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CHAPTER 5
Ensemble Equivalence for dense

graphs

This chapter is based on:
F. den Hollander, M. Mandjes, A. Roccaverde, and N. J. Starreveld. Ensemble equi-
valence for dense graphs. Electron. J. Probab., 23:Paper No. 12, 26, 2018

Abstract

In this paper we consider a random graph on which topological restrictions are im-
posed, such as constraints on the total number of edges, wedges, and triangles. We
work in the dense regime, in which the number of edges per vertex scales proportion-
ally to the number of vertices n. Our goal is to compare the micro-canonical ensemble
(in which the constraints are satisfied for every realization of the graph) with the ca-
nonical ensemble (in which the constraints are satisfied on average), both subject to
maximal entropy. We compute the relative entropy of the two ensembles in the limit
as n grows large, where two ensembles are said to be equivalent in the dense regime
if this relative entropy divided by n2 tends to zero. Our main result, whose proof
relies on large deviation theory for graphons, is that breaking of ensemble equivalence
occurs when the constraints are frustrated. Examples are provided for three different
choices of constraints.
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§5.1 Introduction

Section 5.1.1 gives background and motivation, Section 5.1.2 describes relevant liter-
ature, while Section 5.1.3 outlines the remainder of the paper.

§5.1.1 Background and motivation
For large networks a detailed description of the architecture of the network is infeasible
and must be replaced by a probabilistic description, where the network is assumed to
be a random sample drawn from a set of allowed graphs that are consistent with a set
of empirically observed features of the network, referred to as constraints. Statistical
physics deals with the definition of the appropriate probability distribution over the
set of graphs and with the calculation of its relevant properties (Gibbs [53]). The two
main choices1 of probability distribution are:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual graph).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual graphs may violate the constraints).

For networks that are large but finite, the two ensembles are obviously different
and, in fact, represent different empirical situations: they serve as null-models for
the network after incorporating what is known about the network a priori via the
constraints. Each ensemble represents the unique probability distribution with max-
imal entropy respecting the constraints. In the limit as the size of the graph diverges,
the two ensembles are traditionally assumed to become equivalent as a result of the
expected vanishing of the fluctuations of the soft constraints, i.e., the soft constraints
are expected to become asymptotically hard. This assumption of ensemble equival-
ence, which is one of the corner stones of statistical physics, does however not hold
in general (we refer to Touchette [97] for more background).

In Squartini et al. [92] the question of the possible breaking of ensemble equivalence
was investigated for two types of constraint:

(I) The total number of edges.

(II) The degree sequence.

In the sparse regime, where the empirical degree distribution converges to a limit as
the number of vertices n tends to infinity such that the maximal degree is o(

√
n),

it was shown that the relative entropy of the micro-canonical ensemble w.r.t. the
canonical ensemble divided by n (which can be interpreted as the relative entropy per
vertex) tends to s∞, with s∞ = 0 in case the constraint concerns the total number of
edges, and s∞ > 0 in case the constraint concerns the degree sequence. For the latter

1The microcanonical ensemble and the canonical ensemble work with a fixed number of vertices.
There is a third ensemble, the grandcanonical ensemble, where also the size of the graph is considered
as a soft constraint.
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case, an explicit formula was derived for s∞, which allows for a quantitative analysis
of the breaking of ensemble equivalence.

In the present paper we analyse what happens in the dense regime, where the
number of edges per vertex is of order n. We consider case (I), yet allow for constraints
not only on the total number of edges but also on the total number of wedges, triangles,
etc. We show that the relative entropy divided by n2 (which, up to a constant, can
be interpreted as the relative entropy per edge) tends to s∞, with s∞ > 0 when the
constraints are frustrated. Our analysis is based on a large deviation principle for
graphons.

§5.1.2 Relevant literature
In the past few years, several papers have studied the microcanonical ensemble and the
canonical ensemble. Most papers focus on dense graphs, but there are some interesting
advances for sparse graphs as well. Closely related to the canonical ensemble are the
exponential random graph model (Bhamidi et al. [12], Chatterjee and Diaconis [29])
and the constrained exponential random model (Aristoff and Zhu [3], Kenyon and
Yin [67], Yin [102], Zhu [105]).

In Aristoff and Zhu [3], Kenyon et al. [63], Radin and Sadun [86], the authors
study the microcanonical ensemble, focusing on the constrained entropy density. In
[3] directed graphs are considered with a hard constraint on the number of directed
edges and j-stars, while in [63, 86] the focus is on undirected graphs with a hard
constraint on the edge density, j-star density and triangle density, respectively. Fol-
lowing the work in Bhamidi et al. [12] and in Chatterjee and Diaconis [29], a deeper
understanding has developed of how these models behave as the size of the graph
tends to infinity. Most results concern the asymptotic behaviour of the partition
function (Chatterjee and Diaconis [29], Kenyon, Radin, Ren and Sadun [63]) and the
identification of regions where phase transitions occur (Aristoff and Zhu [4], Lubetsky
and Zhao [70], Yin [101]). For more details we refer the reader to the recent mono-
graph by Chatterjee [27], and references therein. Significant contributions for sparse
graphs were made in Chatterjee and Dembo [28] and in subsequent work of Yin and
Zhu [103].

For an overview on random graphs and their role as models of complex networks,
we refer the reader to the recent monograph by van der Hofstad [99]. The most
important distinction between our paper and the existing literature on exponential
random graphs is that in the canonical ensemble we impose a soft constraint.

§5.1.3 Outline
The remainder of this paper is organised as follows. Section 5.2 defines the two
ensembles, gives the definition of equivalence of ensembles in the dense regime, recalls
some basic facts about graphons, and states the large deviation principle for the Erdős-
Rényi random graph. Section 5.3 states a key theorem in which we give a variational
representation of s∞ when the constraint is on subgraph counts, properly normalised.
Section 5.4 presents our main theorem for ensemble equivalence, which provides three
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examples for which breaking of ensemble equivalence occurs when the constraints are
frustrated. In particular, the constraints considered are on the number of edges,
triangles and/or stars. Frustration corresponds to the situation where the canonical
ensemble scales like an Erdős-Rényi random graph model with an appropriate edge
density but the microcanonical ensemble does not. The proof of the main theorem is
given in Sections 5.5–5.6, and relies on various papers in the literature dealing with
exponential random graph models. Appendix A discusses convergence of Lagrange
multipliers associated with the canonical ensemble.

§5.2 Key notions

In Section 5.2.1 we introduce the model and give our definition of equivalence of
ensembles in the dense regime (Definition 5.2.1 below). In Section 5.2.2 we recall some
basic facts about graphons (Propositions 5.2.4–5.2.6 below). In Section 5.2.3 we recall
the large deviation principle for the Erdős-Rényi random graph (Proposition 5.2.7 and
Theorem 5.2.8 below), which is the key tool in our paper.

§5.2.1 Microcanonical ensemble, canonical ensemble,
relative entropy

For n ∈ N, let Gn denote the set of all 2(n2) simple undirected graphs with n vertices.
Any graph G ∈ Gn can be represented by a symmetric n× n matrix with elements

hG(i, j) :=

{
1 if there is an edge between vertex i and vertex j,
0 otherwise.

(5.1)

Let ~C denote a vector-valued function on Gn. We choose a specific vector ~C∗, which
we assume to be graphic, i.e., realisable by at least one graph in Gn. For this ~C∗

the microcanonical ensemble is the probability distribution Pmic on Gn with hard
constraint ~C∗ defined as

Pmic(G) :=

{
1/Ω~C∗ , if ~C(G) = ~C∗,
0, otherwise,

G ∈ Gn, (5.2)

where
Ω~C∗ := |{G ∈ Gn : ~C(G) = ~C∗}| (5.3)

is the number of graphs that realise ~C∗. The canonical ensemble Pcan is the unique
probability distribution on Gn that maximises the entropy

Sn(P) := −
∑
G∈Gn

P(G) log P(G) (5.4)

subject to the soft constraint 〈~C〉 = ~C∗, where

〈~C〉 :=
∑
G∈Gn

~C(G) P(G). (5.5)
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This gives the formula (see Jaynes [61])

Pcan(G) :=
1

Z(~θ∗)
eH(~θ∗, ~C(G)), G ∈ Gn, (5.6)

with

H(~θ∗, ~C(G)) := ~θ∗ · ~C(G), Z(~θ∗ ) :=
∑
G∈Gn

e
~θ∗· ~C(G), (5.7)

denoting the Hamiltonian and the partition function, respectively. In (5.6)–(5.7) the
parameter ~θ∗ (which is a real-valued vector the size of the constraint playing the role
of a Langrange multiplier) must be set to the unique value that realises 〈~C〉 = ~C∗. The
Lagrange multiplier ~θ∗ exists and is unique. Indeed, the gradients of the constraints
in (5.5) are linearly independent vectors. Consequently, the Hessian matrix of the
entropy of the canonical ensemble in (5.6) is a positive definite matrix, which implies
uniqueness of the Lagrange multiplier.

