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CHAPTER 6
Breaking of Ensemble Equivalence

for Perturbed Erdős-Rényi Random
Graphs

This chapter is based on:
F. den Hollander, M. Mandjes, A. Roccaverde, and N. Starreveld. Breaking of en-
semble equivalence for perturbed erdős-rényi random graphs. arXiv:1807.07750

Abstract

In a previous paper we analysed a simple undirected random graph subject to con-
straints on the total number of edges and the total number of triangles. We considered
the dense regime in which the number of edges per vertex is proportional to the num-
ber of vertices. We showed that, as soon as the constraints are frustrated, i.e., do not
lie on the Erdős-Rényi line, there is breaking of ensemble equivalence, in the sense that
the specific relative entropy per edge of the microcanonical ensemble with respect to
the canonical ensemble is strictly positive in the limit as the number of vertices tends
to infinity. In the present paper we analyse what happens near the Erdős-Rényi line.
It turns out that the way in which the specific relative entropy tends to zero depends
on whether the total number of triangles is slightly larger or slightly smaller than
typical. We identify what the constrained random graph looks like asymptotically in
the microcanonical ensemble.
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§6.1 Introduction

In this paper we analyse random graphs that are subject to constraints. Statistical
physics prescribes what probability distribution on the set of graphs we should choose
when we want to model a given type of constraint [53]. Two important choices are:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual graph).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual graphs may violate the constraints).

For random graphs that are large but finite, the two ensembles are obviously different
and, in fact, represent different empirical situations. Each ensemble represents the
unique probability distribution with maximal entropy respecting the constraints. In
the limit as the size of the graph diverges, the two ensembles are traditionally assumed
to become equivalent as a result of the expected vanishing of the fluctuations of the
soft constraints, i.e., the soft constraints are expected to behave asymptotically like
hard constraints. This assumption of ensemble equivalence is one of the corner stones
of statistical physics, but it does not hold in general (see [97] for more background).

In a series of papers the question of possible breaking of ensemble equivalence was
investigated for various choices of the constraints, including the degree sequence and
the total number of edges, wedges and triangles. Both the sparse regime (where the
number of edges per vertex remains bounded) and the dense regime (where the number
of edges per vertex is of the order of the number of vertices) have been considered. The
effect of community structure on ensemble equivalence has been investigated as well.
Relevant references are [48], [50], [37], [93] and [92]. In [37] we considered a random
graph subject to constraints on the total number of edges and the total number of
triangles, in the dense regime. With the help of large deviation theory for graphons,
see [31], we derived a variational formula for s∞ = limn→∞ n−2sn, where n is the
number of vertices and sn is the relative entropy of the microcanonical ensemble with
respect to the canonical ensemble. We found that s∞ > 0 when the constraints are
frustrated. In the present paper we analyse the behaviour of s∞ when the constraints
are close to but different from those of the Erdős-Rényi random graph, and we identify
what the constrained random graph looks like asymptotically in the microcanonical
ensemble. It turns out that the behaviour changes when the total number of triangles
is larger, respectively, smaller than that of the Erdős-Rényi random graph with a
given total number of edges.

While breaking of ensemble equivalence is a relatively new concept in the theory of
random graphs, there are many studies on the asymptotic structure of random graphs.
In the pioneering work [31], followed by [70], the large deviation principle for dense
Erdős-Rényi random graphs was proven and the asymptotic structure of constrained
Erdős-Rényi random graphs was described as the solution of a variational problem. In
the past few years significant progress has been made regarding sparse random graphs
as well. We refer the reader to [30], [36], [71] and [105]. Two other random graph
models that have been extensively studied are the exponential random graph model
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and the constrained exponential random graph model. Exponential random graphs,
which are related to the canonical ensemble we consider in this paper, were introduced
rather early in the physics literature, see [80] and the references therein, and rigorously
analysed in detail in [12] and [29]. In [12] the authors investigated the mixing time of
the Glauber dymanics and they showed that, in some cases, graphs drawn from the
exponential random graph model, behave asymptotically like Erdős-Rényi random
graphs with a biased parameter. In [29] the authors verified and generalised this
result using the machinery developed in [31]. Their main result was an asymptotic
expression for the logarithm of the partition function in terms of a variational problem.
Additionally, they showed that, in the edge-triangle model, a phase transition, which
is defined as a discontinuity in the derivative of the logarithm of the partition function,
occurs for specific values of the parameters. The existence of phase transitions in the
exponential random graph model was investigated further in [87] and [101] and for
directed graphs in [4]. An analysis of sparse exponential random graphs was carried
out in [103]. A second random graph model, which is also related to the random graph
models we study in this paper, and has received significant attention in the literature,
is the constrained exponential random graph model, we refer the reader to [3], [63],
[67] and [102] for a detailed description and analysis. A stream of research that is
relevant to our work concerns the asymptotic description of the structure of graphs
drawn from the microcanonical ensemble with a constraint on the edge and triangle
density. In [86] the authors studied the behavior of random graphs with edge and
triangle densities close to the Erdős-Rényi curve. They managed to identify the scaling
behavior close to the curve by proving a bound on the entropy function. In one of the
results in this paper we rigorously prove the results of [86] and we determine the exact
structure of constrained random graphs close to the Erdős-Rényi curve. The same
question was investigated in [75] for a constraint on the edge and triangle density close
to the lower boundary curve of the admissibility region. In [64] the authors managed
to determine, through extensive simulations, curves in the admissibility region where
phase transitions occur in the structure of constrained random graphs.

The remainder of this paper is organised as follows. In Section 6.2 we define the
two ensembles, give the definition of equivalence of ensembles in the dense regime,
some basic facts about graphons and we the variational representation of s∞ derived
in [37] when the constraints are on the total numbers of subgraphs drawn from a finite
collection of subgraphs. We also recall the analysis of s∞ in [37] for the special case
where the subgraphs are the edges and the triangles. In Section 6.3 we state our main
theorems. Proofs are given in Sections 6.4 and 6.5.

§6.2 Definitions and preliminaries

The microcanonical and the canonical ensemble, as well as the relative entropy density
have been defined in Section 1.4.1 and 1.4.2. Graphons and their properties have
been defined in Section 5.2.2 5.2.3 and 5.3 of Chapter 5. In this section we recall the
definition of ensemble equivalence in the dense regime and the main two theorems of
Chapter 5.
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6.2.1 Definition. Following [37] Pmic and Pcan are said to be equivalent in the dense
regime when

s∞ := lim
1

n2
Sn(Pmic | Pcan) = 0. (6.1)

The key result in [37] is the following variational formula for s∞.

6.2.2 Theorem. [37] Subject to (5.30), (5.32) and (5.33),

lim
n→∞

n−2Sn(Pmic | Pcan) =: s∞ (6.2)

with
s∞ = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
. (6.3)

Theorem 6.2.2 and the compactness of W̃ ∗ give us a variational characterisation
of ensemble equivalence: s∞ = 0 if and only if at least one of the maximisers of
~θ∗∞ · ~T (h̃)− I(h̃) in W̃ also lies in W̃ ∗ ⊂ W̃ . Equivalently, s∞ = 0 when at least one
the maximisers of ~θ∗∞ · ~T (h̃)− I(h̃) satisfies the hard constraint. Theorem 6.2.2 allows
us to identify cases where ensemble equivalence holds (s∞ = 0) or is broken (s∞ > 0).
In [37] a detailed analysis was given for the special case where the constraint is on the
total number of edges and the total number of triangles. The analysis in [37] relied on
the large deviation principle for dense Erdős-Rényi random graphs established in [31].
The function defined in (5.19) plays a crucial role and is related to the rate function
of the large deviation principle.

6.2.3 Theorem. [37] For the edge-triangle model, s∞ = 0 when

• T ∗2 = T ∗31 ,

• 0 < T ∗1 ≤ 1
2 and T ∗2 = 0,

while s∞ > 0 when

• T ∗2 6= T ∗31 and T ∗2 ≥ 1
8 ,

• T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1
2 and 0 < T ∗2 < 1

8 ,

• (T ∗1 , T
∗
2 ) lies on the scallopy curve in Figure 6.1.

Here, T ∗1 , T ∗2 are in fact the limits T ∗1,∞, T ∗2,∞ in (5.32), but in order to keep the
notation light we now also suppress the index ∞.
Theorem 6.2.3 is illustrated in Fig. 6.1. The region on and between the blue curves
corresponds to the choices of (T ∗1 , T

∗
2 ) that are graphical, i.e., there exists a graph

with edge density T ∗1 and triangle density T ∗2 . The red curves represent ensemble
equivalence, the blue curves and the grey region represent breaking of ensemble equi-
valence, while in the white region between the red curve and the lower blue curve we
do not know what happens. Breaking of ensemble equivalence arises from frustration
between the values of T ∗1 and T ∗2 .
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Figure 6.1: The admissible edge-triangle density region is the region on and between the blue
curves [86].

