
Reconstruction methods for combined HAADF-STEM and EDS
tomography
Zhong, Z.

Citation
Zhong, Z. (2018, December 10). Reconstruction methods for combined HAADF-STEM and EDS
tomography. Retrieved from https://hdl.handle.net/1887/67129
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/67129
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/67129


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/67129 
 
 
 
Author: Zhong, Z. 
Title:  Reconstruction methods for combined HAADF-STEM and EDS tomography 
Issue Date: 2018-12-10 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/67129
https://openaccess.leidenuniv.nl/handle/1887/1�


2
HAADF-EDS bimodal

tomography

2.1 Introduction
Electron tomography (ET) is nowadays commonly used in materials science to
characterize the three-dimensional (3D) structure and composition of nanomateri-
als starting from a tilt series of two-dimensional (2D) projection images [Her09].
Typically, the projection images for ET in materials science are obtained using
high angle annular dark field (HAADF) scanning transmission electron microscopy
(STEM) [Mid+01; MW03]. Images acquired using HAADF-STEM are called Z-
contrast images because the projected intensity is related to the average atomic
number that is integrated along the projection direction [Mid+01; Küb+05]. Con-
sequently, the chemical composition can be characterized in 3D. However, when
investigating heteronanostructures with small differences in Z, spectroscopic tech-
niques are required to investigate the 3D distributions of the different chemical
elements.

Previously, both energy dispersive X-ray spectroscopy (EDS) [Sag+07; Gen+12;
Lep+13; Sla+16b] and electron energy loss spectroscopy (EELS) [Jar+09; Yed+12;
Yed+14] have been used in combination with tomographic reconstruction tech-
niques. Both techniques require similar computational steps to produce element-
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16 CHAPTER 2. HAADF-EDS BIMODAL TOMOGRAPHY

specific images (elemental maps) that give the 2D projections of a chemical ele-
ment, which also satisfy the projection requirement for tomography under certain
circumstances [Sla+16b; Yed+12]. In this study, we only focus on EDS-STEM
tomography.

HAADF-STEM tomography and EDS-STEM tomography are highly comple-
mentary techniques that each have advantages and disadvantages. The major
advantage of HAADF-STEM tomography in comparison to EDS-STEM tomogra-
phy is that it yields reconstructions with a relatively high signal to noise ratio
(SNR). However, the reconstructed image intensities contain only aggregate in-
formation of all elements, while the EDS-STEM technique yields element-specific
reconstructions. So far, HAADF-STEM has been combined with EDS-STEM in
ET in terms of tilt series alignment [Gor+14], density estimation [Bur+16] or
thickness estimation [Zan+16a]. It is highly desirable to develop reconstruction
techniques that can exploit the favorable properties of these complementary tech-
niques simultaneously. The concept of “multimodal imaging” has been introduced
in the field of medical imaging, where the data from several imaging modalities
such as PET, SPECT, CT and MRI are combined in a single joint reconstruction
procedure [ZMA10].

In this chapter, we introduce the multi-modal imaging concept to ET, by
proposing a novel HAADF-EDS bimodal tomographic (HEBT) reconstruction
technique that simultaneously reconstructs from projection images acquired by
two complementary imaging modalities. In this method, chemical elements are
linked in the reconstruction process but separated in the final output. The aim
of our algorithm is to keep the element-specific feature of elemental maps while
preserving the high SNR of Z-contrast images.

Section 2.2 will begin with discussing the mathematical models of HAADF-
STEM tomography and EDS-STEM tomography. A new approach to link the
models will be proposed and the HAADF-EDS bimodal tomographic reconstruc-
tion technique will be explained. In Section 2.3 and Section 2.4, we will investigate
the performance of the new technique using both simulated and experimental data.
In Section 2.5, the advantages and the outlook of HEBT will be discussed.

2.2 Projection models and the reconstruction method

2.2.1 HAADF-STEM and EDS-STEM imaging models
Suppose there are K chemical elements in a specimen, we have K volumetric
objects as the unknowns to be reconstructed, so the distribution of each chemical
element is represented by a voxel image. Images formed by HAADF-STEM and
EDS-STEM are related to the density distributions of these chemical elements.

