, instead we move the
response ratio factors to the HAADF-STEM term so that the EDS maps remain
unchanged. The response ratio factors re can be estimated based on the linear
equations ph =

∑L
e=1 repe using least-squares regression [Zho+17]. Since re’s are

assumed to be spatially invariant, we can bin the images ph and pe’s to increase
the SNRs and improve the accuracy of estimated values.

4.2.4 Preparing the recipe

Figure 4.1: Ingredients of the algorithmic recipes.

Based on the above discussions, we can summarize a generic optimization prob-
lem that includes the three modules:

{xe∗} = argmin
{xe}

(1 − α)
L∑

e=1
De(xe) + αDh(

L∑
e=1

rexe) + λR({xe}), (4.11)

where the EDS data discrepancy De(xe) is always required, while the HAADF data
discrepancy Dh(

∑L
e=1 rexe) and the regularization term R({xe}) are optional. To

construct a recipe, we first choose an ingredient for each module according to the
list in Figure 4.1, then make an instance of this optimization problem by setting
the minimization terms.
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When constructing a recipe, one should carefully consider the validity of the
assumptions behind ingredients. In Figure 4.2, we provide a flowchart as guidelines
for choosing ingredients and the conditions w.r.t. the properties of the data and
the sample. These conditions are based on mathematical assumptions summarized
below:

• HEBT : the HAADF-STEM projection images are the linear sum of the EDS
maps for all present elements.

• KL data discrepancy: the image intensities of EDS maps correspond to X-ray
counts that follow Poisson distributions.

• L2 data discrepancy: the image intensities of EDS maps approximately follow
Gaussian distributions.

• TV regularization: the reconstruction has sparse gradients, piecewise con-
stant features and sharp discontinuities.

• TNV regularization: in addition to the assumption for TV, multiple recon-
structions have common edge locations and parallel/antiparallel gradients.

For instance, HEBT should not be included in the recipe when not all the chemical
elements present in the HAADF-STEM images are mapped by EDS, or when
the HAADF-STEM projection images are strongly affected by nonlinear damping
effects.

4.2.5 Solving the reconstruction problem

After making an instance of Eq. 4.11 for the recipe, a numerical algorithm is needed
for solving the optimization problem. We use the Douglas-Rachford primal-dual
splitting algorithm (DR) [BH13] to compute the solution, which is a broadly ap-
plicable algorithm for solving convex optimization problems. For our application,
the DR algorithm solves the mathematical problem of the following general form:

v = argmin
v

f(v) +
R∑

k=1

gk(Akv), (4.12)

where f(·) and gk(·)’s are proper, convex and lower semicontinuous functions and
Ak’s are linear operators.

In fact, all our data discrepancy and regularization terms can be cast into the
form of gk(Akv). Therefore, different optimization problems derived from Eq. 4.11
can be solved using the same DR algorithm. In Appendix, we provide more details
for fitting our optimization problems into Eq. 4.12.
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4.3 Experiments
In this section, we investigate the performance of different recipes on simulation
data as well as real experimental data. We use the DR algorithm implemented in
the Operator Discretization Library (ODL) [AKÖ17].

It is necessary to measure the quality of reconstruction to compare reconstruc-
tions made using different recipes, or based on different HEBT weights α and
regularization parameters λ. In this chapter, the quality of reconstruction is mea-
sured by the linear correlation coefficient which determines the linear relation
between the reconstruction and the ground truth. For the real experimental data,
the ground truth is obtained by segmenting the HAADF-STEM reconstruction.
The correlation coefficient is computed by:

r =
∑

i(xi − x̄)(vi − v̄)√∑
i(xi − x̄)2

√∑
i(vi − v̄)2

, (4.13)

where x̄ and v̄ are the mean values of the reconstruction x and the ground truth
v respectively.

4.3.1 Non-mixed Phantom simulation
Data simulation

The 2D phantom resembles a structure that contains three homogeneous compo-
sitions, which are shown in different colors in Figure 4.3 (a). We assume that the
image contrast scales are respectively zAg = 471.7, zCu = 291.7 and zT i = 221.7

given the corresponding atomic numbers Z of these elements, so that the contrast
scales as Zα with α chosen as 1.7 [Tre11]. The HAADF phantom is shown in
Figure 4.3 (b).