The lower blue curve, called the scallopy curve, consist of infinitely many pieces
labelled by ` ∈ N \ {1}. The `-th piece corresponds to T ∗1 ∈ ( `−1

` , `
`+1 ] and a T ∗2 that

is a function of T ∗1 given by

T ∗2 =
(`− 1)

(
`− 2

√
`(`− T ∗1 (`+ 1))

)(
`+

√
`(`− T ∗1 (`+ 1))

)2

`2(`+ 1)2
. (6.4)

We refer the reader to [83], [85], [86] and [88] for more details.

§6.3 Theorems

In this section we present our results which address the following two issues:

◦ In Theorems 6.3.1–6.3.3 we identify the scaling behaviour of s∞ for fixed T ∗1
and T ∗2 ↓ T ∗31 , respectively, T ∗2 ↑ T ∗31 . It turns out that the way in which s∞
tends to zero differs in the two cases.

◦ In Propositions 6.3.5–6.3.7 we characterise some possible asymptotic structures
of random graphs drawn from the microcanonical ensemble when the hard con-
straint is on the edge and triangle density. Our results indicate that the structure
of the graphs differs for T ∗2 ↓ T ∗31 , respectively, T ∗2 ↑ T ∗31 .

In the sequel we make the following two assumptions:

Assumption 1. Fix the edge density T ∗1 ∈ (0, 1) and consider the triangle density
T ∗31 + ε, for some ε either positive or negative. For this pair of constraints we consider
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the Lagrange multipliers ~θ∗∞(ε) := (θ∗1(ε), θ∗2(ε)) as defined in Section 5.3.1. Then, for
ε sufficiently small, we have the representation

sup
h̃∈W̃

[
θ∗1(ε)T1(h̃) + θ∗2(ε)T2(h̃)− I(h̃)

]
= θ1T

∗
1 − I(T ∗1 ) + (γ1T

∗
1 + γ2T

∗3
1 )ε+O(ε2),

(6.5)
where θ1 := θ1(0), γ1 = θ′1(0) and γ2 = θ′2(0).

In Section 6.4.1 we show that Assumption 1 is true when T ∗1 ∈ [ 1
2 , 1). For T ∗1 ∈ (0, 1

2 )

we can prove (6.8) and (6.9) below, but with ≥ replacing the equality. If Assumption
1 is true, then we again obtain (6.8) and (6.9) with equality. If it fails, then we have
strict inequality.

Assumption 2. Fix the edge density T ∗1 ∈ (0, 1) and consider the triangle density
T ∗31 + ε, for some ε either positive or negative. For this pair of constraints we consider
the microcanonical entropy

−J(ε) := sup{−I(h̃) : h̃ ∈ W̃ , T1(h̃) = T ∗1 , T2(h̃) = T ∗31 + ε}. (6.6)

Then for ε sufficiently small the solution of (6.6), denoted by h∗ε , has the following
form

h∗ε = T ∗1 + gε, where gε = g111I×I + g121(I×J)∪(J×I) + g221J×J , (6.7)

with g11, g12, g22 ∈ [−T ∗1 , 1− T ∗1 ] and I, J ⊂ [0, 1].

Assumption 2 is based on the following intuitive argument. Suppose we want to
maximise the microcanonical entropy among all piecewise constant graphons. Then
we expect the entropy to decrease when we add more structure, i.e., more steps, in the
graphon. A piecewise constant graphon with m steps corresponds to a random graph
where the vertices are divided into m groups, and within each group we make an
ER random graph with some probability. We expect that the microcanonical entropy
will decrease as m increases. This statement is also supported by extensive numerical
experiments performed in [65].

The methodology we rely on in order to analyse the variational problem in (6.6)
does not always identify the exact optimal graphon. It identifies a candidate optimal
graphon, which is sufficient, in some cases for the scaling behaviour of the relative
entropy s∞. We call these graphons balance optimal. Roughly speaking, a balance
optimal graphon is obtained when solving the optimisation problem in (6.6) in a
smaller class of graphons than the whole class of graphons that satisfy the hard
constraint. This is the class of graphons satisfying the conditions in Assumption 1
and such that the values g11, g12, g22 all correspond to contributions of the same order.
The precise definition of a balance optimal graphon is given in Section 6.5. We want
to investigate in this chapter whether the global maximizer of (6.6) lies in this smaller
class of graphons. We show that balance optimisers have specific structural properties.
But, for the case of a perturbation upwards, the unique optimal graphon does not lie
in this class, and this happens because λ(I) gets very small as ε ↓ 0 while g11 stays
constant. We refer the reader to [66]. For the case of a perturbation downwards the
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exact structure of the unique optimal graphon is still not known: the only results we
are aware of come from an extensive numerical study, [63]. From this numerical study
it seems that, at least for T ∗1 ∈ (0, T̃ ∗1 ), with T̃ ∗1 ≈ 0.44, the unique global optimiser
is indeed a balance optimal graphon. In this chapter we investigate this question
further by identifying the balance optimal graphons and comparing them with the
results established numerically in [63].

Balance optimal graphons are candidate optimisers of J(ε). In what follows, be-
cause all the graphons we derive are balance optimal graphons, we simply speak of
optimal graphons. When at some point a clear distinction is needed we say so. An-
other important feature is that balance optimal graphons are in general not unique. In
the following sections we construct various balance optimal graphons, exhibiting the
different structures that can emerge. The variational problem J(ε) in (6.6) has been
solved in [66] for the case T ∗2 > T ∗31 , while the case T ∗2 < T ∗31 still remains unsolved.
In this chapter we consider only a small perturbation around the typical values, but
the advantage of our method is that it is simpler and yields more intuition about the
way the constraint is attained. Moreover, it also applies for the case ε < 0, which has
not been rigorously analysed before. In [63] the authors identify the maximizers of
the microcanonical entropy numerically. The optimal graphons obtained numerically
in [63] agree structurally with the balance optimal graphons that we find.

6.3.1 Theorem. For T ∗1 ∈ (0, 1) and T ∗1 6= 1
2 ,

lim
ε↓0

ε−1s∞(T ∗1 , T
∗3
1 + 3T ∗1 ε) =

6

1− 2T ∗1
log

T ∗1
1− T ∗1

∈ (0,∞). (6.8)

6.3.2 Theorem. For T ∗1 ∈ (0, 1
2 ],

lim sup
ε↓0

ε−2/3s∞(T ∗1 , T
∗3
1 − T ∗31 ε) ≤ 1

4

T ∗1
1− T ∗1

∈ (0,∞). (6.9)

6.3.3 Theorem. For T ∗1 ∈ ( 1
2 , 1),

lim sup
ε↓0

ε−2/3s∞(T ∗1 , T
∗3
1 − T ∗31 ε) ≤ f(T ∗1 , T̄

∗
1 ) ∈ (0,∞), (6.10)

where T̄ ∗1 ∈ (−T ∗1 , 0) is the unique point where the function x→ f(T ∗1 , x), defined by

f(T ∗1 , x) := T ∗21

I(T ∗1 + x)− I(T ∗1 )− I ′(T ∗1 )x

x2
, x ∈ (−T ∗1 , 0), (6.11)

attains its global minimum.

We illustrate these results in Figure 6.2. In the left panel we plot the limits in
the right-hand side of (6.9)–(6.10) as a function of T ∗1 . In the right panel we plot
s∞(T ∗1 , T

∗3
1 + ε) as a function of ε, for ε sufficiently small, and for four different values

of T ∗1 .

6.3.4 Remark. We believe, and there is numerical evidence in [63], that the results
in (6.9) and (6.10) hold with equality and that the corresponding limits exist.
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Figure 6.2: Limit of scaled s∞ as a function of ε for ε sufficiently small.

In Proposition 6.3.5–6.3.7 below we identify the structure of balance optimal
graphons corresponding to the perturbed constraints in the microcanonical ensemble
in the limit as n→∞.

6.3.5 Proposition. When the ER-line is approached from above, a balance optimal
graphon is given by

h = T ∗1 +
√
ε g∗ +O(ε) (global perturbation) (6.12)

with g∗ given by

g∗(x, y) =


2, (x, y) ∈ [0, 1

2 ]2,

0, (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−2, (x, y) ∈ ( 1
2 , 1]2.