For HAADF-STEM projection images, it is known that the intensity is pro-
portional to the number of electrons scattered at high angles. For a single atom,
the number of these electrons is proportional to the scattering cross section which
depends on its atomic number [Tre11; Pen89; Wal06]. For thin-film specimens
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in which multiple scattering and absorption is negligible, the number of scattered
electrons ph equals the sum of scattering cross sections of all the atoms probed by
the electron beam:

ph =
K∑

e=1
σeNe =

K∑
e=1

σe

∫
ρe(t)dt

Me
, (2.1)

where e = 1, 2, . . . K are the indices denoting the type of chemical element, σe is the
scattering cross section, Ne is the number of atoms, ρe(t) is the mass-thickness and
Me is the atomic weight. By defining the HAADF-STEM response factor ze = σe

Me

, the image grayscale is concisely expressed as the weighted sum of mass-thickness
of all atoms:

ph =
K∑

e=1
ze

∫
ρe(t)dt. (2.2)

For the sake of numerical computation, the volume to be reconstructed is often
discretized into N equally-spaced voxels. Thus, the density distribution of chemical
element e is written as a vector ρe ∈ RN , e = 1, 2, . . . K. The Z-contrast images
used as tomographic reconstruction inputs are taken at different tilt angles, where
every pixel specifically corresponds to a beam position and a tilted angle of the
specimen. In total there are M pixels for all the tilted images. The grayscale on
the ith pixel is now written as an entry ph

i in ph ∈ RM . Now the continuous line
integral in Eq. 2.2 is replaced by the discrete ray-sum as:

ph
i =

K∑
e=1

ze
N∑

j=1
wijρe

j , (2.3)

where the factor wij is determined by the area intersected between the ith ray
integral and the jth voxel [KS88, Chapter 7]. Note that in the conventional
HAADF-STEM tomography where the reconstruction models are defined by ph

i =∑N
j=1 wijxj , the reconstructed quantity is actually

∑K
e=1 zeρe

j , which describes the
distribution of the weighted sum of densities.

Unlike in HAADF-STEM tomography where projection images contain infor-
mation about all atom types simultaneously, in EDS-STEM tomography each
chemical element has its own series of tilted element-specific images, which de-
picts the projection of the chemical element and are usually called elemental maps
(see more in [Sch+10; Hab+14] and [WC16, Chapter 16]). Their grayscales cor-
respond to the photon counts of the characteristic X-ray of a chemical element.
Under the thin-film approximation in which X-ray absorption and fluorescence is
negligible, the characteristic X-rays counts pe for the eth chemical element is pro-
portional to the mass-thickness of this chemical element probed by the electron
beam (discussed in [WW06; WC16]), which we define here as:

pe = ζe

∫
ρe(t)dt, (2.4)



18 CHAPTER 2. HAADF-EDS BIMODAL TOMOGRAPHY

where ζe is the EDS-STEM response factor that characterizes how many char-
acteristic X-ray counts are collected for a unit amount of the chemical element.
Using the same notations as Eq. 2.3, the line integral relationship can be written
in a discrete form as:

pe
i = ζe

N∑
j=1

wijρe
j . (2.5)

Based on the model, each chemical element can be characterized independently.
Please note that in EDS-STEM tomography as in [Sag+07; Gen+12; Lep+13], the
reconstructed quantity is the weighted density distribution ζeρe

j .

2.2.2 Linking HAADF-STEM and EDS-STEM

An obvious and internal connection between the two types of imaging techniques
is that their projection images are both related to density distributions. However,
the relations to density are based on different response factors (ze and ζe) which
are difficult to estimate. To estimate these factors, special pure-element specimens
need to be prepared and measured with extra labor and cost. Moreover, estimated
factors are often not reusable since their values vary for different experimental set-
ups.

Instead, we estimate the ratio of response factors re = ze

ζe , which we refer to
here as the response ratio factors, to link the two types of images. They can be
estimated based on the assumption that both types of images are linearly related
to the projection of density distribution. To be more specific, if we replace the∑N

j=1 wijρe
j by pe

i

ζe (according to Eq. 2.5) in Eq. 2.3, we have:

ph
i =

K∑
e=1

repe
i , (2.6)

where there are K unknowns re. For M pixels in the HAADF-STEM and EDS-
STEM images, there is an overdetermined system of M linear equations for the
K unknowns. By solving this system of linear equations (e.g. using the linear
least squares method), we can estimate the response ratio factors. This can be
done using only the tomographic projection images and without measuring extra
specimens, and is the first step to incorporate HAADF-STEM and EDS-STEM in
a simultaneous reconstruction process.
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2.2.3 HAADF-EDS bimodal tomographic reconstruction
By making the substitution xe

j = zeρe
j , the HAADF-STEM model of Eq. 2.3 and

the EDS-STEM model of Eq. 2.5 can be rewritten as:

ph
i =

K∑
e=1

N∑
j=1

wijxe
j , (2.7)

repe
i =

N∑
j=1

wijxe
j . (2.8)

In a full system of equations, containing an equation for each measured value
in each projection image, the above equations are written as ph =

∑K
e=1 Wxe and

repe = Wxe. We see that both systems now have the same unknowns, the images
xe for all chemical elements. The unknowns xe have the same unit as the intensities
reconstructed from HAADF-STEM projections, but they can also be transformed
into the quantitative distributions of the individual elements for each voxel when
EDS response factors (ζ factors) are provided.