The relative entropy of Pmic with respect to Pcan is defined as

Sn(Pmic | Pcan) :=
∑
G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
. (5.8)

5.2.1 Definition. In the dense regime, if 2

s∞ := lim
n→∞

1

n2
Sn(Pmic|Pcan) = 0, (5.9)

then Pmic and Pcan are said to be equivalent.

Before proceeding, we recall an important observation made in Squartini et al. [92].
For any G1, G2 ∈ Gn, Pcan(G1) = Pcan(G2) whenever ~C(G1) = ~C(G2), i.e., the
canonical probability is the same for all graphs with the same value of the constraint.
We may therefore rewrite (5.8) as

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
, (5.10)

where G∗ is any graph in Gn such that ~C(G∗) = ~C∗ (recall that we assumed that ~C∗

is realisable by at least one graph in Gn). This fact greatly simplifies computations.

5.2.2 Remark. All the quantities above depend on n. In order not to burden the
notation, we exhibit this n-dependence only in the symbols Gn and Sn(Pmic | Pcan).
When we pass to the limit n → ∞, we need to specify how ~C(G), ~C∗ and ~θ∗ are
chosen to depend on n. This will be done in Section 5.3.1.

2In Squartini et al. [92], which was concerned with the sparse regime, the relative entropy was
divided by n (the number of vertices). In the dense regime, however, it is appropriate to divide by
n2 (the order of the number of edges).
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§5.2.2 Graphons
There is a natural way to embed a simple graph on n vertices in a space of functions
called graphons. LetW be the space of functions h : [0, 1]2 → [0, 1] such that h(x, y) =

h(y, x) for all (x, y) ∈ [0, 1]2. A finite simple graph G on n vertices can be represented
as a graphon hG ∈W in a natural way as (see Fig. 5.1)

hG(x, y) :=

{
1 if there is an edge between vertex dnxe and vertex dnye,
0 otherwise. (5.11)
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hG(x, y) = 1, on

hG(x, y) = 0, else

Figure 5.1: An example of a graph G and its graphon representation hG.

The space of graphons W is endowed with the cut distance

d�(h1, h2) := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

dxdy [h1(x, y)− h2(x, y)]

∣∣∣∣ , h1, h2 ∈W. (5.12)

On W there is a natural equivalence relation ≡. Let Σ be the space of measure-
preserving bijections σ : [0, 1]→ [0, 1]. Then h1(x, y) ≡ h2(x, y) if h1(x, y) = h2(σx, σy)

for some σ ∈ Σ. This equivalence relation yields the quotient space (W̃ , δ�), where
δ� is the metric defined by

δ�(h̃1, h̃2) := inf
σ1,σ2

d�(hσ1
1 , hσ2

2 ), h̃1, h̃2 ∈ W̃ . (5.13)

To avoid cumbersome notation, throughout the sequel we suppress the n-dependence.
Thus, by G we denote any simple graph on n vertices, by hG its image in the graphon
space W , and by h̃G its image in the quotient space W̃ . Let F and G denote two
simple graphs with vertex sets V (F ) and V (G), respectively, and let hom(F,G) be
the number of homomorphisms from F to G. The homomorphism density is defined
as

t(F,G) :=
1

|V (G)||V (F )| hom(F,G). (5.14)

Two graphs are said to be similar when they have similar homomorphism densities.

5.2.3 Definition. A sequence of labelled simple graphs (Gn)n∈N is left-convergent
when (t(F,Gn))n∈N converges for any simple graph F .
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Consider a simple graph F on k vertices with edge set E(F ), and let h ∈W . Similarly
as above, define the density

t(F, h) :=

∫
[0,1]k

dx1 · · · dxk
∏

(i,j)∈E(F )

h(xi, xj). (5.15)

If hG is the image of a graph G in the space W , then

t(F, hG) =

∫
[0,1]k

dx1 · · · dxk
∏

(i,j)∈E(F )

hG(xi, xj) =
1

|V (G)||V (F )| hom(F,G) = t(F,G).

(5.16)
Hence a sequence of graphs (Gn)n∈N is left-convergent to h ∈W when

lim
n→∞

t(F,Gn) = t(F, h). (5.17)

We conclude this section with three basic facts that will be needed later on. The
first gives the relation between left-convergence of sequences of graphs and conver-
gence in the quotient space (W̃ , δ�), the second is a compactness property, while the
third shows that the homomorphism density is Lipschitz continuous with respect to
the δ�-metric.

5.2.4 Proposition (Borgs et al. [20]). For a sequence of labelled simple graphs
(Gn)n∈N the following properties are equivalent:
(i) (Gn)n∈N is left-convergent.
(ii) (h̃Gn)n∈N is a Cauchy sequence in the metric δ�.
(iii) (t(F, hGn))n∈N converges for all finite simple graphs F .
(iv) There exists an h ∈W such that limn→∞ t(F, hGn) = t(F, h) for all finite simple
graphs F .

5.2.5 Proposition (Lovász and Szegedy [69]). (W̃ , δ�) is compact.

5.2.6 Proposition (Borgs et al. [20]). Let G1, G2 be two labelled simple graphs,
and let F be a simple graph. Then

|t(F,G1)− t(F,G2)| ≤ 4|E(F )|δ�(G1, G2). (5.18)

For a more detailed description of the structure of the space (W̃ , δ�) we refer the
reader to Borgs et al. [20, 21] and Diao et at. [39].

§5.2.3 Large deviation principle for the Erdős-Rényi
random graph

In this section we recall a few key facts from the literature about rare events in Erdős-
Rényi random graphs, formulated in terms of a large deviation principle. Importantly,
the scale that is used is n2, the order of the number of edges in the graph.
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We start by introducing the large deviation rate function. For p ∈ (0, 1) and
u ∈ [0, 1], let

Ip(u) :=
1

2
u log

(
u

p

)
+

1

2
(1− u) log

(
1− u
1− p

)
,

I(u) :=
1

2
u log u+

1

2
(1− u) log(1− u) = I 1

2
(u)− 1

2 log 2,

(5.19)

with the convention that 0 log 0 = 0. For h ∈ W we write, with a mild abuse of
notation,

Ip(h) :=

∫
[0,1]2

dxdy Ip(h(x, y)), I(h) :=

∫
[0,1]2

dx dy I(h(x, y)). (5.20)

On the quotient space (W̃ , δ�) we define Ip(h̃) = Ip(h), where h is any element of the
equivalence class h̃.

5.2.7 Proposition (Chatterjee and Varadhan [31]). The function Ip is well-
defined on W̃ and is lower semi-continuous under the δ�-metric.

Consider the set Gn of all graphs on n vertices and the Erdős-Rényi probability
distribution Pn,p on Gn. Through the mappingsG→ hG → h̃G we obtain a probability
distribution on W (with a slight abuse of notation again denoted by Pn,p), and a
probability distribution P̃n,p on W̃ .

5.2.8 Theorem (Chatterjee and Varadhan [31]). For every p ∈ (0, 1), the se-
quence of probability distributions (P̃n,p)n∈N satisfies the large deviation principle on
(W̃ , δ�) with rate function Ip defined by (5.20), i.e.,

lim sup
n→∞

1

n2
log P̃n,p(C̃) ≤ − inf

h̃∈W̃
Ip(h̃) ∀ C̃ ⊂ W̃ closed,

lim inf
n→∞

1

n2
log P̃n,p(Õ) ≥ − inf

h̃∈Õ
Ip(h̃) ∀ Õ ⊂ W̃ open.

(5.21)

Using the large deviation principle we can find asymptotic expressions for the
number of simple graphs on n vertices with a given property. In what follows a
property of a graph is defined through an operator T : W → Rm for some m ∈ N.
We assume that the operator T is continuous with respect to the δ�-metric, and for
some ~T ∗ ∈ Rm we consider the sets

W̃ ∗ :=
{
h̃ ∈ W̃ : T (h̃) = ~T ∗

}
, W̃ ∗n :=

{
h̃ ∈ W̃ ∗ : h̃ = h̃G for some G on n vertices

}
.

(5.22)
By the continuity of the operator T , the set W̃ ∗ is closed. Therefore, using The-
orem 5.2.8, we obtain the following asymptotics for the cardinality of W̃ ∗n .

5.2.9 Corollary (Chatterjee [26]). For any measurable set W̃ ∗ ⊂ W̃ , with W̃ ∗n
as defined in (5.22),

− inf
h̃∈int(W̃∗)

I(h̃) ≤ lim inf
n→∞

log |W̃ ∗n |
n2

≤ lim sup
n→∞

log |W̃ ∗n |
n2

≤ − inf
h̃∈W̃∗

I(h̃), (5.23)

where int(W̃ ∗) is the interior of W̃ ∗.
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§5.3 Variational characterisation of ensemble equi-
valence

In this section we present a number of preparatory results we will need in Section 5.4
to state our theorem on the equivalence between Pmic and Pcan. Our main result
is Theorem 5.3.4 below, which gives us a variational characterisation of ensemble
equivalence. In Section 5.3.1 we introduce our constraints on the subgraph counts. In
Section 5.3.2 we rephrase the canonical ensemble in terms of graphons. In Section 5.3.3
we state and prove Theorem 5.3.4.

