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Abstract

The homeodomain-leucine zipper (HD-Zip) transcription factor family plays vital roles in

plant development and morphogenesis as well as responses to biotic and abiotic stresses.

In barley, a recessive mutation in Vrs1 (HvHox1) changes two-rowed barley to six-rowed

barley, which improves yield considerably. The Vrs1 gene encodes an HD-Zip subfamily I

transcription factor. Phylogenetic analysis has shown that the rice HD-Zip I genes Oshox12

and Oshox14 are the closest homologues of Vrs1. Here, we show that Oshox12 and

Oshox14 are ubiquitously expressed with higher levels in developing panicles. Trans-activa-

tion assays in yeast and rice protoplasts demonstrated that Oshox12 and Oshox14 can bind

to a specific DNA sequence, AH1 (CAAT(A/T)ATTG), and activate reporter gene expres-

sion. Overexpression of Oshox12 and Oshox14 in rice resulted in reduced panicle length

and a dwarf phenotype. In addition, Oshox14 overexpression lines showed a deficiency in

panicle exsertion. Our findings suggest that Oshox12 and Oshox14 may be involved in the

regulation of panicle development. This study provides a significant advancement in under-

standing the functions of HD-Zip transcription factors in rice.

Introduction

Plant genomes contain a large number of transcription factors (TFs) that regulate the expres-

sion of several downstream targets. In Arabidopsis, approximately 1,500 TFs have been identi-

fied and are divided into a number of classes, such as the MADS box, AP2/ERF, Dof, Myb,

Hsp, bZIP, NAC and homeobox genes [1–3]. In addition, the rice genome contains more than
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1,600 TFs, accounting for 2.6% of its estimated 56,797 genes [4]. Homeobox (HB) TFs belong to

a large gene family characterized by the presence of a conserved 61 amino acid sequence known

as the homeodomain (HD) motif which is responsible for sequence-specific DNA binding. Of

these HB TFs, roughly half are so-called homeodomain-leucine zipper (HD-Zip) proteins,

which also contain a leucine zipper motif [5]. The HD-Zip proteins are unique to plants and do

not occur in other eukaryotes [6, 7–9]. To date, 48 and 47 HD-Zip members have been found in

Arabidopsis and rice, respectively [7, 10, 11–14]. The HD-Zip proteins have been classified into

four subfamilies (HD-Zip I to IV) on the basis of sequence similarities and the exon/intron pat-

terns of the genes [11, 12, 15]. The roles of the HD-Zip TFs have been determined largely

through work in Arabidopsis and rice, and these roles are associated with various biological

functions, including vascular development, leaf polarity, embryogenesis, meristem regulation

and developmental responses to environmental conditions [10, 14, 16–18].

Especially, among the HD-Zip I family, many members in several plant species are involved

in developmental regulation in response to changes in environmental conditions [17]. For

example, Arabidopsis Athb-5, -6, -7, and -12 [11, 19, 20], sunflower Hahb4 [21, 22], Medicago

Mthb1 [23], tobacco Nahd20 [24] and maize Zmhdz-1 and -10 [25, 26], are mainly induced by

water deficit, salt and abscisic acid (ABA). Furthermore, in rice Oshox6, -22 and -24, the closest

homologues of Athb-7 and -12, are also upregulated by water deficit [7, 12, 27, 28] while

Oshox4 is downregulated under drought conditions [12] and also plays a role in gibberellin

(GA) signaling [12, 29]. Several reports have shown the functions of HD-Zip I genes in devel-

opmental processes. In tomato, LeHB1, is highly expressed in flowers and developing fruits,

and its overexpression altered floral organ morphology of [30]. In Arabidopsis, the abiotic

stress-responsive gene Athb-12 was recently also found to regulate leaf growth by promoting

cell expansion and endoreduplication [31]. In cucumber, Cucumis sativus Glabrous 1 (CsGL1)

encodes an HD-Zip I protein. In addition, CsGL1 is also strongly expressed in trichomes and

fruit spines and has been shown to be required for trichome formation [32, 33].

In barley, the Vrs1 (HvHox1) gene is encoded by an HD-Zip I underlying a major QTL for

grain number, and it determines the difference between two-rowed and six-rowed spikes [34,

35]. The temporal and spatial specificity of Vrs1 expression indicates that Vrs1 is involved in

the development of lateral spikelets in two-rowed barley. Loss of function in Vrs1 results in

complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully devel-

oped fertile spikelets in the six-rowed phenotype [34, 36]. So far, Vrs1 is the only HD-Zip I

gene that has been directly connected to a major yield QTL. In rice, grain yield is mainly deter-

mined by three traits: grain weight, number of grains per panicle, and number of panicles.

From the viewpoint of increasing rice yield, increasing the grain number per panicle is the

main approach to obtaining high yield, and thus, characterizing the rice Vrs1 homologs,

Oshox12 and Oshox14, is of considerable interest. Here, we report a functional analysis of the

HD-Zip I genes Oshox12 and Oshox14 in rice. We analyzed their transactivation properties,

identified novel interaction partners and established their nuclear localization. In addition, we

show that Oshox12 and Oshox14 may be involved in the regulation of panicle development in

rice. Therefore, the present study contributes to a molecular understanding that will support

future improvements in grain yield in rice.

