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ABSTRACT

To understand how the immune system works, one needs to have a clear picture 
of its cellular compositon and the cells’ corresponding properties and functionality. 
Mass cytometry is a novel technique to determine the properties of single-cells with 
unprecedented detail. This amount of detail allows for much finer differentiation 
but also comes at the cost of more complex analysis. In this work, we present 
Cytosplore, implementing an interactive workflow to analyze mass cytometry data 
in an integrated system, providing multiple linked views, showing different levels of 
detail and enabling the rapid definition of known and unknown cell types. Cytosplore 
handles millions of cells, each represented as a high-dimensional data point, facilitates 
hypothesis generation and confirmation, and provides a significant speed up of the 
current workflow. We show the effectiveness of Cytosplore in a case study evaluation.
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1. INTRODUCTION

The immune system primarily protects our body against bacterial, viral and parasitic 
infections. However, it may respond to harmless self antigens, leading to auto-immune 
diseases, e.g., type 1 diabetes or rheumatoid arthritis. Detailed knowledge of the 
immune system’s functioning is required to understand the cause of immune-mediated 
diseases, which is an important step towards preventive or therapeutic measures. To 
mediate its function, the immune system utilizes both; humoral (soluble) and cellular 
constituents. The cellular immune compartment consists of a variety of cellular subsets, 
each with a distinct function and associated phenotype. The phenotype describes “the 
observable physical or biochemical characteristics of an organism, as determined by 
both genetic makeup and environmental influences”2 [AHD06]. For immune cells, 
the functionality mostly relates to a set of proteins expressed on the cells surface. 

Recently introduced mass cytometry [OKB08] at the moment allows the 
observation of 36 of these proteins at the same time, three times as many as the 
clinical standard. However, this number is still orders of magnitude smaller than 
the estimated 10;000 immune-system-wide available proteins, providing phenotypic 
information. Hence, specific panels of markers, corresponding to proteins of interest, 
need to be designed for each study. The composition of these panels if often unique 
to a study and it is not known beforehand, which combinations of proteins can 
be expected. Therefore, the identification of different phenotypes largely needs to 
be carried out in a data-driven fashion by studying data heterogeneity rather than 
applying prior knowledge. The fine granularity of mass cytometry is usually not only 
used to increase detail but also to increase breadth, i.e., markers for different cell 
lineages can be tested simultaneously.  A cell lineage describes a group of subsets, all 
derived from the same ancestry and sharing certain characteristics. Consequently, 
the data inherently provides multi-scale information; major lineages form clusters 
on a large scale, while small scale clusters correspond to phenotypical subsets.

To ensure comparability of measurements of multiple blood or tissue samples the 
same marker panel needs to be applied. In addition, different batches of the same 
marker can produce different results. Therefore, experiments are usually run in large 
cohort studies, resulting in hundreds of samples containing millions of cells. These 
large sizes pose significant challenges during the analysis process.  We worked closely 
with immunohaematology experts to design a data-driven workflow for phenotype 
specification of cytometry data that we present in this paper. We are the first to 
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specifically tackle the multi-scale properties of the data. To this extent, we combine 
and link two proven techniques for the analysis of single-cell data on different 
levels of detail. For both steps, we provide in-place and linked visualizations of the 
feature space to interact with and refine the automatically-generated classifications.

The major contributions of this paper are:

• Cytosplore: an integrated system to interactively explore large high-dimensional 
single-cell datasets and identify phenotypically distinct subsets in a data-driven 
fashion.
•  An analysis workflow, supporting linking of multiple levels of detail to enable
   - rapid, data-driven phenotype specification (including for unknown cell types) 
   - the discovery, pinpointing and fixing of mistakes over multiple levels of detail

2. BIOLOGICAL BACKGROUND

To analyze heterogeneity of immune cell subsets, multiparameter analysis of 
immune cells at single-cell level is required. Flow cytometry has been the method 
of choice for this purpose, however, suffers from a limitation; it is restricted by 
the number of cellular markers that can be simultaneously analyzed, usually 10 
to 12. This limitation has been overcome by the introduction of mass cytometry.

Mass cytometry is a novel, mass spectrometry-based, technique for characterizing 
protein expression on cells (cytometry) at single-cell resolution. In short, 
antibodies, selected to bind to specific proteins of interest on the cell membrane, 

Figure 1: Cytosplore. Screenshot of our system with four widgets (adaptive settings, overview (a), 
embedding (b) and heatmap (c)), representing the workflow. Views can be rearranged or additional 
views of these types added.

a b c
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are conjugated with heavy-metal reporters. After staining, the cells are vaporized, 
atomized and ionized one by one and the remaining metals in the ion cloud 
can be measured in a mass spectrometer to quantify the selected proteins 
on a per-cell basis. Mass cytometry currently allows the simultaneous analysis 
of 36 markers, a number which is expected to rise to 100 in the near future.

