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3
Joined HAADF-EDS

reconstructions regularized
by total nuclear variation

3.1 Introduction

X-ray energy-dispersive spectroscopy (EDS) tomography is an electron tomogra-
phy (ET) technique for 3D compositional characterization. It refers to making a
tomographic reconstruction for the distribution of a specific chemical element from
a tilt series of images called elemental maps. It is based on the linearity assump-
tion that the image intensities, which correspond to X-ray counts, are proportional
to the mass-thickness of the chemical element [WW06; Lep+13]. Unfortunately,
the number of X-ray counts is often low due to small emission probabilities and
small detection angles. Consequently, the signal-to-noise ratios (SNRs) are low
and the number of tilts is limited, which leads to poorly reconstructed images. To
obtain sufficient X-ray counts, a high electron dose is often applied by setting a
large beam current or a long acquisition time. However, this is then limited by
how much dose the sample can survive.

This chapter is based on:
Z. Zhong, W. J. Palenstijn, J. Adler, and K. J. Batenburg. “EDS tomographic recon-
struction regularized by total nuclear variation joined with HAADF-STEM tomogra-
phy”. Ultramicroscopy 191 (2018), pp. 34–43.
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Using advanced reconstruction algorithms, it is possible to make an accurate
reconstruction from a small number of tilts or from data with low SNRs. Total
variation (TV) regularization algorithms are a widely-used method for reconstruct-
ing from a small number of tilts, which find a solution with sparse gradients to the
ill-posed inverse problem [BO13; SKP06; LSP08]. In ET, it is adopted for reducing
the missing wedge artifacts [Gor+12]. In EDS tomography with low-count data,
it is used for the effect of suppressing noise and encouraging piecewise constant
structures [Bur+16; Zan+16a]. However, additional difficulties arise when TV reg-
ularization is applied to EDS tomography. The noise aggravates a significant issue
of TV – the staircase effect that produces small flat regions separated by edges.
In addition, as the TV regularization tends to preserve sharp discontinuities, the
noisy edges become sharp and saw-like. When the number of tilts is small or the
X-ray counts are low, these effects become even more severe as a result.

In this chapter, while TV regularization encourages the information of sharp
edges in the reconstructed image, we instead use total nuclear variation (TNV) reg-
ularization which also encourages common edges in multiple images [RL15; Hol14;
Dur+16]. Using TNV regularization, it is possible to augment the available data
with extra information from another imaging modality. The other modality being
exploited is high-angle annular dark-field (HAADF) STEM. Its image contrast
depends on the atomic numbers of probed atoms. Therefore, the tomographic
reconstruction based on HAADF-STEM shows a (weighted) sum of distributions
for all chemical elements [MW03; Mid+01], which sometimes also contains sharp
edges showing the variance of distributions. More importantly, due to a strongly
reduced time constraint, more HAADF-STEM tilt images can be measured with
higher SNRs in a relatively short time. Thus the HAADF-STEM reconstruction
is usually more accurate and less noisy.

Our proposed method performs the EDS reconstruction together with a HAADF-
STEM reconstruction with joint TNV regularization, from a tilt series of EDS maps
and a tilt series of HAADF-STEM images. As an extension of TV imposed on
multiple images, the TNV regularization also promotes the sparsity of gradients
for each image. Hence, it has similar effects in terms of suppressing noise and
preserving sharp discontinuities. Additionally, TNV regularization promotes joint
reconstructions that have common edge locations and gradients in the parallel/an-
tiparallel directions. The TNV regularization can penalize the staircase effects
and saw-like edges in the EDS reconstruction for not having coinciding edges in
the HAADF-STEM reconstruction image.

Note that the staircase effects can also be reduced using total generalized vari-
ation (TGV) regularization which incorporates smoothness information of the re-
constructed image. However, the TGV regularization incorporates no additional
information from extra data. Thus, saw-like edges may be still present in the TGV
regularized reconstruction. It is also noteworthy that the proposed method can be
seen as a bimodal tomography approach. In Chapter 2 and our paper [Zho+17],
we have proposed another bimodal method which is named HAADF-EDS bimodal
tomography (HEBT). That method incorporates a different prior, exploiting that
the HAADF data should be a linear combination of the EDS data for all chemical
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elements in the specimen. Therefore, HEBT can only be used if EDS data for
all chemical elements in this sample have been acquired. In contrast, the TNV-
regularized method only uses the data for a single chemical element in addition to
the HAADF-STEM data.

The rest of this chapter consists of the following sections. Section 3.2 illustrates
the notations for EDS tomography, HAADF-STEM tomography, TNV regulariza-
tion as well as the TNV-regularized joint reconstruction method. Section 3.3
demonstrates simulation studies and an experimental study. Lastly, in Section 3.4
we discuss the experimental results and draw a conclusion.

