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CHAPTER 4
Is Breaking of Ensemble Equivalence

Monotone in the Number of
Constraints?

This chapter is based on:
A. Roccaverde. Is breaking of ensemble equivalence monotone in the number of
constraints? Indagationes Mathematicae, 2018

Abstract

Breaking of ensemble equivalence between the microcanonical ensemble and the ca-
nonical ensemble may occur for random graphs whose size tends to infinity, and is
signaled by a non-zero specific relative entropy of the two ensembles. In [48] and [50]
it was shown that breaking occurs when the constraint is put on the degree sequence
(configuration model). It is not known what is the effect on the relative entropy when
the number of constraints is reduced, i.e., when only part of the nodes are constrained
in their degree (and the remaining nodes are left unconstrained). Intuitively, the re-
lative entropy is expected to decrease. However, this is not a trivial issue because
when constraints are removed both the microcanonical ensemble and the canonical
ensemble change. In this paper a formula for the relative entropy valid for generic
discrete random structures, recently formulated by Squartini and Garlaschelli, is used
to prove that the relative entropy is monotone in the number of constraints when
the constraint is on the degrees of the nodes. It is further shown that the expression
for the relative entropy corresponds, in the dense regime, to the degrees in the mi-
crocanonical ensemble being asymptotically multivariate Dirac and in the canonical
ensemble being asymptotically Gaussian.
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§4.1 Introduction and main results

§4.1.1 Background
For most real-world networks, a detailed knowledge of the architecture of the network
is not available and one must work with a probabilistic description, where the network
is assumed to be a random sample drawn from a set of allowed configurations that
are consistent with a set of known topological constraints [95]. Statistical physics
deals with the definition of the appropriate probability distribution over the set of
configurations and with the calculation of the resulting properties of the system. Two
key choices of probability distribution are:

(1) the microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual configuration);

(2) the canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual configurations may violate the constraints).

(In both ensembles, the entropy is maximal subject to the given constraints.)
Breaking of ensemble equivalence means that different choices of the ensemble

lead to asymptotically different behaviors. Consequently, while for applications based
on ensemble-equivalent models the choice of ensemble can be based on mathematical
convenience, for those based on ensemble-nonequivalent models the choice should
be determined by the system one wants to apply to, i.e., dictated by a theoretical
criterion that indicates a priori which ensemble is the appropriate one to be used. It
is known that ensemble equivalence may be broken, signaled by a non-zero specific
relative entropy between the two ensembles. It is expected that when the number of
constraints grows extensively in the number of nodes, then typically there is breaking
of ensemble equivalence. This has been shown to be the case when the setting is
simple or bipartite graphs and the constraint is on the number of links (1 constraint
and ensemble equivalence) or on the full degree sequence (n constraints and non-
equivalence) [48]. Later, in [50] and [38], also the dense regime was investigated
and it was shown that the relative entropy between the two ensembles grows even
faster. In general, the constraint is a multidimensional vector and its components
represent the single quantities that are constrained. From now on, with the word
‘constraint’ we mean the ‘vector constraint’ and with the plural ‘constraints’ we mean
the ‘components’ of the vector. This means when we talk about the number of
constraints we actually mean the dimension of the vector constraint. In some cases
this number can be very large, for example, when the constraint is on the degree
sequence (a large number of nodes which need all to have the right degree).

Once the constraint becomes a function of the number n of nodes (for example,
the degree sequence), we can ask an interesting question: How is the relative entropy
affected when the number of constraints is reduced, possibly in a way that depends
on n? Intuitively, the relative entropy should decrease, but this is not a trivial is-
sue because both the microcanonical and the canonical ensemble change when the
constraints are changed. Of particular interest for the present paper is the main
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result of [50]. There it was proven that, when a δ-tame degree sequence is put as
a constraint on the set of simple graphs, than the relative entropy between the two
ensembles grows as n log n. We consider random graphs with a prescribed partial de-
gree sequence (reduced constraint). The breaking of ensemble equivalence is studied
by analyzing how the relative entropy changes as a function of the number of con-
straints, in particular, it is shown that the relative entropy is a monotone function of
the number of constraints. More precisely, when only m nodes are constrained and
the remaining n −m nodes are left unconstrained, the relative entropy is shown to
grow like m log n. Our analysis is based on a recent formula put forward by Squartini
and Garlaschelli [93]. This formula predicts that the relative entropy is determined
by the covariance matrix of the constraints under the canonical ensemble, in the re-
gime where the graph is dense. Our result implies that ensemble equivalence breaks
down whenever the regime is δ-tame, irrespective of the number of degrees m that
are constrained, provided m is not of order n.