2.1. Data
Our partners use a prototypical non-integrated version of the workflow presented 
in this paper in a real world study of tissue- and disease-associated signatures of 
the human mucosal immune system [vULM16]. They acquired a cohort data set 
consisting of 102 samples from 44 donors. During preprocessing, the acquired dataset 
was filtered for live cells, with a strong expression of the CD45 marker (indicating 
immune cells), resulting in 5.2 million high-dimensional data points. 32 markers were 
selected for the study to provide information regarding six expected major lineages. 

The resulting data is a table of cells and their expression profiles over all available 
markers. Each row in the table corresponds to a single cell and can be interpreted as a 
single high-dimensional data point. In abstract terms our input data consists of a large 
number of high-dimensional data points forming clusters on multiple scales (Section 1).

2.2. Tasks
In this work we aim to tackle the first step of the data analysis process, namely the 
definition of the phenotype of every cell. In this process our collaborators need to 

• Group similar cells, where similarity is defined based on the protein expression 
for each cell. 
• Define for each group the type of cell, which can be unknown beforehand, and 
annotate the cells.

We provide an abstraction of these tasks, following Brehmer and Munzner’s 
multi-level task typology [BM13] in Figure 2a and make use of their 
adaptions for the visualization of high-dimensional data [BSIM14]. We use a 
monospaced font throughout the paper, when we use their typology.

3. RELATED WORK

Recent years brought many computer-aided solutions for cytometry-data analysis. 
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SPADE [QSB11] visualizes high-dimensional data and was developed for (and is 
commonly used in) single-cell analysis [BSQ11,BZF12,LZN15]. It clusters data in the 
high-dimensional space and then builds a minimum spanning tree. Flow MAP [ZLG15] 
follows SPADE, but replaces the spanning tree by a k-nearest neighbour graph, which 
is laid out via a force-directed layout. The approach avoids SPADE’s problem of placing 
similar nodes far apart, but creates visual clutter. Scaffold Maps [SGF15] enable the 
user to drive the layout by defining landmarks of cell-type prototypes and by placing 
them in the visual space to build a scaffold in which similar clusters will be placed. 

viSNE [ADT13] introduces t-Distributed Stochastic Neighbor Embedding (tSNE) 
[vdMH08] to mass cytometry data and ACCENSE [SBDC14] uses tSNE as the basis 
for automatic clustering. Classification in viSNE is performed by manually gating on 
the scatterplot, while ACCENSE performs automatic clustering of the embedded 
data. The tSNE-based techniques perform exceptionally well in embedding cytometry 
data and provide single-cell resolution. Nonetheless, due to a large computational 
cost, only limited interactivity is reached. In fact viSNE and ACCENSE both propose 
downsampling of large data for increased speed. Recently, Pezzotti et al. [PLvdM15] 
introduced A-tSNE, a tSNE variant, which aims at minimizing precomputation 
times for high-dimensional neighborhoods. While the cluster-based techniques are 
reasonably fast, they do not allow inspection on a single-cell level, and overall do not 
retain the high-dimensional structure as well as tSNE. A standard system for single-
cell data analysis is the webbased service Cytobank [KKI10]. It offers SPADE and tSNE 
computations in a reasonably-easy way. However, it lacks integration and interactivity. 
As computations are queuebased, significant wait times of several hours can occur.

A multitude of visual analysis tools for omics-data have been proposed recently. 
The focus of the vast majority of these tools is on genomic data. Generally, these 
data are similar in structure, e.g., a cell can be represented by a high-dimensional 
expression vector. However, usually the goal of the analysis of these data are 
quite different. StratomeX [LSS12] allows exploration of genomics data for 
cancer subtype characterization. They allow comparison of multiple groups using 
a ribbon-based visualization. The presented case study data consists of a few 
thousand data points, consisting of up to 6,000 genes (dimensions), each. MizBee 
[MMP09] is targeted at the exploration of syntenic blocks, blocks of features 
that appear in the same form on the same or multiple chromosomes. While the 
data only consists of dozens of chromosomes, the number of features reaches 
hundreds of thousands. invis [DHHH13] allows exploration of RNA sequences. 
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Among others, the authors use dimensionality reduction, by means of PCA, and 
two-dimensional scatterplots to visualize the data. The presented data consist of 
19,000 sequences with 186 dimensions. MulteeSum [MMDP10] is a tool for the 
visual analysis of gene expression data in cells, with the addition of spatial and 
temporal information. Here, a typical dataset consists of thousands of cells with 
50 dimensions over 6 time points. For all these tools it becomes apparent that 
besides different analysis questions, the data differs in key properties, compared to 
cytometry data; instead of millions of data points a typical genomics dataset only 
consists of thousands of data points, but sometimes with thousands of dimensions