Materials and methods

Phylogenetic analysis

Alignment of full-length amino acid sequences was performed with ClustalW2 software

(http://www.ebi.ac.uk/Tools/clustalw2/). The neighbour-joining method and Poisson correc-

tion model were used for phylogenetic tree construction in MEGA version 4.0 [37].
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Binary vector construction

The construct Pro35S-Oshox12 was derived by transferring the full length Oshox12 (LOC_

Os03g10210, MSU Osa1 Release 7) cDNA clone from λFLC-1-B-Oshox12 (GenBank accession

AK073446) as a KpnI-EcoRI fragment to expression vector pC1300intB-35SnosBK (GenBank

accession AY560326). This binary vector allows expression the Cauliflower Mosaic Virus

(CaMV) 35S promoter and has a nos transcription termination signal. For construct Pro35-

S-Oshox14, the full-length Oshox14 (LOC_Os07g39320, MSU Osa1 Release 7) cDNA was cut

from λFLC-1-B-Oshox14 (GenBank accession AK121889) with BamHI and EcoRI, and then

subcloned between BglII and EcoRI of vector pC1300intB-35SnosBK.

For the Oshox12 promoter-GUS fusion, a 2,869 bp DNA sequence upstream of the pre-

dicted translation start site was amplified by PCR from genomic Nipponbare DNA using

Phusion polymerase. The primers ProOshox12Fw (5’-CGATCGGATCCATAAGAAACA
CCTC-3’) and ProOshox12Rev (5’-CTCACGGCCCATGGTCCGAGCGAAC-3’)with

BamHI and NcoI sites, respectively, were used. This fragment was subsequently cloned into

pCAMBIA-1391Z (GenBank accession AF234312) for translational fusion to the β-glucuroni-

dase (GUS) gene, resulting in construct ProOshox12-GUS. With the same strategy, a 2,623 bp

PCR product was inserted into pCAMBIA-1391Z, resulting in construct ProOshox14-GUS,

except that the primers used were ProOshox14Fw (5’- CTGCTGATAGTGGGATCCACTC
TCGGCAAC-3’) and ProOshox14Rev (5’- TCCATGGCGTCTCGCACACTAGCTCG
AT-3’).

Plant transformation and growth conditions

Oryza sativa (L.) Japonica cultivar Zhonghua 11 was used for stable rice transformation.

Embryonic calli were induced on scutella from germinated seeds and rice transformation with

the binary vector constructs was performed as described previously except that Agrobacterium
tumefaciens strain LBA4404was used [38]. Prior to growth in the greenhouse, transgenic seed-

lings were selected on a half-strength Murashige-Skoog medium supplied with 0.7% type I aga-

rose (Sigma) and 25 mg/mL hygromycin B (Duchefa, Haarlem, The Netherlands).

Regenerated transgenic plantlets were transferred to the greenhouse and grown in hydroponic

culture with a regime of 16 h light, 28˚C and 85% relative humidity.

Transgenic and wild type rice seeds were first surface sterilized with 70% ethanol for 30 s

and 2% sodium hypochlorite (v/v) for 30 min. The seeds were then rinsed five times in sterile

water and immersed in water in the dark for two days at 28˚C to induce germination. Addi-

tionally, transgenic seeds were selected for one week on half-strength MS media containing

hygromycin B to screen transgenic plants. Finally, the germinated seeds were transferred to

the greenhouse in three L pots (diameter 19 cm, depth 14.5 cm) filled with soil. The conditions

in the greenhouse were as follows: temperature, 28˚C day/25˚C night; photoperiod, 12 -h

light/dark; 85% relative humidity, and 450 μM m−2 s−1 light intensity. Plants were watered

twice a week using modified half-strength Hoagland nutrient solution [39].

To evaluate the agronomic traits of the transgenic rice plants, plant height, number of tillers

per plant, panicle length and number of primary branches per panicle, were measured at matu-

rity in ten plants from each of three independent lines. The data were analyzed by Student’s t-
test. The plant height was measured from the base of the stem to the top of the flag leaf.

Yeast one-hybrid system

To study the DNA binding properties of the Oshox12 and Oshox14 proteins, expression vec-

tors for use in the yeast one-hybrid system were made. The full length cDNA of Oshox12 was

amplified from λFLC-1-B-Oshox12 with the Oshox12 cDNAFW (5’-CGGAATTCCCATGG

Functional analysis of Oshox12 and Oshox14
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GCCGTGAGGAGGATGAGAAG-3’) and Oshox12/14 cDNAREV 5’-(GCGTCGACCC
CTCGACGGATCAGGCCCTTA-3’) primers, then the EcoRI and SalI fragment of the Oshox12
full length open reading frame (ORF) was cloned into yeast expression vector pRED-ATGb

cut with the same restriction enzyme, resulting in pRED-ATGb-Oshox12.

For the yeast expression vector of Oshox14, the full length cDNA of Oshox14 was first

amplified from λFLC-1-B-Oshox14 with the Oshox14 cDNAFW (5’-CGGAATTCCCATGGA
CCGATACGGCGAGAAGCA-3’) and Oshox12/14 cDNAREV primers, and then the NcoI and

XhoI fragment of Oshox14 ORF was cloned into pACTII (pACTII-Oshox14). After the se-

quence was confirmed, the NcoI and BglII fragment of Oshox14 derived from pACTII-

Oshox14 was subcloned into pUC28 (pUC28-Oshox14) and cut with NcoI and BamHI. The

EcoRI and SalI fragment of the Oshox14 full-length ORF from pUC28-Oshox14 was then

inserted into pRED-ATGa with the same enzymes in frame, resulting in pRED-ATGa-

Oshox14. Yeast transformations were performed by the LiAc method, essentially as described

by Gietz [40]. Yeast transformants were grown on a selective medium without histidine and

uracil but with 10 mM 3-AT (to suppress background growth on CM minimal medium lack-

ing histidine) [41]. The yeast reporter strains 4AH1-HIS3 and 4AH2-HIS3 have been de-

scribed previously [42, 43]. These strains contain tetramers of the AH1 (CAAT(A/T)ATTG)

and AH2 (CAAT(C/G)ATTG) sequences which are consensus binding sites for HD-Zip I and

II proteins respectively. The 4AH1 and 4AH2 sequences are in front of the HIS3 reporter gene

which is integrated via the pINT1 yeast one-hybrid system at the non-essential PDC6 locus

[42]. All handlings of yeast were performed as described previously [43–45].

