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1
Introduction and outline

The PhD research that is collected in this thesis is dedicated to the development of
novel tomographic reconstruction methods for characterizing both structural and
compositional information of nanomaterials. In this chapter, first an introduction
is given to the two imaging modalities in electron tomography that are central to
this thesis: high angle annular dark field scanning transmission electron microscopy
(HAADF-STEM) and energy dispersive X-ray spectroscopy (EDS). Second, we
formulate the mathematics for the problem of tomographic reconstruction. Finally,
we discuss the challenges for performing accurate tomographic reconstructions for
individual chemical elements based on these modalities, and give an overview for
several methods developed during the PhD research.

1.1 Electron microscopy and tomography

An electron microscope (EM) uses accelerated electrons instead of visible light
to image materials at the nanoscale. Conventional EM is based on the same
principle as optical microscopy, but with an electron source and electromagnetic
lenses. As illustrated in Figure 1.1, a parallel electron beam is formed and used
to illuminate the sample. An image is then formed and projected on the camera.
This conventional imaging mode is called transmission electron microscopy (TEM).
At present, the highest resolution realized in high-resolution TEM is around 0.5
[Kis+08].

It is also possible to focus the electron beam to an atomic-size probe, and use
the probe to scan across the sample. The image is formed by measuring the inten-
sity of transmitted or scattered electrons at every scanning position. This imaging
mode is called scanning transmission electron microscopy (STEM). One popular
technique to detect the intensity of electrons in STEM is high angle annular dark
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2 CHAPTER 1. INTRODUCTION AND OUTLINE

field (HAADF). As Figure 1.2 shows, an annular detector collects the electrons
that are scattered to high collection angles (> 60 mrad). Ideally, the intensity of
the electrons scattered to such high angles increases monotonically with respect
to the mass and thickness of materials. In comparison, when imaging crystalline
materials, TEM images are affected by diffraction of electons in addition to the
sample thickness, which makes interpretation difficult [Küb+05].

Figure 1.1: Overview of a TEM. Accelerated electrons are generated by the electron gun. In
TEM mode, a parallel electron beam is formed by the condenser lenses and used to illuminate
the sample placed on the sample holder. The objective lenses form an image of the sample. In
STEM mode, the electron beam is focused to a small probe by a set of condenser lenses and
an objective lens. The probe is used to scan across the sample. The intensity of transmitted or
scattered electrons is measured as the image intensity at each scanning position. (The pictures
are adapted from wikipedia.org.)

The monotonic relationship between signal intensities and sample thickness is
an important property of HAADF-STEM [Mid+01]. Consider a sample of thick-
ness t with homogeneous attenuation coefficient µ as illustrated in Figure 1.3.
Assume that the HAADF detector collects almost all the electrons scattered to
angles higher than the inner collection angle of the annular detector, which are
complementary to the electrons passing through the hole. According to the Beer-
Lambert law, the intensity of electrons that are transmitted or scattered to small
angles is approximately given by:

It = I0 exp(−µt), (1.1)

where I0 is the intensity of the incident electron beam. As a result, the comple-
mentary HAADF signal intensity I is:

I = I0 − I0 exp(−µt). (1.2)
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Figure 1.2: Schematic of simultaneous HAADF and EDS imaging in STEM mode. The focused
electron probe moves in directions perpendicular to the beam direction. The HAADF detector
collects the electrons scattered to high angles. The four EDS detectors are positioned symmet-
rically around the sample, and collect the X-rays emitted from the sample. The sample can be
tilted by rotating the sample holder (not shown in this figure) for tomographic experiments.

Figure 1.3: Electrons scattered by a thin specimen. The specimen has a thickness of t and a
homogeneous density. An incident beam with intensity I0 is focused on the sample. It, which
is the intensity of electrons transmitted or scattered to angles smaller than the inner collection
angle θin, can be modeled by the Beer-Lambert law. Assuming that the electrons scattered to
angles higher than the outer collection angle θout are few, the intensity of electrons collected by
the detector is given by I0 − It.

For small µt, a linear approximation of Eq.1.2 can be derived using the Taylor
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expansion:

I ≈ I0µt, (1.3)

which indicates that the signal intensity is approximately linearly proportional to
the sample thickness weighted by the attenuation coefficient [MW03]. In practice,
the validity of the linearity assumption is affected by a variety of factors, such as
the atomic number and thickness of sample, the inner and outer collection angle
of the annular detector as well as the accelerating voltage [AR16].