3.2 Method
Consider a specimen located in a 3D volume space discretized into N voxels. The
reconstruction unknowns for a single given chemical element in the specimen are
expressed as a vector xe ∈ RN . The reconstruction xe is referred to as the EDS
reconstruction. The input data are a tilt series of elemental maps, which are
expressed as a vector pe ∈ RMe , where Me denotes the total number of pixels.
The image intensities correspond to the characteristic X-ray counts, which are
proportional to the linear projection of the corresponding chemical element probed
by the focused beam under thin film approximation. This linear relationship is
modeled by the following system of equations:

pe
i =

N∑
j=1

we
ijxe

j , (3.1)

for i = 1, · · · , Me and j = 1, · · · , N . Each pixel position i corresponds to a ray
determined by the beam position and the tilt angle of the specimen. The weight
factor we

ij is determined by the area of the jth voxel intersected by the ith ray
integral. The matrix We ∈ RMe×N is referred to as the EDS projection matrix.

The volume space for the HAADF-STEM reconstruction is defined as the same
for joining the reconstruction with the EDS reconstruction. Similarly, the recon-
struction unknowns for the same sample are expressed as a vector xh ∈ RN , with
h denoting HAADF-STEM. The tilt series of projection images are expressed as
a vector ph ∈ RMh , where Mh is the total number of pixels for HAADF-STEM
acquisition. Note that Mh may be different from the number of pixels for EDS
acquisition (Me). In particular, this means it is possible to record HAADF-STEM
data for more tilts than for which EDS data are acquired. Following the linear
integral model, the linear relationship between the tilt series ph and reconstruction
unknowns xh is:

ph
k =

N∑
j=1

wh
kjxh

j , (3.2)

where k = 1, · · · , Mh is the pixel index, wh
kj is the entry of the HAADF-STEM
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projection matrix Wh ∈ RMh×N determined by the area of voxel j intersected by
the ray integral k.

Reconstruction algorithms can be divided into two categories: analytical algo-
rithms (e.g. filtered backprojection (FBP) [KS88]) and iterative algorithms. Here
we focus on iterative algorithms for their capability of implementing regulariza-
tion. Classically, the iterative algorithm minimizes a data cost function, based on
the above linear systems, to find solutions for the inverse problems

xe∗ = argmin
xe

∥ pe − Wexe ∥2, (3.3)

xh∗ = argmin
xh

∥ ph − Whxh ∥2, (3.4)

for EDS and HAADF-STEM tomography respectively.
To regularize the reconstruction, a regularization term is added to the cost

function, resulting in a new minimization problem. Taking TV-regularized EDS
tomography as an example, the reconstruction is computed by solving the mini-
mization problem of:

xe∗ = argmin
xe

∥ pe − Wexe ∥2 +λTV(xe), (3.5)

where the term TV(xe) gives the total variation of the reconstruction image, and
λ is the factor determining the strength of the TV regularization.

The TV term for an arbitrary 3D gray-scale image u ∈ RN is defined as:

TV(u) =
N∑
j

∥ ▽uj ∥, (3.6)

where

▽uj =

▽xuj

▽yuj

▽zuj

 (3.7)

is a discrete approximation of the gradient for the jth voxel. The operators ▽x,
▽y and ▽z approximate gradients in the X, Y and Z directions respectively by
taking the forward difference between voxels. The norm ∥ · ∥ is usually chosen
as l1-norm or l2-norm. In this chapter, we use the l2-norm, for which the TV
regularization is also called isotropic TV. Using l1-norm TV tends to encourage
horizontal and vertical edges, which is a drawback. In contrast, l2-norm TV is
rotationally invariant and thus is preferable in the application of EDS tomography
[BO13; RL15].

Next, we describe the notation for TNV regularization. TNV is usually imposed
on images with multiple channels such as RGB images. In this chapter, we join
an EDS reconstruction image and a HAADF-STEM reconstruction as the two
channels for one image. Consider an arbitrary L-channel image u. The image
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intensity on the jth pixel can be expressed as uj = (u(1)
j , . . . u

(2)
j . . . , u

(L)
j )T . The

TNV of u is then defined as the nuclear norm of the Jacobian matrix:

TNV(u) =
∑

j

∥ (J(u))j ∥⋆, (3.8)

where the (J(u))j is the Jacobian matrix defined by:

(J(u))j =


▽xu

(1)
j , ▽yu

(1)
j , ▽zu

(1)
j

...
▽xu

(L)
j , ▽yu

(L)
j , ▽zu

(L)
j

 , (3.9)

and the nuclear norm ∥ · ∥⋆ is defined as the l1-norm of the Jacobian matrix’
singular values. Note that the l1-norm here does not encourage horizontal and
vertical edges. For a one-channel image, the TNV is reduced to the isotropic TV.