Outline
Our paper is organized as follows. In Section 4.1 the background, the model and the
main theorem are discussed. In Section 4.2 the main theorem is proved, together with
a few basic lemmas that are needed along the way. Appendix A derives an expres-
sion for the canonical ensemble when a partial degree sequence is put as constraint.
Appendix B discusses the δ-tame condition for a partial degree sequence.

The remainder of Section 4.1 is organized as follows. In Section 4.1.1 we discussed
the background of the problem. In Section 4.1.2 we describe the model when the
constraint is put on the full degree sequence, in Section 4.1.3 when the constraint is
put on the partial degree sequence. Here we also define the δ-tame regime when the
constraint is on the partial degree sequence. In Section 4.1.4 we state a formula for
the relative entropy presented in [93] and state the main theorem. In section 4.1.5
we interpret the main theorem by stating how the degrees are distributed in the two
ensembles.

The microcanonical and the canonical ensemble, as well as the relative entropy
density have been defined in Section 1.4.1 and 1.4.2.

§4.1.2 Constraint on the full degree sequence
The model of this section comes from [48] and [50]. The full degree sequence of a
graph G ∈ Gn is defined as the vector ~k(G) = (ki(G))ni=1 with ki(G) =

∑
j 6=i gij(G).

The degree sequence is set to a specific value ~k∗, which we assume to be graphical,
i.e., there is at least one graph with degree sequence ~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )ni=1 ∈ {1, 2, . . . , n− 2}n. (4.1)

This constraint was studied in various regimes: in [48] in the sparse regime, and in
[50] in the ultra-dense and the δ-tame regime. The microcanonical ensemble, when
the constraint is put on the degree sequence, is known as the configuration model and
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has been studied in detail (see [95, 92, 99]). In the sparse (and in the ultra-dense)
regime, the microcanonical ensemble cannot be computed exactly, but there are good
approximations with an error that is vanishing when the relative entropy is computed
in the limit as n → ∞ [48], [9]. In the δ-tame regime, this approximation does not
hold, but the relative entropy can still be investigated with other tools [50]. The
canonical ensemble can be computed in every regime and takes the form

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

, (4.2)

with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

, (4.3)

and with the vector of Lagrange multipliers ~θ∗ = (θ∗i )ni=1 tuned such that

〈ki〉 =
∑

1≤j≤n
j 6=i

p∗ij = k∗i , ∀ 1 ≤ i ≤ n. (4.4)

The results in [48] show that there is breaking of ensemble equivalence with αn = n

when the regime is sparse and ultra-dense. The results in [50] show that the relative
entropy grows like αn = 1

2n log n. The purpose of the paper is to investigate what
happens when part of the n constraints degrees are removed and how the relative
entropy is affected by this. In the next section the partial constraint is presented and
the main theorem is stated.

§4.1.3 Constraint on the partial degree sequence
In this section we look at a different model. The constraint is put on the partial
degree sequence instead of on the full degree sequence, more precisely, only the first
m < n nodes are constrained while the remaining nodes are left unconstrained. The
partial degree sequence of a graph G ∈ Gn is defined as the vector ~k(G) = (ki(G))mi=1

where ki(G) =
∑

1≤j 6=j≤n gij(G). The constraint is set to be a specific m-dimensional
vector ~k∗, which we assume to be graphical, i.e., there exist at least one graph G∗ ∈ Gn
with partial degree sequence ~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )mi=1 ∈ {1, 2, . . . , n− 2}m, (4.5)