To obtain reconstructions that are maximally consistent with both HAADF-
STEM and EDS-STEM data, we should minimize the following residuals for EDS-
STEM and HAADF-STEM simultaneously:

x∗ = argmin
x=(x1T ...xeT ...xkT )T

α2 ∥ ph −
K∑

e=1
Wxe ∥2

2 +

(1 − α)2
K∑

e=1
∥ repe − Wxe ∥2

2, (2.9)

where 0 < α < 1 is introduced here to balance between the HAADF-STEM and
EDS-STEM terms. The square terms are weighted by α2 so that α corresponds to
the image intensity. This weighting factor determines the weight of the HAADF-
STEM term in the reconstruction process and should be chosen depending on
the noise level of the elemental maps. In principle, α can be arbitrarily chosen
between 0 and 1. However, in practice, if α is too small, the influence from the
HAADF-STEM data will be hardly observable. Our empirical studies show that
a number between 0.7 and 0.9 yields consistent results that balance the influences
of the two modalities for our experimental data. In Section 3, we will discuss more
about how the weighting factor influences reconstruction results.

The minimization problem in Eq. (9) can be formulated as a least squares
problem:

x∗ = argmin
x

∥ pa − Wax ∥2
2, (2.10)

where
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pa =



(1 − α)r1p1

...
(1 − α)repe

...
(1 − α)rKpK

αph


,

Wa =



(1 − α)W . . . ∅ . . . ∅
...

. . .
...

. . .
...

∅ . . . (1 − α)W . . . ∅
...

. . .
...

. . .
...

∅ . . . ∅ . . . (1 − α)W
αW . . . αW . . . αW


,

and x =



x1

...
xe

...
xK

 .

This least square problem can be solved using an iterative algorithm. In this
chapter, the widely used simultaneous iterative reconstruction technique (SIRT)
[GB08] is adopted in the experiments. To incorporate the physical constraint
that the elemental composition should not have negative values, we apply a non-
negativity constraint to SIRT by thresholding negative values in every iteration.
We refer to the complete method as HAADF-EDS bimodal tomography (HEBT).

The SIRT algorithm is more robust to noisy data than the common weighted
backprojection algorithm, as it computes a weighted least-squares solution, which
effectively averages the noise over all projection angles, assuming that the noise
follows a normal distribution. We point out that there are tomography recon-
struction algorithms that are even more robust with respect to noisy data: (i)
statistical reconstruction algorithms that model the statistical distribution of the
noise and (ii) algorithms that incorporate prior knowledge such as discreteness or
smoothness of the image. As the noise in the EDS data is Poisson distributed, but
the noise in the resulting elemental maps follows a different distribution that is
difficult to model in detail, we consider the Gaussian model to be a solid choice.

2.3 Experimental design and data
We design three experiments for different purposes. In the first experiment, the
HEBT algorithm is applied to reconstruct 2D images from simulation data. In
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this simulation experiment, the stability of the HEBT reconstruction technique as
a function of the response ratio factors can be investigated.

In the second experiment, we investigated cubic Au-Ag nanoparticles using
HEBT. As the two compositions (Au and Ag) are well separated in the particle
and have a substantial difference in atomic number, the 3D distribution of the
different chemical elements can be investigated using HAADF-STEM tomography
and does not require EDS. Here, this HAADF-STEM reconstruction can be used
as ground truth to compare the quality of the HEBT reconstructions in comparison
to conventional EDS reconstructions.

The key advantage of HEBT with respect to conventional HAADF-STEM re-
construction only becomes clear if the HAADF-STEM reconstruction does not
allow for straightforward segmentation of the elements, either because the differ-
ence in Z-contrast between the elements is low, or because the elements are mixed
at a sub-voxel resolution. In such cases, HEBT can potentially reconstruct the in-
dividual 3D elemental volumes (not possible by HAADF-STEM), while achieving
a more faithful reconstruction at lower noise level compared to conventional EDS
reconstructions. This advantage is illustrated by the results of the third experi-
ment, applying the HEBT algorithm to another nanoparticle in which an alloy of
Au and Ag is present.

2.3.1 Phantom simulation
The first experiment is based on a 2D phantom image shown in Figure 2.1, which
was created to resemble a slice of the non-alloyed Au-Ag nanoparticle (see Figure
2.3). Figure 2.1 (a) and (b) are the Au and Ag phantom objects with homogeneous
density. Figure 2.1 (c) is a Z-contrast phantom image of Au and Ag phantoms
weighted by HAADF-STEM response factors that are assumed to be z(Au) = 791.5

and z(Ag) = 471.5 [Tre11]. To simulate projection images, tilt series of projections
were computed using the ASTRA toolbox [Aar+15]. The projection geometry has
512 pixels and 31 tilt angles from −75◦ to 75◦ with a step size of 5◦.