TNV regularization introduces the following effects by encouraging the rank-
sparsity in the Jacobian matrix. First of all, TNV regularization leads to the
similar effects as TV regularization in terms of promoting the sparsity of image
gradients, preserving sharp discontinuities and suppressing noise. The TNV is
also rotationally invariant like the isotropic TV. Second, the TNV regularization
gives preference to the images that have common edge locations and parallel or
antiparallel gradient vectors, while it does not introduce false features between
channels [RL15].

Figure 3.1 illustrates examples of TNV computed for two-channel images with
gradients pointing in parallel, antiparallel, almost parallel and almost antiparallel
directions. For the parallel and antiparallel examples, one of the two singular
values of the Jacobian matrix will be zero, while for the other two examples, the
two singular values will be non-zero and unique. Suppose the norms of all gradients
are equal to 1, the TNV values for the pixels where two edges cross for figures (a),
(b), (c) and (d) are 2, 2, 2.14 and 2.14 respectively. Therefore, minimizing TNV
gives preference to the parallel or antiparallel gradients.

(a) Parallel
gradients

(b) Antiparallel
gradients

(c) Almost parallel
gradients

(d) Almost
antiparallel
gradients

Figure 3.1: Illustration of TNV for two-channel images and gradients.
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In our application of jointly regularizing the EDS and HAADF-STEM recon-
structions, the data fit terms for EDS and HAADF-STEM are minimized together
with a TNV term:

xe∗, xh∗ = argmin
xe,xh

∥ pe − Wexe ∥2 + ∥ ph − Whxh ∥2 +λTNV(xe, xh) (3.10)

where TNV(xe, xh) represents the TNV for a two-channel image consisting of xe

and xh, which means L = 2 and uj = (xe
j , xh

j )T for Eq. 3.9. λ is the regularization
parameter determining the strength of TNV regularization. In practice, the value
of λ should be chosen carefully to obtain a desired reconstruction result. A too
large value may lead to an over-regularized image with blurred edges, while a too
small value may lead to insufficient regularization effects.

In practice, we have to consider the magnitude of these two types of input
data. The magnitudes of EDS elemental maps and HAADF-STEM images can be
tremendously different. Intensities of the EDS elemental map, which correspond
to the X-ray counts, are usually of the order of magnitude 1 or 2, while intensities
of the HAADF-STEM image usually have different magnitudes. This difference
of magnitude may cause a biased TNV term. To avoid this, we scale the image
intensities of both types of images to a range from 0 to 1 before the reconstruction
step. Afterwards the reconstructed image can be re-scaled by the same value so
that quantitative characterization is still feasible.

3.3 Experiments
In this section, we first investigate the proposed method based on a phantom
simulation dataset and a multi-slice simulation dataset, for which ground-truth
images are available. After that, we apply the method to a real experimental
dataset.

For the simulation datasets, noiseless EDS maps are first computed. Based on
the assumption that the noise is Poisson-distributed with expected values given
by the noiseless maps, we generate maps with Poisson noise similarly to the noise
generation in [MHD18] as follows: for each pixel on each map, a random number
is generated for a Poisson distribution taking the corresponding noiseless image
intensity as the expected value. This is then taken as the noise-corrupted image
intensity. For a Poisson distribution the SNR is given by the square root of the
expected value. The magnitude (and therefore the noise level) of the EDS maps
could be calculated from assumed values of probe current, dwell time, fluorescence
yield, solid angle and detection efficiency [MHD18; Che+16]. In this chapter, for
simplicity, we set the magnitudes to levels similar to real experimental data (up
to ∼100 counts).

For comparison, reconstructions are also made for a commonly used non-regularized
reconstruction method – the simultaneous iterative reconstruction technique (SIRT)
[GB08], and the TV regularization method defined by Eq. 3.5. We use the SIRT
implementation in the ASTRA Toolbox [PBS13], and use the Douglas-Rachford
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primal-dual splitting algorithm [BH13] implemented in the Operator Discretiza-
tion Library (ODL) [AKÖ17] in Python to compute the regularized reconstruc-
tions. SIRT is computed for 50 iterations to avoid over-fitting to noise, while the
regularized reconstruction is computed until convergence. We only perform 2D re-
constructions for slices, but the results can be generalized to the third dimension
for the same effects. For conciseness, we refer to the EDS reconstructed image
jointly made using the TNV regularization as the TNV reconstruction, the recon-
structed image regularized by TV as the TV reconstruction and the reconstructed
image using SIRT as the SIRT reconstruction.