We simulated a tilt series of 1D projection images for the HAADF-STEM phan-
tom for every 5◦ from 0◦ to 180◦ using the ASTRA Toolbox [PBS13]. In addition,
we simulated tilt series of 1D maps for each individual element. A realistic value
for the image intensity can be determined by considering the incident beam cur-
rent, the probe live time, the fraction of incident electrons causing ionization, the
fluorescence yield, the detector solid angle, and the detector efficiency [Che+16].
In this chapter, we simply set the intensities to absolute scales close to real ex-
perimental data for the brevity of the chapter. We then applied Poisson noise by
drawing random numbers for expected values given by the noiseless map intensi-
ties. Figure 4.3 (c) shows the simulated maps with noise for Ti. The mean image
intensity on non-background pixels is 11.76.

Reconstruction results

For this dataset we can choose KL data discrepancy, TNV regularization and
HEBT as the ingredients for our preferable recipe (KL-TNV-HEBT), based on
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(a) Elemental distribution (b) HAADF Phantom

(c) Simulated noisy maps for Ti. The row and
column correspond to the tilt angle and the
beam position respectively. The mean image
intensity on non-background pixels is 11.76.

Figure 4.3: The non-mixed phantom simulation data.

the observation that the Poisson noise is strong and the individual elements have
homogeneous structures that share edges. Additionally, reconstructions based on
other recipes were also performed for comparing the effects. Although reconstruc-
tions were made for all elements, only the reconstructions for Ti are shown for the
brevity of this section.

For comparison, we first show the non-regularized reconstructions. The recon-
struction (Figure 4.4 (a)) based on the KL divergence was computed by solving
Eq. 4.4 using the DR algorithm. Figure 4.4 (b) shows the reconstruction based on
L2 data discrepancy computed using the SIRT algorithm for 50 iterations, com-
bined with a pre-smoothing using a Gaussian filter (σ = 1.0). In fact, SIRT also
incorporates implicit regularization on the image smoothness, which is determined
by the number of iterations. The L2 reconstruction is less noisy than the KL re-
construction due to the smoothing effect. However, SIRT strongly blurs the small
structures.

Second, we performed EDS reconstructions with TV-regularization with the
KL or the L2 data discrepancy (KL-TV/L2-TV). The reconstructions were made
for different values of regularization parameter λ, for which the correlation co-
efficients were computed and plotted in Figure 4.6 (a). Figure 4.4 (c) and (d)
respectively show the optimal KL-TV or L2-TV reconstructions that correspond
to the largest correlation coefficients. Compared to the non-regularized recon-
structions, these reconstructions are more homogeneous with sharper edges. We
observe that small structures have also been smoothed by the TV regularization.
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(a) KL (b) L2(SIRT) (c) KL-TV, λ = 1.60 (d) L2-TV, λ = 1.60

(e) KL-TV-HEBT,
λ = 0.025, α = 0.990

(f) L2-TV-HEBT,
λ = 0.025, α = 0.999

(g) KL-TNV-HEBT,
λ = 0.025, α = 0.990

(h) L2-TNV-HEBT,
λ = 0.025, α = 0.999

(i) Region of
interest for (g)

(j) Region of
interest for (e)

(k) Ground truth

Figure 4.4: Reconstructions for Ti in the non-mixed phantom using various recipes.

Also, the TV regularization introduces obvious staircasing artifacts.
Third, we introduce HEBT to reduce the staircasing artifacts. We performed

the recipe of KL-TV-HEBT and L2-TV-HEBT for a range of regularization param-
eter λ and HEBT weight α. The corresponding correlation coefficients are plotted
in Figure 4.6 (b) and (c) respectively. Figure 4.4 (e) and (f) respectively show
the optimal reconstructions. We see that the KL-TV-HEBT reconstruction shows
clearly reconstructed features at smaller scales (i.e. the “holes”) and less stair-
case artifacts compared to the L2-TV-HEBT reconstruction, due to the proper
assumption of data discrepancy. Figure 4.5 (a) and (b) show the optimal KL-TV-
HEBT reconstructions for a smaller and a larger α respectively. For the smaller α
the reconstruction is similar to the KL-TV reconstruction as the HAADF-STEM
data discrepancy is not given with a substantial weight, while for the larger α the
reconstruction is more noisy.

Finally, we replaced the TV regularization by TNV regularization to promote
the common edges of different elements. Figure 4.4 (g) and (h) are the optimal
KL-TNV-HEBT and L2-TNV-HEBT reconstructions. Figure 4.6 shows the zoom-
in images for the regions of interest (ROI). Compared with the TV-regularized
reconstruction, the TNV-regularized reconstruction is more accurate for areas near
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(a) KL-TV-HEBT,
λ = 0.251, α = 0.900

(b) KL-TV-HEBT,
λ = 0.004, α = 0.999

Figure 4.5: KL-TV-HEBT reconstructions for different α values optimized w.r.t. λ values.