(6.13)

It is important to mention that the balance optimal graphon determined in (6.13) is
not unique, in the sense that there are multiple graphons that are balance optimal.
From Proposition 6.3.5 we also see that it is possible that the class of balance optim-
isers does not contain the actual unique optimiser of J(ε). For this pair of constraints,
and from [66], we have that the actual unique optimiser, denoted by h∗ε , is given by

h∗ε (x, y) =


h11, (x, y) ∈ [0, λε]2,

1− T ∗1 + h1ε, (x, y) ∈ [0, λε]× (λε, 1] ∪ (λε, 1]× [0, λε],

T ∗1 + h2ε, (x, y) ∈ (λε, 1]2,

(6.14)

where
λ :=

1

(1− 2T ∗1 )2
, h1 :=

1

2
h2, h2 := − 2

1− 2T ∗1
. (6.15)
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The term h11 solves the equation I ′(h11) = 3I ′(1− T ∗1 ) and is constant as ε ↓ 0. For
details on this issue we refer to [66]. As mentioned above, balance optimal graphons
have the structural property that g11, g12, g22 all contribute equally to the constraint.
This is not the case for the graphon in (6.14) because only g12 and g22 contribute to
the constraint to leading order. The exact computations are provided in Section 6.5.

From (6.13) and (6.14) we observe that balance optimal graphons can have struc-
tures very different from the optimal graphons.

6.3.6 Proposition. When the ER-line is approached from below and T ∗1 ∈ (0, 1
2 ], a

balance optimal graphon is given by

h = T ∗1 + ε1/3g∗ +O(ε1/3) (global perturbation) (6.16)

with g∗ given by

g∗(x, y) =


−T ∗1 , (x, y) ∈ [0, 1

2 ]2,

T ∗1 , (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−T ∗1 , (x, y) ∈ ( 1
2 , 1]2.

(6.17)

This g∗ is not unique, in the sense that there are multiple graphons that are balance
optimal.

6.3.7 Proposition. When the ER-line is approached from below and T ∗1 ∈ ( 1
2 , 1),

the unique balance optimal graphon is given by

h = T ∗1 + g∗ε (local perturbation) (6.18)

with g∗ε defined by

g∗ε (x, y) :=



T∗21

T̄∗1
ε2/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]2

T ∗1 ε
1/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]× [1− T∗1

|T̄∗1 |
ε1/3, 1] or

(x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]× [0, 1− T∗1
|T̄∗1 |

ε1/3],

T̄ ∗1 , (x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]2,

(6.19)

with T̄ ∗1 ∈ (−T ∗1 , 0) defined in Theorem 6.3.3.

In conclusion, Theorems 6.3.1–6.3.3 say that at a fixed density of the edges it
is less costly in terms of relative entropy to increase the density of triangles than
to decrease it. The ER-line represents a crossover in the cost (see Figure 6.2, right
panel). Above the ER-line the cost is linear in the distance, below the ER-line the
cost is proportional to the 2

3 -power of the distance. Propositions 6.3.5–6.3.7 show that
the optimal perturbation of the ER-graphon is global above the ER-line and below
the ER-line when the edge density is less than 1

2 and local below the ER-line when
the edge density is larger than 1

2 .
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§6.4 Proofs of Theorems 6.3.1-6.3.3

In this section we prove Theorems 6.3.1–6.3.3. Along the way we use the results given
in Propositions 6.3.5–6.3.7, which we prove in Section 6.5.

§6.4.1 Proof of Theorem 6.3.1
For ease of notation we drop the superscript ∗ from the constraint on the edge density
and write T1 instead of T ∗1 . Let

T1(ε) = T1, T2(ε) = T 3
1 + 3T1ε. (6.20)

The factor 3T1 appearing in front of the ε is put in for convenience. We know that for
every pair of graphical constraints (T1(ε), T2(ε)) there exists a unique pair of Lagrange
multipliers (θ1(ε), θ2(ε)) corresponding to these constraints. For an elaborate discus-
sion on this issue we refer the reader to [37]. By considering the Taylor expansion of
the Lagrange multipliers (θ1(ε), θ2(ε)) around ε = 0, we obtain

θ1(ε) = θ1 + γ1ε+ 1
2Γ1ε

2 +O(ε3), θ2(ε) = γ2ε+ 1
2Γ2ε

2 +O(ε3), (6.21)

where

θ1(0) = θ1 = I ′(T1), γ1 = θ′1(0), Γ1 = θ′′1 (0), θ2(0) = 0, γ2 = θ′2(0), Γ2 = θ′′2 (0).

(6.22)
We denote the two terms in the expression for s∞ in (6.3) by I1, I2, i.e.,

s∞ = sup
h̃∈W̃

[
~θ∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∞ · ~T (h̃)− I(h̃)

]
= I1 − I2, (6.23)

and we let s∞(ε) denote the relative entropy corresponding to the perturbed con-
straints. We distinguish between the cases T1 ∈ [ 1

2 , 1) and T1 ∈ (0, 1
2 ).

Case I T1 ∈ [ 1
2 , 1): From [37, Section 5], if T1 ∈ [ 1

2 , 1) and T2 ∈ [ 1
8 , 1), then the

corresponding Lagrange multipliers (θ1, θ2) are both non-negative. Hence from [29,
Theorem 4.1] we have that

I1 := sup
h̃∈W̃

[
θ1(ε)T1(h̃) + θ2(ε)T2(h̃)− I(h̃)

]
= sup

0≤u≤1

[
θ1(ε)u+ θ2(ε)u2 − I(u)

]
,

(6.24)
and, consequently,

I1 = sup
0<u<1

[
θ1(ε)u+ θ2(ε)u3 − I(u)

]
= θ1(ε)u∗(ε) + θ2(ε)u∗(ε)3 − I(u∗(ε)). (6.25)

The optimiser u∗(ε) corresponding to the perturbed multipliers θ∗1(ε) and θ∗2(ε) is
analytic in ε, as shown in [87]. Therefore, a Taylor expansion around ε = 0 gives

u∗(ε) = T1 + δε+ 1
2∆ε2 +O(ε3), (6.26)
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where δ = u∗′(0) and ∆ = u∗′′(0). Hence I1 can be written as

I1 = θ1T1 − I(T1) + (γ1T1 + γ2T
3
1 )ε+O(ε2). (6.27)

Moreover,

I2 =
[
θ1 + γ1ε+ 1

2Γ1ε
2 +O(ε3)

]
T1 +

[
γ2ε+ 1

2Γ2ε
2 +O(ε3)

]
(T 3

1 + 3T1ε)− inf
h̃∈W̃∗ε

I(h̃)

= θ1T1 + γ1T1ε+ 1
2Γ1T1ε

2 + T 3
1 γ2ε+ 1

2Γ2T
3
1 ε

2 + 3T1γ2ε
2 − J↓(ε) +O(ε3),

(6.28)
where

J↓(ε) := inf
h̃∈W̃∗ε

I(h̃), W̃ ∗ε := {h̃ ∈ W̃ : T1(h̃) = T1, T2(h̃) = T 3
1 + 3T1ε}. (6.29)

Consequently,
s∞(T ∗1 , T

∗3
1 + 3T ∗1 ε) = J↓(ε)− I(T1) +O(ε2). (6.30)

Denote by h̃(2)
ε one of the, possibly multiple, balance optimisers of the variational

problem J↓(ε). From Proposition 6.3.5 we know that, for ε sufficiently small, any
graphon in the equivalence class h̃(2)

ε , denoted by h
(2)
ε , has the form h

(2)
ε = T1 +√

εg∗ +O(ε), where the graphon g∗ was defined in (6.13). By considering the Taylor
expansion of the function I around ε = 0, we get

I(h(2)
ε ) = I(T1) + I ′(T1)

√
ε

∫
[0,1]2

dxdy g∗(x, y)

+ 1
2I
′′(T1) ε

∫
[0,1]2

dx dy g∗(x, y)2 + o(ε)

= I(T1) + 1
2I
′′(T1) ε

∫
[0,1]2

dxdy g∗(x, y)2 + o(ε)

= I(T1) + I ′′(T1)ε+ o(ε)

= I(T1) +
1

2

1

T1(1− T1)
ε+ o(ε).