We use the linear correlation coefficient to measure image quality, which de-
termines the extent to which the reconstructed image u is linearly related to the
ground-truth image g. The correlation coefficient r is calculated as:

r =
∑

i(ui − ū)(gi − ḡ)√∑
i(ui − ū)2 ∑

i(gi − ḡ)2
, (3.11)

where ū and ḡ are the mean values of u and g respectively.
We also compute segmentation errors which can indicate the accuracy of simple

quantitative characterization. The segmentation error is calculated for a binary
image segmented from a reconstructed image. It is defined as the proportion of
incorrectly segmented pixels to the total number of non-zero pixels in the ground-
truth binary segmentation. For the binary image s and the ground-truth binary
image t, the segmentation error e is:

e =
∑

i|si − ti|∑
i ti

, (3.12)

for si ∈ {0, 1} and ti ∈ {0, 1}. The reconstruction image is segmented by thresh-
olding the image intensities. To find the optimal thresholds, we calculate the seg-
mentation errors for a set of thresholds between the minimal and maximal image
intensities of the reconstructed image. Then the one corresponding to the mini-
mal segmentation error is chosen as the optimal threshold, and the corresponding
segmentation is adopted as the optimal segmentation.

3.3.1 Phantom simulation
Data simulation and preparation

The 2D phantoms are created to simulate the single slice of a core-shell particle
composed of three chemical elements: Ag, Fe and Co. Figure 3.2 (a) shows the
distributions for these elements. Fe and Co have very similar atomic numbers and
consequently show the same contrast in the HAADF-STEM reconstruction image.
Au, which is embedded in the outer shell, has a relatively large atomic number and
a strong contrast in the HAADF-STEM image. A purpose of this phantom study is
to investigate whether the strong Ag features in the HAADF-STEM reconstruction
will introduce false features to the EDS reconstruction.
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(a) Chemical
distributions

(b) HAADF-STEM
phantom

(c) Fe phantom

20 40 60 80 100

(d) Top and bottom: noiseless and noise-corrupted EDS maps simulated for the Fe phantom

Figure 3.2: Illustration of the core-shell phantom: (a) Distribution of chemical elements Ag, Fe
and Co; (b) HAADF-STEM phantom with the Z-contrast; (c) Fe phantom for simulating EDS
maps. (d) simulated noiseless EDS maps (top) and noise-corrupted EDS maps (bottom) for Fe;
each row and each column correspond to a tilt angle and a beam position respectively.

There are two phantoms in this example: a HAADF-STEM phantom and an
EDS phantom for Fe, which are respectively shown in Figure 3.2 (b) and Figure 3.2
(c). We simulated the HAADF-STEM projection data using the ASTRA Toolbox
for every 1◦ from 20◦ to 160◦ for a limited angular range to create a missing
wedge. After that, we added Gaussian noise into the data. In addition, we used
the ASTRA Toolbox to simulate projection data for the Fe phantom for a small
number of tilts within the same angular range, which are for every 14◦ from 20◦

to 160◦ (Figure 3.2 (d)). The intensities of the noiseless maps were scaled and
then used to generate the EDS maps corrupted by Poisson noise. In this case, the
average image intensity on the non-background pixels is 43.1. In the last step, the
maps were filtered using a Gaussian filter (σ = 0.8 pixel) as a denoising process.

Reconstruction results

First of all, we performed TNV-regularized reconstructions for a set of regulariza-
tion parameter λ values to inspect the impact of this factor. We then plotted the
correlation coefficients for these reconstructions in Figure 3.3. Similarly, we per-
formed TV reconstructions for various λ values and a SIRT reconstruction. The
correlation coefficients are also plotted in Figure 3.3. The TNV reconstructions
corresponding to different λ values are shown in Figure 3.4. In addition, Figure
3.4 shows the HAADF-STEM reconstructions, which demonstrate little difference



3.3. EXPERIMENTS 43

Figure 3.3: Correlation coefficients w.r.t. regularization parameter values (λ) in the core-shell
phantom simulation study computed for different reconstruction methods. The SIRT reconstruc-
tion is performed for a fixed relaxation parameter set to 1 [GB08].

when different λ values are applied.

(a) HAADF-STEM,
λ=0.01

(b) HAADF-STEM,
λ=0.06

(c) HAADF-STEM,
λ=0.25

(d) EDS, λ=0.01 (e) EDS, λ=0.06 (f) EDS, λ=0.25

Figure 3.4: TNV-regularized joint reconstructions for the core-shell nanoparticle phantom simula-
tion: (a) - (c) HAADF-STEM reconstructions corresponding to different values of regularization
parameter λ; (d) - (f) EDS reconstructions corresponding to different values of regularization
parameter λ.