§5.3.1 Subgraph counts
First we introduce the concept of subgraph counts, and point out how the corres-
ponding canonical distribution is defined. Label the simple graphs in any order, e.g.,
F1 is an edge, F2 is a wedge, F3 is triangle, etc. Let Ck(G) denote the number of
subgraphs Fk in G. In the dense regime, Ck(G) grows like nVk , where Vk = |V (Fk)| is
the number of vertices in Fk. For m ∈ N, consider the following scaled vector-valued
function on Gn:

~C(G) :=

(
p(Fk)Ck(G)

nVk−2

)m
k=1

= n2

(
p(Fk)Ck(G)

nVk

)m
k=1

. (5.24)

The term p(Fk) counts the edge-preserving permutations of the vertices of Fk, i.e.,
p(F1) = 2 for an edge, p(F2) = 2 for a wedge, p(F3) = 6 for a triangle, etc. The
term Ck(G)/nVk represents a subgraph density in the graph G. The additional n2

guarantees that the full vector scales like n2, the scaling of the large deviation principle
in Theorem 5.2.8. For a simple graph Fk we define the homomorphism density as

t(Fk, G) :=
hom(Fk, G)

nVk
=
p(Fk)Ck(G)

nVk
, (5.25)

which does not distinguish between permutations of the vertices. Hence the Hamilto-
nian becomes

H(~θ, ~T (G)) = n2
m∑
k=1

θk t(Fk, G) = n2(~θ · ~T (G)), G ∈ Gn, (5.26)

where
~T (G) := (t(Fk, G))

m
k=1 . (5.27)

The canonical ensemble with parameter ~θ thus takes the form

Pcan(G | ~θ ) := en
2
[
~θ·~T (G)−ψn(~θ )

]
, G ∈ Gn, (5.28)

where ψn replaces the partition function:

ψn(~θ) :=
1

n2
log

∑
G∈Gn

en
2(~θ · ~T (G)). (5.29)
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In the sequel we take ~θ equal to a specific value ~θ∗, so as to meet the soft constraint,
i.e.,

〈~T 〉 =
∑
G∈Gn

~T (G)Pcan(G) = ~T ∗. (5.30)

The canonical probability then becomes

Pcan(G) = Pcan(G | ~θ∗) (5.31)

In Section 5.5.1 we will discuss how to find ~θ∗.

5.3.1 Remark. (i) The constraint ~T ∗ and the Lagrange multiplier ~θ∗ in general
depend on n, i.e., ~T ∗ = ~T ∗n and ~θ∗ = ~θ∗n (recall Remark 5.2.2). We consider constraints
that converge when we pass to the limit n→∞, i.e.,

lim
n→∞

~T ∗n = ~T ∗∞. (5.32)

Consequently, we expect that
lim
n→∞

~θ∗n = ~θ∗∞. (5.33)

Throughout the sequel we assume that (5.33) holds. If convergence fails, then we
may still consider subsequential convergence. The subtleties concerning (5.33) are
discussed in Appendix A.
(ii) In what follows, we suppress the dependence on n and write ~T ∗, ~θ∗ instead of
~T ∗n ,

~θ∗n, but we keep the notation ~T ∗∞,
~θ∗∞ for the limit. In addition, throughout the

sequel we write ~θ, ~θ∞ instead of ~θ∗, ~θ∗∞ when we view these as parameters that do not
depend on n. This distinction is crucial when we take the limit n→∞.

§5.3.2 From graphs to graphons
In (5.16) we saw that if we map a finite simple graph G to its graphon hG, then
for each finite simple graph F the homomorphism densities t(F,G) and t(F, hG) are
identical. If (Gn)n∈N is left-convergent, then

lim
n→∞

~T (Gn) = (t(Fk, h))
m
k=1 (5.34)

for some h ∈W , as an immediate consequence of Theorem 5.2.4. We further see that
the expression in (5.26) can be written in terms of graphons as

H(~θ, ~T (G)) = n2
m∑
k=1

θk t(Fk, h
G). (5.35)

With this scaling the hard constraint is denoted by ~T ∗, has the interpretation of the
density of an observable quantity in G, and defines a subspace of the quotient space
W̃ , which we denote by W̃ ∗, and which consists of all graphons that meet the hard
constraint, i.e.,

W̃ ∗ := {h̃ ∈ W̃ : ~T (h) = ~T ∗}. (5.36)

The soft constraint in the canonical ensemble becomes 〈~T 〉 = ~T ∗ (recall (5.5)).
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§5.3.3 Variational formula for specific relative entropy

In what follows, the limit as n→∞ of the partition function ψn(~θ) defined in (5.29)
plays an important role. This limit has a variational representation that will be key
to our analysis.

5.3.2 Theorem (Chatterjee and Diaconis [29]). Let ~T : W̃ → Rmbe the oper-
ator defined in (5.27). For any ~θ ∈ Rm (not depending on n),

lim
n→∞

ψn(~θ) = sup
h̃∈W̃

(
~θ · ~T (h̃)− I(h̃)

)
(5.37)

with I and ψn as defined in (5.20) and (5.29).

5.3.3 Theorem (Chatterjee and Diaconis [29]). Let F1, . . . , Fm be subgraphs as
defined in Section 5.3.1. Suppose that θ2, . . . , θm ≥ 0. Then

lim
n→∞

ψn(~θ) = sup
0≤u≤1

(
m∑
i=1

θi u
E(Fk) − I(u)

)
, (5.38)

where E(Fk) denotes the number of edges in the subgraph Fk.

The key result in this section is the following variational formula for s∞ defined
in Definition 5.2.1. Recall that for n ∈ N we write ~θ∗ for ~θ∗n.

5.3.4 Theorem. Consider the microcanonical ensemble defined in (5.2) with con-
straint ~T = ~T ∗ defined in (5.27), and the canonical ensemble defined in (5.28)–(5.29)
with parameter ~θ = ~θ∗ such that, for every n ∈ N, (5.30), (5.32) and (5.33) hold.
Then

s∞ = lim
n→∞

1

n2
Sn(Pmic | Pcan) = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
,

(5.39)
where I is defined in (5.19) and W̃ ∗ = {h̃ ∈ W̃ : ~T (h̃) = ~T ∗∞}.

Proof. From (5.10) we have

s∞ = lim
n→∞

1

n2

[
log Pmic(G∗)− log Pcan(G∗)

]
, (5.40)

where G∗ is any graph in Gn such that ~T (G∗) = ~T ∗. For the microcanonical ensemble
we have

logPmic(G∗) = − log Ω~T∗ = − logP 1
2 ,n

(
{G ∈ Gn : ~T (G) = ~T ∗}

)
−
(
n

2

)
log 2, (5.41)

where
Ω~T∗ = |{G ∈ Gn : ~T (G) = ~T ∗}| > 0. (5.42)
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Define the operator ~T : W → Rm, h 7→ (t(Fk, h))mk=1. This operator can be extended
to an operator (with a slight abuse of notation again denoted by ~T ) on the quotient
space (W̃ , δ�) by defining ~T (h̃) = ~T (h) with h ∈ h̃. Define the following sets

W̃ ∗ :=
{
h̃ ∈ W̃ : T (h̃) = ~T ∗∞

}
, W̃ ∗n :=

{
h̃ ∈ W̃ ∗ : h̃ = h̃G for some G ∈ Gn

}
.

(5.43)
From the continuity of the operator ~T on W̃ , we see that W̃ ∗ is a compact subspace
of W̃ , and hence is also closed. From Theorem 5.2.6 we have that ~T is a Lipschitz
continuous operator on the space (W̃ , δ�). Since W̃ is a compact space, we have that

lim
n→∞

1

n2
logP 1

2 ,n

(
{G ∈ Gn : ~T (G) = ~T ∗}

)
= − inf

h̃∈W̃∗
I 1

2
(h̃) = − inf

h̃∈W̃∗
I(h̃)− 1

2 log 2.

(5.44)
The large deviation principle applied to (5.41) yields

lim
n→∞

1

n2
logPmic(G∗) = inf

h̃∈W̃∗
I(h̃). (5.45)

Consider the canonical ensemble and a graph G∗n on n vertices such that ~T (G∗n) =
~T ∗. By Definition 5.2.3, Proposition 5.2.4, and (5.32) we may suppose that (G∗n)n∈N
is left-convergent and converges to the graphon h∗. Since ~T is continuous, we have
that ~T (G∗n) converges to ~T (h∗) = ~T ∗∞. From (5.28) we have that

lim
n→∞

1

n2
logPcan(G∗n) = ~θ∗∞ · ~T ∗∞ − ψ∞(~θ∗∞). (5.46)

By Theorem 5.3.2,
ψ∞(~θ∗∞) = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
. (5.47)

There is an additional subtlety in proving (5.47) in our setup because ~θ∗ depends on
n. This dependence is treated in Appendix A. Combining (5.45) and (5.47), we get

s∞ = lim
n→∞

1

n2
Sn(Pmic | Pcan) = inf

h̃∈W̃∗
I(h̃)−~θ∗∞ · ~T ∗∞+ sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)−I(h̃)

]
. (5.48)

By definition all elements h̃ ∈ W̃ ∗ satisfy ~T (h̃) = ~T ∗∞. Hence the expression in the
right-hand side of (5.48) can be written as

sup
h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
, (5.49)

which settles the claim.