(6.31)

But, from (6.14), a straightforward computation of the entropy of h∗ε shows that

J↓(ε) = I(T1) +
6

1− 2T ∗1
log

T ∗1
1− T ∗1

ε+ o(ε). (6.32)

Hence we obtain that the global optimiser is not a balance optimiser and that

s∞(T ∗1 , T
∗3
1 + 3T ∗1 ε) =

6

1− 2T ∗1
log

T ∗1
1− T ∗1

ε+ o(ε). (6.33)

Case II T1 ∈ (0, 1
2 ): Consider the term

I1 := sup
h̃∈W̃

[
θ1(ε)T1(h̃) + θ2(ε)T2(h̃)− I(h̃)

]
,
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as above. If Assumption 1 applies, then this case is proved in the same way as Case
I. Otherwise, consider the straightforward lower bound

sup
h̃∈W̃

[
θ1(ε)T1(h̃) + θ2(ε)T2(h̃)− I(h̃)

]
≥ sup

0≤u≤1

[
θ1(ε)u+ θ2(ε)u3 − I(u)

]
. (6.34)

The arguments used in Case I after (6.25) apply, and the result in (6.30) is obtained
with an inequality instead of an equality.

§6.4.2 Proof of Theorem 6.3.2
In this section we omit the computations that are similar to those in the proof of
Theorem 6.3.1. Let

T1(ε) = T1, T2(ε) = T 3
1 − T 3

1 ε. (6.35)

The factor T 3
1 appearing in front of the ε is put in for convenience in the computations.

The perturbed Lagrange multipliers are

θ1(ε) = θ1 + γ1ε+ 1
2Γ1ε

2 +O(ε3), θ2(ε) = γ2ε+ 1
2Γ2ε

2 +O(ε3), (6.36)

where

θ1 = I ′(T1), γ1 = θ′1(0), Γ1 = θ′′1 (0) γ2 = θ′2(0), Γ2 = θ′′2 (0). (6.37)

We denote the two terms in the expression for s∞ in (6.3) by I1, I2, i.e., s∞ =

I1 − I2, and let s∞(ε) denote the perturbed relative entropy. The computations for
I1 are similar as before, because the exact form of the constraint does not affect the
expansions in (6.26) and (6.27). For I2, on the other hand, we have

I2 = θ1T1 + γ1T1ε+ 1
2Γ1T1ε

2 + T 3
1 γ2ε+ 1

2Γ2T
3
1 ε

2 − T 3
1 γ2ε

2 − J↑1 (ε)

= θ1T1 + γ1T1ε+ T 3
1 γ2ε− J↑1 (ε) +O(ε2),

(6.38)

where

J↑1 (ε) := inf
h̃∈W̃∗ε

I(h̃), W̃ ∗ε := {h̃ ∈ W̃ : T1(h̃) = T1, T2(h̃) = T 3
1 − T 3

1 ε}. (6.39)

Consequently,
s∞(T ∗1 , T

∗
1 − T ∗31 ε) = J↑1 (ε)− I(T1) +O(ε2). (6.40)

Denote by h̃∗ε one of the, possibly multiple, optimisers of the variational problem J↑1 (ε).
From Proposition 6.3.6 we know that, for T ∗1 ∈ (0, 1

2 ], a balance optimal graphon in
the equivalence class h̃∗ε , denoted by h∗ε for simplicity in the notation, has the form

h∗ε = T ∗1 + ε1/3g∗ +O(ε1/3) (6.41)

with g∗ given by

g∗(x, y) =


−T ∗1 , (x, y) ∈ [0, 1

2 ]2,

T ∗1 , (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−T ∗1 , (x, y) ∈ ( 1
2 , 1]2.

(6.42)
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Hence
J↑1 (ε) ≤ I(T1) +

1

2
T ∗21 I ′′(T1)ε2/3 ≤ I(T1) +

1

4

T ∗1
1− T ∗1

ε2/3, (6.43)

which gives

s∞(T ∗1 , T
∗
1 − T ∗31 ε) ≤ 1

4

T ∗1
1− T ∗1

ε2/3 + o(ε2/3). (6.44)

§6.4.3 Proof of Theorem 6.3.3
The computations leading to the expression for the relative entropy in the right-hand
side of (6.10) are similar as those in Section 6.4.2, and we omit them. Hence we have

s∞(T ∗1 , T
∗
1 − T ∗31 ε) = J↑2 (ε)− I(T1) +O(ε2), (6.45)

where, for T1 ∈ ( 1
2 , 1),

J↑2 (ε) := inf
h̃∈W̃∗ε

I(h̃), W̃ ∗ε := {h̃ ∈ W̃ : T1(h̃) = T1, T2(h̃) = T 3
1 − T 3

1 ε}. (6.46)

Denote by h̃∗ε one of the, possibly multiple, optimisers of the variational problem J↑2 (ε).
From Proposition 6.3.7 we know that, for T1 ∈ ( 1

2 , 1), a balance optimal graphon, in
the equivalence class h̃∗ε , denoted by h∗ε for simplicity in the notation, has the form

h∗ε = T ∗1 + g∗ε (6.47)

with g∗ε given by

g∗ε (x, y) :=



T∗21

T̄∗1
ε2/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]2

T ∗1 ε
1/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]× [1− T∗1

|T̄∗1 |
ε1/3, 1] or

(x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]× [0, 1− T∗1
|T̄∗1 |

ε1/3],

T̄ ∗1 , (x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]2.

(6.48)

The term T̄ ∗1 ∈ (−T ∗1 , 0) is defined in Theorem 6.3.3. Hence we have

s∞(T ∗1 , T
∗
1 − T ∗31 ε) ≤ f(T ∗1 , T̄

∗
1 )ε2/3 + o(ε2/3), (6.49)

where T̄ ∗1 ∈ (−T ∗1 , 0) is the unique point where the global minimum of the function
x→ f(T ∗1 , x) defined by

f(T ∗1 , x) := T ∗21

I(T ∗1 + x)− I(T ∗1 )− I ′(T ∗1 )x

x2
, x ∈ (−T1, 0). (6.50)

We need to show that, for every T ∗1 ∈ (0, 1) and for every x ∈ (−T1, 0), f(T1, x) > 0

or equivalently that
I(T ∗1 + x)− I(T ∗1 )− I ′(T ∗1 )x > 0. (6.51)

From the mean-value theorem we have that there exists ξ ∈ (T ∗1 + x, T ∗1 ) such that
I ′(T ∗1 + x)− I(T ∗1 ) = I ′(ξ)x. Hence we have that

f(T ∗1 , x) = (I ′(ξ)− I ′(T ∗1 ))x > 0, (6.52)

which follows because I ′ is an increasing function, x ∈ (−T1, 0) and ξ ∈ (T ∗1 + x, T ∗1 ).
More detailed arguments are provided in the following section.
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§6.5 Proofs of Propositions 6.3.5–6.3.7

In this section we prove Propositions 6.3.5–6.3.7. In Section 6.5.1 we prove Proposition
6.3.5 and in Section 6.5.2 we prove Propositions 6.3.6 - 6.3.7. The proof of Proposition
6.3.7 is similar to the proof of Proposition 6.3.6, only the computations are different.
In Section 6.4 the following variational problems were encountered:

(1) For T1 ∈ (0, 1),

J↓(ε) = inf
{
I(h̃) : h̃ ∈ W̃ , T1(h̃) = T1, T2(h̃) = T 3

1 + 3T1ε
}
. (6.53)

(2) For T1 ∈ (0, 1
2 ],

J↑1 (ε) = inf
{
I(h̃) : h̃ ∈ W̃ , T1(h̃) = T1, T2(h̃) = T 3

1 − T 3
1 ε
}
. (6.54)

(3) For T1 ∈ ( 1
2 , 1),

J↑2 (ε) = inf
{
I(h̃) : h̃ ∈ W̃ , T1(h̃) = T1, T2(h̃) = T 3

1 − T 3
1 ε
}
. (6.55)

In order to prove Propositions 6.3.5–6.3.7, we need to analyse these three variational
problems, for ε sufficiently small, which is the objective of this section. The vari-
ational formula in (6.53) has been rigorously analysed in [66], and hence we study the
variational formulas in (6.54) and (6.55), under the assumption that the optimiser
lies in the class of balance optimal graphons. We remind the reader that we suppose
Assumption 2 to be true. We analyse the variational formulas with the help of a per-
turbation argument. In particular, we show that the balance optimal perturbations
are those given in (6.12), (6.16) and (6.18), respectively. The results in Propositions
6.3.6–6.3.7 follow directly from the following two lemmas.

6.5.1 Lemma. Let T1 ∈ (0, 1
2 ]. For ε > 0 consider the variational formula for J↑1 (ε)

given in (6.54). Then, for ε sufficiently small,

J↑1 (ε) ≤ I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3). (6.56)

6.5.2 Lemma. Let T1 ∈ ( 1
2 , 1). For ε > 0 consider the variational formula for J↑2 (ε)

given in (6.55). Then, for ε sufficiently small,

J↑2 (ε) ≤ I(T1) + f(T1, T̄
∗
1 )ε2/3 + o(ε2/3), (6.57)

where f(T1, x), x ∈ (−T1, 0), and T̄ ∗1 were defined in Theorem 6.3.3.