4. MULTILEVEL PHENOTYPE SPECIFICATION 
WORKFLOW

We introduce a high-level task description in Section 2.2. In short, we need 
to derive groups of similar highdimensional data points and annotate 
these groups. In Section 3, we present a number of tools that are available and 
commonly used for these tasks in single-cell analysis. However, none of these 
tools performs optimally on large cohort studies (Section 2.1) consisting of 
millions of cells. The de facto standard in terms of quality is a combination of 
tSNE [vdMH08] (i.e., viSNE [ADT13]) with manual or automatic clustering in 
the embedding [SBDC14]. However, the computational complexity severely 
limits the applicability of tSNE for large data. Other tools, like SPADE [QSB11] 
work with larger data but do not produce cluster separation of the same quality.

In this work, we propose a multilevel workflow that effectively reduces these 
problems; we use SPADE clustering to create a high-level partitioning of the data, 
coupled with a detail analysis of each partition via A-tSNE, reducing the input size 
of each embedding and making it feasible. The partitioning is a means to deal with 
large data sizes but also has a biological justification. The amount of markers in mass 
cytometry enables the design of marker panels covering multiple cell lineages at the 
same time. In this case, the expression of markers strongly vary between lineages, 
but are more subtle within a lineage. Using the increased number of markers to 
create breadth inherently creates multiple scales within the data, which we separate 
in our multilevel workflow. 

In the following, we present an abstraction of the two levels of this workflow, 
following Brehmer and Munzner’s multi-level task typology [BM13]. Similar 
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to their extension for the visualization of high-dimensional data [BSIM14], we 
focus on the why and what in this section. We describe the how in Section 5.

4.1. Major Lineage Delineation
A major lineage of cells corresponds to a high-level cluster in the data (see Section 
2.1). While we do expect tens to hundreds of different cell types, the number of 
major lineages is limited. Since the marker panel is designed specifically to cover 
a set of lineages of interest, their number, as well as their discerning markers, 
are known beforehand. However, the boundaries between the clusters are 
not fixed and the discerning markers are not always unique for a single lineage. 
Therefore, we propose an interactive approach to defining the high-level clustering.

We present an abstraction of the major lineage delineation in Figure 2b. We 
propose a two step approach. In T1a we group points, deriving a set of clusters 
in the highdimensional space. Even though we do know the number of expected 
high-level clusters, we propose to create more clusters here and combine them to 
high-level meta-clusters in T1b, to find the optimal boundaries. For T1b, we propose 
an interactive approach; since the target is known (based on the discerning markers) 
the user needs to locate the corresponding groups of clusters, summarize 
them to derive meta-clusters, and finally annotate those meta-clusters.

In summary, we need to provide the user with effective tools and visual encodings to:  
• derive a predefined number of clusters, while preserving high-dimensional 
structures. 
• locate, summarize and derive major lineages by their discerning markers 
using prior knowledge.
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Figure 2: Abstraction of the identified high-level tasks as well as the detailed subtasks
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4.2. Phenotypical Subset Exploration and Identification
Exploration and identification of phenotypically-distinct subsets happens in the 
second step of our workflow. We define a phenotypically-distinct subset as a 
group of cells with similar marker expression profiles. The subsets can greatly 
vary in size, in fact small subsets, corresponding to rare cells, are often of major 
interest and must not be lost during the analysis. Since the high-dimensional 
space, corresponding to the marker panel, varies from study to study, subsets 
need to be created in a data-driven fashion. Other than with the discerning 
markers in the lineage delineation, here, all markers can be of interest. We also 
expect to find subsets not known before requiring an explorative analysis.

We propose an approach consisting of three steps as presented in abstract form in 
Figure 2c. We use dimensionality reduction in T2a to derive two-dimensional 
data points for visual inspection of the complete data, without clustering or 
downsampling. This assures that small subsets do not get lost in a larger cluster 
or during downsampling. For creating the subsets (T2b), we propose to derive 
clusters based on the structure of the dimensionality reduced data. Finally, for T2c, 
we propose to re-introduce the original high-dimensional data to explore and 
verify the clusters. If the clustering is too coarse, the user can go back to the previous 
step and derive a new set of clusters. If the clustering is too fine, she can derive 
new clusters in this step by merging. Once the user is satisfied with the clustering 
she can annotate the clusters based on the complete expression profile.