As mentioned above, the microcanonical ensemble can be computed approximately
when the constraint is put on the full degree sequence. However, when the constraint is
put on the partial degree sequence, no good approximation is available. The situation
is different for the canonical ensemble, which can still be computed. Appendix A is
dedicated to the study of the canonical ensemble when a partial degree sequence is
put as a constraint. This leads to

Pcan(G) = 2−(n−m2 )
∏

1≤i<j≤m

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

m∏
i=1

(p∗i )
si(G)

(1− p∗i )
n−m−si(G)

(4.6)
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with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

, p∗i =
e−θ

∗
i

1 + e−θ
∗
i
, si(G) =

n∑
j=m+1

gij(G), (4.7)

and with the vector of Lagrange multipliers ~θ∗ = (θ∗i )mi=1 tuned such that

〈ki〉 =
∑

1≤j≤m
j 6=i

p∗ij + (n−m)p∗i = k∗i , 1 ≤ i ≤ m. (4.8)

The canonical ensemble has an interesting dual structure, consisting of the product
of two canonical probabilities, which we call unipartite probability and bipartite prob-
ability, and an overall factor 2−(n−m2 ). The unipartite probability,∏

1≤i<j≤m

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

,

is precisely the canonical ensemble obtained when the constraint is put on the full
degree sequence ~u∗ = (u∗i )

m
i=1, with u∗i =

∑
1≤j≤m
j 6=i

p∗ij , on the subset of graphs with
m nodes Gm. The bipartite probability,

m∏
i=1

(p∗i )
si(G)

(1− p∗i )
n−m−si(G)

,

is precisely the canonical bipartite probability obtained when the constraint is put on
the top layer of a bipartite graph. More precisely, the configuration space is the set
of bipartite graphs Gm,n−m with m nodes in the top layer and n − m nodes in the
bottom layer. The constraint is put on the degree sequence in the top layer only and
corresponds to the vector ~b∗ = (b∗i )

m
i=1 with b∗i = (n −m)p∗i . Moreover, the average

i-th degree 〈ki〉 with respect to the canonical ensemble (4.6) equals k∗i and is given by
the balance equation (4.8). This equation shows that the i-th unipartite constraint
u∗i and the i-th bipartite constraint b∗i sum up to the i-th original constraint k∗i .

4.1.1 Definition. A partial degree sequence ~k∗ = (k∗i )mi=1, put as a constraint on
the set of configurations Gn with m < n, is said to be δ-tame if and only if there exists
a δ ∈

(
0, 1

2

]
such that

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ m, (4.9)

where p∗ij are the canonical probabilities in (4.6)–(4.8).

It is easy to prove that, given a δ-tame partial degree sequence ~k∗ = (k∗i )mi=1, the
bipartite probabilities (p∗i )

m
i=1 are also δ-tame, namely, satisfy

δ′ ≤ p∗i ≤ 1− δ′, ∀ 1 ≤ i ≤ m, (4.10)

for some δ′ ∈
(
0, 1

2

]
. This is discussed in more detail in Appendix B. Condition (4.9)

has a trivial implication for the degree sequence:

(m− 1)δ ≤ u∗i ≤ (m− 1)(1− δ), 1 ≤ i ≤ m, (4.11)
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(n−m)δ′ ≤ b∗i ≤ (n−m)(1− δ′), 1 ≤ i ≤ m. (4.12)

Since δ′ = 1
1+( 1−δ

δ )3/2
< δ for all δ ∈ [0, 1/2) and u∗i + b∗i = k∗i , it follows that

(n− 1)δ′ ≤ k∗i ≤ (n− 1)(1− δ′), 1 ≤ i ≤ m. (4.13)

This means that δ-tame graphs are neither too thin (sparse regime) nor too dense
(ultra-dense regime). It is natural to ask whether, conversely, condition (4.13), or
a similar condition involving only the original degrees ~k∗ = (k∗i )mi=1, is sufficient to
prove that the partial degree sequence is δ-tame for some δ = δ(δ′), in the sense of
Definition 4.1.1. Unfortunately, this question is not easy to settle, but the following
lemma provides a partial answer.