The HAADF-STEM sinogram (Figure 2.1 (f)), which is assumed to be low-
noise, is simply assigned as the tilt series of the Z-contrast phantom. For EDS-
STEM, two sinograms (Figure 2.1 (d) and (e)) were generated by applying Poisson
noise to the tilt series of Au and Ag phantom objects. The EDS-STEM mapping
process was simulated in a way that the X-ray count on each pixel is rendered as a
random integer generated from the Poisson distribution. Based on the EDS-STEM
models, the mean parameters of the Poisson distributions were assigned as the tilt
series multiplied by the response factors. The response factors were selected as
ζ(Au) = 1.88 × 10−2 and ζ(Ag) = 2.4 × 10−2 so that the mean expected numbers of
X-ray counts approximate the mean X-ray counts in the elemental maps of the first
sample (Figure 2.3 (b) and (c)). A filtering operation using an 8-pixel 1D Gaussian
filter was applied to the EDS-STEM sinograms as an easy implementation of noise
smoothing [Gen+13; Sla+16b]. The intensity of the HAADF-STEM sinogram is
at a much larger order of magnitude than the EDS-STEM sinograms.
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(a) (b) (c)

(d)

(e)

(f)

Figure 2.1: (a) The Au phantom object, (b) the Ag phantom object and (c) the Au-Ag Z-contrast
phantom image. (d) The Au EDS-STEM sinogram, (e) the Ag EDS-STEM sinogram and (f) the
HAADF-STEM sinogram.

2.3.2 Au-Ag nanoparticles

For the real-world experiments, tilt series of projection images were acquired using
the same procedures for both Au-Ag samples. First, the sample was mounted on
the tomographic holder placed in an electron microscope (Tecnai Osiris, FEI com-
pany) equipped with four silicon drift detectors (SuperX system, FEI company).
During the tilt series, the sample was tilted from −75◦ to 75◦ with a tilt increment
of 5◦ for the first sample. At each tilt, a Z-contrast image was first recorded by the
HAADF detector. The sample was then scanned with an acquisition time of 300
seconds to record X-rays spectrum images over 2048 energy channels. In order to
reduce the shadowing effect of SDD detectors, the detectors on one side to which
X-rays were blocked were turned off, while the other two detectors on the other
side were turned on [Sla+14]. A tilt series of the second sample was acquired
using almost the same procedures except that the sample was tilted over 29 steps
from −70◦ to 70◦. The raw data were then processed before being used as tomo-
graphic reconstruction input data. For HAADF-STEM, the tilt series of Z-contrast
projection images were aligned using the cross-correlation method. The intensity
damping has also been corrected by linearizing the nonlinear intensity-thickness
relation [van+12]. For EDS-STEM, the spectrum images were denoised using prin-
cipal component analysis (PCA) decomposition/reconstruction [Bur+16; Luc+13].

The high peaks near 8.040 keV and 8.904 keV come from Cu in the holder, which



2.4. EXPERIMENTAL RESULTS 23

will overwhelm and dominate the other components in PCA if they are included.
To avoid this, we only took out the energy channels near the Au and Ag peaks for
PCA decomposition (Figure 2.2 (b)) (the characteristic peaks are Mα = 2.15 keV,
Mβ = 2.20 keV and Lα = 9.70 keV for Au, and Lα = 2.98 keV and Lβ = 3.19 keV
for Ag). After PCA decomposition, we examined every component and selected
the first 15 components for PCA reconstruction and abandoned the remaining
components as noise. Next, the denoised spectrum images near characteristic
channels were extracted and summed up to the elemental maps (Figure 2.2 (b)).

Note that since the X-ray counts are very low for such a high resolution, even af-
ter PCA denoising the elemental maps remain very noisy. Therefore, we applied an
averaging image filter with a 12 ×12 pixel Gaussian kernel (rotational-symmetric)
to the elemental maps. Finally, the elemental maps were again aligned to match
the Z-contrast images using the cross-correlation method. For each sample, the
data processing steps resulted in three tilt series of projection images for each
sample: two tilt series of elemental maps and one tilt series of Z-contrast images
(see examples in Figure 2.3).