To recapitulate; the proposed system needs to provide effective means to: 
• derive two-dimensional coordinates, based on the high-dimensional 
expression.
• derive clusters, based on the two-dimensional structure. 
• explore and summarize the data at single-cell resolution and derive 
subsets with similar marker expression.

 5. CYTOSPLORE

We implemented a complete system for our workflow respecting the identified 
tasks (Figure 1). It provides a configurable environment with multiple linked views 
for the analysis. Here, we describe the implementation details, reasoning, and how we 
map the different workflow tasks presented in Section 4 to the actual visualization 
and analysis tools. Figure 3 shows the complete workflow, as implemented.
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5.1. Major Lineage Delineation
Figure 2b shows a the abstraction of the major lineage delineation. 
We identified two major tasks, described in Section 4.1: T1a: grouping 
of points to clusters of similar expression and T1b: the creation of meta-
clusters, clusters of clusters, that correspond to the major lineages. In the 
following, we describe how we support these tasks in our visual analysis tool.

T1a: Group Points. We use SPADE [QSB11] for automatically grouping points to 
clusters of similar expression. In short, SPADE clusters data points based on their 
similarity in the high-dimensional space. It does so by downsampling the data, based 
on local densities, to avoid removing small distinctive groups. The downsampled data 
is then clustered and the data points, removed during downsampling, are added to the 
most similar cluster. The number of clusters needs to be predefined and should be 
set about an order of magnitude larger than the expected lineages to compensate for 
SPADE’s lack of precision. Finally, a minimum spanning tree is constructed using the 
clusters’ median expressions. We chose SPADE, as it is well known in the domain and 
has been proven to be a valuable tool for single-cell analysis [BSQ11,BZF_12,LZN15]. 
Its lack of precision and the need to predefine the number of clusters are not 
an issue for the major lineage delineation. Here, we are only interested in high-
level structures and, in case points are mis-classified, these can be fixed later in the 
pipeline. The number of major lineages expected in the data is inherently defined by 
the design of the marker panel and as such known beforehand. To minimize the risk 
of clusters containing data points that belong to multiple lineages, the user simply 
selects a much larger number of clusters than expected as major lineages. These 
clusters are then grouped manually into meta-clusters, defining the major lineages.

Major Lineage       
   Delineation

SPADE

A-tSNE

Subset
    Identification

Subset           
Exploration

GM
S

Tag

Input
Data

Phenotype
Subsets

High Level Clustering
> Clusters & Layout

Single Cell Embedding
> Point & Density Vis

Mean Shift Clustering
> Subset Candidates

Cell Classification
Based on Clusters

Interactive Feedback Loop 

Figure 3: Phenotype Specification Workflow and its three major user-facing blocks; major-
lineage delineation, subset exploration and identification. SPADE, A-tSNE, GMS and Tag-
labeled blocks form the computational glue between user-driven parts. GMS requires a kernel-
bandwidth definition, but is computed in real time, merging subset exploration and identification.
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T1b: Create Meta-Clusters. We visualize the SPADE tree using a node link 
diagram, where nodes correspond to the clusters and the links to the edges in 
the minimum spanning tree. The nodes are initially laid out using a force-directed 
layout but the user can arrange the layout as needed. Our partners are familiar 
with these types of diagrams and used them before to inspect the results of SPADE 
clustering, hence, we decided not to change this basic encoding of the data and 
rather focused on optimizing it for the task at hand. The experts need to locate 
branches of the tree with a similar expression in a few markers (usually no 
more than three), corresponding to the known major lineages. To help the user 
navigate to and select these branches, we color code the nodes to show 
the median expression of one or more markers of the corresponding cluster. To 
show two or three different markers, we divide the node into segments of equal 
size. By default, we use the pink-to-green diverging color map from colorbrewer, 
as the expression is usually classified in low or high values, which here correspond 
to the ends of the diverging spectrum. Once the user has identified a group of 
clusters with similar expression in the selected markers, she can simply brush in 
the diagram to select and annotate the selection via the context menu. A 
permanent meta-cluster is automatically derived from the annotated selection 
(Figure 4). The described steps are usually sufficient to define the major lineages. 
In case the user wants to inspect the complete expression of a cluster, we provide 
a circular heatmap that opens around the node of interest by double-clicking.