Protoplast isolation and transformations

Protoplast isolation was performed as described by Chen [46]. To isolate protoplasts from

young seedling tissues, rice seeds were germinated on half-strength MS medium under light

for three days. Seedlings were then cultured on the same medium in the dark at 28˚C for 10–

12 days. Tissues of young seedlings (the stems including sheaths) were cut into approximately

0.5 mm strips and placed in a dish containing K3 medium [47] supplemented with 0.4 M

sucrose, 1.5% cellulase R-10 (Yakult Honsa) and 0.3% macerozyme R-10 (Yakult Honsha).

The chopped tissue was vacuum-infiltrated and digested at 28˚C with gentle shaking at 40

rpm. After incubation, the K3 enzyme medium was replaced by the same volume of W5 solu-

tion (154 mM NaCl, 125 mM CaCl2, 5 mM KCl and 2 mM MES, adjusted to pH 5.8 with

KOH). Protoplasts were released by shaking at 40 rpm for 1 h, followed by filtering through a

35 μm nylon mesh. Protoplasts were collected by centrifuging at 1,300 g for 5 min at 4˚C. Pel-

lets were resuspended in suspension solution (0.4 M mannitol, 20 mM CaCl2, 5 mM MES,

adjusted to pH 5.8 with KOH). Transfection with effector/reporter constructs was performed

as follows: 200 μL (usually 1.5~2.5×106 cells/mL) of suspended protoplasts was added to the

tube with 10 μg plasmid DNA (including the effector and reporter); then, 220 μL of 40% (w/v)

PEG 4,000 prepared with 0.1 M Ca(NO3)2 and 0.4 M mannitol solution, pH 7, was added, and

the mixture was incubated at room temperature for 20 min. After incubation, 750 μL W5

medium was added slowly without mixing, and the protoplasts were transferred to a microtiter

plate (12 wells) with 750 μL W5 medium, which was incubated overnight in a room at 25˚C in

the dark [46]. After 16 h incubation, protoplasts were harvested and lysed in GUS extraction

buffer. After centrifugation, the soluble protein concentration was determined using the Brad-

ford assay [48].

To make the effector constructs pRT101-Oshox12 and pRT101-Oshox14, the full length

cDNAs of Oshox12 and Oshox14 were cut as EcoRI-BamHI fragments from λFLC-1-B-

Functional analysis of Oshox12 and Oshox14
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Oshox12 and λFLC-1-B-Oshox14 respectively, and cloned into pRT101 cut with the same

restriction enzymes [49].

Subcellular localization analysis

To prepare the GFP-tagged translational fusion constructs, the coding region of Oshox12 was

amplified by PCR from construct Pro35S-Oshox12 using primers 35Sfor1 (5’-ATCCCA
CTATCCTTCGCAAGACCC-3’) and Oshox12GFPR (5’-CATGCCATGGCGCTGAAT
TGGTCGTAGA-3’).Oshox14 was amplified by PCR from construct Pro35S-Oshox14 with

primers 35Sfor1 and Oshox14GFPR (5’-CATGCCATGGCGATCAATCCATACAGG-3’).
The resulting fragments were cut with SalI and NcoI and fused in frame to the N-terminus of

the sGFP (S65T) coding sequence under the control of the CaMV 35S promoter in vector

pTH-2 [50] and the sequences were confirmed (Baseclear, The Netherlands). Subcellular local-

ization of the Oshox12-GFP and Oshox14-GFP fusion proteins and a GFP control in protoplast

using transient transformation was performed as described above. The GFP signal was visual-

ized with confocal laser scanning microscopy (Leica SP5) at 16 h after transformation.

Southern and northern blot hybridization

Southern and northern blot analyses were performed as described by Memelink et al. [51]. For

Southern blot analysis, rice genomic DNA was isolated from young leaves in 96 tube-tacks

(Qiagen) by dry-grinding using a Mixer Mill MM300 (Retch, Germany) with 4 mm stainless

steel beads followed by DNA extraction according to Pereira and Aarts [52]. Ten μg of DNA

per sample was digested with HindIII (only one cut site in the T-DNA region), fractionated on

a 0.8% agarose gel run in TAE and transferred onto Hybond N+ membranes (Amersham)

under alkaline conditions. The hygromycin phosphotransferase II (hptII) gene (1 Kb) was

excised from vector pC1300intB-35SnosBK (GenBank accession AY560326) as XhoI fragment.

Hybridizations were performed with 32P-labelled hptII-probe at 65˚C in hybridization mixture

(10% dextran sulphate, 1 M NaCl, 1% SDS, 100 μg/mL of denatured salmon sperm DNA). The

membranes were washed once in 2X SSC and 1% SDS at 65˚C for 30 minutes and once in 2X

SSC and 0.1% SDS at 65˚C for 30 minutes. For northern blot analysis, 20 μg of total RNA per

sample was electrophoresed in formaldehyde agarose gel and transferred to Hybond-N+ mem-

brane. Baked blots were (pre)-hybridized in 1 M NaCl, 1% SDS, 10% dextrane sulfate and

50 μg/mL denatured herring sperm DNA at 65˚C, washed with 0.1 XSSPE and 0.5% SDS at

42˚C and autoradiographed. Probes were labeled by random priming with 32P-dCTP. Equal

loading of RNA samples was verified on the basis of ethidium bromide staining of ribosomal

RNA bands.