Figure 1.4: HAADF-STEM for a Au-Ag nanoparticle. Left: volume rendering of the tomographic
reconstruction of the sample. Middle: inner structure of the reconstruction. Right: a HAADF-
STEM projection image for the nanoparticle. (The pictures are adapted from [Zan+16a].
The sample is prepared by the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain. The
HAADF-STEM projection data is provided by EMAT, University of Antwerp, Belgium.)

Another property of HAADF-STEM is that the signal intensity also depends
on the atomic number Z of the projected materials, which is referred to as the Z-
contrast. Based on empirical studies, the attenuation coefficient µ is proportional
to Zα, where α approaches 2 for an ideal detector [Mid+01; Tre11]. The image
contrast depending on Z can show the variation of chemical composition and be
used for compositional analysis.

However, when the difference in Z is small or chemical elements are mixed,
compositional analysis based on HAADF-STEM is difficult. For example, Figure
1.4 shows the HAADF-STEM image of a nanoparticle composed of Au (Z = 79)
and Ag (Z = 47) that are alloyed. It is difficult to separate the Au and Ag in the
projection image, while knowing their concentrations is essential for understanding
the sample.

In these situations, it is possible to apply spectroscopic techniques that resolve
chemical information based on analyzing the energy of radiation (electrons, X-rays,
etc.). The spectroscopic techniques that can be combined with STEM include en-
ergy dispersive X-ray spectroscopy (EDS) [Gen+12; Lep+13; CM17] and electron
energy loss spectroscopy (EELS) [Jar+09; Yed+12; Hab+14]. Both techniques
can be used for chemical mapping since the signal intensities are related to the
concentrations of chemical elements, and have their own strengths and weaknesses.
For example, EDS is more suitable for elements with high atomic numbers com-
pared to EELS, and vice versa. In this thesis we focus on EDS, motivated by the
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challenge of imaging semiconductor components in 3D at the nanoscale. In this
application domain the key chemical elements match well with the applicability
scope of EDS. Moreover, the methods developed in this thesis potentially can be
adapted for EELS, as both techniques yield element-specific images.

Figure 1.2 also shows a modern EDS detection system with four energy-resolved
X-ray detectors positioned symmetrically around the sample. For each scanning
position in STEM mode, the energy-resolved detectors collect the X-rays emitted
by the atoms that are excited by the electron beam. The detectors also measure
the energy of every incoming X-ray photon, and generate raw data as a three-
dimensional (3D) data cube that is illustrated in Figure 1.5. In each pixel of the
2D array of the data cube, there is a spectrum of X-ray counts for over 1000
energy channels. Such a data cube is called a spectral image. Figure 1.6 shows
examples of EDS spectra for one pixel and for all X-rays integrated over all pixels.
From the spectral image, characteristic X-rays, which are emitted from transitions
between different electronic shells of a certain chemical element, are integrated
over a narrow band of energy channels to form an image. The image can be seen
as the 2D projection of the concentration of an element, and is referred to as the
elemental map [WC16, Chapter 16]. Figure 1.7 shows the elemental maps for Au
and Ag of the nanoparticle in Figure 1.4.

While HAADF-STEM gives the projection of all atoms, EDS yields multiple
elemental maps, each showing the concentration of a single element. For a thin-film
sample with a uniform thickness, assuming that the variation of electron intensity
and the interaction between the generated X-rays and the sample are negligible,
the image intensity Ia, which is the intensity of characteristic X-rays for element
a, is proportional to the sample thickness t and the concentration of the element
[WW06]. This relationship is expressed as:

Ia = ζaDCaρt, (1.4)

where ζa is the sensitivity factor, D is the total electron dose, Ca is the concentra-
tion of chemical element a, ρ is the density. The mass-thickness of element a is
given by Caρt.