5.2. Phenotypical Subset Exploration and Identification
We show the abstraction for the phenotypical subset exploration and identification 
in Figure 2c. The process is divided into three major parts, as presented in Section 
4.2; T2a: dimensionality reduction, T2b: clustering and T2c: cluster refinement,
 as described below. 
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T 2 a : 

Dimensionality Reduction. Sedlmair et al. [SMT13] conclude that “there is no 
one-and-only Dimensionality Reduction solution”. A-tSNE [PLvdM15] is a variant of 
tSNE [vdMH08], which is designed to preserve local structure (i.e., clusters) in the 
high-dimensional space and is optimized to target two- or three-dimensional spaces 
for visualization [vdM09] and, therefore, fits our task very well. However, standard 
tSNE suffers from long computation times. We aim at fast computation of the detail 
visualization, as it will allow us to go back and forth between the highlevel and detail 
visualizations to iron out mistakes in the high level selection. Therefore, we chose 
A-tSNE to derive two-dimensional data points. A-tSNE is specifically designed for 
such interactive settings. By approximating the high-dimensional neighborhoods the 
startup time can be reduced by up to two orders of magnitude, when compared 
to the original implementation of tSNE. We use a conservative approximation 
parameterization, as described by Pezzotti et al. [PLvdM15] to make sure that 
the resulting embedding faithfully represents the data without user interaction.

T2b: Clustering. Manual selection of visual clusters in the embedding to 
derive subsets is a tedious task. Previous work proposes to use automatic 
clustering of the embedding to specify the phenotypical subsets. In their work 
on ACCENSE [SBDC14], Shekhar et al. propose a technique for density-based 
clustering of tSNE maps in the context of cytometry. However, ACCENSE 
suffers from several problems. Most importantly, they use a proprietary 
clustering algorithm that typically clusters only around 50% of the data. 

a) b)

expression

low

density

low

Figure 5: tSNE Visualization of a single lineage, as scatterplot (a) and as density plot (b). 
Erroneous selections can be identified in the scatterplot (blue circles) due to the low expression in 
the discerning marker for this lineage. Visual clusters can easily be distinguished in the density plot.
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We decided to use Gaussian Mean Shift (GMS) clustering to create the subsets. 
GMS has proven to be a reliable tool for the analysis of complex data, is capable 
of creating arbitrarily-shaped clusters [CM02], will cluster all available data, and 
corresponds well with the visually-identified clusters. Similar to ACCENSE, GMS 
does rely on density computations and a kernel bandwidth needs to be specified. 
ACCENSE tries to find an optimal size automatically by inspecting the number 
of resulting peaks for a range of different values. In our tests, the results of this 
approach were questionable. Instead, we expose this parameter to the user, in 
combination with a linked feature-space view of the resulting clusters. Hereby 
we allow the user to make an informed decision on the kernel bandwidth. For an 
effective visual exploration, the data needs to be clustered at interactive rates. GMS 
is a rather complex algorithm and is therefore usually not employed in interactive 
settings. In Section 6.1, we describe a GPU-based, discrete GMS implementation 
that allows for interactive clustering of hundreds of thousands of data points.

T2c: Cluster Refinement. We support the user in the process of exploring 
the created clusters and deriving new clusters with three visual encodings. 
We use a scatterplot (Figure 5a) or a density plot (Figure 5b) to show the 
dimensionality-reduced data. In the scatterplot (Figure 5a), subsets can be 
identified best by inspecting the actual marker expressions. Therefore, we use 
color coding to represent a single user-defined marker, using the same diverging 
colormap as described in Section 5.1. E.g., the user selects a discerning marker 
for the defined lineage from a dropdown menu to use for the color coding. Cells 
that show a high expression of the marker when low is required (or vice versa) 
can easily be identified in the scatterplot (see the blue circles in Figure 5a). The 
user can then go back and remove them from the defined lineage using the SPADE 
visualization, or simply handle them as outliers and create the correct annotation 
in the following steps. The density plot (Figure 5b) shows more detail within the 
groups. E.g., the group in the top left of the embedding (black highlight) seems 
relatively homogeneous in the scatterplot but shows three peaks in the density 
plot. However, in the density plot, we lose single-cell resolution and the marker 
expression. We couple the GMS clustering to the density plot and each cluster is 
represented by a black dot on the corresponding density peak for easy discovery.

The third visual encoding is a heatmap view (Figure 6), showing the median marker 
expression of the created clusters. A phenotypically-distinct subset is defined by a 
homogeneous unique marker expression of the contained cells. Consequently, we 
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propose to use the homogeneity of the resulting clusters as a quality measure. We 
provide the standard deviation as a measure for the homogeneity. Inspired by Gove 
and Herzog’s work [GH13], we encode the standard deviation in the amount of 
paint in each box in the heatmap. Here, a filled box means little standard deviation, 
whereas a box with a lot of white corresponds to large heterogeneity inside the cluster 
for the corresponding marker. The combination of the interactive clustering and the 
linked heatmap view, including information on the homogeneity of clusters allows the 
user to make an informed decision on when the automatic clustering is satisfactory.