(a) KL-TV/L2-TV (b) KL-TV-HEBT (c) L2-TV-HEBT

(d) KL-TNV-HEBT (e) L2-TNV-HEBT

Figure 4.6: Correlation coefficients sampled for different values of HEBT weight α and regular-
ization parameter λ.

the common edge locations. The improvement of accuracy is also indicated by the
correlation coefficients (see Figure 4.6 (b) and (d)).

For these regularized HEBT reconstructions (Figure 4.4 (e)-(h)), the KL data
discrepancy leads to more homogeneous gray values. However, if the SNRs are
high enough, the Gaussian distribution assumed by the L2 data discrepancy can
also form a close approximation even though the noise is Poisson distributed. For
instance, the L2-TNV-HEBT reconstruction in Figure 4.7 demonstrates little stair-
casing artifacts when the image intensities are increased by 400% (and therefore
the SNRs by 200% for Poisson noise).

In addition, the TV regularization has been shown to reduce the artifacts in-
troduced by the missing wedge [Gor+12], which is a common issue in electron
tomography. Figure 4.8 (a) shows the TV-KL reconstruction for data with an an-
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(a) KL-TNV-HEBT,
λ = 0.025, α = 0.990

(b) L2-TNV-HEBT,
λ = 0.063, α = 0.999

Figure 4.7: HEBT-KL-TNV and HEBT-L2-TNV reconstructions for data with 200% SNRs.

(a) TV-KL
λ = 1.0

(b) KL-TNV-HEBT,
λ = 0.063, α = 0.999

Figure 4.8: reconstructions from data with the missing wedge.

gular range from −80◦ to 80◦. In comparison, the KL-TNV-HEBT reconstruction
(Figure 4.8 (b)) shows more clear structures in the horizontal direction. There-
fore, an algorithmic recipe combining proper ingredients might also better reduce
missing wedge artifacts.

4.3.2 Mixed phantom simulation
Data simulation

The purpose of this simulation is to study the reconstruction methods on inhomoge-
neous structures liked alloyed materials, as opposed to the homogeneous structures
used in the first simulation. The phantom was created resembling the nano-rattle
sample investigated in [Zan+16a]. The alloyed nanoparticle consists of Au and Ag
components, which have inhomogeneous concentrations. Figure 4.9 (a) and (b)
show the Au and Ag phantoms respectively. We created the HAADF phantom as
the weighted sum of these two phantoms for zAg = 471.7 and zAu = 791.7, which
is shown in Figure 4.9 (c). Unlike the non-mixed phantom, the structures of Au
and Ag components can be hardly distinguished in this image. We simulated the
tilt series of 1D EDS maps and HAADF projection data for every 5◦ from 0◦ to
180◦ and added the Poisson noise to the EDS maps following the same procedures
as in the first simulation.
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(a) Au (b) Ag (c) HAADF

(d) EDS maps for Au and Ag. The row and column
correspond to the tilt angle and the beam position

respectively. The mean image intensities on
non-background pixels are respectively 8.77 and 5.71.

Figure 4.9: The mixed phantom simulation data.

Reconstruction results

TNV regularization is not applicable in this case since the reconstructions for Au
and Ag do not necessarily share the same edge locations. We apply TV regular-
ization for noise reduction. Therefore, we consider a recipe of KL-TV-HEBT that
satisfies the conditions in Figure 4.2.

For comparison, we first performed SIRT reconstructions (for 50 iterations).
The results are shown in Figure 4.10 (a) and (b), which demonstrate low SNRs.
Also, we performed KL-TV reconstructions. The reconstructions corresponding to
maximal correlation coefficients are shown in Figure 4.10 (c) and (d), which show
significant staircasing artifacts due to the strong noise.

The optimal KL-TV-HEBT reconstructions are shown in Figure 4.10 (e) and
(f). As a result, the combination of HEBT and TV effectively improves the quality
of reconstruction. In particular, HEBT reduces the staircasing artifacts and results
in more interpretable reconstructed images. The improvement of image quality is
verified by the correlation coefficients in Figure 4.10 (g).
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(a) SIRT: Au (b) SIRT: Ag (c) KL-TV: Au
λ = 1.000

(d) KL-TV: Ag
λ = 1.000

(e) KL-TV-HEBT: Au
λ = 0.040, α = 0.99

(f) KL-TV-HEBT: Ag
λ = 0.025, α = 0.99

(g) Correlation coefficients of the
reconstructions

Figure 4.10: Reconstructions for Au and Ag in the mixed phantom using various recipes.