5.3.5 Remark. Theorem 5.3.4 and the compactness of W̃ ∗ give us a variational
characterisation of ensemble equivalence: s∞ = 0 if and only if at least one of the
maximisers of ~θ∗∞ · ~T (h̃)− I(h̃) in W̃ also lies in W̃ ∗ ⊂ W̃ . Equivalently, s∞ = 0 when
at least one the maximisers of ~θ∗∞ · ~T (h̃)− I(h̃) satisfies the hard constraint.

114



§5.4. Main theorem

C
h
a
pter

5

§5.4 Main theorem

The variational formula for the relative entropy s∞ in Theorem 5.3.4 allows us to
identify examples where ensemble equivalence holds (s∞ = 0) or is broken (s∞ > 0).
We already know that if the constraint is on the edge density alone, i.e., T (G) =

t(F1, G) = T ∗, then s∞ = 0 (see Garlaschelli et al. [48]). In what follows we will look
at three models:

1

3
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2
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x

y

1

6

2

6

3

6

4

6

5

6
1

1

6

2

6

3

6

4

6

5

6

1

hG(x, y) = 1, on

hG(x, y) = 0, else

Figure 5.2: A 5-star graph and its graphon representation.

(I) The constraint is on the triangle density, i.e., ~T2(G) = t(F3, G) = T ∗2 with F3

the triangle. This will be referred to as the Triangle Model.

(II) The constraint is on the edge density and triangle density, i.e., ~T (G) = (t(F1, G),

t(F3, G)) = (T ∗1 , T
∗
2 ) with F1 the edge and F3 the triangle. This will be referred

to as the Edge-Triangle Model.

(III) The constraint is on the j-star density, i.e., ~T (G) = t(T [j], G) = T [j]∗ with T [j]

the j-star graph, consisting of 1 root vertex and j ∈ N \ {1} vertices connected
to the root but not connected to each other (see Fig. 5.2). This will be referred
to as the Star Model.

For a graphon h ∈W (recall (5.15)), the edge density and the triangle density equal

T1(h) =

∫
[0,1]2

dx1dx2 h(x1, x2),

T2(h) =

∫
[0,1]3

dx1dx2dx3 h(x1, x2)h(x2, x3)h(x3, x1),

(5.50)

while the j-star density equals

T [j](h) =

∫
[0,1]

dx

∫
[0,1]j

dx1dx2 · · · dxj
j∏
i=1

h(x, xi). (5.51)

5.4.1 Theorem. For the above three types of constraint:
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(I) (a) If T ∗2 ≥ 1
8 , then s∞ = 0.

(b) If T ∗2 = 0, then s∞ = 0.

(II) (a) If T ∗2 = T ∗31 , then s∞ = 0.

(b) If T ∗2 6= T ∗31 and T ∗2 ≥ 1
8 , then s∞ > 0.

(c) If T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1
2 and 0 < T ∗2 < 1

8 , then s∞ > 0.

(d) If T ∗1 = 1
2 + ε with ε ∈

(
`−2
2` ,

`−1
2`+2

)
, ` ∈ N \ {1}, and T ∗2 is such that

(T ∗1 , T
∗
2 ) lies on the scallopy curve in Fig. 5.3, then s∞ > 0.

(e) If 0 < T ∗1 ≤ 1
2 and T ∗2 = 0, then s∞ = 0.

(III) For every j ∈ N \ {1}, if T [j]∗ ≥ 0, then s∞ = 0.

Here, T ∗1 , T ∗2 , T [j]∗ are in fact the limits T ∗1,∞, T ∗2,∞, T [j]∗∞ in (5.32), but in order to
keep the notation light we now also suppress the index ∞.

(0, 1

8
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n
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∗ 2

edge density T ∗

1

(0,0)

(0,1)

(1,0)( 1
2
, 0)

(1,1)

s∞ = 0

s∞ > 0

s∞ > 0

s∞ = ?

T ∗

2
= T

∗
2

3

1

T ∗

2
= T ∗

1
(2T ∗

1
− 1)

T ∗

2
= T ∗3

1

Figure 5.3: The admissible edge-triangle density region is the region on and between the blue
curves (cf. Radin and Sadun [86]).

Theorem 5.4.1, which states our main results on ensemble equivalence and which is
proven in Sections 5.5–5.6, is illustrated in Fig. 5.3. The region on and between the
blue curves corresponds to the set of all realisable graphs: if the pair (e, t) lies in this
region, then there exists a graph with edge density e and triangle density t. The red
curves represent ensemble equivalence, the blue curves and the grey region represent
breaking of ensemble equivalence, while in the white region between the red curve and
the lower blue curve we do not know what happens. Breaking of ensemble equivalence
arises from frustration between the edge and the triangle density.

Each of the cases in Theorem 5.4.1 corresponds to typical behavior of graphs
drawn from the two ensembles:
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• In cases (I)(a) and (II)(a), graphs drawn from both ensembles are asymptotically
like Erdős-Rényi random graphs with parameter p = T

∗1/3
2 .

• In cases (I)(b) and (II)(e), almost all graphs drawn from both ensembles are
asymptotically like bipartite graphs.

• In cases (II)(b), (II)(c) and (II)(d), we do not know what graphs drawn from the
canonical ensemble look like. Graphs drawn from the microcanonical ensemble
do not look like Erdős-Rényi random graphs. The structure of graphs drawn
from the microcanonical ensemble when the constraint is as in (II)(d) has been
determined in Pirkhurko and Razborov [83] and Radin and Sadun [86]. The
vertex set of a graph drawn from the microcanonical ensemble can be partitioned
into ` subsets: the first `− 1 have size bcnc and the last has size between bcnc
and 2bcnc, where c is a known constant depending on `. The graph has the
form of a complete `−partite graph on these pieces, plus some additional edges
in the last piece that create no additional triangles.

• In case (III), graphs drawn from both ensembles are asymptotically like Erdős-
Rényi random graphs with parameter p = T [j]∗1/j .

5.4.2 Remark. Similar results hold for the Edge-Wedge-Triangle Model and the
Edge-Star Model.

Here are three open questions:

• Identify in which cases (5.32) implies (5.33).

• Is s∞ = 0 as soon as the constraint involves a single subgraph count only?

• What happens for subgraphs other than edges, wedges, triangles and stars? Is
again s∞ > 0 under appropriate frustration?

§5.5 Choice of the tuning parameter

The tuning parameter is to be chosen so as to satisfy the soft constraint (5.30),
a procedure that in equilibrium statistical physics is referred to as the averaging
principle. Depending on the choice of constraint, finding ~θ∗ may not be easy, neither
analytically nor numerically. In Section 5.5.1 we investigate how ~θ∗ behaves as we
vary ~T ∗ for fixed n. We focus on the Edge-Triangle Model (a slight adjustment yields
the same results for the Triangle Model). In Section 5.5.2 we investigate how averages
under the canonical ensemble, like (5.30), behave when n → ∞. Here we can treat
general constraints defined in (5.27).

For the behaviour of our constrained models, the sign of the coordinates of the
tuning parameter ~θ∗ is of pivotal importance, both for a fixed n ∈ N and asymp-
totically (see Bhamidi et al. [12], Chatterjee and Diaconis [29], Radin and Yin [87],
and references therein). We must therefore carefully keep track of this sign. The key
results in this direction are Lemmas 5.5.1 and 5.5.2 below.
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§5.5.1 Tuning parameter for fixed n

5.5.1 Lemma. Consider the Triangle Model with the constraint given by the triangle
density T ∗2 . For every n, θ∗ ≥ 0 if and only if T ∗2 ≥ 1

8 .

Proof. The proof is similar to that of Lemma 5.5.2 below.

5.5.2 Lemma. Consider the Edge-Triangle Model. For every n, θ∗2 ≥ 0 if and only
if T ∗2 ≥ 1

8 , irrespective of T ∗1 . Furthermore, θ∗1 ≥ 0 if and only if T ∗1 ≥ 1
2 .