Once the user has defined a suitable kernel bandwidth, she proceeds to refine the 
created clusters, i.e., by merging clusters with a similar expression. We provide quick 
interactions (directly in the heatmap view) to merge multiple clusters that belong 
to the same phenotypical subset. The user can select one or more clusters by 
clicking on the corresponding column in the heatmap. The cluster will be highlighted 
in the heatmap view and the embedding to indicate the correspondence to the 
spatial location. We provide different ways to arrange the heatmap for easy 
comparison. To organize columns by their overall similarity, we compute hierarchical 
clustering using the median cluster expressions and visualize the columns as 
leaves of the resulting dendrogram. Thus, similar columns are automatically 
placed next to each other, allowing fast exploration of the clusters and the 
corresponding feature space. In addition, the user can also sort the columns based 
on the values of a single row. To derive new clusters, the user can simply select 
multiple columns and merge them to a single cluster via the context menu. The 
dendrogram and sorting are automatically updated on such interaction. Finally, 

Figure 6: Detail of the Heatmap View showing marker expressions and variation. Variation is encoded in 
the amount of paint in each box. Columns are ordered by similarity as indicated by the dendrogram on top
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the refined clusters can be annotated directly in the heatmap and exported 
to separate files for further inspection and quantitative analysis in external tools.

6. IMPLEMENTATION

We implemented the core system of Cytosplore using C++ and Qt. For the 
visualization components, we use a combination of different rendering techniques, 
including D3 [BOH11] and hardware accelerated OpenGL with custom GLSL 
shaders, depending on the amount of objects on screen. Even though we mix and 
match hardwareaccelerated OpenGL-based visualization with slower webbased 
techniques, we would like to note that we strictly divide between pure visualization 
and intensive computational tasks. All heavy lifting, such as clustering, gradient descent 
and computation for A-tSNE is implemented in C++ or, if possible, on the GPU for 
maximum performance. When applicable, we only use a thin web layer for visualization.

6.1. GPU-based, Discrete Mean-Shift Clustering
One of the main drawbacks of the mean-shift algorithm is its computational 
complexity, making it not applicable in interactive scenarios with millions of data points. 
Therefore, we implemented a grid-based streaming version of the Gaussian Mean 
Shift algorithm based on work by Sirotkovic et al. [SDP13] for image segmentation. 
Instead of using the Improved Fast Gauss Transform [YDGD03], however, we use 
fast density estimation on the GPU [LH11] reducing the shift operation to a single 
lookup in a gradient table. In general, the mean-shift algorithm is a mode-seeking 
algorithm, taking each input data point and iteratively shifting it to the average of the 
data points in its neighbourhood until convergence to a fixed location. To increase 
the performance, we map the clustering problem to a segmentation problem of the 
visual space used for the embedding, to be able to apply the algorithm presented 
by Sirotkovic et al. [SDP13]. As a result, the cost of the shift operation is dependent 
on the resolution of the visual space, rather than the number of input points. 
Additionally this approach maps nicely to the GPU, further increasing performance.

We use three render passes to compute the segmentation of the visual 
space. In the first pass, we compute the density profile (Figure 7a) in image 
space [LH11]. Based on the density, we compute the first derivative via central 
differences, resulting in the gradient at each grid position in the second render 
pass (Figure 7b). In the third pass, we follow the gradient map upwards until we 
find a local peak for each pixel with a non-zero density. We inscribe the found 



Chapter 3

64

position as a color to the starting pixel, resulting in a map of constant colored 

partitions (Figure 7c). Finally, on the CPU, we set a unique id for each of these 
partitions. Assigning this id to each data point is then a simple look up in the 
resulting map using the points position. Figure 7d shows the final clustered points.

Performance. Figure 8 shows computation times of the GPU mean-shift 
algorithm for different numbers of points, different grid sizes, and different 
kernel sizes from 10% to 40% of the image size. The computations were 
carried out using a 4 core intel core i7 processor, clocked at 4Ghz and an AMD 
Radeon R9 M295X with 4GB of GPU memory. Blue columns show measured 
times for 10,000 data points, green columns for 50,000 points and orange 
columns correspond to tests using 100,000 data points. It can be seen that the 

a) b) c) d)

Figure 7: GPU Mean-Shift Steps. a shows the density map, with increasing density from white to black. 
b shows the corresponding (absolute) gradients, using the m and c channels of the cmyk color space to 
indicate the x and y components of the gradient vectors, respectively. c shows the final segmentation 
using unique colors for each partition. d shows the clustered points using the same coloring as in c.

