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Dear Sirs, 

 

We report on 100 patients suspected of cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy (CADASIL)1 who were analyzed in our international CADASIL 

referral center, but in whom no NOTCH3 mutations were found. TREX1 was considered an excellent 

next disease gene candidate because of its link with Aicardi-Goutières syndrome (AGS),3 the small 

vessel disease retinal vasculopathy and cerebral leukodystrophy (RVCL),8 and (neuropsychiatric) 

systemic lupus erythematosus (SLE).4–6 Screening of our patient cohort yielded heterozygous TREX1 

mutations in two patients with early-onset cerebrovascular disease. This expands the clinical 

spectrum of diseases associated with TREX1 mutations, and offers a differential diagnosis for 

CADASIL-like phenotypes. 

 

Patient A, a 53-year-old woman with a history of hypertension, hyperlipidemia and alcohol abuse 

presented with otherwise unexplained presenile dementia. MRI demonstrated basal ganglia and 

pontine lacunar infarcts and bilateral confluent white matter lesions (Fig. 1a–c). An extensive 

analysis for causes of dementia and stroke, including serum autoantibodies (ANCA, ANA) was 

negative. Her severe retinopathy was labeled as hypertensive. Severely demented, she died at the 

age of 55 of an aspiration pneumonia. Direct sequencing of the TREX1 gene detected a heterozygous 

mutation c.1079A>G; p.Tyr360-Cys (p.Tyr305Cys on TREX1 isoform B). 

 

Patient B, a 42-year-old heavily smoking man with a past medical history including a splenic artery 

aneurysm at age 29, hypertension, hyperlipidemia and vascular claudication presented with 

progressive cognitive dysfunction. His family history was positive for (cardio)vascular disease. MRI 

showed a cortico-subcortical infarct in the right frontal lobe, ischemic lesions in the basal ganglia, 

brainstem and corpus callosum, and focal T2 white matter hyperintensities (Fig. 1d–f). Extensive 

diagnostic work-up did not reveal other causes for his cognitive decline. CSF showed a mononuclear 

pleocytosis with normal protein levels, but angiography was not suggestive of a cerebral vasculitis. 

CSF culture was negative and serum autoantibodies (ANCA, ANA, cardiolipines) were absent. He had 

a deep venous thrombosis in the leg at age 44. At age 46 and 47 he suffered from new brainstem 

infarcts. Direct sequencing detected a heterozygous TREX1 mutation c.506G>A; p.Arg169His 

(p.Arg114His on TREX1 isoform B). 

 

The two patients described were referred for CADASIL screening because of extensive white matter 

hyperintensities and infarcts and progressive early-onset (cerebro)vascular disease. No NOTCH3

 

  
 

Fig. 1 a–c Axial FLAIR MRIs and sagittal T1-weighted MRI of patient A at age 53 show signs of lacunar infarcts in 

the basal ganglia, bilateral periventricular white matter lesions, and a pontine infarct; d–f Axial FLAIR MRIs and 

sagittal T2-weighted MRI of patient B at age 47 show right frontal, basal ganglia, brainstem and corpus 

callosum infarcts. 

 

mutations were found. Screening of the TREX1 gene revealed heterozygous mutations p.Tyr305Cys 

and p.Arg114His, which were both previously reported in SLE patients.5,6 The p.Tyr305Cys mutation 

affects a highly conserved residue andwas not found in large cohorts of healthy controls.5,6 The 

heterozygous p.Arg114His mutation, however, has also been identified in six controls.5,6 

Nonetheless, when homozygous, this mutation is quite common in AGS.2,5 Mutation p.Arg114His 

affects a highly conserved residue in the catalytic domain of TREX1 and severely decreases 

enzymatic activity, suggesting pathogenicity.5,7 Enzymatic activity was also (mildly) decreased when 

co-expressed with wildtype TREX1 protein, mimicking the situation in heterozygotes.7 Mutated 

TREX1 protein seems to cause accumulation of cytosolic nucleic acids and subsequent abnormal 

innate immune responses, which may have damaging effects on the circulatory system.2 

 

Clinical features and MRI abnormalities in our patients were not suggestive of RVCL or AGS. Absent 
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autoantibodies made SLE unlikely. Nevertheless, we hypothesise that TREX1 mutations may have 

caused these phenotypes with adult onset. Even the phenomena referred to as ‘vascular risk factors’ 

may be part of the phenotypic spectrum of TREX1 mutations.  

 

We suggest that early-onset cerebrovascular disease can be caused by heterozygous TREX1 

mutations. Further elucidation of pathogenetic mechanisms of TREX1 mutations may reveal new 

cerebrovascular disease mechanisms. 
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