Proof. Define, for θ1, θ2 ∈ R, the function

g(θ1, θ2) :=
∑
G∈Gn

exp
[
n2
(
θ1(T1(G)− 1

2 ) + θ2(T2(G)− 1
8 )
)]
. (5.52)

We first prove that g attains a unique global minimum at (θ1, θ2) = (0, 0). Consider
the canonical ensemble Pcan as defined in (5.28) and (5.31), with ~T as defined above,
and the probability distribution Phom on Gn that assigns probability 2−(n2) to every
graph G ∈ Gn. Since Phom is absolutely continuous with respect to Pcan, the relative
entropy Sn(Phom|Pcan) is well defined:

Sn(Phom | Pcan) =
∑
G∈Gn

Phom(G) log
Phom(G)

Pcan(G)
≥ 0. (5.53)

Using the form of the canonical ensemble we get, after some straightforward calcula-
tions, that, for all θ1, θ2 ∈ R,∑

G∈Gn

exp
[
n2
(
θ1T1(G) + θ2T2(G)

)]
≥ 2(n2) exp

[
n2
(
θ1

1
2 + θ2

1
8

)]
, (5.54)

where the term in the right-hand side comes from the relation∑
G∈Gn

1

2(n2)
(θ1T1(G) + θ2T2(G)) = θ1

1
2 + θ2

1
8 . (5.55)

Observe that the left-hand side represents the average edge and triangle density,
multiplied with θ1, θ2, in an Erdős-Rényi random graph with parameters (n, 1

2 ). From
(5.54) we find that g(θ1, θ2) ≥ 2(n2) = g(0, 0) for all θ1, θ2 ∈ R, and so g attains a global
minimum at (0, 0). In what follows we show that this global minimum is unique. A
straightforward computation shows that ∂θ1g(θ1, θ2) = ∂θ2g(θ1, θ2) = 0 if and only
if 〈T1〉 = 1

2 and 〈T2〉 = 1
8 . Furthermore, the Hessian matrix is a covariance matrix

and hence is positive semi-definite. For ~θ = (θ1, θ2) = (0, 0) we know that 〈T1〉 = 1
2

and 〈T2〉 = 1
8 . Hence, by uniqueness of the multiplier ~θ∗ for the constraint T ∗1 = 1

2 ,
T ∗2 = 1

8 , we obtain that g has a unique global minimum at (0, 0). Moreover, this shows
that g has no other stationary points. Consider the parameter (θ1, θ2) = (θ∗1 , θ

∗
2). We

have

∂θ2g(θ∗1 , θ
∗
2) =

(
〈T2〉 − 1

8

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
=
(
T ∗2 − 1

8

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
.

(5.56)
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If T ∗2 ≥ 1
8 , then ∂θ2g(θ∗1 , θ

∗
2) ≥ 0. Because g has a unique stationary point at (0, 0),

which is a global minimum, we get θ∗2 ≥ 0. Similarly, we can show that if T ∗2 < 1
8 ,

then θ∗2 < 0. Suppose that T ∗1 ≥ 1
2 . For the parameter (θ1, θ2) = (θ∗1 , θ

∗
2) we have

∂θ1g(θ∗1 , θ
∗
2) =

(
〈T1〉 − 1

2

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
=
(
T ∗1 − 1

2

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
.

(5.57)
Arguing in a similar way as before, we conclude that θ∗1 ≥ 0 if and only if T ∗1 ≥ 1

2 .

Consider the Edge-Triangle Model and suppose that the constraint (T ∗1 , T
∗
2 ) is

such that T ∗2 = T ∗31 . Then θ∗2 = 0 and θ∗1 matches the constraint on the edge density
only. The following lemma shows that in this case the canonical ensemble behaves
like the Erdős-Rényi model with parameter T ∗1 , a fact that will be needed later to
prove equivalence.

5.5.3 Lemma. Consider the Edge-Triangle Model with the constraint given by the
edge-triangle densities ~T ∗ = (T ∗1 , T

∗
2 ) with T ∗2 = T ∗31 . Consider the canonical ensemble

as defined in (5.31). Then, for every n ∈ N,

θ∗1 =
1

2
log

T ∗1
1− T ∗1

, θ∗2 = 0. (5.58)

Proof. From the definition of the canonical ensemble we have that, for G ∈ Gn,

Pcan(G) = Pcan(G | ~θ∗) = en
2[θ∗1T1(G)+θ∗2T2(G)−ψn(~θ∗)], (5.59)

where ψn(~θ∗) is the partition function defined in (5.29). For the specific value ~θ = ~θ∗

we have that (recall (5.30))

〈T1〉 = T ∗1 , 〈T2〉 = T ∗2 = T ∗31 . (5.60)

We claim that the correct parameter is ~θ∗ = ( 1
2 log

T∗1
1−T∗1

, 0). The average fraction of
edges is T ∗1 (see Park and Newman [81]). The average number of triangles is

〈T2〉 =

∑
G∈Gn T2(G) exp

[
n2
(

1
2 log

T∗1
1−T∗1

T1(G)
)]

∑
G∈Gn exp

[
n2
(

1
2 log

T∗1
1−T∗1

T1(G)
)]

=

∑
G∈Gn T2(G)(T ∗1 )E(G)(1− T ∗1 )(

n
2)−E(G)∑

G∈Gn(T ∗1 )E(G)(1− T ∗1 )(
n
2)−E(G)

= T ∗31 ,

where the last equation comes from the fact we are calculating the average number
of triangles in an Erdős-Rényi model with probability T ∗1 . Since the multiplier ~θ∗ is
unique, the proof is complete.
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§5.5.2 Tuning parameter for n→∞
In Lemma 5.5.4 below we show how averages under the canonical ensemble behave
asymptotically when ~θ does not depend on n. In Lemma A.2 we will look at what
happens when ~θ is a one-dimensional multiplier and depends on n.

5.5.4 Lemma. Suppose that the operator ~T : W → Rm is bounded and continuous
with respect to the δ�-norm as defined in (5.13). For ~θ ∈ Rm independent of n,
consider the variational problem

sup
h̃∈W̃

[
~θ · ~T (h̃)− I(h̃)

]
, (5.61)

where I is defined in (5.19). Suppose that the supremum is attained at a unique point,
denoted by h̃∗(~θ). Then

lim
n→∞

∑
G∈Gn

Tk(G)Pcan(G | ~θ ) = Tk
(
h̃∗(~θ)

)
, k = 1, . . . ,m. (5.62)

Proof. The average of Tk under the canonical probability distribution is equal to∑
G∈Gn

Tk(G)Pcan(G | ~θ) =
∑
G∈Gn

Tk(G) en
2[~θ·~T (G)−ψn(~θ)] =: Jn. (5.63)

Pick δ > 0 and consider the δ-ball Bδ(h̃∗) around the maximiser h̃∗ in the quotient
space (W̃ , δ�), i.e.,

Bδ(h̃
∗) :=

{
h̃ ∈ W̃ : δ�(h̃, h̃∗) < δ

}
. (5.64)

We denote by Gδ a graph on n vertices whose graphon is a representative element
of the class h̃G. With a slight abuse of notation, we denote by Gδ both the graph
and the corresponding graphon, and by h̃G the corresponding equivalence class in the
quotient space (W̃ , δ�). Since (W̃ , δ�) is compact space (recall Proposition 5.2.5),
and the graphons associated with finite graphs form a countable family that is dense
in (W̃ , δ�) (see Diao et al. [39], Lovász and Szegedy [69]), there exists a sequence
(h̃Gn)n∈N such that limn→∞ δ�(h̃Gn , h̃∗) = 0. For n large enough the neighbourhood
Bδ(h̃

∗) contains elements of the sequence (h̃Gn)n∈N and, due to the Lipschitz property
(recall Proposition 5.2.6), δ�(h̃Gn , h̃∗) < δ implies |Tk(h̃Gn)−Tk(h̃∗)| < Ckδ for some
constant Ck > 0 and k = 1, . . . ,m.

Upper bound for Jn. We decompose the sum over G ∈ Gn into two parts: the
first over G whose graphon lies in Bδ(h̃∗), the second over G whose graphon lies in
Bδ(h̃

∗)c =: W̃ δ,#. We further denote by

Gδn :=
{
G ∈ Gn : |Tk(h̃G)− Tk(h̃∗)| < δ, k = 1, . . . ,m

}
, (5.65)

the set of all graphs whose subgraph densities Tk(G) are δ-close to Tk(h̃∗). A graph
from this set is denoted by Gδ. We define the set

Gδ,#n :=
{
G ∈ Gn : h̃G ∈ W̃ δ,#

}
(5.66)
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and, for k = 1, . . . ,m, obtain the following upper bound:

Jn =
∑
G∈Gδn

Tk(G) en
2[~θ·~T (G)−ψn(~θ)] +

∑
G∈Gδ,#n

Tk(G) en
2[~θ·~T (G)−ψn(~θ)]

≤
(Tk(Gδ) + δ)

∑
G∈Gδn

en
2~θ·~T (G)

∑
G∈Gδn

en2~θ·~T (G)
+

∑
G∈Gδ,#n

Tk(G) en
2[~θ·~T (G)−ψn(~θ)]

= (Tk(Gδ) + δ) +

∑
G∈Gδ,#n

Tk(G) en
2~θ·~T (G)

∑
G∈Gn

en2~θ·~T (G)
. (5.67)

Next, we further bound the second term in (5.67). By definition, for every n ∈ N the
range of the operator ~T is a finite set

Rn :=
{
~g ∈ [0,∞)m : ~T (G) = ~g, G ∈ Gn

}
. (5.68)

For the set Rn we observe that |Rn| = o(nm
2

). In addition, introduce the sets

G~gn := {G ∈ Gn : ~T (G) = ~g},

Rδ,#n := {~g ∈ [0,∞)m : ~T (G) = ~g,G ∈ Gδ,#n } ⊂ Rn.
(5.69)