GA treatment of plants

To evaluate the response of sheathed panicle to exogenous GA, transformed lines overexpres-

sing Oshox14 lines with strong phenotype were sprayed with 20 μM GA3 (Gibberellic acid) at

the end of panicle differentiation. For each independent line, five transformed plants were

treated.

Histochemical localization of GUS activity

Plant materials were vacuum infiltrated for 20 min in GUS staining solution containing 100

mM phosphate buffer pH 7.7, 2 mM 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid

(X-Gluc; Biosynth AG), 0.5 mM potassium ferricyanide, 10 mM EDTA and 0.1% Triton X-

Functional analysis of Oshox12 and Oshox14

PLOS ONE | https://doi.org/10.1371/journal.pone.0199248 July 20, 2018 5 / 20

https://doi.org/10.1371/journal.pone.0199248


100 and incubated at 37˚C for 1 h to overnight, depending on staining intensity. The samples

were cleared by several changes of 70% (v/v) ethanol and stored at 4˚C.

For sectioning, the samples were dehydrated in a graded ethanol series from 70% to 100%

and embedded in Technovit 7100 resin (Kurzer, Wehrheim, Germany), polymerized at 37˚C,

and cut into 3–5 μm sections that were stained with toluidine blue. The samples were viewed

using a Leica MZ12 stereo microscope or a Leitz Diaplan microscope with bright-field optics

settings, and images were acquired with a Sony 3CCD Digital Photo Camera DKC-5000.

Greenhouse-grown plants were photographed with a Canon EOS 350D camera.

Results

Phylogenetic analysis of Oshox12 and Oshox14
Previous work has shown that the barley Vrs1 gene suppresses the development of lateral

spikelets and that loss of function in Vrs1 lines results in complete conversion of two-rowed

barley into six-rowed barley [34, 36]. BLAST searches of the rice (http://rice.plantbiology.msu.

edu/analyses_search_blast.shtml) with Vrs1, found that the rice HD-Zip I family Oshox14 and

Oshox12 proteins had the highest similarity. Oshox14 is the closest homologue to Vrs1 based

on the sequence comparison, but Oshox14 is not highly expressed in panicles compared to

Oshox12 [12]. Thus, Oshox14 may be closer to Vrs1 in function than Oshox12 is. In Arabidop-
sis, the HD-Zip I members Athb-53, Athb-21 and Athb-40 are closest to Vrs1 and HVhox2

[36]. Furthermore, previous studies have shown that rice Oshox12, Oshox14 and Arabidopsis
Athb-53, Athb-21, Athb-40 are all in the so-called δ clade, which is characterized by a unique

intron between the fourth and fifth leucine of the zipper region (the so-called L4-L5 group)

whereas all other family I HD-Zips in rice have the intron between L5 and L6 [12].

To further determine the evolutionary distances among these HD-Zip I proteins and Vrs1,

a systematic phylogenetic analysis of the HD-Zip I proteins isolated from Arabidopsis, barley

and rice was performed. This phylogenetic analysis confirmed that Oshox12, Oshox14 and

Vrs1 were in the same clade (S1A Fig). Alignment of the entire amino acid sequence showed

that rice Oshox14 shared the maximum amino acid sequence similarity with Vrs1, and the

degree of full length protein sequence identity to Vrs1 reached 63.27% (S1B Fig); in contrast,

Oshox12 shared 43.09% identity with Vrs1 (S1B Fig). These results suggest that Oshox12 and

Oshox14 might have the same function as Vrs1.

The cDNA sequences of Oshox12 and Oshox14 are 1,170 bp and 1,173 bp in length, encod-

ing proteins of 239 and 240 amino acids, respectively. The Oshox12 cDNA sequence includes

an ORF of 720 bp with a 5’-UTR of 213 bp and a 3’-UTR of 238 bp, while the Oshox14 cDNA

has an ORF of 723 bp with a 5’-UTR of 206 bp and a 3’-UTR of 245 bp (S1B Fig). Oshox12 and

Oshox14 both carry putative nuclear localization signal (NLS) sequences according to the soft-

ware tools Nucpred and PredictNLS.

Interaction of Oshox12 and Oshox14 with the AH1 (CAAT(A/T)ATTG) sequence in

yeast. Previous studies have demonstrated that HD-Zip family I members can bind to the 9

bp pseudopalindromic sequences AH1 (CAAT(A/T)ATTG) and AH2 (CAAT(C/G)ATTG)

[43, 53]. To confirm affinities of Oshox12 and Oshox14, we studied the binding of Oshox12

and Oshox14 using yeast one-hybrid system. For this experiment, yeast strains containing a

chromosomally integrated HIS3 reporter gene preceded by upstream AH1 (construct

4AH1-HIS3) or AH2 (construct 4AH2-HIS3) tetramers were used. The results showed that

the 4AH1-HIS3 yeast strain transformed with either pRED-ATGb-Oshox12 or pRED-ATGa-

Oshox14 grew well on a medium lacking histidine but containing up to 10 mM 3-AT (Fig 1A

and 1B), whereas no growth was observed in yeast strains with the 4AH2-HIS3 reporter or
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with the empty pRED-ATGb expression vector. Our results indicate that both Oshox12 and

Oshox14 are able to bind the AH1 sequence, but not AH2 in yeast.