The correlation coefficient for TNV reaches the maximum when λ equals 0.06.
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Compared to the TNV reconstruction with a smaller λ, the reconstruction is less
noisy and shows fewer staircase effects. For a larger λ, the image starts to show
blurred edges as a result of over-regularization. These effects are similar for the
TV regularization. Therefore, it is reasonable to take the reconstruction corre-
sponding to the maximal correlation coefficients as the optimal reconstruction for
the regularization method.

(a) TNV, λ=0.06 (b) TV, λ=0.25 (c) SIRT

(d) RIO in (a) (e) RIO in (b) (f) RIO in (c)

Figure 3.5: Reconstructions for the core-shell nanoparticle phantom simulation: (a) - (c) EDS
reconstructions using TNV, TV and SIRT corresponding to the optimal λ values; (d) - (f) Regions
of interest (RIO) in (a), (b) and (c) respectively. The white box in (a) indicates where the RIO
is, which is the same for (b) and (c).

Figure 3.5 compares the TNV reconstruction, the TV reconstruction and the
SIRT reconstruction corresponding to the maximal correlation coefficients. The
region-of-interest images show that the TNV reconstruction has more effective
noise suppression effects and less staircase effects compared to the TV reconstruc-
tion. Both regularization methods reduce the missing wedge artifacts in the hor-
izontal direction, while the TNV regularization is more effective and accurate.
This is due to the augmentation by the more accurate reduction for missing wedge
artifacts in the HAADF-STEM reconstruction from a large number of tilts. In
addition, note that the TNV reconstruction does not show false shadows of the
Ag structure from the HAADF-STEM reconstruction. Figure 3.6 shows the seg-
mented images and the segmentation errors. The plot indicates that the TNV
reconstruction is more consistent with the ground-truth phantom.
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(a) TNV (b) TV (c) SIRT (d) Segmentation
errors

Figure 3.6: (a) - (c) Segmented images corresponding to the TNV, TV and SIRT reconstruction
images in Figure 3.5 (a) - (c); (d) Segmentation errors w.r.t the EDS phantom for (a) - (c).

(a) HAADF-STEM image
at 2◦

(b) HAADF-STEM image
at 92◦

(c) EDS map for Ta at 2◦ (d) EDS map for Ta at 92◦

(e) EDS map for Ta at 2◦,
1/3 image intensities

(f) EDS map for Ta at
92◦, 1/3 image intensities

Figure 3.7: Examples of simulated tilt images for the multislice simulation. The elemental maps
for Ta shown here are after Gaussian smoothing. The dashed lines indicate the position of the
reconstructed slice. The colorbars indicate the image intensities. The tilt axis is vertical.
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(a) HAADF
reconstruction

(b) EDS reconstruction for
Ta

(c) Segmented image for
(b)

Figure 3.8: Ground-truth for the multi-slice simulation. The white frame in (b) indicates where
the “tip” feature is.

3.3.2 Multi-slice simulation study
Data simulation and pre-processing

This study is based on a multi-slice simulation dataset of a 25×25×25 nm semicon-
ductor described in [AR16]. Compared to the phantom simulation, the multi-slice
simulation is more realistic since it includes modeling of the real physics and is
based on a specimen model at the atomic level. The multi-slice simulation was
performed for a high-tension of 200 keV, a convergence angle of 10 mrad and a
focused beam on the uppermost point of the specimen. The HAADF detector has
an inner angle of 90 mrad and an outer angle of 230 mrad. The focused electron
probe was sampled by a 256×256 pixel array over 9.3×9.3 Å. The EDS elemental
maps were generated by summing the probability of characteristic emission.

The model is a region of a PMOS finFET. It consists of several layers placed on
top of a Si region sequentially: O, HfO2, Ta, and TiAlN2. Between the HfO2 layer
and the Ta layer there is a carbon nanoparticle contaminant. There are pinholes
in the HfO2 layer which are filled with Ta. We focus on the EDS reconstruction for
Ta. The distribution of amorphous Ta is homogeneous in the specimen, for which
the total-variation regularization can be applied. Also, the HAADF-STEM data
have a large Z-contrast for Ta compared to the other elements. Therefore, the
HAADF-STEM reconstruction can be used to augment the EDS reconstruction.

The raw dataset is noise-free and is at atomic resolution (≈ 0.049 nm/pixel),
where atomic-scale structures are clearly present. When we tried to add strong
noise to the images, the atomic-scale structures were strongly affected by the
noise. Therefore, to make the data more suitable for studying noisy data, we
down-sampled the simulation data to a lower resolution. Hence, the simulated
images were binned from 512 × 512 pixels to 128 × 128 pixels. After that, the
images were filtered by a Gaussian filter (σ = 1.0 pixel) to simulate the effect
of a less tightly focused beam. Figure 3.7 (a) and (b) show two examples of
the HAADF-STEM projection images. The process of binning approximated a
low-resolution simulation. In real experiments, for lower resolution a less tightly
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focused beam should be used so that the entire area after binning pixel will be
filled by the beam. In the end, we selected the tilt series of HAADF-STEM images
from 2◦ to 178◦ every 2◦, while the tilts at zone-axis (0◦ and 90◦) were excluded
due to the channeling effects.