The operator ~T is bounded, and so there exists an M > 0 such that ‖~T (G)‖ ≤M for
all G ∈ Gn. Hence, the second term in (5.67) can be bounded from above by∑

G∈Gδ,#n Tk(G) en
2~θ·~T (G)∑

G∈Gn en2~θ·~T (G)
≤
|Rδ,#n |M exp

[
n2 sup~g∈Rδ,#n (~θ · ~g + 1

n2 log |G~gn|)
]

exp
[
n2 sup~g∈Rn(~θ · ~g + 1

n2 log |G~gn|)
] . (5.70)

By the large deviation principle in Theorem 5.2.8, we have

1

n2
log |G~gn| = inf

h̃∈W̃~g
I(h) + o(1), (5.71)

where W̃ g = {h̃ ∈ W̃ : ~T (h̃) = ~g}. As a consequence, (5.70) is majorised by

M |R∗n| eo(n
2) exp

[
n2

(
sup

~g∈Rδ,#n

[
~θ · ~g − inf

h̃∈W̃~g
I(h̃)

]
− sup
~g∈Rn

[
~θ · ~g − inf

h̃∈W̃~g
I(h̃)

])]
= M |R∗n| eo(n

2)

exp

[
n2

(
sup

~g∈Rδ,#n
sup
h̃∈W̃~g

[
~θ · ~T (h̃)− I(h̃)

]
− sup
~g∈Rn

sup
h̃∈W̃~g

[
~θ · ~T (h̃)− I(h̃)

])]

= M |R∗n| eo(n
2) exp

[
n2

(
sup

h̃∈W̃ δ,#

[
~θ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃

[
~θ · ~T (h̃)− I(h̃)

])]
.

(5.72)
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The last equation can be justified as follows. Define the sets

W̃n =
{
h̃ ∈ W̃ : h̃ = h̃G for some graph G ∈ Gn

}
, W̃ δ,#

n = W̃ δ,# ∩ W̃n. (5.73)

Since the graphons associated with finite graphs form a countable set that is dense in
(W̃ , δ�), we have that

W̃ = cl

(⋃
n∈N

W̃n

)
, W̃ δ,# = cl

(⋃
n∈N

W̃ δ,#
n

)
, (5.74)

where cl denotes closure. Using (5.74), and recalling that ~T is continuous and I is
lower-semicontinuous, we get

lim
n→∞

sup
~g∈Rδ,#n

sup
h̃∈W̃~g

[
~θ · ~T (h̃)− I(h)

]
= sup
h̃∈W̃ δ,#

[
~θ · ~T (h̃)− I(h̃)

]
, (5.75)

and a similar result can be established for the second supremum in the exponent
in (5.72). The exponent in (5.72) is negative for all δ > 0 and is independent of
n. Moreover, by the left-continuity of the graph sequence (Gδn)n∈N, we have that
limn→∞ Tk(Gδn) = Tk(h̃∗) for every k = 1, . . . ,m and every δ > 0. Combined with
the inequality in (5.67), we obtain, for k = 1, . . . ,m,

lim
n→∞

∑
G∈Gn

Tk(G) en
2[~θ·~T (G)−ψn(~θ)] ≤ Tk(h̃∗). (5.76)

Lower bound for Jn. We distinguish two cases: Tk(h̃∗) = 0 and Tk(h̃∗) > 0. For
the first case we trivially get the lower bound

lim
n→∞

∑
G∈Gn

Tk(G) en
2~θ·~T (G) ≥ 0 = Tk(h̃∗). (5.77)

For the second case we show the equivalent upper bound for the inverse, i.e.,

lim
n→∞

∑
G∈Gn en

2~θ·~T (G)∑
G∈Gn Tk(G) en2~θ·~T (G)

≤ 1

Tk(h̃∗)
. (5.78)

Using the fact that Tk(h̃∗) 6= 0 is bounded, and using a similar reasoning as for the
upper bound on Jn, the latter is easily verified.

5.5.5 Remark. The convergence in (5.62) is not necessarily uniform in ~θ. Our res-
ults in Theorem (5.4.1) (II)(b)-(II)(d) indicate that breaking of ensemble equivalence
manifests itself through non uniform convergence in (5.62). In Lemma (A.2) we show
that uniform convergence holds when the constraint is on the triangle density only,
which explains our result in Theorem (5.4.1) (I).

5.5.6 Remark. The analogue of Lemma 5.5.4 when the supremum in (5.61) has
multiple maximisers in W̃ is considerably more involved.

As observed in Remark 5.2.2, in general the tuning parameter ~θ∗ depends on n.
We discuss this dependence in Appendix A.

122



§5.6. Proof of the Main Theorem 5.4.1

C
h
a
pter

5

§5.6 Proof of the Main Theorem 5.4.1

We proceed by computing the relative entropy s∞. In Sections 5.6.1, 5.6.3, 5.6.4, 5.6.5,
5.6.6 and 5.6.8 we treat the limiting regime where all constraints and parameters are
the limiting parameters as in (5.32) and (5.33). In Sections 5.6.2 and 5.6.7 we write
T ∗∞,1, T

∗
∞,2, θ

∗
∞,1 for the limiting regime.

§5.6.1 Proof of (I)(a) (Triangle model T ∗2 ≥ 1
8)

Proof. Theorem 5.3.4 says that

s∞ = sup
h̃∈W̃

[
θ∗T2(h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
θ∗T2(h̃)− I(h̃)

]
. (5.79)

Consider the first term in the right-hand side (5.79). From Lemma 5.5.1 we know
that θ∗ ≥ 0 if and only if T ∗2 ≥ 1

8 . From Theorem 5.3.3 it follows that if θ∗ ≥ 0, then

sup
h̃∈W̃

[
θ∗T2(h̃)− I(h̃)

]
= sup
u∈[0,1]

[
θ∗u3 − I(u)

]
= sup
u∈[0,1]

`3(u; θ∗). (5.80)

From Radin and Yin [87, Proposition 3.2] we know that `3(u, θ∗) attains a unique
global maximum. Let u∗(θ∗) = arg supu∈[0,1] `3(u; θ∗) be the unique global maximiser.
Using Lemma A.2, we obtain that u∗(θ∗) = T ∗2

1/3, which leads to

sup
u∈[0,1]

`3(u; θ∗) = θ∗u∗(θ∗)3 − I
(
u∗(θ∗)

)
= θ∗T ∗2 − I

(
T
∗1/3
2

)
. (5.81)

As to the second term in the right-hand side of (5.79), we use Chatterjee and Varadhan [31,
Proposition 4.2], which states that, for T ∗2 ∈ ( 1

8 , 1],

inf
h̃∈W̃

I(h̃) := inf
{
I(h̃) : h̃ ∈ W̃ , T2(h̃) = T ∗2

}
= inf

{
I(h̃) : h̃ ∈ W̃ , T2(h̃) ≥ T ∗2

}
.

(5.82)
Moreover, I is convex at the point x = T

∗1/3
2 , and hence from Chatterjee and

Varadhan [31, Theorem 4.3] we have that inf h̃∈W̃∗ I(h̃) = I(T
∗1/3
2 ). Combining this

with (5.81), we conclude that s∞ = 0.

§5.6.2 Proof of (I)(b) (T ∗2 = 0)
Consider the Triangle Model with the constraint given by the triangle density T ∗ =

0. It was proven by Erdős et al. [42] that almost all triangle-free graph have a
bipartite structure. For the case of dense graphs, the condition T ∗ = 0 means that
the number of triangles in the graph is of order o(n2). In the proof we will see that
the two ensembles are equivalent and that graphs drawn from the two ensembles have
a bipartite structure.

Proof. From the construction of the canonical ensemble Pcan in Section 5.1.3, we
observe that Pcan(G) = 0 when T (G) > 0. This is a direct consequence of (5.5). We
write

G0
n := {G ∈ Gn : T (G) = 0} (5.83)
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for the collection of all graphs with triangle density equal to zero. From (5.6) we
obtain that Pcan(G) = 0 if G /∈ G0

n and Pcan(G) = |G0
n|−1 if G ∈ G0

n. Hence Pcan(G) =

Pmic(G) when the constraint is given by T ∗ = 0, which yields

Sn(Pmic | Pcan) = 0 ∀n ∈ N (5.84)

and hence s∞ = 0.

§5.6.3 Proof of (II)(a) (Edge-Triangle model T ∗2 =
T ∗31 )

For the case T ∗1 = T
∗ 1

3
2 we have shown in Lemma 5.5.3 that the canonical ensemble

essentially behaves like an Erdős-Rényi model with parameter p = T ∗1 . Furthermore,
the microcanonical ensemble also has an explicit expression, which is found by using
the following lemma.

5.6.1 Lemma. If T ∗1 = T
∗ 1

3
2 , then

inf
h̃∈W̃∗

I(h̃) = I
(
T
∗ 1

3
2

)
= I
(
T ∗1
)
. (5.85)

Proof. Consider an element h̃ ∈ W̃ ∗ with W̃ ∗ := {h̃ ∈ W̃ : T1(h̃) = T ∗1 = T
∗ 1

3
2 , T2(h̃) =

T ∗2 }. Using the convexity of I on W̃ and Jensen’s inequality, we get

I(h̃) =

∫
[0,1]2

dx dy I(h(x, y)) ≥ I

(∫
[0,1]2

dxdy h(x, y)

)
= I
(
T1(h̃)

)
= I(T ∗1 ).