6.5.3 Remark. As argued in Remark 6.3.4, we believe, and there is numerical evid-
ence in [63], that the results in (6.56) and (6.57) hold with equality.

In what follows we use the notation f(ε) � g(ε), for two functions f, g, when f(ε)
g(ε)

converges to a positive constant, as ε ↓ 0.
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§6.5.1 Proof of Proposition 6.3.5
In this section we prove Proposition 6.3.5 given that Assumption 2 holds. In order to
find the optimal perturbation when the ER-line is approached from above, we need
to solve J↓(ε) in (6.53). The following construction shows intuitively why balance
optimal perturbations have the form given in (6.12). Consider an inhomogeneous
ER-random graph on n vertices. We split the vertices of the graph into two parts
of equal size, i.e., of size n/2. In one part we connect two vertices with probability
T1 +2

√
ε, in the other part we connect two vertices with probability T1−2

√
ε, and we

connect vertices lying in different parts with probability T1. This graph has expected
edge density equal to

1(
n
2

) (T1

(n
2

)2

+ (T1 + 2
√
ε)

(n
2

2

)
+ (T1 − 2

√
ε)

(n
2

2

))
= T1. (6.58)

Similarly, the expexted triangle density is equal to

1(
n
3

) ((n2
3

)
(T1 + 2

√
ε)3 +

n

2

(n
2

2

)
2T 2

1 T1 +

(n
2

3

)
(T1 − 2

√
ε)3

)
= T 3

1 + 3T1
n− 4

n− 1
ε

∼ T 3
1 + 3T1ε,

for n large. Below when we speak of optimal perturbation we mean balance optimal.
In the proof below we will see that the optimal perturbation is indeed given by the
graphon counterpart of the inhomogeneous ER-random graph described above. We
now proceed to the technical details of the proof.

With a slight abuse of notation we write I(·) for both cases of a graphon and a real
number. We consider the variational formula J↓(ε), with ε > 0 given in (6.53). We
denote by h̃∗↓ε one of the, possibly multiple, optimisers of J↓(ε). For simplicity in the
notation, in what follows we work with a representative element, denoted by h∗↓ε , of
the equivalence class h̃∗↓ε . We write the optimiser h∗↓ε in the form h∗↓ε = T1 + ∆Hε for
some bounded symmetric function ∆Hε defined on the unit square [0, 1]2 and taking
values in R. This term will be called the perturbation term. The optimiser h∗↓ε has to
satisfy the conditions on the edge and triangle densities, i.e.,

T1(h∗↓ε ) = T1, T2(h∗↓ε ) = T 3
1 + 3T1ε. (6.59)

Hence the perturbation term ∆Hε needs to satisfy the constraints

(G1) :

∫
[0,1]2

dxdy ∆Hε(x, y) = 0 (6.60)

and

(G2) : 3T1

∫
[0,1]3

dxdy dz ∆Hε(x, y)∆Hε(y, z)

+

∫
[0,1]3

dxdy dz ∆Hε(x, y)∆Hε(y, z)∆Hε(z, x) = 3T1ε.

(6.61)
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In what follows we prove the result stated in Proposition 6.3.5, i.e., the optimal
perturbation is a three-step function and is of order

√
ε.

In Assumption 2 it is stated that it suffices to restrict to graphons that can be
written in the form T1+∆H

(2)
ε , where ∆H

(2)
ε is a bounded symmetric function defined

on [0, 1]2, taking three non-zero values. In what follows, for simplicity in the compu-
tations and without loss of generality, we suppose that the optimal graphon has the
form

∆H(2)
ε = g111I×I + g121(I×J)∪(J×I) + g221J×J . (6.62)

Then (G1) above becomes

λ(I)2g11 + 2λ(I)(1− λ(I))g12 + (1− λ(I))2g22 = 0 (6.63)

and the two integrals in (G2) become∫
[0,1]3

dx dy dz ∆Hε(x, y)∆Hε(y, z) = λ(I)3g2
11 + 2λ(I)2(1− λ(I))g11g12

+ 2λ(I)(1− λ(I))2g12g22 + λ(I)(1− λ(I))g2
12

+ (1− λ(I))2g2
22, (6.64)

and∫
[0,1]3

dx dy dz ∆Hε(x, y)∆Hε(y, z) = λ(I)3g2
11 + 2λ(I)2(1− λ(I))g11g12

+ 2λ(I)(1− λ(I))2g12g22 + λ(I)(1− λ(I))g2
12

+ (1− λ(I))2g2
22, (6.65)

and a similar expression can be computed for the second integral in (G2). We now
give the formal definition of a balance optimal graphon:

6.5.4 Definition. For T1 ∈ (0, 1), a graphon T1 + h̃ε, ε > 0, is called balanced if
it has the structure given in (6.62) and the terms λ(I)2g11, λ(I)(1 − λ(I))g12 and
(1− λ(I))2g22 are all of the same order when ε is sufficiently small.

6.5.5 Definition. For ε > 0 a graphon h̃ε is called balance optimal if it solves the
following optimisation problem:

Jbal(ε) := inf{I(h̃), h̃ ∈ W̃ , h̃ is balanced, T1(h̃) = T1, T2(h̃) = T 3
1 + 3T1ε}. (6.66)

It is straightforward to observe that, for ε > 0,

Jbal(ε) ≥ J(ε). (6.67)

In what follows we essentially determine Jbal(ε) for ε sufficiently small. We distinguish
two cases, first g12 = 0 and then g12 6= 0.

148



§6.5. Proofs of Propositions 6.3.5–6.3.7

C
h
a
pter

6

Case g12 = 0: The values of g+ and g− are such so that T1 + ∆H
(2)
ε satisfies the

conditions in (6.60) and (6.61). We proceed with the condition in (6.61). A standard
computation yields∫

[0,1]3
dxdy dz ∆H(2)

ε (x, y)∆H(2)
ε (y, z) = λ(I)3 g2

+ + λ(J)3 g2
− (6.68)

and ∫
[0,1]3

dx dy dz ∆H(2)
ε (x, y)∆H(2)

ε (y, z)∆H(2)
ε (z, x) = λ(I)3 g3

+ + λ(J)3 g3
−.

(6.69)
From (6.60) we obtain the first order condition

λ(I)2g+ + λ(J)2g− = 0. (6.70)

Using the condition in (6.70), we get that (6.61) equals

g2
− 3T1

λ(J)3

λ(I)
(λ(J) + λ(I))− g3

−
λ(J)3

λ(I)3
(λ(I)3 − λ(J)3) = 3T1ε+ o(ε). (6.71)

There are multiple ways in which the condition in (6.71) can be met. We show that
the lowest possible value of I is attained when g+ �

√
ε , g− � −

√
ε and λ(I), λ(J)

are constant. To that end we distinguish the following cases:

(I)

g2
− 3T1

λ(J)3

λ(I)
(λ(J) + λ(I)) � ε, g3

−
λ(J)3

λ(I)3
(λ(I)3 − λ(J)3) = o(ε), (6.72)

which splits into three sub-cases:

(Ia)

g+ � ε1/2, g− � −ε1/2,
λ(J)

λ(I)
� 1. (6.73)

(Ib)

g+ � ε1/2+δ/3, g− � −ε1/2−δ,
λ(J)3

λ(I)
� ε2δ, δ ∈ (0, 1

2 ). (6.74)

(Ic)

g+ � ε1/2−3δ, g− � −ε1/2+δ,
λ(J)3

λ(I)
� ε−2δ, δ ∈ (0, 1

6 ). (6.75)

(1d)
g+ � ε2/3, g− = ḡ ∈ (−T1, 0), λ(J) � ε1/3. (6.76)

(II)

g2
− 3T1

λ(J)3

λ(I)
(λ(J) + λ(I)) � ε1+δ, −g−

1

λ(I)2
� ε−δ, δ > 0. (6.77)