Similar to the phantom simulation, we generated the maps corrupted by Pois-
son noise from the noiseless simulation data. In this simulation, we focus on com-
paring the reconstructions made from different cases of data. Thus we made three
data cases for different EDS datasets combined with the same HAADF-STEM
data. In the first case, the fully sampled EDS data consists of 30 tilts from 2◦ to
176◦ for every 6◦, of which two examples are shown in Figure 3.7 (c) and Figure
3.7 (d). The average image intensity is about 16.4. Both the second and third
cases simulate the scenarios when the total electron dose is reduced by a factor
of 3. The second one is a limited-tilt case, where the number of tilts is decreased
from 30 to 8. The angular range is from 2◦ to 170◦ for every 24◦. The third case
is a low-SNR case. The number of tilts is again 30, while the noiseless maps were
scaled by a factor of 3 to simulate reducing the dose. In this case, the average
image intensity is about 5.8. For this case, two examples are given in Figure 3.7
(e) and Figure 3.7 (f). To all the maps, a Gaussian filter (σ = 0.8 pixel) was
applied as a denoising pre-processing step.

Figure 3.8 (a) and Figure 3.8 (b) respectively show the SIRT reconstructions
from the noiseless HAADF-STEM and EDS data, for the 2D slice indicated by
the dashed line in Figure 3.7. This EDS reconstruction is regarded as the ground-
truth. In addition, Figure 3.8 (c) shows the ground-truth segmented image for
the EDS reconstruction. Note that there is a “tip” feature on the top right of Ta
reconstruction, which is a simulated semiconductor defect.

Figure 3.9: Correlation coefficients w.r.t. regularization parameter λ for different numbers of tilts
and magnitudes of image intensities in the multi-slice simulation study. The SIRT reconstructions
are performed for a fixed relaxation parameter set to 1.
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(a) TNV,
fully-sampled

(b) TNV, limited-tilt (c) TNV, low-SNR

(d) TV, fully-sampled (e) TV, limited-tilt (f) TV, low-SNR

(g) SIRT,
fully-sampled

(h) SIRT, limited-tilt (i) SIRT, low-SNR

Figure 3.10: EDS reconstructions for the multi-slice simulation: (a) - (c) TNV reconstructions
corresponding to the optimal λ values; (d) - (f) TV reconstructions corresponding to the optimal
λ values; (g) - (i) SIRT reconstructions. The EDS data in the left, middle and right columns are
respectively the fully-sampled, limited-tilt and low-SNR.
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Figure 3.11: Segmentation errors for the reconstructions in Figure 3.10

Reconstruction results

Similar to the phantom study, we performed reconstructions with different regu-
larization parameters and calculated the correlation coefficients w.r.t. the ground-
truth, which are plotted in Figure 3.9. Figure 3.10 shows the TNV and TV recon-
structions corresponding to the maximal correlation coefficient values as well as
the SIRT reconstructions. We segmented these reconstructions using the thresh-
olding values corresponding to minimal segmentation error. Figure 3.11 shows the
segmentation errors.

In the fully-sampled case, for which the data quality is relatively good, the
maximal correlation coefficients are close for each method. The optimal TNV
reconstruction image is less noisy than the TV reconstruction. The SIRT recon-
struction is smooth while showing less sharper edges. Thus, although the SIRT
reconstruction has slightly higher correlation coefficient, the segmentation error is
larger than the TNV reconstruction as the edge information is less accurate.

For the limited-tilt case, the maximal correlation coefficient for TNV recon-
struction is larger than the coefficient for TV reconstruction, which is in turn
larger than the coefficient for SIRT reconstruction. The SIRT reconstruction loses
the “tip” defect feature and corresponds to a large segmentation error, while the
TV reconstruction is still affected by staircase effects and has rounded ends. In
contrast, the TNV reconstructions show edges that are more accurate and overlap
with the HAADF-STEM reconstruction. Also, the “tip” feature is clearer. For
the low-SNR case, the SIRT and TV reconstructions have more accurate structure
compared to the limited-tilt case, however, are also more noisy. In comparison,
the TNV reconstruction is both smooth and has accurate structure.

In general, the TNV reconstruction method outperforms the TV method and
SIRT when the number of tilts is reduced or the data SNR is reduced. Comparing
the TNV reconstruction image for the limited-tilt case and the low-SNR case, we
notice that the latter one is slightly better than the former one. In particular,
the “tip” feature is more accurately reconstructed in the latter one. However,
we should not draw a general conclusion based on this, as the result may vary
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depending on the structure or noise levels of reconstructions.