2.4 Experimental results
In addition to the HEBT reconstructions, we also computed HAADF-STEM to-
mographic reconstructions from Z-contrast projection images and EDS-STEM to-
mographic reconstructions from elemental maps. All the reconstructions were
computed using the SIRT algorithm with non-negativity constraints unless indi-
cated otherwise. The number of iterations is chosen to be large enough to assure
convergence of HEBT as well as not too large to avoid over-fitting the least square
problem. The weighting factor α was chosen as 0.7 unless indicated, which we
found to be a good value in our experiments that balances the influence of the
EDS-STEM and HAADF-STEM data. The response ratio factors used in HEBT
were estimated by fitting the linear models of Eq. 2.6 using the non-zero pix-
els in the tomographic input data using the NNLS (Non-negative least squares)
algorithm [LH74, Chapter 23].

We can assess the image quality of reconstructions with reference images in
the first two cases. For the simulation, we can compare reconstructions with the
phantom images; for the non-alloy Au-Ag nanoparticle, we use the segmentations
acquired from the Z-contrast reconstructions as the ground-truth references. Here
we use three types of image quality metrics. (i) Structural similarity index (SSIM,
[Wan+04]) computes structural similarity between images, which aligns with im-
age quality perceived by human eyes. Since image intensities are different for
HAADF-STEM and EDS-STEM, we exclude the luminance and contrast terms
for SSIM, and only compute the structure term. (ii) Mean-squared error (MSE)
simply computes the difference between reference images (x) and reconstructions
(y) which were scaled by scaling factors that give minimal MSE. The computation
is formulated as: MSE(x, y) = minc ∥ x − cy ∥2

2, where c is the scaling factor. (iii)
The difference in pixels (DP) is computed as the l1 norm of the difference between



24 CHAPTER 2. HAADF-EDS BIMODAL TOMOGRAPHY

 

Before After 
a 

b 

Figure 2.2: (a) Spectrum of the Au-Ag nanoparticle before PCA denoising. On the top-right
corner show the Au elemental maps before and after PCA denoising. The yellow boxes indicates
where the intensities of the spectrum were extracted. (b) Zoom-in to the spectrum (black) and
the denoised spectrum (green). The colored regions indicated at which channels the denoised
spectrum images were extracted to elemental maps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: The upper and bottom rows correspond to the Au-Ag nanoparticle at tilt angle −75◦

and the alloyed Au-Ag nanoparticle at tilt angle 30◦ respectively. Figures (a) and (e) are Au
elemental maps. Figures (b) and (f) are Ag elemental maps. Figures (c) and (g) are Z-contrast
projection images. Figures (d) and (f) are the sum of elemental maps weighted by the estimated
response ratio factors . The image sizes are 300 × 300 pixels.

two binary images. The reference images are already binary, while reconstructions
for elements have continuous intensity. Given the knowledge that elements have
homogeneous density, we binarize the reconstructions with thresholds, which are
chosen as the ones giving minimal DP. Mathematically this can be written as
DP(x, y) = minb ∥ x − Bb(y) ∥, where Bb(y) means binarizing an image with the
threshold b.

2.4.1 Phantom objects
Estimating the response ratio factors is the first step of HEBT. The response ratio
factors for Au and Ag were estimated to be rest = [3.27 × 104, 1.68 × 104] , while
the ground truths are rgt = [3.66 × 104, 1.43 × 104] based on the given response
factors. The goodness of how the data matches the linear model is indicated by
the coefficient of determination R2 = 0.91, which can be interpreted as 91% of the
data can be explained by the linear model.

The simulation study aims at studying the stability of HEBT when errors are
present in the estimated response ratio factors. Here, the estimated response ratio
factors differ from the ground-truth by −10.66% and 17.48% respectively. Thus,
reconstructions were made by HEBT with estimated and ground-truth response
ratio factors respectively (Figure 2.4). Both were computed with weighting factor
α = 0.7 and for 200 iterations. First of all, intuitively we see both results show less
noise and sharper contrast compared to EDS-STEM tomographic reconstructions.
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Secondly, the deviation of response ratio factors only results in slightly different
distributions of noise between elemental reconstructions. We can observe that
“streaks” are more suppressed in Figure 2.4 (a) than (b) since rAu is overestimated
compared to the true values. On the other hand, Figure 2.4 (d) looks noisier than
(e) because rAg is underestimated. From the image quality metrics, HEBT with
rest produces nearly the same image quality as HEBT with rgt. One noticeable
result is that although HEBT with rgt outperforms HEBT with rest in terms of
SSIM and DP, for MSE the result with rest is better. This can be explained as
that noise has been taken into account when estimating the response ratio factors,
consequently yielding better statistical fitting for reconstructions. In conclusion,
the HEBT algorithm output shows good stability w.r.t. errors in the estimation
of the response ratios.

Table 2.1: Image quality metrics of reconstructions.