(5.86)
Hence I(h̃) ≥ I(T

∗ 1
3

2 ) for every h̃ ∈ W̃ ∗, which proves the claim.

Proof of (II)(a). Consider the relative entropy s∞ as defined in (5.9) and (5.10).
Using Lemma 5.5.3, we obtain the expression

s∞ = −1

2
T ∗1 log(T ∗1 )− 1

2
(1− T ∗1 ) log(1− T ∗1 ) + inf

h̃∈W̃∗
I(h̃). (5.87)

From Lemma 5.6.1 we have that inf
h̃∈W̃∗

I(h̃) = I(T ∗1 ), which yields s∞ = 0.

§5.6.4 Proof of (II)(b) (T ∗2 6= T ∗31 and T ∗2 ≥ 1
8)

Proof. From Lemma 5.5.2 we know that if T ∗1 ≥ 1
2 and T ∗2 ≥ 1

8 , then θ∗1 ≥ 0 and
θ∗2 ≥ 0 while if T ∗1 < 1

2 and T ∗2 ≥ 1
8 , then θ

∗
1 < 0 and θ∗2 ≥ 0. An argument similar as

above yields

sup
h̃∈W̃

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= sup
u∈[0,1]

`3(u; ~θ∗), (5.88)

where for θ∗1 ≥ 0 and θ∗2 ≥ 0 the last supremum has a unique solution (see Radin and
Yin [87, Proposition 3.2]), while for θ∗1 < 0 and θ∗2 ≥ 0 it either has a unique solution
or two solutions. We treat these two cases separately.
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Unique solution. Because of the uniqueness of the solution, not all realisable hard
constraints can be met in the limit (see Lemma 5.5.4). We observe that, if T ∗2 ≥ 1

8 and
T ∗2 6= T ∗31 , in the limit as n → ∞ the canonical ensemble becomes Erdős-Rényi with
parameter p. This regime is known as the high-temperature regime (see Bhamidi et al.
[12] and Chatterjee and Diaconis [29]). In what follows we determine the parameter
p of the canonical ensemble in the limit. From Bhamidi et al. [12, Theorem 7] we
have that p = u∗(~θ∗)

1
3 with u∗(~θ∗)

1
3 the unique maximiser of (5.88). The expression

in (5.88) thus takes the form

sup
h̃∈W̃

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= sup
u∈[0,1]

`3(u; ~θ∗) = θ∗1u
∗(~θ∗)

1
3 + θ∗2u

∗(~θ∗)− I
(
u∗(~θ∗)

1
3

)
.

(5.89)

Consider the second term in the right-hand side of (5.39). From the definition of W̃ ∗

it is straightforward to see that

sup
h̃∈W̃∗

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= θ∗1T

∗
1 + θ∗2T

∗
2 − inf

h̃∈W̃∗
I(h̃), (5.90)

where W̃ ∗ = {h̃ ∈ W̃ : T1(h̃) = T ∗1 , T2(h̃) = T ∗2 }. We observe that, due to T ∗2 6= T ∗31 ,
the constant function h ≡ u∗(~θ∗) 1

3 does not lie in W̃ ∗. This shows that s∞ > 0.

Two solutions. The regime in which the right-hand side of (5.88) has two solutions
is known as the low-temperature regime. In this case the hard constraints (T ∗1 , T

∗
2 ),

with T ∗1 ∈ [ 1
4 ,

1
2 ), T ∗2 ≥ 1

8 , lie on a curve on the (T1, T2)-plane in such a way such that
the tuning parameters (θ∗1 , θ

∗
2) lie on the phase transition curve found in Chatterjee

and Diaconis [29] and Radin and Yin [87]. Denote the two solutions of (5.88) by
u∗1, u

∗
2. Because of the constraint we are considering, we have that neither of them

lies in W̃ ∗. From the compactness of the latter space we see that s∞ > 0.

§5.6.5 Proof of (II)(c) (T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1
2 and

0 < T ∗32 < 1
8)

For the case 0 < T ∗1 ≤ 1
2 , T

∗
2 < 1

8 we know from Lemma 5.5.2 that θ∗1 ≤ 0 and θ∗2 < 0

for every n. Hence, because of (5.33), we have that θ∗1 ≤ 0 and θ∗2 < 0. This regime
is significantly harder to analyse than the previous regimes. Consider the relative
entropy s∞ and the variational representation given in (5.39). We consider two cases:
T ∗2 > T ∗31 and T ∗2 ≤ T ∗31 .

Case T ∗2 > T ∗31 . In this case we have the straightforward inequality

s∞ ≥ θ∗2
(
T ∗31 − T ∗2

)
− I(T ∗1 ) + inf

h̃∈W̃∗
I(h̃). (5.91)

Since T ∗31 < T ∗2 , we have θ∗2
(
T ∗31 − T ∗2

)
> 0. We show that

inf
h̃∈W̃∗

I(h̃) = inf{I(h̃) : h̃ ∈ W̃ , T1(h̃) = T ∗1 , T2(h̃) = T ∗2 } > I(T ∗1 ). (5.92)
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Using the convexity of I on W̃ and Jensen’s inequality, we obtain that I(h̃) ≥ I(T ∗1 )

for all h̃ ∈ W̃ ∗. Hence

inf
h̃∈W̃∗

I(h̃) > inf{I(h̃) : h̃ ∈ W̃ , T1(h̃) = T ∗1 } = I(T ∗1 ), (5.93)

which settles (5.92). Hence s∞ > 0.

Case T ∗2 ≤ T ∗31 . We argue similarly as above. We have the straightforward inequal-
ity

s∞ ≥ θ∗1
(
T
∗ 1

3
2 − T ∗1

)
− I(T

∗ 1
3

2 ) + inf
h̃∈W̃

I(h̃). (5.94)

We have seen above that inf h̃∈W̃ I(h̃) > I(T ∗1 ). We further now that I is decreasing
on [0, 1

2 ], and so I(T ∗1 ) ≥ I(T
∗1/3
2 ). Hence s∞ > 0.

§5.6.6 Proof of (II)(d) ((T ∗1 , T ∗2 ) on the scallopy curve)
We show that if (T ∗1 , T

∗
2 ) lies on the lower blue curve in Fig. 5.3 (referred to as the

scallopy curve), then s∞ > 0. The case where T ∗2 ≥ 1
8 can be dealt with directly via

Theorem (II)(b). The proof below deals with the case T ∗2 < 1
8 .

Proof. We give the proof for ` = 2, the extension to ` > 2 being similar.
Suppose that T ∗1 = 1

2 +ε with ε ∈ (0, 1
6 ), and that T ∗2 is chosen as small as possible.

It is known that graphs with a relatively high edge density and with a triangle density
that is as small as possible have a d-partite structure with edges added in a suitable
way so that the desired triangle density is obtained (see Radin and Sadun [86] and
Pikhurko and Raborov [83]). Consider a graph on n vertices, denoted by G, with
edge density T1 ∈ ( 1

2 ,
2
3 ) and triangle density as small as possible. The structure of

such graphs has been described above before Section 5.5. The graphon counterpart
of such graphs is the optimiser of the second supremum in the right-hand side of the
variational formula for s∞. Using Radin and Sadun [86, Theorem 4.2], we obtain

sup
h̃∈W̃∗

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= θ∗1T

∗
1 + θ∗2T

∗
2 −

(1− c(ε))2

2
I(p(ε)), (5.95)

where

c(ε) =
2 +
√

1− 6ε

6
, p(ε) =

4c(ε)(1− 2c(ε))

(1− c(ε))2
. (5.96)

In order to lighten the notation, we drop the dependence of c and p on ε. Furthermore,
the optimising graphon has the form

h∗ε (x, y) =

 1 if x < c < y or y < c < x,
p if c < x < 1+c

2 < y or c < y < 1+c
2 < x,

0 otherwise,
(x, y) ∈ [0, 1]2,

(5.97)
which has triangle density

T2(h∗ε ) =
(2 +

√
1− 6ε)2

36

1−
√

1− 6ε

3
= T (ε). (5.98)
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Let F̃ε be the set of all maximisers of θ∗1 T1(h̃) + θ∗2 T2(h̃)− I(h̃) on W̃ . We show that
h∗ε /∈ F̃ε, which yields s∞ > 0. From Chatterjee and Diaconis [29, Theorem 6.1] we
know that if h̃ ∈ W̃ maximises θ∗1 T1(h̃) + θ∗2 T2(h̃)− I(h̃) on W̃ , then it must satisfy
the Euler-Lagrange equations and it must be bounded away from 0 and 1. Hence we
see that h̃∗ε cannot be a stationary point of θ∗1 T1(h̃)+θ∗2 T2(h̃)−I(h̃) on W̃ , and hence
cannot be a maximiser.