Interaction of Oshox12 and Oshox14 with the AH1 (CAAT(A/T)ATTG) sequence in

rice. To further confirm binding of the Oshox12 and Oshox14 proteins to the AH1 sequence,

transient expression assays were carried out with effector and reporter plasmids in rice proto-

plasts. Two reporter plasmids, 4AH1-90-GUS and 4AH2-90-GUS, in which the AH1 and AH2

tetramers were fused to a CaMV-90 CaMV 35S minimal promoter were used [54]. The

Fig 1. Yeast one-hybrid assays with Oshox12 and Oshox14 expression constructs. A to D, pRED-ATGb-Oshox12 (A and B) or

pRED-ATGa-Oshox14 (C and D) in different yeast strains streaked on medium containing histidine (A and C), or medium without

histidine and supplemented with 10 mM 3-AT (B and D). pRED-ATGb-Oshox12 and pRED-ATGa-Oshox14 were transformed into

yeast strains YM4271::4AH1 (1–3, 2–3) and YM4271::4AH2 (1–4, 2–4), respectively. The pRED-ATGb and pRED-ATGa empty vectors

were used as negative control and tested in YM4271::4AH1 (1–1, 2–1) and YM4271::4AH2 (1–2, 2–2). Growth of colonies on plates

without histidine indicates specific activation of the expression of the 4AH1:HIS3 constructs by the pRED-ATGb-Oshox12 or

pRED-ATGa-Oshox14 expression constructs.

https://doi.org/10.1371/journal.pone.0199248.g001
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constructs Pro35S-Oshox12 and Pro35S-Oshox14, which contained Oshox12 and Oshox14

expressed under control of the CaMV 35S promoter, were used as effectors (Fig 2A). The GUS

expression in protoplasts indicates that Oshox12 and Oshox14 are capable of activating tran-

scription of the reporter gene when the upstream HD-Zip binding site AH1 is present, but

cannot activate transcription of the reporter gene when upstream HD-Zip binding site AH2 is

present (Fig 2B and 2C). These results show that Oshox12 and Oshox14 can bind specifically

to the AH1 (CAAT(A/T)ATTG) DNA sequence and activate reporter gene expression in rice

protoplasts, which is consistent with the result obtained in the yeast experiments and is also in

line with results obtained for other HD-Zip I and II proteins in gel shifts and yeast experiments

with AH1 and AH2 [42, 43].

Subcellular localization of Oshox12 and Oshox14 and expression pattern of

ProOshox12-GUS and ProOshox14-GUS in rice. To study the subcellular localization of

Oshox12 and Oshox14, full length Oshox12 and Oshox14 clones were fused in frame to GFP,

expressed from the CaMV 35S promoter and observed in transiently transformed rice proto-

plasts. As shown in Fig 3A, in the control vector, GFP signals were observed in both the cytosol

and the nucleus. In contrast, we observed that the Oshox12-GFP and Oshox14-GFP signals

were located exclusively in the nucleus, suggesting that both Oshox12 and Oshox14 are

nuclear-localized proteins (Fig 3A).

The expression patterns of Oshox12 and Oshox14 were further studied using a promoter-

GUS fusion construct. In total 20 and 33 independent transgenic Nipponbare lines were made

that expressed the constructs ProOshox12-GUS and ProOshox14-GUS, respectively. GUS
reporter gene activity was detected in seedlings and in tissues of mature plants. The X-Gluc

staining showed that Oshox12 is expressed in nodes and young leaves and in the vegetative

growth stage, highly expressed in glume, anther, palea and lodicules in mature plants (Fig 3B).

Previously, RT-PCR results showed that Oshox12 was predominantly expressed in panicles at

10 and 15 DAF [12]. The GUS staining result is consistent with the Oshox12 expression profile

deducted from the Rice Genome Annotation Project (RGAP, http://rice.plantbiology.msu.

edu/index.shtml) Database (S2A Fig) and a recent work by Gao et al. [55]. ProOshox14-GUS

was mainly expressed in the reproductive organs, such as anther and pistil (Fig 3C), which is

also consistent with the results from the RGAP Database (S2A Fig). Although the RT-PCR

results implicated that the highest level of Oshox14 expression was found in the stem rather

than in the other detected organs, no expression of Oshox14 in leaf sheath [12]. In addition,

the available microarray-based expression profile for different development stages suggest that

both Oshox12 and Oshox14 are highly expressed in calli, hull and panicle, with low expression

in the radicle and root (S2B Fig) [56].

Phenotypes of transgenic rice plants overexpressing Oshox12 and Oshox14. Oshox12
was further investigated by gain-of-function studies. For this, thirty-one independent T0 lines

were obtained and overexpression of Oshox12 was confirmed by northern blot analysis (S3A

Fig). Further Southern blot analysis showed that 16 lines were single-copy (S3B Fig). Three

independent transgenic lines (OX12-23, OX12-29 and OX12-33), with high expression levels

and obvious phenotypic differences were selected for further phenotyping. We observed that

overexpression of Oshox12 induces a semi-dwarf phenotype accompanied by low fertility (Fig

4A). Although both wild type and Oshox12-OX lines had five nodes at maturity, plant height

of Oshox12 transgenic plants was reduced because of the shortened uppermost internode (data

not shown). The average plant heights of the three Oshox12-OX lines were 63.7 cm, 66.34 cm

and 64.7 cm, respectively, whereas that of wild type plants reached 85.1 cm on average (Fig

5A). Thus, the average plant height in the three Oshox12-OX lines was decreased by 23%

(P<0.01). Furthermore, the Oshox12-OX lines displayed a decrease in tiller number (though

this effect was not significant) (Fig 5B).
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Fig 2. Interactions of Oshox12 and Oshox14 with the HD-Zip binding site AH1 (CAAT(A/T)ATTG) in a

transient expression system using rice protoplasts. (A) Schematic overview of the effector and reporter constructs

Functional analysis of Oshox12 and Oshox14
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Oshox12 is predominantly expressed in the panicle suggesting that it has a function in the

development of this tissue [12]. An examination of the panicle architecture in the Oshox12-OX

lines revealed significant decreases in panicle axis length and primary branch number (Fig 5C

and 5D). In the transgenic plants, the main panicle length was reduced by 20% from an average

of 19.6 to 15.6 cm (P< 0.01, n = 10) (Fig 5C). The number of primary branches per main pani-

cle (Fig 5D) was also determined. On average, panicles from lines OX12-23, OX12-29 and

OX12-33 had 6.4, 7.2 and 6.8 primary branches, respectively, while the wild type panicles had

9.6 primary branches, representing a significant reduction in the Oshox12-OX lines (Fig 5D).