4.1.2 Lemma. Suppose that ~k∗ = (k∗i )mi=1 satisfies

(n− 1)δ′ + (n−m) ≤ k∗i ≤ (n− 1)(1− δ′), 1 ≤ i ≤ m, (4.14)

for some δ′ ∈ ( 1
4 ,

1
2 ]. Then there exist δ = δ(δ′) > 0 and n0 = n0(δ′) ∈ N such that

~k∗ = (k∗i )mi=1 is a δ-tame partial degree sequence, in the sense of Definition 4.1.1, for
all n ≥ n0.

Proof. Condition (4.14), with u∗i = k∗i − b∗i and b∗i ∈ [0, n−m], gives

(n− 1)δ′ ≤ u∗i ≤ (n− 1)(1− δ′), 1 ≤ i ≤ m. (4.15)

The proof follows from (4.15) and [9, Theorem 2.1]. In fact, applying that theorem
with α = δ′, β = 1− δ′ and with δ′ > 1

4 , we get

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ m. (4.16)

Moreover, [9, Theorem 2.1] also gives information about the values of δ = δ(δ′) and
n0 = n0(δ′).

§4.1.4 Linking ensemble nonequivalence to the ca-
nonical covariances

In this section we describe an important formula, recently put forward in [93], for the
scaling of the relative entropy under a general constraint. The analysis in [93] allows
for the possibility that not all the constraints (i.e., not all the components of the
vector ~C) are linearly independent. For instance, ~C may contain redundant replicas
of the same constraint(s), or linear combinations of them. Since in the present paper
we only consider the case where ~C is the degree sequence, the different components
of ~C (i.e., the different degrees) are linearly independent.

When a K-dimensional constraint ~C∗ = (C∗i )Ki=1 with independent components is
imposed, then a key result in [93] is the formula

Sn(Pmic | Pcan) ∼ log

√
det(2πQ)

T
, n→∞, (4.17)
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where
Q = (qij)1≤i,j≤K (4.18)

is theK×K covariance matrix of the constraints under the canonical ensemble, whose
entries are defined as

qij = CovPcan(Ci, Cj) = 〈Ci Cj〉 − 〈Ci〉〈Cj〉, (4.19)

and

T =

K∏
i=1

[
1 +O

(
1/λ

(K)
i (Q)

)]
, (4.20)

with λ(K)
i (Q) > 0 the i-th eigenvalue of the K ×K covariance matrix Q. This result

can be formulated more rigorously as follows.

4.1.1 Formula ([93]). If all the constraints are linearly independent, then the lim-
iting relative entropy αn-density equals

sα∞ = lim
n→∞

log
√

det(2πQ)

αn
+ τα∞ (4.21)

with
τα∞ = − lim

n→∞

log T

αn
. (4.22)

The latter is zero when

lim
n→∞

|IKn,R|
αn

= 0 ∀R <∞, (4.23)

where IK,R = {i = 1, . . . ,K : λ
(K)
i (Q) ≤ R} with λ(K)

i (Q) the i-th eigenvalue of the
K-dimensional covariance matrix Q (the notation Kn indicates that K may depend
on n). Note that 0 ≤ IK,R ≤ K. Consequently, (4.23) is satisfied (and hence τα∞ = 0)
when limn→∞Kn/αn = 0, i.e., when the number Kn of constraints grows slower than
αn.

4.1.3 Remark ([93]). Formula 4.1.1, for which [93] offers compelling evidence but
not a mathematical proof, can be rephrased by saying that the natural choice of αn
is

α̃n = log
√

det(2πQ). (4.24)

Indeed, if all the constraints are linearly independent and (4.23) holds, then τα̃n = 0

and

sα̃∞ = 1, (4.25)
Sn(Pmic | Pcan) = [1 + o(1)] α̃n. (4.26)

Formula 4.1.1 has been verified in several examples, namely, all the models in [48]
and [50].