Methods HEBT with rest HEBT with rgt EDS-STEM
SSIM Au 0.9923 0.9917 0.9437
SSIM Ag 0.9837 0.9835 0.8739
MSE Au 0.0260 0.0260 0.0801
MSE Ag 0.0449 0.0469 0.0740
DP Au 1664 1940 6936
DP Ag 4915 4762 7318

2.4.2 Non-alloy Au-Ag nanoparticle
The first sample that is experimentally investigated is an Ag nanoparticle with a
diameter of approximately 110 nm with an embedded Au octahedron. Examples
of Z-contrast images and elemental maps are given in Figure 2.3, indicating that
Ag and Au are well separated.

The response ratio factors r(Au) and r(Ag) were estimated from all the non-zero
pixels using the NNLS algorithm. The fitting results are r = [5.31×104, 8.64×104]
with a coefficient of determination R2 = 0.95. The example of Figure 2.3 (d)
shows that the sum of elemental maps weighted by r closely but not perfectly
matches the HAADF-STEM projection image due to noise. After the estimation,
the reconstructions were computed slice by slice in a volume of 300 × 300 × 300
voxels by solving the least square problem of Eq. 2.9.

Figure 2.5 shows the 2D reconstruction images at different slices. Compared to
EDS-STEM reconstructions, HEBT reconstructions demonstrate smoother inten-
sity distributions, suppressed noise levels and clearer boundaries. Especially for
the Ag reconstructions, morphological analysis becomes easier as exterior bound-
aries show a sharper contrast to the background after being regularized by the
HAADF-STEM term. The HAADF term also regularizes intensities of noise to
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Figures (a), (b) and (c) are reconstructions of Au distribution. Figures (d), (e) and (f)
are reconstructions of Ag. The left and middle columns are HEBT reconstructions respectively
with estimated response ratio factors rest and with ground-truth response ratio factors rgt; the
right column is reconstructions from only EDS-STEM elemental maps.

concentrate within the particle and not spread across the background. For exam-
ple, in the HEBT reconstructions for Au, we can see noise forming a ‘shadow’ of
the entire particle on the background. Fortunately, the ‘shadow’ noise is rather
weak and can be removed by thresholding or smoothing.

The HAADF-STEM reconstructions have clear boundaries between Au and
Ag in this case. Therefore, we can easily segment the two particles, and use the
segmentation as the ground truth for reconstruction quality assessment. In Figure
2.6, the HAADF-STEM reconstruction was segmented into two parts by manually
recognizing the boundaries in every slice using the FEI Amira 6.0 software, which
are considered as the ground truths of compositional distributions. Meanwhile,
we also demonstrate the 3D volume rendering of EDS-STEM reconstructions and
HAADF reconstructions for comparison. The image quality metrics were com-
puted in 3D and listed in Table 2.2. The metrics show that the image quality
of HEBT reconstructions is intrinsically enhanced in comparison to conventional
EDS reconstructions.

Based on the ground truth from the segmented HAADF-STEM reconstruc-
tions, the influence of two parameters for HEBT can be investigated: the weight-
ing factor α and the number of iterations. Here, we sampled the weighting factor
from 0.01 to 0.99 for HEBT reconstructions with different numbers of iterations
for one slice. Figure 2.7 plots the MSE indices at each weighting factor. It first
indicates a decrease of MSE as α grows, as the noise is increasingly suppressed
by the HAADF-STEM term. When α gets close to 1, MSE starts to increase
rapidly after reaching a minimum. To understand this phenomenon, we plot the
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(a) EDS: Au (b) HEBT: Au (c) EDS: Ag (d) HEBT: Ag (e) HAADF

(f) EDS: Au (g) HEBT: Au (h) EDS: Ag (i) HEBT: Ag (j) HAADF

(k) EDS: Au (l) HEBT: Au (m) EDS: Ag (n) HEBT: Ag (o) HAADF

Figure 2.5: 2D reconstruction images for the non-alloyed nanoparticle at slice number 80, 150
and 220 corresponding to the up, middle and bottom rows respectively. The left two columns
are the distributions of Au reconstructed by conventional EDS tomography and by HEBT re-
spectively. The middle two columns are the reconstructions of Ag. The right column shows the
reconstructions from HAADF Z-contrast projection images.