In addition, we found the grain number to be reduced in the Oshox12-OX lines (Fig 4A panels

b-c). On average, the grain numbers from lines OX12-23, OX12-29 and OX12-33 were 324.6,

379.6 and 357, respectively, while the wild type had 803.8 grains per plant; this reduction was

also significant. Taken together, these data indicate that Oshox12 might be involved in panicle

development.

Our next step was to examine whether Oshox14 functions as a developmental regulator and

to determine whether it shows functional similarities to Vrs1, for which purpose we made

transgenic rice plants overexpressing Oshox14. Thirty-four independent T0 lines were obtained

and over-expression of Oshox14 was confirmed by northern blot analysis (S4A Fig). Southern

blot analysis showed that four lines were single-copy (S4B Fig). Three primary transformants

with high Oshox14 expression levels of Oshox14, containing the sense gene construct (lines

OX14-9, OX14-10, OX14-45) were found to be severely retarded in growth at the seeding stage

(Fig 4B panel a) and showed difficulties with panicle exsertion through stem and leaf sheath at

the mature stage (Fig 4B panels c, e). The plants with the strongest phenotypes showed fully

sheathed panicles. To clarify whether this defect was accompanied by abnormalities in leaf

sheath development or internode elongation, we performed an anatomical study of sections

from the first internodes and leaf sheath. The results showed that no difference between the

first internodes at anatomical level (Fig 4C panels a, b); however, the Lugol staining experi-

ment showed decreased starch content in stems of the Oshox14-OX plants (Fig 4C panels c,

d). Further histological sectioning showed that additional differences in the structures of the

leaf sheath. In general, the Oshox14 overexpressing lines have more turns of the flag leaf sheath

than that of the wild type (Fig 4D). The severity of the phenotype in these transgenic plants

was correlated with the expression levels found in northern blotting (S4A Fig). It is known that

the leaf sheath from rice elongates rapidly in response to treatment with GA [57]. Thus, we

treated Oshox14 overexpressing lines with the strong phenotypes with 20 μM GA3 at the end of

panicle differentiation, which led to the panicle being exserted from the culm and the flag leaf

(Fig 4B panel d).

Due to the phenotypic abnormalities in the lines with weaker phenotypes, we could obtain

only a small number of T2 seeds for further study, which included phenotyping for plant

height, tiller number, main panicle length and numbers of primary branches per panicle (Fig

6). Though line OX14-27 displayed only a non-significant decrease in plant height (Fig 6A),

the tiller number, main panicle length and numbers of primary branches per panicle, were sig-

nificantly different than those of the wild type (Fig 6B–6D). Examination of the panicle archi-

tecture in the zero expression line OX14-30 showed no difference from that of the wild type

(Fig 6). This result may be explained by the weak overexpression of the Oshox14 construct in

OX14-27.

used for transactivation analysis in rice protoplasts. (B-C) Transient expression of Oshox12 (B) and Oshox14 (C) was

driven by the CaMV 35S promoter and the Oshox12-OX and Oshox14-OX constructs were co-transformed with the

reporter constructs GUSXX-4AH1 and GUSXX-4AH2. The empty vectors pRT101 and GUSXX-90 were used as

negative controls.

https://doi.org/10.1371/journal.pone.0199248.g002
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Discussion

The HD-Zip TF family is one of the largest super-families of homeobox genes in plants [6–9,

12] and an increasing amount of knowledge is being acquired about their functions in rice [7,

27, 28, 54, 58]. In barley, the HD-Zip I member Vrs1 is important in determining grain yield

[34, 36] via an effect on inflorescence architecture. The architecture of the inflorescence plays

a key role in the determination of grain yield, but our understanding of the genetic control of

this complex trait is still limited [59]. In rice, the HD-Zip I genes, Oshox12 and Oshox14 are

close homologues of Vrs1 [12, 36]. Based on an overexpression analysis of these two genes, we

propose a function of Oshox12 and Oshox14 in panicle and sheath development.

The model plants Arabidopsis and rice have 17 and 14 HD-Zip I genes, respectively [11, 12].

Rice Oshox12 and Oshox14 and Arabidopsis Athb-21, Athb-40 and Athb-53, belong to a relative

small subfamily characterized by an intron between the fourth and fifth leucine of the zipper

region (originally called the δ clade or L4–L5 group) whereas many other HD-Zip I genes have

an intron between the fifth and sixth leucine of the zipper region [11, 12]. The transcript levels

of Arabidopsis Athb-21, Athb-40 and Athb-53 are upregulated upon exposure to ABA and

salinity stress [14] and these genes are thought to be involved in ovule development [60]. Dur-

ing root development, Athb-53 also plays an important role in auxin/cytokinin signaling [61].

Based on phylogeny, a set of 178 HD-Zip I proteins from different plant species was divided

into six groups (I to VI) [62]. Based on this analysis, the δ clade members Oshox12 and

Oshox14 [12] were included in group VI [62]. Furthermore, this analysis revealed a set of 20

conserved motifs in the amino-terminal (NTR) and carboxy-terminal regions (CTR). Group

VI proteins, including Oshox12 and Oshox14 share in common that they have a so-called

motif 10 in the NTR which is also unique to this group but for the moment a precise function

is yet unclear although some group VI proteins have a nuclear localization signal in motif 10

[62]. In addition, Oshox12 and Oshox14 have three and six putative phosphorylation sites

(Ser, Thr, Tyr), respectively in the CTR, but no sumoylation site was found. Both Oshox12 and

Oshox14 possess the so-called AHA (Aromatic, large Hydrophobic, Acidic context) motif in

the CTR, which is responsible for transcriptional activation. In addition, both TFs contained a

high frequency of aromatic amino acid phenylalanine (Phe) in the CTR but a precise function

for this phenomenon is unclear yet [62].