4.3.3 Real experimental data
Data acquisition

Table 4.1: Data acquisition specifications

Electron microscope Tecnai Osiris FEI company
X-rays detectors SuperX system, FEI company
Scanning time 300 seconds

Accelerating voltage 120 kV
Projection angles range −75◦ to 75◦

Projection angle increment 5◦

Number of tilts 31
Image size 300 × 300 pixels

Image size after binning 100 × 100 pixels

We now investigate the proposed method on a real experimental dataset. The
sample is a core-shell nanoparticle of an Au cube embedded in an Ag particle, which
has been investigated in Chapter 2 and paper [Zho+17]. The two components have
clear boundaries, homogeneous densities and different Z-contrasts. Thus, the core-
shell nanoparticle is suitable for applying a TNV regularization.
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The experimental data, which consist of a tilt series of spectrum images and
correlated HAADF-STEM projection images, were acquired using an electron mi-
croscope equipped with four silicon drift detectors. The specifications of the EDS
data acquisition are listed in Table 4.1. During the tilt acquisition, only the X-ray
detectors on one side were turned on so that the detector shadowing effects were
compensated. However, this approach also limited the number of X-ray counts
that could be acquired. After PCA denoising, elemental maps were extracted by
integrating the spectrum images near the characteristic peaks (Au: Mα = 2.15
keV, Mβ = 2.20 keV and Lα = 9.70 keV; Ag: Lα = 2.98 keV and Lβ = 3.19
keV) as described in [Zho+17]. The HAADF-STEM tilt series were aligned using
the cross-correlation method. The EDS elemental maps were then aligned using
the same alignment settings. The intensity damping in the HAADF-STEM data
was corrected using the correction algorithm [Zho+18a]. Finally, all the images
were binned to 100 × 100 pixels so as to increase the SNRs to reasonable levels.
Figure 4.11 shows two examples of the elemental maps. Au and Ag have distinct
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1
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9

Figure 4.11: Au and Ag elemental maps at 0◦

Z-contrasts in the HAADF-STEM images. Therefore, ground truth for evaluat-
ing the EDS reconstructions can be obtained by segmenting the HAADF-STEM
reconstruction into Au and Ag components. Figure 4.12 (a) shows a slice of the
3D reconstruction for HAADF-STEM, which was made with TV regularization to
promote piecewise constant structures and to facilitate the subsequent segmenta-
tion. Figure 4.11 (b) and (c) show the subsequent segmented images for Au and
Ag respectively.

Figure 4.12 (d) and (e) show the SIRT reconstructions for Au and Ag from the
EDS maps, which are indeed noisy and inaccurate. We hope to use a tailored recipe
to make more accurate reconstructions. Given the low X-ray counts, the sample
structure and the correlated HAADF-STEM data, we apply a KL-TNV-HEBT
recipe.
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(a) HAADF
reconstruction

(b) Au
segmentation

(c) Ag
segmentation

(d) SIRT: Au (e) SIRT: Ag

Figure 4.12: Reconstructions for slice number 50. The HAADF reconstruction was performed in
3D with TV regularization using the DR algorithm.

Results and Discussion

We first searched for the optimal α and λ parameters for the KL-TNV-HEBT
recipe. Since it is time-consuming to compute 3D reconstructions, we selected a
2D slice to sample reconstructions. Here we used the slice at the center of the
sample (number 50), which should give a good estimation for the SNRs of the
entire volume. Figure 4.13 (a) and (b) show the correlation coefficients with the
segmented HAADF-STEM reconstruction, computed for the 2D reconstructions
at slice 50. The correlation coefficients for Ag reach maximum at α = 0.9900 and
λ = 0.10, at which the correlation coefficient for Au is also close to maximal.

We then applied the λ and α to the entire volume. We performed the re-
construction for the entire volume with regularization in 3D. Figure 4.14 (a)-(f)
show some slices of the 3D reconstruction. For comparison, we also performed
2D regularized reconstruction for each slice, some of which are shown in Figure
4.14 (g)-(l). Figure 4.14(m)-(r) show the ground truth for evaluating these recon-
structions, which were obtained by segmenting the TV-regularized HAADF recon-
struction. The 3D reconstructions are smoother and more accurate compared to
the 2D reconstructions, since the large variation in the direction of rotation axis
was penalized. Figure 4.13 (c) compares the correlation coefficients for 3D and 2D
reconstructions for every slice in the volume. Once again, we conclude that 3D
reconstructions are to be preferred when regularizations are applied.