3.3.3 Real experiment
Data acquisition and preparation

In the last part of this section, we apply the TNV-regularized reconstruction
method to real experimental data. The sample is a pillar-shape semiconductor
consisting of 8 chemical elements (N, O, Al, Si, Ti, Co, Hf and Ta) [Qiu+15].
The data were acquired using a FEI Titan electron microscope equiped with the
SUPER-X system with 4 SDD X-ray detectors. The sample was placed on a Fish-
ione on-axis rotation tomography holder, which allows 360◦ rotation and avoids
detector shadowing [Sla+16b]. For HAADF-STEM, a tilt series of 221 images
were taken from 0◦ to 220◦ every 1◦ at a 120 keV high-tension. The angular
range was chosen as the maximal angular range allowed by the sample holder in
a single smooth acquisition sequence. Two projection images at orthogonal angles
are shown in Figure 3.12 (a) and Figure 3.12 (b). For EDS, a tilt series of 47
spectrum-image data-cubes were acquired for an angular range from 0◦ to 216◦

at approximately every 5◦. The convergence angle was 10 mrad, the high-tension
was 120 keV and the probe current was ∼ 280 pA. The data acquisition time was
about 270 seconds per tilt, which corresponds to a dwell time of 4.11 ms/pixel for
the image of 256×256 pixels. The images were later cropped to 192×192 pixels.
In addition, another tilt series of HAADF-STEM projection images aligned to the
EDS measurement were taken simultaneously.

Figure 3.13 plots the spectrum of total X-ray counts integrated over the spec-
trum images at 0◦, where characteristic lines of all the presenting elements are
indicated, among which we focus on the chemical element Ti. In this case, Ti is
suitable for applying the TNV-regularized reconstruction method. It has a rela-
tively low Z-contrast compared to the heavy element Ta that surrounds it. This
property can be utilized to augment the EDS reconstruction. Figure 3.12 (c) and
Figure 3.12 (d) shows two elemental maps of Ti. The elemental maps were ex-
tracted by integrating the spectrum images at the Ti-Kα line (4.51 keV) for an
integration window of 0.25 keV. Neither background subtraction nor PCA denois-
ing has been applied. The maps were then smoothed using a Gaussian filter for
σ = 0.8 pixel.

For the alignment between tilt images, the tilt series of HAADF-STEM im-
ages were aligned using the cross-correlation approach implemented in the FEI
Inspect3D software. After that, the HAADF-STEM images co-acquired with EDS
were aligned to the images at the same tilt in the large HAADF tilt series. Lastly,
the same alignment settings were applied to the Ti elemental maps.

Reconstructions and results

In addition to the EDS data of 47 tilts, we also removed some tilts to investigate
the TNV-regularized reconstruction method for 26 and 14 tilts respectively. Note
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(a) HAADF-STEM image at 0◦ (b) HAADF-STEM image at 90◦

(c) EDS map for Ti at 0◦ (d) EDS map for Ti at 90◦

Figure 3.12: Examples of tilt images for the semiconductor sample. The elemental maps shown
here are after Gaussian smoothing. The dashed lines indicate the position of the reconstructed
slice. The colorbars indicate the image intensities corresponding to the X-ray counts. The tilt
axis is vertical.

that in this case, as there is no ground truth measurement, we cannot compute
the variation of correlation coefficients w.r.t. the parameters like in the simulation
studies. Instead, we first performed reconstructions for different λ values from
the 47-tilt data, and chose one that shows the strongest noise-suppression and no
over-regularization effect. For TNV and TV, we selected the reconstructions for
λ = 0.04 and λ = 0.10 respectively. After that, we applied the same regularization
parameters to the 26-tilt and 12-tilt datasets. The reconstructions are shown in
Figure 3.14.

For the 47-tilt reconstructions, the TNV and TV reconstruction are similar
to each other. Although for both the noise is suppressed and sharp edges are
enhanced, the edges in the TNV reconstruction are slightly less noisy compared
to the TV reconstruction. This is more obvious for the 26-tilt case when the TV
reconstruction shows strong staircase-like patterns, while the TNV reconstruction
is still smooth. For the 12 tilt case, the TV reconstruction and SIRT reconstruction
are very noisy, while the TNV reconstruction is smooth and still shows structural
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Figure 3.13: An example of the X-ray spectrum for total counts integrated over the spectrum
image at 0◦. The Y axis corresponds to the total number of X-ray counts in the spectrum image
at each energy channel. The black lines indicate the characteristic lines for chemical elements
in the sample (N-Kα, O-Kα, Al-Kα, Si-Kα, Ti-Kα, Co-Kα, Hf-Lα, Ta-Lα). The dashed lines
indicate the integration windows (0.25 keV) for extracting the Ti-Kα elemental maps at 4.51
keV.