Consistent with the known function of TFs, the GFP-tagged fusion constructs indicated

that Oshox12 and Oshox14 are both nuclear-localized proteins. A similar result for Oshox12

was also reported elsewhere [55]. In general, HD-Zip I family members bind in vitro and in
vivo to the 9-bp pseudopalindromic cis-element, AH1 (CAAT(A/T)ATTG) and AH2 (CAAT

(C/G)ATTG [42, 43, 52, 54]. Our yeast one-hybrid experiment suggests that Oshox12 and

Oshox14 specifically bind to the proposed AH1 sequence. It is obvious that these proteins can

activate reporter gene expression by an intrinsic activation domain which was also observed

for other family I proteins from rice [27, 43]. Oshox12 and Oshox14 as transcriptional activa-

tors were further confirmed by transient assays in rice protoplasts using the GUS reporter

gene. HD-Zip TFs generally form homodimers or heterodimers to regulate downstream gene

expression [17, 42]. Oshox12 was shown that it can form homodimers as well as heterodimers

Fig 3. Subcellular localization analysis of Oshox12 and Oshox14 and expression patterns of ProOshox12-GUS and

ProOshox14-GUS. (A) Localization analysis of Oshox12-GFP and Oshox14-GFP fusion proteins in rice protoplasts.

The scale bar represent 2 μm. (B) Tissue expression pattern of ProOshox12 examined by histochemical GUS staining.

Flag leaves (a); stem (b); transverse stem sections of transgenic lines (c, d); anther (e); glume (f); palea and lodicules (g).

(C) Tissue expression pattern of ProOshox14 examined by histochemical GUS staining. Mature spikelets before

anthesis (a); mature spikelet after anthesis (b); open flower with pistil (c, d), and anther (e). cv, commissural vein. lv,

longitudinal vein. nd, node. gv, glume vascular. co, collenchyma. pa, palea. lo, lodicules. pi, pistil.

https://doi.org/10.1371/journal.pone.0199248.g003
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with Oshox14 in a bimolecular fluorescence complementation (BiFC) system [55]. Interest-

ingly, both Oshox12 and Oshox14 can also interact with ELONGATED UPPERMOST INTER-
NODE1 (EUI1) in yeast one-hybrid and electrophoretic mobility shift (EMSA) assays, and the

Fig 4. Phenotypes of Pro35S-Oshox12 and Pro35S-Oshox14 plants. (A) Phenotypes of wild type Zhonghua 11 and Pro35S-Oshox12

overexpression in seedling (a) and panicle stages (b). Grain number of Pro35S-Oshox12 overexpression plants compared with that of the wild type

control (c). (B) Phenotype of Oshox14 overexpression lines. Pro35S-Oshox14 overexpression lines and wild type at the seeding stage (a) and panicles

(b, c, e). Panicle exsertion in c after GA3 treatment (d). (C) Transverse sections of the stems from wild type Zhonghua 11 and Pro35S-Oshox14

overexpression lines. Toluidine blue staining (a, b) and Lugol staining (c, d) respectively of transversal stem sections. (D) Transverse sections of the

leaf sheath from wild type Zhonghua 11 (a, c) and two Pro35S-Oshox14 overexpression lines (b, d). The numerals 1–4 indicate the number of turns

the leaf sheath in wild type and Pro35S-Oshox14 overexpression lines.

https://doi.org/10.1371/journal.pone.0199248.g004
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EUI1 gene contains a similar AH1 (CAAT(A/T)ATTG) sequence element in its promoter

region [55]. Taken together, the results of the yeast and protoplast experiments support the

functions of Oshox12 and Oshox14 as transcriptional activators, which is characteristic of

HD-Zip I family TFs [43, 44, 63].

Several sets of transcriptome data have shown that Oshox12 and Oshox14 are highly

expressed in the panicle [12, 55]. Like Oshox12, Oshox14 is mainly expressed in the panicle,

even though its expression level in the panicle is less than that of Oshox12 [12]. In barley, the

Oshox12 and Oshox14 homologue, Vrs1, is involved in determining the number of rows of

spikelets by suppressing the development of lateral rows [34]. Base on the microarray data, the

expression patterns and our phylogenetic analysis, we suggest that Oshox12 and Oshox14
might be involved in panicle development, which is further supported by our promoter-GUS

expression analysis. This experiment revealed that Oshox12 displayed a tissue specific pattern

with the highest expression in glume, anther, palea and lodicules. Our data suggest that

Oshox12 function is necessary in different tissues and that this gene may be involved in panicle

development. According to the GUS analysis, the promoter of Oshox14 was also mainly

expressed in reproductive organs, such as anther and pistil.