reconstructions at α = 0.7 for 50/100/500 iterations. It shows that for 50 itera-
tions, Ag appears in the reconstruction of Au (Figure 2.8 (b)). The explanation
is that a too large α makes minimizing residuals for EDS-STEM terms become
very inefficient due to their small weights. If the residuals of EDS-STEM terms
remain large while the residual of HAADF-STEM has already been minimized,
backprojection from HAADF-STEM projection images will show up in the recon-
structions. In such a case, we can see appearance from the other compositions.
The appearance can be reduced by increasing the number of iterations. In this
case, Ag disappears in the Au reconstruction as the number of iterations grows.
On the other hand, if the number of iterations is chosen very large, this may lead
to over-fitting of the least-square problem, which results in the presence of noise in
reconstructions. The over-fitting also explains why – for small weighting factors –
the MSE metric decreases as the number of iterations increases (see Figure 2.7). In
a word, the weighting factor influences the noise suppression and the convergence
of least square problem; to guarantee convergence for large weighting factors, a
large number of iterations should be adopted. From Figure 2.7, we conclude that
α = 0.7 and 100 iterations are close-to-optimal settings for this example.
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(a) EDS (b) HEBT (c) HAADF

Figure 2.6: 3D volume rendering of Au (yellow, interior) and Ag (blue, exterior) distributions
in the non-alloyed nanoparticle reconstructed using (a) EDS-STEM tomography and (b) HEBT.
The 3D volume rendering of Au and Ag segmented from HAADF-STEM reconstructions (ground-
truth) is shown in (c).

Figure 2.7: Mean-squared errors for Au and Ag reconstructions under different iterations. The
reconstructions are sampled for weighting factors from 0.01 to 0.99.

To investigate whether HEBT leads to improved ability to spatially resolve
the chemical composition of nanomaterials in comparison to separate EDS-STEM
reconstructions, we have conducted two additional validation experiments. In the
first experiment, a binary mask is created from the HAADF-STEM reconstruction,
which is then enforced during each iteration step of the SIRT reconstruction from
elemental maps. For the second experiments, a binary mask is created based on the
Z-contrast projection images which are subsequently applied to the elemental maps
prior to tomographic reconstruction. The results of these experiments are shown
in Figures 2.9 (a) to (d). It can be seen that the results are qualitatively similar to
the reconstructions without the masks in the sense that the chemical composition
is no better spatially localized than in the unmasked case. This can be contrasted
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Table 2.2: Image quality metrics.

Methods EDS-STEM HEBT
SSIM Au 0.9661 0.9680
SSIM Ag 0.9024 0.9097
MSE Au 0.0093 0.0069
MSE Ag 0.0368 0.0229
DP Au 233805 134861
DP Ag 1213822 674403

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: 2D reconstruction images at slice number 150. The upper row is for Au, and the
bottom row is for Ag. (a) and (e) are the reference images for computing SSIM, which are
segmented from the HAADF-STEM reconstruction. (b)/(f), (c)/(g) and (d)/(h) are respectively
HEBT reconstructions with weighting factor α = 0.7 under 50, 100, 500 iterations.

  

  

 

(a) (d) (c) (b) 

(e) (h) (g) (f) Figure 2.9: Figures (a) and (b) are distributions of Au and Ag in the non-alloy nanoparticle
reconstructed from elemental maps. During the reconstruction process, reconstruction volumes
were masked by the binarized HAADF-STEM reconstruction. Figures (c) and (d) are distribu-
tions of Au and Ag in the non-alloy nanoparticle reconstructed from elemental maps that have
been masked by binarized Z-contrast images.
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to Figure 2.5, where the better localization is visible, clearly demonstrating the
advantage of our HEBT reconstruction technique.

2.4.3 Alloyed Au-Ag nanoparticle
In this case, we demonstrate the application of HEBT on data for which 3D compo-
sitional analysis is difficult for both EDS-STEM tomography and HAADF-STEM
tomography. The sample is an Au-Ag alloy nanoparticle with a diameter about 30
nm. As suggested by the Z-contrast images in Figure 2.3 (d), segmentation cannot
be made based on HAADF-STEM reconstructions since no clear boundary exists
between the two compositions. Although elemental distributions can be recon-
structed from elemental maps, the elemental maps are very noisy (Figure 2.3 (e)
and (f)) and lead to strong noise in the EDS-STEM tomographic reconstruction
results.

The HEBT reconstructions were computed using α = 0.7 for 200 iterations.
The response ratio factors were estimated to be r = [5.63 × 104, 6.52 × 104] with
a coefficient of determination R2 = 0.79. The values for the same elements differ
from the first experimental case. This is likely due to an intensity rescaling that
was applied when storing the HAADF-STEM data. As our response ratio factors
are automatically scaled, this does not affect the final results.