The sensitivity factor ζ is defined in the so-called ζ-factor method for quanti-
fying the elemental compositions in a sample based on the EDS signal intensity
[WW06]. Theoretically, the ζ factor is determined by the ionization cross-section,
the fluorescence yield, the relative transition probability, the atomic weight, the
detector collection-angle, and the detector efficiency. In practice, the value for
a specific element can be estimated using a pure-element standard sample, given
that the signal intensity, the total electron dose, and the mass-thickness are known.
Quantifying the elemental compositions based on the ζ-factor is a relatively recent
development. A more common approach is the so-called Cliff-Lorimer approach,
which relates the the signal intensities to the elemental compositions but not to the
concentration of a specific element [CL75]. Moreover, the accuracy of this method
is limited when lacking calibration samples of which the compositions are accu-
rately known. The accuracy of the ζ-factor method was also limited in the past
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due to the difficulty in precisely measuring the thickness of the standard sample.
Zanaga et al. propose to estimate the ζ factors based on thickness measured using
electron tomography which makes the ζ-factor method more reliable and feasible
[Zan+16b].

Figure 1.5: Schematic of the EDS data cube acquired in STEM mode. The data cube (spectral
image) consists of a full spectrum in each pixel in a 2D array. Each spectrum contains the X-ray
intensities at 1000 or more energy channels.

Figure 1.6: EDS X-ray spectra for the Au-Ag nanoparticle showing in Figure 1.4. Left: all
counts integrated over all pixels. Right: X-ray counts of one pixel of the 128×128×1024 spectral
image. The dashed lines indicate the characteristic energies for Au and Ag. Elemental maps
are extracted by integrating X-ray counts over the energy channels near the characteristic lines.
(The EDS data is provided by EMAT, University of Antwerp.)

The most critical issue for EDS mapping is the strong noise, as the examples
in Figure 1.7 show. The noise is mainly due to the small number of X-ray photons
being detected (e.g. less than 10 counts per pixel) [WC16, Chapter 16]. A key
factor limiting the X-ray detection is the small area covered by detectors. While
the possibilities of X-ray emission in all directions are the same, the maximal
total solid angle covered by the four detectors is about 0.7 sr, which means only
about 6% of the emitted X-rays can be collected [Kra+17] compared to the full
4 π emission solid angle. The signal-to-noise ratio can be enhanced by applying a
higher electron dose. This can be realized by increasing the scanning time and/or
the beam current. However, a long scanning time is often accompanied by spatial
drift of the sample, and increasing the beam current is limited by how much current
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Figure 1.7: EDS elemental maps for Au (right) and Ag (left) of the Au-Ag nanoparticle showing
in Figure 1.4, before (upper row) and after (lower row) being smoothed by a Gaussian filter.
Note that the X-ray intensities are low (less than 25 counts), and therefore strong Poisson noise
is present. (The EDS data is provided by EMAT, University of Antwerp.)

the sample can withstand.
So far, we have discussed acquiring 2D projection images using HAADF-STEM

and EDS. In many research domains, such as research on the production of semicon-
ductors, characterizing the 3D structure is crucial for understanding the physical
properties. 3D imaging for nanomaterials is often performed by electron tomogra-
phy (ET) – a technique to reconstruct 3D structures from a series of 2D projection
images taken in different directions [SM12], [WC16, Chapter 12]. In an experi-
ment of ET, the sample is placed on a holder which can be tilted to a certain range
of angles, as illustrated in Figure 1.2 and Figure 1.8. At a certain tilt angle, a pro-
jection/spectral image is acquired using HAADF-STEM/EDS/EELS, after which
the sample is rotated, and another image is acquired. At the end of the experi-
ment, one or more tilt series of images are acquired. From a tilt series, a 3D object
can be obtained using a reconstruction algorithm. Reconstruction algorithms are
based on the assumption that the image intensities are proportional to the in-
tegration of some properties of the sample. The assumption is referred to as the
projection requirement. The projection requirement is satisfied for HAADF-STEM
and EDS if the assumptions for the monotonic relationships are valid (Eq.1.3 for
HAADF-STEM and Eq.1.4 for EDS).
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Figure 1.8: A series of HAADF-STEM images for a tomographic experiment in which a sample
is tilted over an angular range of ±60◦. For HAADF-STEM tomography, the increment of tilt
is usually 1◦ or 2◦

1.2 Mathematics of tomography

In this section, we will introduce the mathematical model for tomographic imaging,
which is fundamental for developing novel reconstruction algorithms. Consider an
electron probe with a small convergence angle (e.g. 10 mrad) and a large depth
of field (e.g. 25 nm). We can approximate the probe as a ray and consider the
STEM imaging process as a parallel beam tomographic model. When the sample
is rotated over a single axis, the data collected for each slice orthogonal to the
rotation axis is independent from the other slices. In this case, the 3D parallel
beam model can be considered as a stack of 2D parallel beam models. In this
section, we will discuss the 2D model.