A simple calculation shows that, in all the cases above, λ(I) + λ(J) � 1 and λ(I)3 −
λ(J)3 � 1, and hence we can omit these two factors from the analysis below. In what
follows we exclude cases (Ib), (Ic) and (II) one by one by comparing them to graphons
of the type given in case (Ia).
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Case (Ib): We show that, for ε > 0 sufficiently small, graphons having the structure
indicated in (Ia) yield smaller values of the function I than graphons with the structure
in (Ib). We consider two graphons, denoted by T1 + g∗ and T1 + ĝ∗, where g∗ is as in
Case (Ia) and ĝ∗ is as in Case (Ib). Before giving the technical details of the proof,
we present a heuristic argument why I(T1 + g∗) < I(T1 + ĝ∗). In what follows we
will denote by B(p) a Bernoulli random variable with parameter p. The function
−I(x), x ∈ [0, 1], defined in (5.19) represents the entropy of a B(x) random variable
with parameter x. On the graphon space the function −I(h), h ∈ W , defined in
(5.20), can be seen as the expectation of the entropy of a Bernoulli random variable
with a random parameter (the expectation is with respect to the random parameter),
i.e., B(h(X,Y )) with (X,Y ) a uniformly distributed random variable on [0, 1]2. For
h ∈W we have

−I(h) =

∫
[0,1]2

dxdy [−I(h(x, y))] = E[−I(h(X,Y ))]. (6.78)

Hence we have the following equivalence

I(T1 + g∗) < I(T1 + ĝ∗)⇔ E[−I(T1 + g∗(X,Y ))] > E[−I(T1 + ĝ∗(X,Y ))], (6.79)

where (X,Y ) is a uniformly distributed random vector on [0, 1]2. Instead of working
with entropy, it is intuitively simpler to work with the relative entropy with respect
to the random variable B( 1

2 ). The relative entropy is defined by

I 1
2

(x) := x log
x
1
2

+ (1− x) log
1− x

1
2

, x ∈ [0, 1]. (6.80)

Note that

E[−I(T1 + g∗(X,Y ))] > E[−I(T1 + ĝ∗(X,Y ))]⇔
E[I 1

2
(T1 + g∗(X,Y ))] < E[I 1

2
(T1 + ĝ∗(X,Y ))]. (6.81)

We first give an intuitive argument and afterwards prove that

E[I 1
2
(T1 + g∗(X,Y ))] < E[I 1

2
(T1 + ĝ∗(X,Y ))]. (6.82)

We distinguish between the cases T1 ∈ (0, 1
2 ] and T1 ∈ ( 1

2 , 1). The case T1 ∈ (0, 1
2 ]

follows by using similar arguments as in case T1 ∈ ( 1
2 , 1). We treat in detail only the

case T1 ∈ ( 1
2 , 1).

The relative entropy of a random variable with respect to B( 1
2 ) is zero if and

only if that random variable is equal to B( 1
2 ). So, in order to compare the relative

entropies in (6.82), we need to see how close the Bernoulli random variables with
random parameters T1 +g∗(X,Y ) and T1 + ĝ∗(X,Y ) are to B( 1

2 ). We are considering
the case T1 >

1
2 . Hence the random variables B(T1 +g∗(X,Y )) and B(T1 + ĝ∗(X,Y ))

will be close to B( 1
2 ) when the random parameters T1 + g∗(X,Y ) and T1 + ĝ∗(X,Y )

are close to 1
2 . This is the case when g∗(X,Y ) and ĝ∗(X,Y ) are negative. These

events occur with probabilities

P(T1 + g∗(X,Y ) < T1) = P(g∗(X,Y ) < 0) = P(g∗(X,Y ) = g−) = λ(J)2 � 1, (6.83)
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because of the properties of the graphon in Case (Ia). Similarly, we have that

P(T1 + ĝ∗(X,Y ) < T1) = P(ĝ∗(X,Y ) < 0) = P(ĝ∗(X,Y ) = g−) = λ(Ĵ)2 � ε4δ/3,
(6.84)

for some δ ∈ (0, 1
2 ], because of the properties of the graphon in Case (Ib). Hence we

see that the random variable B(T1 + g∗(X,Y )) is closer to the random variable B( 1
2 )

with much higher probability than the random variable B(T1 + ĝ∗(X,Y )). We can
see this by computing the corresponding expectations,

E(g∗(X,Y ) | g∗(X,Y ) = g−)P(g∗(X,Y ) = g−) = g− P(g∗(X,Y ) = g−) � ε1/2,
(6.85)

while

E(ĝ∗(X,Y ) | ĝ∗(X,Y ) = ĝ−)P(ĝ∗(X,Y ) = ĝ−) = ĝ− P(ĝ∗(X,Y ) = ĝ−)

� ε1/2−δε4δ/3 = ε1/2+δ/3.

In what follows we complete this argument by adding the technical details. We
work out the expressions in the left-hand and right-hand sides of (6.82). The expres-
sion in the right-hand side of (6.82) can be written as

E[I 1
2
(T1 + g∗(X,Y ))] = LI 1

2
(T1 + g+) +KI 1

2
(T1 + g−) + (1− L−K)I 1

2
(T1), (6.86)

for some constants L := P(g∗(X,Y ) = g+) and K = P(g∗(X,Y ) = g−) independent
of ε. Similarly,

E[I 1
2
(T1 + ĝ∗(X,Y ))]=λ(Î)2I 1

2
(T1 + ĝ+)+ε4δ/3I 1

2
(T1 + ĝ−)+(1−λ(Î)2−ε4δ/3)I 1

2
(T1),

(6.87)
where λ(Î)2 = P(ĝ∗(X,Y ) = ĝ+) � 1 and P(ĝ∗(X,Y ) = ĝ−) � ε4δ/3. Moreover, we
recall that from the properties of the graphons in Case (Ia) and Case (Ib) we get

g+ �
√
ε, g− � −

√
ε, ĝ+ � ε1/2+δ/3, ĝ− � ε1/2−δ, δ ∈ (0, 1

2 ]. (6.88)

Hence, for T1 ∈ ( 1
2 , 1] and ε sufficiently small, because of (6.88), we obtain the follow-

ing inequalities:

I 1
2
(T1 + g+) > I 1

2
(T1 + ĝ+) > I 1

2
(T1 + g−) > I 1

2
(T1 + ĝ−). (6.89)

Using a Taylor expansion of the function I around T1 and the first order conditions

Lg+ +Kg− = 0 and λ(Î)2ĝ+ + λ(Ĵ)2ĝ− = 0, (6.90)

we observe that (6.86) and (6.87) are read

E[I 1
2
(T1 + g∗(X,Y ))] = I 1

2
(T1) + 1

2I
′′
1
2
(T1)(Lg2

+ +Kg2
−) + o

(
g2

+ + g2
−
)

(6.91)

and

E[I 1
2
(T1 + ĝ∗(X,Y ))] = I 1

2
(T1) + 1

2I
′′
1
2
(T1)(λ(Î2)ĝ2

+ + λ(Ĵ)2ĝ2
−)

+ o
(
λ(Î2)ĝ2

+ + λ(Ĵ)2ĝ2
−

)
. (6.92)
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Using (6.88), we observe that Lg2
+ +Kg2

− � ε and

λ(Î2)ĝ2
+ + λ(Ĵ)2ĝ2

− � ε1+2δ/3 + ε4/3δε1−2δ � ε1−2δ/3. (6.93)

Hence, for ε sufficiently small,

E
[
I 1

2
(T1 + g∗(X,Y ))

]
< E

[
I 1

2
(T1 + ĝ∗(X,Y ))

]
, (6.94)

which proves (6.82).
Similar arguments can be used for the case T1 ∈ (0, 1

2 ) to show that graphons, as
in Case (Ic), yield larger values of I(·) for ε sufficiently small. We omit the details.

Case (1d): In this case we have that the optimal graphon is constant on a subset
of the unit square with a size tending to zero as ε ↓ 0. Such a graphon yields

I(T1 + g∗) = λ(I)2I(T1 + g+) + 2(1− λ(I))(1− λ(J))I(T1) + λ(J)2I(T1 + g−)

= λ(I)2(I(T1) + I ′(T1)g+ + o(ε2/3)) + 2(1− λ(I))(1− λ(J))I(T1)

+ λ(J)2I(T1 + g−)

= I(T1)− λ(J)2I(T1)− λ(J)2ḡI ′(T1) + λ(J)2I(T1 + ḡ)

= I(T1) + ε2/3 (I(T1 + ḡ)− ḡI ′(T1)− I(T1)) + o(ε2/3). (6.95)

The second equality follows by considering a Taylor expansion around ε = 0 in the
terms that go to zero as ε ↓ 0, i.e, g+. In the third equality we use (6.70). What
remains is to show that

I(T1 + ḡ)− I(T1)− ḡI ′(T1) > 0 (6.96)

for ḡ ∈ (−T1, 0). From the mean-value theorem we have that I(T1+ḡ)−I(T1) = I ′(ξ)ḡ

for some ξ ∈ (T1+ḡ, T1). Since ḡ < 0 and I is a convex function, i.e., I ′ is an increasing
function, we have that I ′(ξ) < I ′(T1). This proves the claim above. From (6.95) we
observe that graphons having the form as in Case (1d) yield larger values of I, for ε
sufficiently small, than graphons as in Case (1a).