Figure 8: Performance of our Mean-Shift Clustering.
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performance mostly depends on the resolution of the grid, while kernel size 
and number of points have a smaller effect. However, for larger resolutions, the 
impact of these two factors is visible. Overall, it can be seen that for the 1282 

resolution, we easily achieve real-time update rates for all tested kernel and data 
sizes. We can keep interactivity even at 5122 resolution and 100,000 data points.

7. RESULTS

As described in Section 5, we focused on improving existing visual encodings and 
designing an integrated interactive workflow with the goal to improve efficiency. 
We conducted interviews with three experts from our collaborating institute 
to validate the choices we made to improve the visual encodings (Section 7.1). 
A prototypical version of the presented workflow, using separate tools, such 
as Cytobank, Matlab and custom R-scripts, is the basis for our collaborators 
complete study as presented in [vULM16]. For detailed information on specific 
findings, especially how the workflow supports hypothesis generation, we refer 
to that work. In our case study (Section 7.2), we focus on how we improve 
the effectiveness of the analysis by creating an integrated interactive system.

The participants in our evaluation had different exposure to Cytosplore before the 
study. Participant A was our main partner when developing the workflow and had 
strong influence on the design process of the system. He tested the system since its 
inception and can be considered an expert user. Participant B is a close collaborator 
but was less involved in creating the system. She tests the system frequently but 
for her daily routine still relies on other tools. Participant C was presented with 
the final system just for this study and only had brief exposure to a very early 
prototype before. All participants are familiar with the available computational tools.

7.1. User Evaluation
We demonstrated the tool to the participants in a group session and installed it on their 
lab computers, including a short document, describing the most important features 
and how to access them. The participants had as much time as needed to familiarize 
themselves with the system. We followed this up with a structured interview, to 
find out which parts of the proposed system work and which could be improved. 
The integrated nature of Cytosplore provides a strong improvement. Participant C 
specifically mentions the linking;“ to see which clusters in the heatmap are which cells 
in the tSNE [...] makes it easy to make adjustments in the beginning of the pipeline” and 



Chapter 3

66

“makes it more reliable”. All participants agree that showing two markers at once in 
the SPADE visualization “saves time” (Participant B). Participant C mentions that she 
is fine with using a single marker in Cytobank, “but with two markers, it is a lot faster 
to find subsets”. Without knowledge that we tested more markers in an early design 
phase, she also states that “more than two markers would probably [...] make me lose the 
overview.”. The circular heatmap received mixed reactions. Participant C states that 
“it is not very helpful when a lot of markers are used in the panel”. Particpant A sums it 
up to “looking at high detail for one node is a luxury but not a necessity”, validating our 
choice to make it optional. Participant B works with data that sometimes produces 
very small lineages (i.e., consisting of a few hundred cells). During testing, she was 
able to successfully define the subsets with this kind of data. With such small data, 
where the differences in the density of the embedding are rather subtle, “we need 
the heatmap to combine our immune knowledge to define the kernel bandwidth.”. Before, 
this process completely failed with her standard workflow. Interactively defining 
the kernel density made Participant C much more confident in the results of the 
density-based clustering: “Yes, this [the linked heatmap view] is very helpful. The variation 
display shows even more clearly whether more subsets need to be created.” Participant 
A praises the linking between clustering and the heatmap visualization of marker 
expressions: “It immediately feedbacks the signatures revealing overall heterogeneity 
and homogeneity that often is the unknown for your data. It gives so much valuable 
simulteaneous information and you are flexible in changing parameters without having to 
do hours of computations again. I am really happy with it.” He does not, however, use 
the visualization of the standard deviation since markers without a clear low or high 
expression are hard to discern from the background due to the diverging colormap 
with a white center. We since changed the available colormaps in the heatmap view 
by removing the very light colored blocks, but did not conduct an updated evaluation.