1.2.1 The Radon transform
The parallel beam model can be mathematically described by the Radon transform.
The Radon transform for 2D parallel beam is illustrated in Figure 1.9. Consider
the object to be reconstructed as a function f : R2 → R. The projection data
for the sample tilted by angle θ and the ray at scanning position u is a function
P : [0, π] × R → R. Radon transform maps f to P as the integral of f along the
line lθ,u described by u = x cos θ + y sin θ, where x and y correspond to the spatial
coordinates centered at the rotating axis. The projection Pθ(u) of f(x, y) is given
by:
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Figure 1.9: Schematic of the Radon transform of function f in 2D. The sample is tilted by angle
θ. The ray at scanning position u is described by the line u = x cos θ + y sin θ. The projection
data Pθ(u) of f(x, y) is given by the line integral of f(x, y) along the line.

Pθ(u) =
∫

lθ,u

f(x, y)ds, (1.5)

where s is the length along line lθ,u.
In practice the data are measured as a discrete sampling of the continuous

model, which is illustrated in Figure 1.10. The projection data are expressed as
a vector p ∈ RM , where M denotes the total number of pixels for all tilt angles
combined. Consider the sample to be located in a 2D space discretized into N
pixels as an image. The reconstructed unknowns are then expressed as a vector
x ∈ RN , each entry of which corresponds to a pixel value of the 2D image. For
each ray i, the projection data pi is then modeled as the weighted sum of the pixel
values xj along the ray, which is expressed as:

pi =
N∑
j

wijxj . (1.6)

Each weight wij is determined by the area of pixel j intersected with ray i. The
full set of equations for all rays is:

p = Wx. (1.7)

The multiplication of matrix W = {wij} and x is called the forward projection of
x. The goal of tomographic reconstruction is to estimate the unknowns x from the
data p.

1.2.2 Reconstruction algorithms
One group of reconstruction algorithms is based on inverting the Radon transform
Eq.1.5 to find an analytical expression for f(x, y), which is known as the analytical
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Figure 1.10: Schematic of the discrete linear projection model in 2D. The unknown corresponding
to pixel j is denoted by xj . The measurement data corresponding to the ith ray is denoted by
pi. The contribution of xj to pi is given by wijxj , where wij is determined by the area of pixel
j intersected with ray i (indicated in bold).

reconstruction methods. A widely used analytical reconstruction method is filtered
backprojection (FBP) [KS88, Chapter 3]. The FBP method has the advantage of
being computationally efficient, as it only consists of a convolution operation and
an integration operation. However, the analytical methods are based on the as-
sumption that there is an infinite number of projections available. When only a
limited number of projections are acquired, artifacts will appear in the reconstruc-
tion. Another group of reconstruction methods which are based on inverting the
discrete model Eq.1.7 is called algebraic reconstruction methods. These methods
tend to handle the problem of limited number of projections better than the an-
alytical methods, as they do not assume that infinite number of projections are
available. The unknown x is usually determined such that if we compute the
projection of it, the data discrepancy D(Wx, p) between the measured p and the
reprojected data Wx is minimized, which is expressed as:

x∗ = argmin
x

D(Wx, p). (1.8)

The data discrepancy is often defined as the squared l2 norm of the difference
between p and Wx: ∥ Wx − p ∥2

2. The minimization problem can be solved by
iterative algorithms, such as algebraic reconstruction technique (ART) [GBH70]
and simultaneous iterative reconstruction technique (SIRT) [GB08]. Compared to
the analytical algorithms, the algebraic algorithms result in fewer artifacts when
data are missing or noisy. Over-fitting to noise can be prevented by stopping the
algorithm early (e.g. at tens of iterations), however, at the cost of not being able
to reconstruct fine structures [ENH10].