Case (II): This case is simpler to exclude than the ones above. Indeed, suppose
that (6.77) holds. Then either λ(I) should become small or −g− should become
large. But g− � −ε−δ is not possible because g− should stay bounded in (−T1, 0)

as ε ↓ 0. Hence the only possibility is λ(I) � εη and g− � −εζ for some η, ζ such
that ζ − 2η = −δ, because of the second condition in (6.77). From the first condition
in (6.77) we have that 2ζ − η = 1 + δ. Solving these two equations we obtain that
η = 1

3 +δ and ζ = 2
3 +δ. From (6.70) we then get that g+ � ε−δ, which is not possible

because g+ should stay bounded in (0, 1− T1) as ε ↓ 0.
At this point we summarise our findings. We considered the variational formula

for J↓(ε) given in (6.53) and we assumed that we can restrict ourselves to piece-wise
constant graphons (see Assumption 2) subject to the constraints in (6.60) and (6.61).
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Afterwards, without loss of generality, we restricted ourselves to an even smaller class
of graphons, those of the form

g = g+1I×I + g−1J×J (6.97)

for some g+ > 0, g− < 0 and I, J ⊂ [0, 1] with λ(I)2 + λ(J)2 ≤ 1. At the end of this
section we elaborate on the case g12 6= 0. More specifically, we have shown that the
optimal perturbation satisfies g+ � ε1/2, g− � −ε1/2 and λ(I) � 1, λ(J) � 1. Hence
the solution to J↓(ε) has the form T1 +g∗

√
ε+o(ε), where g∗ = g+1L×L+g−1K×K for

some g+ > 0, g− < 0, L,K ∈ (0, 1) independent of ε, is a symmetric function defined
on [0, 1]2. From the constraints (6.60) and (6.61) we have that g+L

2 = −g−K2 and
L3g2

+ +K3g2
− = 1. A simple calculation shows that

I(T1 + g
√
ε ) = I(T1) + I ′(T1)(L2g+ +K2g−)

√
ε+ 1

2I
′′(T1)(L2g2

+ +K2g2
−)ε+ o(ε)

= I(T1) + 1
2I
′′(T1)(L2g2

+ +K2g2
−)ε+ o(ε).

Hence, in order to find the optimal graphon we need to solve the following optimisation
problem:

min
(
L2g2

+ +K2g2
−
)

(6.98)
such that L+K ≤ 1, g+L

2 + g−K
2 = 0, L3g2

+ +K3g2
− = 1.

This is equivalent to

min
(

1

K
+

1

L
− 2

K + L

)
such that L+K ≤ 1.

(6.99)

From a standard computation we find that the optimal K,L should satisfy K+L = 1.
Hence we need to minimize 1−2L+L2

L(1−L) . This function is convex in L ∈ (0, 1) and attains
a unique minimum at the point L = 1

2 . Having computed L,K we find g+ = −g− = 2,
and so the optimal solution to J↓(ε), for ε sufficiently small, is the graphon

h∗↓ε (x, y) =


T1 + 2

√
ε, if (x, y) ∈ [0, 1

2 ]2,

T1, if (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] or ( 1
2 , 1]× [0, 1

2 ],

T1 − 2
√
ε, if (x, y) ∈ ( 1

2 , 1]2.

(6.100)

A standard computation shows that T1(h∗↓ε ) = T1 and T2(h∗↓ε ) = T 3
1 + 3T1ε.

Case g12 6= 0: By following similar arguments as for the case g12 = 0, we can
show that the optimal values of g11, g12, g22, K and L can be retrieved by solving the
following optimisation problem:

min
(
L2g2

11 +K2g2
22 + 2LKg2

12

)
such that

L+K = 1,

L2g11 +K2g22 + 2LKg12 = 0,

L3g2
11 +K3g2

22 + 2L2Kg12g11 + 2LK2g12g22 + LKg2
12 = 1. (6.101)
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Suppose first that L = K = 1
2 . Then we have the following optimisation problem:

min 1
4

(
g2

11 + g2
22 + 2g2

12

)
such that

g11 + g22 + 2g12 = 0,

g2
11 + g2

22 + 2g12g11 + 2g12g22 + 2g2
12 = 8.

Introducing Lagrange multipliers, we obtain the solution g12 = 0 and g11 = −g22 = 2.
For arbitrary L,K, substituting

g12 = −1

2

(
L

1− L
g11 +

1− L
L

g22

)
into (6.101) and differentiating the Lagrangian with respect to g12, we obtain g12 = 0.
We observe at this point that this argument holds only for the case where g11, g12 and
g22 go to zero as ε ↓ 0. This is not the case for the actual optimal graphon in (6.14).

Case g12 6= 0 and g22 = 0: From (6.96) we observe that g22 = 0 yields an equality.
Hence in this case the microcanonical entropy will of order ε instead of ε2/3. From
the first-order constraint in (6.60) we obtain

g12 = −1

2

λ

(1− λ)
g11, (6.102)

where λ := λ(I). Then the second order constraint reads

g2
11

1

4

λ2

(1− λ)2
λ(1− λ) = ε. (6.103)

Following similar arguments as before, we can show that the case g11 � εδ, λ �
ε1/3−δ/3 g12 � −ε2/3+δ/2 is not optimal. The case where g11 or g12 are constant,
independently of ε, is also not optimal, since if one of them is constant then the
entropy cost will be ε2/3 instead of ε. A standard computation yields

I(T1 + g∗) = I(T1) +
1

2
I ′′(T1)

(
2 + 4

1− λ
λ

)
ε+ o(ε), (6.104)

while for the graphon defined in (6.100) we have

I(h∗↓ε ) = I(T1) + I ′′(T1)ε+ o(ε). (6.105)

Hence we see that I(T1 + g∗) > I(T1 + h∗↓ε ) if and only if 1 − λ is constant and
independent of ε. If 1 − λ � εδ, then further analysis is needed in order to establish
the optimal graphon. In any case, the graphon h∗↓ε is balance optimal, as desired.

§6.5.2 Proof of Lemma 6.5.1 and Lemma 6.5.2
In this section we provide the technical details leading to the optimal perturbation of
the variational formula in (6.54). We denote one of the, possibly multiple, optimizers
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of (6.54) by h̃∗↑ε . In the proof, in order to keep the notation light, we denote a
representative element of this class by h∗↑ε . We start by writing the optimizer in the
form h∗↑ε = T1 + ∆Hε for some perturbation term ∆Hε. The perturbation term has
to be a bounded symmetric function defined on the unit square [0, 1]2 taking values
in R. The optimizer h∗↑ε has to satisfy the constraints

T1(h∗↑ε ) = T1, T2(h∗↑ε ) = T 3
1 − T 3

1 ε, (6.106)

and so the perturbation ∆Hε needs to satisfy the two constraints

(K1) :

∫
[0,1]2

dxdy ∆Hε(x, y) = 0 (6.107)

and

(K2) : 3T1

∫
[0,1]3

dxdy dz ∆Hε(x, y)∆Hε(y, z)

+

∫
[0,1]3

dx dy dz ∆Hε(x, y)∆Hε(y, z)∆Hε(z, x) = −T 3
1 ε.