information similar to the 47-tilt reconstruction.
Figure 3.15 (a) shows the correlation coefficients of the 26-tilt and 14-tilt re-

constructions w.r.t. the 47-tilt reconstructions corresponding to the same method.
For the 26-tilt case, the correlation coefficients show that the TNV reconstructions
are more linearly related to the 47-tilt reconstruction, which indicates that this
reconstruction is more accurate even when some EDS data is missing. Figure
3.15 (b) shows the segmentation errors w.r.t. the segmented image in Figure
3.15 (c), which was segmented based on the reconstruction image Figure 3.14 (a).
For the 26-tilt case, quantitative information based on the TNV reconstruction is
more accurate compared to the others. Nevertheless, for the 14-tilt case, although
the correlation coefficient and segmentation error for the TNV reconstruction are
slightly smaller than those for the TV reconstructions, they are nearly the same
as for the SIRT reconstruction. This may be because the image is so blurred that
the metrics fail.

3.4 Discussion and conclusion
In this chapter, a new tomographic reconstruction approach based on EDS is
proposed. The EDS reconstruction is performed together with a HAADF-STEM
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(a) TNV, 47 tilts (b) TNV, 26 tilts (c) TNV, 14 tilts

(d) TV, 47 tilts (e) TV, 26 tilts (f) TV, 14 tilts

(g) SIRT, 47 tilts (h) SIRT, 26 tilts (i) SIRT: 14 tilts

Figure 3.14: EDS reconstructions for the real experimental data. The EDS data corresponding
to the left, middle and right columns consists of 47, 26 and 14 tilts respectively; (a) - (c) TNV
reconstructions; (d) - (f) TV reconstructions; (g) - (i) SIRT reconstructions.
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(a) Correlation coefficients (b) Segmentation errors (c) Binary image
used to compute the
segmentation error.

Figure 3.15: Measurements for the 26-tilt and 14-tilt EDS reconstructions in Figure 3.14.

reconstruction, and they are jointly regularized by a shared TNV term. Using TNV
regularization, it is possible to suppress noise and accurately reconstruct from a
limited number of tilts, similar to TV regularization. TNV regularization further
incorporates that the reconstruction images have sparse gradients that point in the
same directions. Therefore, it encourages the EDS reconstruction to form edges
overlapping with the more accurate and less noisy HAADF-STEM reconstruction.

The proposed method has been investigated on a phantom simulation, a multi-
slice simulation and a real experimental dataset. For all the datasets, we used
a large number of high-quality HAADF-STEM tilt images to augment the EDS
reconstruction from only a small number of tilts. Note that even if the number of
HAADF-STEM tilt images is smaller, the EDS reconstruction should still be aug-
mented by the method due to the high SNR of HAADF-STEM. Also note that it
is still an unsolved question how to set the regularization parameter automatically.

For the phantom simulation, the TNV method demonstrates noise suppres-
sion effects and correction of missing wedge artifacts. The reconstructed edges
match those of the HAADF-STEM reconstruction. In addition, the reconstructed
image shows no false structures resembling the structures in the HAADF-STEM
reconstruction. For the multi-slice simulation, we compared the reconstructions
for reduced dose. The reconstructions regularized by TNV are consistently more
accurate compared to those regularized by TV or without regularization. Lastly,
the TNV regularization was applied to real experimental data, and also shows
effective noise suppression and sharp-edge enhancement. The TNV reconstruction
made from 26 tilts still shows structures similar to the many-tilt reconstruction,
while quantitative characterization may fail if the number of tilts is decreased to
14.

As an alternative to the method proposed here, the TNV regularization could
also be incorporated in a sequential way: first perform the HAADF-STEM re-
construction, then use the reconstruction as a TNV prior to perform the EDS
reconstruction. The sequential approach is more computationally efficient if the
same HAADF-STEM reconstruction can be repeatedly used. Also, it gives the
opportunity to perform the HAADF-STEM reconstruction using different recon-
struction methods with various priors. However, these need further research and
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experimental validation and will be studied in the future. Also, we will explore to
combine multiple elements together with one TNV term.

In conclusion, the proposed method can be used to obtain more accurate re-
constructions for data acquired using the conventional data acquisition scheme
or for existing datasets. Particularly, it can be used to augment the noisy EDS
reconstruction for elements of low concentrations, which may be most interesting
to characterize. Moreover, using the proposed method, it is possible to adopt
shorter data acquisition time or smaller beam currents while keeping nearly the
same image quality. It also paves the way for developing a faster EDS tomography
pipeline when the next-generation EDS detectors with higher detection rates are
available.
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