Compared with EDS-STEM tomography, HEBT gives more interpretable re-
sults with less noise and stronger contrast to the background as shown in the 2D
slices of Figure 2.10. Here, since we no longer have ground-truth images, we cannot
compute image quality metrics. Figure 2.11 shows that the HEBT reconstructions
provide more information in 3D on the concentration of the different elements
compared to the EDS-STEM reconstructions. The elemental distributions with
reduced noise indicate that the Au is more concentrated in the exterior than Ag.
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(a) EDS: Au (b) HEBT: Au (c) EDS: Ag (d) HEBT: Ag (e) HAADF

(f) EDS: Au (g) HEBT: Au (h) EDS: Ag (i) HEBT: Ag (j) HAADF

(k) EDS: Au (l) HEBT: Au (m) EDS: Ag (n) HEBT: Ag (o) HAADF

Figure 2.10: 2D reconstruction images for the alloyed nanoparticle at slice number 80, 150 and
220 corresponding to the up, middle and bottom rows respectively. The left two columns are the
distributions of Au reconstructed by conventional EDS tomography and by HEBT respectively.
The middle two columns are the distributions of Ag. The right column shows the reconstructions
from Z-contrast projection images.

(a) EDS (b) HEBT (c) HAADF

Figure 2.11: 3D volume rendering of Au (yellow) and Ag (blue) distributions in the alloyed
nanoparticle reconstructed using (a) EDS-STEM tomography and (b) HEBT. The 3D volume
rendering of the HAADF-STEM reconstruction is shown in (c).
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2.5 Conclusion

In this study, we have developed HAADF-EDS bimodal tomography for the 3D
characterization of the chemical composition at the nanometer scale. This tech-
nique first links elemental maps with Z-contrast images that are recorded simulta-
neously in STEM mode and contain complementary information. The linking is
made by estimating response ratio factors that give the linear relation of two types
of images and by scaling their intensities to the same unit. Simultaneously from
two types of projection images, 3D elemental distributions are reconstructed. The
reconstruction process results in a simultaneous minimization of the projection er-
rors of both EDS-STEM and HAADF-STEM and is carried out using an iterative
method such as SIRT.

HEBT has first been tested on a phantom object that is based on hetero-
nanoparticles. We specifically demonstrated that HEBT is robust w.r.t. errors in
the response ratio factor estimation. Subsequently, we used HEBT to reconstruct
the 3D elemental distributions of two different nanoparticles. To investigate the im-
age quality enhancement of HEBT, we first reconstructed an Au-Ag nanoparticle
where the different elements could be distinguished based on Z-contrast. Taking
the Z-contrast reconstruction results as the ground truth, we see that reconstruc-
tions computed by HEBT are improved in comparison to EDS-STEM tomographic
reconstructions in terms of image quality. In this case, we also demonstrated that
HEBT with a large weighting factor requires a large number of iterations to con-
verge and separate between elements. In the second experimental case, Ag and
Au are alloyed, and thus it is impossible to investigate the 3D distributions of the
chemical elements based on HAADF-STEM tomography. Using the HEBT tech-
niques, we are able to investigate the spatial distribution of Ag and Au inside the
particle. The interpretation of the final result is more straightforward in compar-
ison to conventional EDS-STEM tomography, for which the results contain more
noise.

The HEBT algorithm is based on the assumption that both HAADF-STEM
projection images and EDS-STEM elemental maps can be modeled as perfect linear
projections of the structure. In practice, this assumption is not completely valid
as nonlinear phenomena such as X-ray absorption and electron channelling may
break the projection requirement [Sla+16b; Bur+16]. In addition, the EDS noise
follows a Poisson distribution, while the least squares problem in Eq. 2.9 is based
on the assumption that the noise follows a Gaussian distribution. Our purpose
here is to demonstrate the feasibility of HEBT, while recognizing these sources
of inaccuracy. In future work, we plan to incorporate more sophisticated models
for self-absorption (similar to [Bur+16]) and elemental map extraction (similar to
[Luc+13]), as well as to adopt advanced denoising reconstruction algorithm based
on the Poisson noise model such as the EM method.

Conventionally, quantitative analysis based on EDS-STEM measurements suf-
fers from the high noise level in these measurements. By combining EDS and
HAADF, especially by imposing the 3D information obtained by HAADF, the
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improvement in the reconstructions (compared to pure EDS-STEM reconstruc-
tion) will lead to more reliable quantification, provided that the corresponding
zeta factors are known. This application also requires an accurate estimation of
the response ratio factors. Therefore, we are developing a new estimation method
which is based on the Poisson noise model rather than the Gaussian noise model.

In conclusion, the newly developed HEBT technique is a promising technique
to analyze chemical compositions of nanomaterials in 3D. By exploiting more com-
plete information from two complementary types of images, it can characterize the
elemental distribution even when it is not straightforward using HAADF-STEM
tomography or EDS-STEM tomography. This advantage means that the 3D char-
acterization of chemical composition can be pushed to materials with smaller di-
mensions and more complex compositions.
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