(6.108)

Again, from Assumption 2, we restrict to graphons having the form T1 + ∆Hε

where
∆Hε = g111I×I + g121(I×J)∪(J×I) + g221J×J , (6.109)

g11, g12, g22 ∈ (−T1, 1− T1) and I ⊂ [0, 1], J = Ic. From (6.107) we get

λ(I)2g11 + 2λ(I)(1− λ(I))g12 + (1− λ(I))2g22 = 0, (6.110)

which yields

g12 = −1

2

(
λ(I)

1− λ(I)
g11 +

1− λ(I)

λ(I)
g22

)
. (6.111)

A standard computation shows that the second order integral in (6.108) is equal to

λ(I)3g2
11 +(1−λ(I))3g2

22 +2λ(I)(1−λ(I))g12(λ(I)g11 +(1−λ(I))g22 +
1

2
g12. (6.112)

By (6.111) this is equal to

1

4
λ(I)(1− λ(I))

(
λ(I)

(1− λ)
g11 −

1− λ(I)

λ(I)
g22

)2

. (6.113)

From (6.108) we observe that, for ε sufficiently small, the first integral will domin-
ate the second integral when g11, g12 and g22 depend on ε. Hence, in order to obtain
the condition in (6.108), it must be that∫

[0,1]3
dxdy dz ∆Hε(x, y)∆Hε(y, z) = 0. (6.114)

Then (6.113) yields

g11 =
(1− λ(I))2

λ(I)2
g22 (6.115)
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and from (6.111) also

g12 = −1− λ(I)

λ(I)
g22. (6.116)

The third order integral in (6.108) then yields

g22
1− λ(I)

λ(I)
= −T1ε

1/3. (6.117)

We distinguish three cases,

(1)

g11 � −ε1/3, g12 � ε1/3 g22 � −ε1/3,
1− λ
λ
� 1, (6.118)

(2)

g11 � −ε2/3−δ , g12 � ε1/3, g22 � −εδ,
1− λ(I)

λ(I)
� ε1/3−δ, δ ∈ (0, 1

3 ), (6.119)

(3)

g11 � −ε2/3 , g12 � ε1/3, g22 = ḡ ∈ (−T1, 0),
1− λ(I)

λ(I)
� ε1/3. (6.120)

For each of the cases above we compute the value of the function I.

Case (1): For graphons as in Case 1, we have

I(T1 + ∆Hε) =λ(I)2I(T1 + g11) + 2λ(I)(1− λ(I))I(T1 + g12)

+ (1− λ(I))2I(T1 + g22)

=I(T1) +
1

2
I ′′(T1)

(
λ(I)2g2

11 + 2λ(I)(1− λ(I))g2
12

+ (1− λ(I))2g2
22

)
ε2/3 + o(ε2/3)

=I(T1) +
1

2
I ′′(T1)

(
(1− λ(I))4

λ(I)2
+ 2

(1− λ(I))3

λ(I)
+ (1− λ(I))2

)
g2

22

+ o(ε2/3)

=I(T1) +
1

2
I ′′(T1)

(1− λ(I))2

λ(I)2
g2

22 + o(ε2/3)

=I(T1) +
1

2
I ′′(T1)T 2

1 ε
2/3 + o(ε2/3)

=I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3).

We observe that there exist multiple graphons that can yield this result. The only
constraint we impose is g22

1−λ(I)
λ(I) = −T1ε

1/3. For example, the graphon T1 + g∗ε1/3
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with

g∗(x, y) =


−T1, (x, y) ∈ [0, 1

2 ]2,

T1, (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−T1, (x, y) ∈ ( 1
2 , 1]2,

, (6.121)

as in (6.17) is balance optimal. In Case (2) below we construct more graphons that
are balance optimal.

Case (2): A similar computation as above shows that

I(T1 + ∆Hε) = I(T1) +
1

2
I ′′(T1)T 2

1 ε
2/3 + o(ε2/3)

= I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3). (6.122)

From cases (1) and (2) we observe that various graphons are balance optimal.
Hence we need to investigate the higher-order terms in order to determine the optimal
graphon.

Case (3): For this case we have

I(T1 + ∆Hε) = λ(I)2
(
I(T1) + I ′(T1)g11

)
+ 2λ(I)(1− λ(I))

(
I(T1) + I ′(T1)g12

)
+ (1− λ(I))2I(T1 + ḡ) + o(ε2/3)

= I(T1) + (1− λ(I))2 (−I ′(T1)ḡ − I(T1) + I(T1 + ḡ)) + o(ε2/3)

= I(T1) + T 2
1

(
I(T1 + ḡ)− I(T1)− I ′(T1)ḡ

ḡ2

)
ε2/3 + o(ε2/3). (6.123)

Therefore, in order to determine the optimal graphon, we need to find, for a given
T1 ∈ (0, 1), the minimum of the function

f(T1, x) := T 2
1

I(T1 + x)− I(T1)− I ′(T1)x

x2
(6.124)

in (−T1, 0). We analyze this function for every T1 ∈ (0, 1) as x varies from −T1 to 0.
For x = −T1 we have

f(T1,−T1) = −I(T1) + T1I
′(T1) = −1

2
log(1− T1), (6.125)

while for x ↑ 0 we have

lim
x↑0

f(T1, x) = T 2
1 lim
x↑0

I ′(T1 + x)− I ′(T1)

2x
=

1

2
T 2

1 I
′′(T1) =

1

4

T1

1− T1
. (6.126)

The first derivative is equal to

f ′(T1, x) = T 2
1

(I ′(T1 + x)− I ′(T1))x2 − 2x (I(T1 + x)− I(T1)− I ′(T1)x)

x4
(6.127)
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and at the boundary points we have

lim
x↓−T1

f ′(T1, x) = −∞, lim
x↑0

f ′(T1, x) =
1

6
I(3)(T1) = − 1

12

1− 2T1

(T1(1− T1))2
. (6.128)

We observe that I(3)(T1) > 0 if and only if T1 >
1
2 . Consider first the two endpoints

h1(T1) = −1

2
log(1− T1), h2(T1) =

1

4

T1

1− T1
(6.129)

and observe that

h′1(0) =
1

2
> h′2(0) =

1

4
, h′1(1− ε) =

1

2ε
< h′2(ε) =

1

4ε2
. (6.130)

Both h1(·) and h2(·) are increasing function on [0, 1]. Hence there is a unique T̄1 such
that h1(T1) > h2(T1) for all T1 ∈ (0, T̄1) and h1(T1) ≤ h2(T1) for all T1 ∈ [T̄1, 1).
Numerically we find T̄1 ≈ 0.715 (see also Figure 6.3). We distinguish three cases:
T1 ∈ (0, 1

2 ], T1 ∈ ( 1
2 , T̄1] and T1 ∈ (T̄1, 1). The results that follow are not rigorously

proven, but are derived by using numerical approximations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

Figure 6.3: Plot of the functions h1(·) (blue line) and h2(·) (red line).

Case T1 ∈ (0, 1
2 ]: We have that h1(T1) = f(T1,−T1) > h2(T1) = limx↑0 f(T1, x).

Moreover, I(3)(T1) ≤ 0, with equality at T1 = 1
2 . Hence from (6.128) we have that

f(T1, ·) decreases away from f(T1,−T1) towards limx↑0 f(T1, x). We observe that it
is also a decreasing function on (−T1, 0). Hence we have that

f(T1, x) >
1

4

T1

1− T1
∀x ∈ (−T1, 0). (6.131)

We illustrate this in Figure 6.4 and 6.5, where we plot f(T1, ·) for T1 = 0.1, 0.25, 0.4

and 0.5.
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Figure 6.4: Plot of the function f(T1, ·) for T1 = 0.1 (left panel) and T1 = 0.25 (right panel).
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Figure 6.5: Plot of the function f(T1, ·) for T1 = 0.4 (left panel) and T1 = 0.5 (right panel).
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Case T1 ∈ ( 1
2 , T̄1]: In this case we have that I(3)(T1) > 0, and so f(T1, x) increases

into limx↑0 f(T1, x). A similar argument as above in Case 1 shows that there is at
least one stationary point T̄ ∗1 ∈ (−T1, 0), which is also a local minimum. Uniqueness
of this local minimum is verified numerically, as depicted in Figure 6.6.

Case T1 ∈ (T̄1, 1): Using a similar reasoning as in Cases 1 and 2, we get that there
is a stationary point T̄ ∗1 ∈ (−T1, 0), which is a local minimum. Uniqueness of this
minimum is verified numerically in in Figure 6.7.
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Figure 6.6: Plot of the function f(T1, ·) for T1 = 0.55 (left panel) and T1 = 0.6 (right panel).
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Figure 6.7: Plot of the function f(T1, ·) for T1 = 0.75 (left panel) and T1 = 0.9 (right panel).

From the three cases considered above we observe that if T1 ∈ (0, 1
2 ], then

f(T1, x) >
1

4

T1

1− T1
.

On the other hand, if T1 ∈ ( 1
2 , 1), then the function f(T1, ·) attains a global minimum,

denoted by T̄ ∗1 ∈ (−T1, 0), and

f(T1, T̄
∗
1 ) <

1

4

T1

1− T1
.
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We finally return to (6.123). For T1 ∈ (0, 1
2 ] the optimal graphon yields

I(T1 + ∆Hε) = I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3). (6.132)

For T1 ∈ ( 1
2 , 1) the optimal graphon yields

I(T1 + ∆Hε) = I(T1) + f(T1, T̄
∗
1 )ε2/3 + o(ε2/3), (6.133)

where T̄ ∗1 ∈ (−T1, 0) is the unique minimizer of the function f(T1, ·) defined in
(6.124).
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