7.2. Case Study
To measure the efficiency of our proposed system, we set up a small case study. The 
study consists of a single blood sample which was downsampled to 50,000 cells. 
The task was to specify the 
phenotypically distinct subsets 
within the dominant major 
lineage (CD4+T) within the 
sample. We asked Participant 
A to create the subsets using 
his traditional workflow 

Total T1: Lineage
Delineation

T2a/b: Subset
Computation*

T2c:Subset
Postprocessing

Traditional 108 27 29 52
Ours 39 13 11 15

*completely automatic in the traditional and interactive in our workflow

Table 1: Case Study Performance. Time in minutes needed 
for the different steps in the workflow.
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[vULM16] as a benchmark, as well as our workflow for comparison. We chose 
Participant A because he is the most experienced user among our three participants. 
Table 1 shows the time it took to create the subsets with the traditional workflow 
compared to the time with our integrated solution. It can be seen that Cytosplore 
outperforms the traditional workflow roughly threefold. It should be noted that 
this small test case cannot completely capture the details of the workflow. E.g., as 
shown in Section 6.1, our implementation of the clustering for T2b scales very well 
with increasing data sizes, whereas the automatic clustering within ACCENSE often 
takes hours with real-world data sizes. However, it was necessary to use such a 
simple example, to allow the subset definition within a reasonable time frame.  
SPADE and tSNE computations in Cytobank are done in the cloud. We assume they 
use distributed computing, as their conventional tSNE was computed in the same 
time as our A-tSNE. However, since Cytobank runs on shared hardware, SPADE and 
tSNE computations are queued for all users and wait times easily reach hours during 
peak times. We measured the time only after the job was started to make sure the 
comparison is fair. With our tool, clusters can be merged with a few clicks and 
be verified immediately. The most time is needed for the biological interpretation 
of the heatmap itself. We can see a large speed up in this step, due to the fact 
that this is the least integrated part in the original workflow and requires several 
different tools and sometimes multiple iterations for verification of the results.

Finally, we compared the subsets that were assigned to each cell, to make sure 
our results are comparable to the traditional workflow. In the SPADE tree 27,172 
cells were assigned to the created CD4+T lineage with the traditional workflow, 
26,591 with ours. Within the lineage, in all tests, the same 14 subsets were identified 
after merging 16 automatically-generated subsets in the traditional workflow 
and 19 with ours. The results are not directly comparable on a single-cell level, 
because ACCENSE only clustered 14;643 of the original 27;172 cells. Figure 9 
shows the composition of the cells according to the subset specification during 
the evaluation. Except for the groups labeled I and II, where we found more cells 
using Cytosplore, the results were very similar; overall 14 subsets, 6 CD4+T Naïve 

I

II

a)

I

II

b)

CD4+T  Memory

CD4+T  Naïve
Figure 9: Subsets Created in the 
Evaluation by Participant A with the 
traditional workflow (a) and using 
Cytosplore (b). Note that a consists 
of only 54% of the cells assigned 
to the lineage, due to incomplete 
clustering using ACCENSE.
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(different shades of blue) and 8 CD4+T Memory (different shades of purple) were 
defined in all tests. After further investigation, we found out that the additional 
cells in group I and II were mostly from the regions that were not clustered using 
ACCENSE. It needs to be investigated further, whether the difference is due to a 
bias introduced by the incomplete clustering in ACCENSE, or if the greedy clustering 
using mean shift introduces cells into the subsets where the phenotype is uncertain.

To summarize, we were able to achieve comparable results using our interactive 
workflow, when compared to previous work [vULM16]. Therefore, we assume that our 
framework allows for generating hypotheses in a similar fashion. However, it has the main 
advantage of significantly higher efficiency, when compared to the previous approach.

8. CONCLUSION AND FUTURE WORK

We presented Cytosplore, an interactive integrated system and workflow for 
the specification of phenotypical subsets in large high-dimensional cytometry 
data sets. We have shown the benefits of our approach in a case study evaluation. 
Participants found our integrated workflow useful and it allows them to produce 
results considerably faster than with their traditional workflow. The integrated 
nature of Cytosplore leads to much faster iteration during the subset specification. 

Cytosplore allows us to go beyond data sizes currently possible to handle with 
other tools by effectively partitioning the input. However, scalability (in terms of 
data points) is still limited by the input size for A-tSNE. In our tests, tSNE is not only 
a limiting factor in terms of computational performance, but the embedding quality 
also quickly degenerates when going beyond a few million data points.We expect 
the number of dimensions to rise to around a hundred. For the computational 
tools presented in this work this will not be an issue. Cytosplore is also flexible 
enough to be employed in a basic clinical setting, e.g., to analyze the lower-
dimensional flow cytometry data. If data are small enough, e.g., when analysing a 
single blood sample, the overview generation using SPADE can be skipped entirely 
and the data can be analysed using the embedding and heatmap, immediately. 
For the analysis of the immune system as a whole, the specification of cell types 
is only the first step, followed by a quantitative analysis of the found subsets. In 
future work, we would like to integrate the quantitative analysis within Cytosplore.
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