In addition to the quadratic functional, non-quadratic functionals such as Stu-
dent’s t, Kullback–Leibler divergence and negative log-likelihood have been exam-
ined extensively for tomographic reconstruction considering the statistical proper-
ties of the measurement data. In particular, the Kullback–Leibler divergence and
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the negative log-likelihood are often used for data that are Poisson noise limited
[HW16; ER07], while the quadratic functional is based on Gaussian noise model.
Minimizing the data discrepancy often converges to the same result as maximizing
the likelihood for measuring the data. Examples of the latter approach are the
maximum likelihood estimation (MLE) and the maximum a posteriori (MAP) esti-
mation [SV82; Gre90], which are often applied on emission tomography assuming
that the measured data are random variables obeying certain statistical models.

To yield more accurate reconstructions, a popular approach is to incorporate
prior knowledge about the reconstructed object [BO13; Bat+09]. The prior knowl-
edge is often implemented as a regularization term added to the minimization
problem:

x∗ = argmin
x

D(Wx, p) + λR(x). (1.9)

The regularization term R(x) is a functional promoting some properties of the
reconstructed image, and λ indicates the weight of the regularization term. A
well-known example is the total variation (TV) regularization [BO13]. The recon-
structed image with penalized TV tends to possess piecewise constant features.

1.3 Challenges and overview
After introducing the mathematics of tomography, we now look at the actual tomo-
graphic experiment based on simultaneously acquired HAADF-STEM and EDS.
Both imaging modalities have their own advantages and disadvantages. The noise
in EDS mapping is a critical issue for computing accurate tomographic reconstruc-
tions, as real measurement data deviate from the ideal projection data defined in
Eq.1.7. In many EDS tomographic experiments, the noise issue is addressed by
image filtering before and after reconstruction at the cost of reducing resolution
[Zan+16a; Sla+16a]. The noise can also be reduced using multivariate statisti-
cal analysis methods which separate the noise from the spectral image, but with
limited effectiveness when the noise dominates the data [Bur+16; Jol02].

Moreover, the number of tilts in EDS tomography is usually limited (e.g. 29
tilts for ±70◦), as it takes a long time to acquire enough X-rays in every scan
(about 5 to 10 mins). Consequently, it is difficult to reconstruct accurately with
information from many angles missing. Furthermore, the projection matrix W
is often ill-conditioned. This means that even small noise in measurement data
can cause large errors in the reconstruction. The strong noise, together with the
limited number of tilts and the ill-conditioned matrix, poses strong challenges for
EDS tomographic reconstruction. Other challenges in EDS tomography include
detector shadowing [Sla+16b; Sla+16a] as well as X-ray absorption and fluores-
cence [WW06]. The sample holder causes shadowing of X-rays on the detector,
and consequently the signal intensity varies as a function of the tilt angles. To
addressed the influence on the reliability of the tomographic reconstruction, novel
correction methods have been proposed, such as adjusting the acquisition time
at different tilts based on the detector geometry [Kra+17] and compensating the
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angle-dependency in combination with HAADF-STEM tomography [Zan+16a]. In
addition, an X-ray absorption correction method for EDS tomography has been
proposed [Bur+16], showing improved reconstruction results. Although these ef-
fects are not the focus of this thesis, they should be carefully considered especially
when conducting quantitative EDS tomography.

Compared to EDS, HAADF-STEM can yield a larger number of tilt images
(e.g. 141 tilts for ±70◦) with much higher signal-to-noise ratios, and consequently
can lead to reconstructions with less noise and higher resolution. In addition, vari-
ation of chemical elements can be characterized based on the HAADF reconstruc-
tion as long as the difference in contrast is mainly contributed by the difference
in Z. Thus, it is possible to obtain element-specific 3D objects by segmenting the
HAADF-STEM tomographic reconstruction based on the Z contrast. However,
this is only applicable to samples of segmentable compositions with large difference
in Z.