Defects in the elongation of the uppermost internode lead to panicle enclosure and thus

greatly reduce seed production by blocking normal pollination [64]. Our previous work has

Fig 5. Phenotype of Oshox12 overexpression transgenic lines at the mature stage. (A) Plant height. (B) Number of tillers per plant. (C) Panicle length. (D)

Number of primary branches per panicle. Bars represent standard errors. Data are the average of ten replicates (ten plants). Asterisks indicate significance at �

P<0.05 and �� P<0.01 (Student’s t-test). WT, wild type (Zhonghua 11); OX12-23, OX12-29 and OX12-33 are three independent Oshox12 overexpression lines.

https://doi.org/10.1371/journal.pone.0199248.g005
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shown that Oshox12 and Oshox14 are highly expressed in panicles, suggesting a role in panicle

development [12]. Consistently, our findings here demonstrate that overexpression of

Oshox12 results in reduced length of the panicle axis, reduction of primary branch number

and a consequent decrease in grain yield (Fig 4A and Fig 5). At the heading stage, the Oshox12
overexpression lines exhibited a shortened uppermost internode thereby reducing plant height

(Fig 5A). Independently of our work, it was recently demonstrated that Oshox12 regulates pan-

icle exsertion in rice by directly modulating the expression of EUI1, which encodes a cyto-

chrome P450 monooxygenase CYP714D1 that deactivates bioactive GAs and plays a crucial

role in panicle exsertion in rice. Panicle exsertion principally depends on the elongation of the

uppermost internode [55]. In rice, there are six groups of internode elongation mutants, which

are classified based on the elongation pattern of the upper internodes [65]. In the‘sh’ type, the

uppermost internode shows no elongation with the panicle enveloped in the leaf sheath, which

results in a sheathed panicle. The rice leaf sheath is an important part of the plant where con-

siderable critical metabolic and regulatory activities occur, and these processes eventually con-

trol rice height and robustness. Several mutants with sheathed panicle phenotypes have been

identified, including shp1-5, dsp1, sui1-1 and sui1-2 [63]. However, the mechanism underlying

sheathed panicles remains unclear. In this study, through the overexpression of Oshox14, we

found that transgenic plants overexpressing Oshox14 display sheathed panicles, showing that

Fig 6. Phenotype of Oshox14 overexpression lines at the mature stage. (A) Plant height. (B) Number of tillers per plant. (C) Panicle length. (D) Number of

primary branches per panicle. Bars represent standard errors. Data are the average of ten replicates (ten plants). Asterisks indicate significance at � P<0.05 and ��

P<0.01 (Student’s t-test). WT, wild type (Zhonghua 11); OX14-27, a low-overexpression line of Oshox14; OX14-30, a zero overexpression line of Oshox14.

https://doi.org/10.1371/journal.pone.0199248.g006
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the overproduction of Oshox14 also alters panicle development. Microscopic analysis indicates

that the cells in the uppermost internode appear the same in the wild type and the Oshox14
overexpression line, but that the starch content of the transgenic plant stems was decreased.

Our experiments with GA treatment showed that the function of Oshox14 in panicle exsertion

may relate to GA signaling. It was reported that Oshox12 is also involved in regulating panicle

exsertion and response to endogenous GA [55]. Thus, in summary, our results strongly suggest

that both Oshox12 and Oshox14 play important roles in regulating the length of the uppermost

internode, probably via GA signaling.

In this study, we demonstrate the roles of Oshox12 and Oshox14 in panicle and sheath

development. Improving crop productivity by selection for the components of grain yield and

for optimal plant architecture has been the key focus of national and international rice breed-

ing programs. However, the detailed molecular mechanisms by which Oshox12 and Oshox14
regulate panicle development remain largely unknown, and further genetic analyses of down-

stream target genes need to be undertaken, including the use of mutant alleles. Elucidation of

these downstream events will be one of the keys in understanding the roles of these HD-Zip I

TFs and their potential in rice yields improvement.
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S1 Fig. Phylogenetic and sequence analysis. (A) Phylogenetic tree showing the predicted rela-

tionship of HD-Zip I proteins from rice, Arabidopsis and barley. (B) Sequence alignment of

Oshox12, Oshox14 and Vrs1 amino acid sequences.

(TIF)

S2 Fig. Expression levels of Oshox12 and Oshox14 in different tissues. (A) Expression of

Oshox12 (a) and Oshox14 (b) in different tissues from the Rice Genome Annotation Project

(RGAP, http://rice.plantbiology.msu.edu/index.shtml) Database. (B) Microarray based expres-

sion file of Oshox12 (blue line) and Oshox14 (purple line) in rice at various developmental

stages.

(TIF)

S3 Fig. Northern and Southern blotting analyses of Pro35S-Oshox12 transgenic plants. (A)

Northern blotting analysis of Pro35S-Oshox12 transgenic plants. Lane 1 and 2 show wild type

controls; the results show that lines 7, 9, 11, 14, 22 to 33 (red numbers) are overexpression

lines of Oshox12. The Oshox12 probe was derived from λFLC-1-B-Oshox12 digested with

BamHI and EcoRI. The arrow indicates the size of the Oshox12 mRNA overexpressed in the

Oshox12 overexpression lines. (B) Copy number verification of Pro35S-Oshox12 plants by

Southern blotting analysis. The hptII gene was used as a probe excised from vector

pC1300intB-35SnosBK. The results indicate that all 16 lines were single copy for the Oshox12
overexpression construct.

(TIF)

S4 Fig. Northern and Southern blotting analysis of Pro35S-Oshox14 transgenic plants. (A)

Northern blotting analysis of Pro35S-Oshox14 transgenic plants. Lanes 1 and 2 show wild type

controls; the result show that lines 9, 10, 25 and 45 (red number) are high overexpression lines of

Oshox14, while numbers 27, 33 are low overexpression lines of Oshox14. The Oshox14 probe was

derived from λFLC-1-B-Oshox14 digested with KpnI. The arrow indicates the size of the Oshox14
mRNA in the overexpression lines. (B) Copy number verification of Pro35S-Oshox14 transgenic

plants by Southern blotting analysis. The hptII gene was used as a probe excised from vector

pC1300intB-35SnosBK. The results indicate that all four lines were single copy of Oshox14.

(TIF)
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