4.4 Conclusion
When characterizing the chemical structure of nanomaterials in 3D by EDS tomog-
raphy, the limited number of tilt EDS maps, each having a limited signal-to-noise
ratio, often leads to noisy and inaccurate EDS tomographic reconstructions. In
this chapter, we show that the reconstruction can be improved by using an al-
gorithmic recipe that combines several sophisticated methods for modeling the
reconstruction problem. We also provide guidelines for tailoring the recipes based
on the specific sample/dataset.

Different algorithmic recipes have been used to reconstruct from both simula-
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(a) (b)

(c)

Figure 4.13: (a) and (b): correlation coefficients for the KL-TNV-HEBT reconstructions for slice
number 50, sampled for different λ and α values. (c): correlation coefficients for all slices of 2D
or 3D reconstructions.

tion and real experimental data. We evaluated the accuracy of reconstructions
based on the correlation coefficients w.r.t. ground truth. For all these experi-
ments, the algorithms lead to more accurate reconstruction compared to more
naive algorithms when they are tailored for the dataset and sample.

In conclusion, even with very limited data, EDS tomographic reconstruction
can still be made accurately using the right recipe. This is useful for characterizing
samples sensitive to large dose, or for data measured in a short time. Moreover,
it has the flexibility to include other modeling or regularization methods, which
allows to extend the options of ingredients. In the future, we will also explore
automatic mechanisms for selecting parameters to make the advanced algorithms
more accessible.
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4.5 Appendix
In this chapter we use the Douglas-Rachford primal-dual splitting algorithm to
solve the optimization problem as a sum of multiple objective functions, which
is a broadly applicable algorithm for solving the following convex optimization
problem from [BH13]:

min
v

f(v) +
R∑

k=1

(gk□lk(Akv − ⟨v, z⟩), (14)

where f(·), gk(·)’s and lk(·)’s are proper, convex and lower semicontinuous func-
tions and Ak’s are linear operators. The infimal convolution gk□lk(·) is defined
as:

gk□lk(v) = inf
y

g(y) + l(v − y). (15)

By setting z = 0 and
lk(v) = 0 if x = 0, ∞ if x ̸= 0, (16)

we simplify the mathematical problem to Eq. 4.12.
To construct a optimization problem based on Eq. 4.12 given a reconstruction

recipe, we set f(·) = 0, and map gk(·)’s and Ak’s to our functions and operators.
For example, for a KL-TNV-HEBT recipe, the optimization problem can be made
from:

f({xe}) = 0,

g1({ve}) = (1 − α)
L∑

e=1
DKL(ve; pe),

A1 = {We},

g2({ve}) = α ∥
L∑

e=1
ve − pe ∥2

2,

A2 = {Wh},

g3({Zj}) = λ

N∑
j=1

∥ Zj ∥⋆,

A3 = J ⊗ IN.

The matrix IN is the N × N identity matrix, and ⊗ denotes the Kronecker prod-
uct. Table 2 lists the instances for all functions and linear operators used in this
chapter. Another key to deriving the particular DR algorithm instances is to de-
rive proxσ[g∗

k](y), which is the proximal operator for the convex conjugate of gk(·).
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Table 2: Mathematical instances for the ingredients

Ingredient Minimization term DR algorithm instances

L2 De(xe) =∥ Wexe − pe ∥2
g({ve}) = (1 − α)

∑L

e=1
∥ ve − pe ∥2

2, A = {We}
KL De(xe) = DKL(W exe; pe) g({ve}) = (1 − α)

∑L

e=1
DKL(ve; pe), A = {We}

HEBT Dh({xe}) =∥
∑L

e=1
Whrexe − ph ∥2

2 g({ve}) = α ∥
∑L

e=1
reve − ph ∥2

2 , A = {Wh}
None Dh({xe}) = 0

TV R({xe}) =
∑L

e=1

∑N

j=1
∥ ▽xe

j ∥2 g({Ye}) = λ
∑L

e=1

∑N

j=1
∥ ye

j ∥2, A = {▽}

TNV R({xe}) =
∑N

j=1
∥ (J{xe})j ∥⋆ g({Zj}) = λ

∑N

j=1
∥ Zj ∥⋆, A = J ⊗ IN

None R({xe}) = 0

The exact forms of the proximal operators for the functions in Table 2 are derived
and provided in [Dur+16; RL15; SJP12].
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