Table 1.1 compares some properties of HAADF-STEM and EDS tomography in
terms of the chemical information, noise, and the number of tilts. These properties
of the two simultaneously performed modalities are complementary to each other.
Attempts have been made to combine HAADF-STEM tomography and EDS to-
mography. For instance, HAADF-STEM tomography has been combined with
EDS tomography for projection alignment, joint analysis and thickness estimation
[Gor+14; Bur+16; Kra+17]. In particular, an approach has been proposed to com-
bine HAADF-STEM and EDS tomography to acquire quantified element-specific
reconstructions [Zan+16a]. In this approach, the HAADF-STEM reconstruction is
computed to estimate the sample thickness which is then combined with the ratio
maps of elements obtained by EDS. Given these promising results, the overarching
goal of this thesis is to explore novel methods that combine HAADF-STEM and
EDS tomography to acquire accurate and element-specific reconstructions.

Table 1.1: HAADF-STEM tomography vs EDS tomography

HAADF-STEM EDS
Chemical information mixed element-specific

Noise level low high
Number of tilts large small

As it turns out, to successfully combine the strengths of HAADF-STEM and
EDS tomography, many challenges must be solved, including developing novel
algorithms that can combine both modalities, making these advanced approaches
generally applicable, as well as solid modeling of the image formation. This thesis
mainly addresses four challenges as follows.

First, knowing that EDS maps each chemical element and HAADF-STEM
maps all elements combined, one can combine the two modalities in one recon-
struction process.The simultaneous reconstruction process needs to be based on a
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tomographic model that is consistent with both modalities.
In Chapter 2, we introduce a technique to reconstruct for all elements simulta-

neously from EDS elemental maps and HAADF-STEM projection images, which is
named HAADF-EDS bimodal tomography (HEBT). We assume that the HAADF-
STEM projection images are the weighted sum of EDS maps for all present chem-
ical elements. We therefore introduce a linear sum constraint to a reconstruction
process for all elements, which can be solved using an iterative algorithm.

Second, while HEBT requires EDS mapping for all the chemical elements im-
aged by HAADF-STEM, which may be impossible sometimes, we need a different
combining strategy which can be applied to one element each time. A clear combin-
ing strategy is to encourage the Z-contrast reconstruction and the element-specific
reconstruction to preserve consistent image features such as common edges. The
remaining questions include what feature to exploit and how to incorporate the
consistency in the reconstruction process.

In Chapter 3, HAADF-STEM and EDS is combined in a way different to
HEBT. We penalize so-called total nuclear variation (TNV) of a Z-contrast recon-
struction made from HAADF-STEM data and an element-specific reconstruction
made from EDS data, to encourage common edge locations and parallel/antipar-
allel gradients. This combining approach can be applied to the reconstruction for
one element each time.

Third, in addition to combining modalities, many advanced reconstruction
methods can also be applied to improve the accuracy of reconstruction. However,
these methods are based on different assumptions for the sample and the imaging
process, and a clear guideline for deciding which algorithms to use is still missing
in the field of HAADF-STEM + EDS tomography. It is also possible to combine al-
gorithms with different strengths and weaknesses in one reconstruction framework
to obtain optimal results. Therefore, a framework for applying the algorithms
needs to be developed.

In Chapter 4, we propose the framework to combine different advanced recon-
struction algorithms for HAADF-STEM + EDS tomography. Algorithmic recipes
composed of different ingredients can be applied to augment tomographic recon-
struction. The ingredients mainly belong to three modules: statistical modeling,
variational regularization, and HEBT. To incorporate the correct prior knowledge
and physical constraints, we also provide guidelines to tailor recipes based on the
experimental conditions and the samples.

Finally, the linear integral model is fundamental for combined tomographic re-
construction. However, the linearity assumption can be invalid for thick samples.
For EDS, the nonlinear signals are mainly caused by the X-ray absorption of the
sample. For HAADF-STEM, when the sample is thick, the signal intensity damps
at large thickness as illustrated in Eq.1.2. While numerical methods to correct the
absorption in EDS tomography have been proposed [Bur+16], numerical meth-
ods that require no extra experimental step to correct the intensity damping in
HAADF-STEM tomography are missing.

To address the nonlinear damping effects in HAADF-STEM data, we propose
an automatic correction algorithm for samples consisting of homogeneous compo-
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sitions, which is described in Chapter 5. The correction algorithm only requires
the projection images as input. A nonlinear model is estimated based on the re-
constructed structure as well as the errors between linearly re-projected data and
measurement data. It is possible to use the correction algorithm together with
the correction for X-ray absorption to improve the accuracy of HAADF-STEM +
EDS tomography.