§5.6.7 Proof of (II)(e) (0 < T ∗1 ≤ 1
2 and T ∗2 = 0)

Proof. Consider the Edge-Triangle Model with constraint given by the edge and tri-
angle densities T ∗1 ∈ (0, 1

2 ] and T ∗2 = 0. Working as in Section 5.6.2, we find that the
canonical ensemble assigns positive probability only to graphs satisfying the constraint
T ∗2 = 0. Defining G0

n as in (5.83) we obtain

Pcan(G | ~θ) =

{
en

2[θ1T1(G)−ψn(~θ)] if G ∈ G0
n,

0 else,
(5.99)

where ψn(~θ) =
∑
G∈G0

n
en

2θ1T1(G) is the partition function. From (5.99) we observe
that the canonical probability distribution depends only on the edge parameter θ1.
The parameter θ1 is chosen equal to θ∗1 that matches the soft constraint, i.e.,∑

G∈G0
n

T1(G)Pcan(G | ~θ∗) = T ∗1 . (5.100)

Arguing as in the proof of Chatterjee and Diaconis [29, Theorem 3.1] we find that the
relative entropy equals

s∞ = sup
h̃∈W̃ 0

[
θ∗∞,1T1(h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
θ∗∞,1T1(h̃)− I(h̃)

]
, (5.101)

where

W̃ 0 := {h̃ ∈ W̃ : T2(h̃) = 0}, W̃ ∗ := {h̃ ∈ W̃ : T1(h̃) = T ∗∞,1 , T2(h̃) = 0}.
(5.102)

Using Chatterjee and Diaconis [29, Theorem 7.1 and Theorem 8.2], we obtain that
s∞ = 0.

§5.6.8 Proof of (III) (Star model T [j]∗ ≥ 0)
Proof. From Chatterjee and Diaconis [29, Theorem 6.4] we have that, for all θ∗∞ ∈ R,

sup
h̃∈W̃

[
θ∗W (h̃)− I(h̃)

]
= sup
u∈[0,1]

[
θ∗u2 − I(u)

]
, (5.103)

which by Radin and Yin [87, Proposition 3.1] has a unique solution, which we denote
by u∗(θ∗). Using Theorem 5.3.4 we get that

s∞ = θ∗u∗(θ∗)2 − I(u∗(θ∗))− θ∗T ∗ + inf
h̃∈W̃∗

I(h̃), (5.104)
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where, by Lemma A.2, we have that u∗(θ∗) = T ∗
1
2 . This yields

s∞ = −I
(
T ∗

1
2

)
+ inf
h̃∈W̃∗

I(h̃). (5.105)

We show that inf h̃∈W̃∗ I(h̃) = I(T ∗
1
2 ). This is done by slightly modifying the proof

of Chatterjee and Diaconis [29, Theorem 6.4]. Indeed, observe that

T [j](h) =

∫
[0,1]

dxM(x)j , M(x) =

∫
[0,1]

dy h(x, y). (5.106)

Since I is convex we have∫
[0,1]2

dxdy I(h(x, y)) ≥
∫

[0,1]

dx I(M(x)), h ∈W, (5.107)

with equality if and only if h(x, y) is the same for almost all y. Since h is a symmetric
function, we get that equality holds if and only if h is constant. For the constant
function h ≡ (Tj)

1/j ∈ W ∗ := {h ∈ W : Tj(h) = Tj}, (5.107) is an equality. Hence,
for any minimiser of I on W̃ ∗ the inequality must be an equality, and thus any
minimiser must be constant. This shows that s∞ = 0.

§A Appendix

In this appendix we elaborate on the assumption made in (5.33), i.e., the multiplier
~θ∗n converges to a limit ~θ∗∞ as n→∞. In order to get a meaningful limit, we consider
constraints ~T ∗n such that

lim
n→∞

~T ∗n = ~T ∗∞. (5.108)

It is straightforward to deduce from Corollary 5.2.9 and (5.26)–(5.30) that if {~T ∗n}
is bounded away from 0 and 1 component-wise, then (~θ∗n)n∈N is bounded away from
−∞ and +∞ component-wise. Such a sequence contains a converging subsequence,
say, (~θ∗nk)k∈N, which in general need not be unique. Thus, as long as the constraint
is component-wise bounded away from 0 and 1, the asymptotic expressions derived
in this paper exist, but their values may depend on the subsequence we choose. The
value of s∞ depends on the chosen subsequence, but whether it is positive or zero
(i.e., whether there is equivalence) does not. A deeper investigation of the behaviour
of {~θ∗n}n∈N is interesting, but is beyond the scope of this paper.

We first extend Theorem 5.3.4 for the case when the tuning parameter ~θ∗ depends
on n.

A.1 Lemma. Consider the microcanonical ensemble defined in (5.2) with constraint
~T = ~T ∗n defined as in (5.27), and the canonical ensemble defined in (5.28)–(5.29) with
parameter ~θ = ~θ∗n such that (5.30) holds. If the conditions in Remark 5.3.1 hold, then
(5.39) holds too.
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Proof. The proof of Theorem 5.3.4 carries over to the setting in which the parameter
~θ∗ depends on n, i.e., ~θ∗ = ~θ∗n. The only non-trivial step is to show that

lim
n→∞

ψn(~θ∗n) = ψ∞(~θ∗∞). (5.109)

In the proof of Theorem 5.3.4 we have shown the pointwise convergence

lim
n→∞

ψn(~θ) = ψ∞(~θ), (5.110)

for every ~θ ∈ Rm, independently of n. A straightforward computation shows that
∇ψn(~θ) = (〈T1〉, . . . , 〈Tm〉), recall (5.30) . Observe that for the specific choice of
the parameter ~θ = ~θ∗n = ~θ∗, we have that ∇ψn(~θ∗n) = (T ∗1 , . . . , T

∗
m), which yields

‖∇ψn(~θ)‖ ≤ m for all n ∈ N and ~θ ∈ Rm. We prove (5.109) under the assumptions
made in Remark 5.3.1,

|ψn(~θ∗n)− ψ∞(~θ∗∞)| ≤ |ψn(~θ∗n)− ψn(~θ∗∞)|+ |ψn(~θ∗∞)− ψ∞(~θ∗∞)| (5.111)

≤ ‖∇ψn(~η)‖ ‖~θ∗n − ~θ∗∞‖+ |ψn(~θ∗∞)− ψ∞(~θ∗∞)|

≤ m ‖~θ∗n − ~θ∗∞‖+ |ψn(~θ∗∞)− ψ∞(~θ∗∞)| → 0, n→∞,

where the second inequality follows from the mean-value theorem for some ~η = c ~θ∗n+

(1− c) ~θ∗∞, c ∈ (0, 1). The rest of the proof of Theorem 5.3.4 carries over intact.

In the following lemma we extend the result of Lemma 5.5.4 for the case the
operator ~T is the triangle density T2 . This extension is needed in the proof of
Theorem 5.4.1 (I).

A.2 Lemma. Consider the operator T2 : W̃ → R which is bounded and continuous
with respect to the δ�-norm as defined in (5.13). For n ∈ N, consider the tuning
parameter θ∗n according to (5.30), i.e.,∑

G∈Gn

T2(G)Pcan(G) = T ∗2 . (5.112)

Suppose that T ∗2 ≥ 1
8 and that the limits T ∗∞, θ∗∞ in (5.33) exists. Then

lim
n→∞

∑
G∈Gn

T2(G)Pcan(G) = lim
n→∞

∑
G∈Gn T2(G) en

2θ∗nT2(G)∑
G∈Gn en

2θ∗nT2(G)
= u∗(θ∗∞), (5.113)

where
u∗(θ) = arg sup

0≤u≤1
[θu3 − I(u)]. (5.114)

Proof. From Lemma 5.5.2, since T ∗2 ≥ 1
8 we have that θ∗n ≥ 0 for all n. Consequently,

θ∗ ≥ 0. Define, for θ ≥ 0, the function

fn(θ) :=
∑
G∈Gn

T2(G)Pcan(G | ~θ) =

∑
G∈Gn T2(G) en

2θT2(G)∑
G∈Gn en2θT2(G)

(5.115)
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and consider the variational problem in (5.61). From Chatterjee and Diaconis [29] we
have that, for θ ≥ 0,

ψ∞(θ) := sup
h̃∈W̃

[
θT (h̃)− I(h̃)

]
= sup

0≤u≤1

[
θu3 − I(u)

]
. (5.116)

From Radin and Sadun [86, Theorem 2.1] we have that the function θ → u∗(θ) is
differentiable on [0,∞). We also observe that

u∗(0) = 1
2 , lim

θ→∞
u∗(θ) = 1. (5.117)

Moreover, for very n, θ 7→ fn(θ) is continuous on [0,∞). Hence, combining Lemma 5.5.4,
the continuity of fn for every n, the analyticity of the limiting function θ 7→ u∗(θ)

and (5.117), we obtain that if the limit θ∞ in (5.33) exists, then

lim
n→∞

fn(θ∗n) = u∗(θ∗∞) = T ∗∞, (5.118)

which proves the claim.
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