Next we present our main theorem, which considers the case where the constraint
is on the partial degree sequence ~C∗ = ~k∗ = (k∗i )mi=1 in the δ-tame regime defined in
Definition 4.1.1.
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4.1.4 Theorem. Suppose that:

• The constraint is put on the partial degree sequence ~C∗ = ~k∗ = (k∗i )mi=1 on the
space of simple graphs Gn with 0 ≤ m ≤ n.

• ~C∗ = ~k∗ = (k∗i )mi=1 is a δ-tame partial degree sequence, namely, the canonical
probabilities (p∗ij)1≤i 6=j≤m satisfy

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ m. (4.27)

• Formula 4.1.1 is valid in the above framework.

• The scale parameter is αn =
m log n

2
.

• m = m(n) satisfies

lim
n→∞

n−m
m

log n =∞. (4.28)

Then there is breaking of ensemble equivalence, and

sα∞ = lim
n→∞

sαn = 1. (4.29)

Condition (4.28) fails when n−m = O( m
logn ), i.e., when the number of unconstrained

nodes is sufficiently small. We expect that (4.29) continues to hold even in this case,
but our proof breaks down.

§4.1.5 Discussion
Theorem 4.1.4 analyses the relative entropy at a macroscopic level, but says nothing
about what happens at the microscopic level. More precisely, it does not identify
how the relative entropy changes when a single constraint is removed, rather than a
positive fraction of constraints. A microscopic analysis could reveal what is the effect
when e.g. the longest degree is removed, or the smallest degree, or any other degree.
The result in Theorem 4.1.4 is far from trivial. In fact, when the number of constraints
is reduced, it can become either easier or more difficult to compute microcanonical
and canonical ensembles. The case when the constraint is put on the degree sequence
provides a clear example. If the constraint is put on the full degree sequence, then the
microcanonical ensemble can be asymptotically computed [9]. As soon as one or more
degrees are removed (meaning that some nodes are left unconstrained), the structure
of the problem changes completely. The symmetry of the constraints is broken by
the removal, and this makes it more difficult to compute the number of graphs with
a prescribed partial degree sequence. On the other hand, the canonical problem can
still be solved and has an interesting structure (Appendix A). This makes it possible
to use the formula proposed by Garlaschelli and Squartini [93], which only makes use
of the canonical ensemble to analyze the relative entropy between the two ensembles.
Theorem 4.1.4 clearly exhibits the monotonicity property of the relative entropy in
the case where the constraint is put on the degrees. Indeed, under the hypotheses
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written above, the relative entropy Sn(Pmic | Pcan) grows like m log n, where m is the
number of constrained nodes and n is the total number of nodes. This shows that the
relative entropy is monotone in the number of constraints on scale n.

We next provide a heuristic explanation for Theorem 4.1.4 (in analogy with what
was done in [48] and [50]).

Heuristic explanation of Theorem 4.1.4. Using (1.16), we can write the relative
entropy between the ensembles as

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
= − log[Ωn~k∗Pcan(G∗)] = − logQn[ ~k∗]( ~k∗), (4.30)

where Ωn~k∗ is the number of graphs with n nodes and partial degree sequence ~k∗ =

(k∗i )mi=1,
Qn[ ~k∗](~k ) = Ωn~k Pcan

(
G
~k
)

(4.31)

is the probability that the partial degree sequence is equal to ~k under the canonical
ensemble with constraint ~k∗, G~k denotes an arbitrary graph with partial degree se-
quence ~k, and Pcan

(
G
~k
)
is the canonical probability rewritten for one such graph.

Indeed, (1.9) shows that the canonical probability is constant for all graphs with the
same constraint, in our case, for all graphs with the same partial degree sequence.
Using (1.9) and (4.65) we can rewrite the canonical probability in the form

Pcan

(
G
~k
)

= 2−(n−m2 )
m∏
i=1

x∗i
ki

(1 + x∗i )
n−m

∏
1≤i<j≤m

(1 + x∗i x
∗
j )
−1, (4.32)

where x∗i = e−θ
∗
i , and ~θ∗ = (θ∗i )mi=1 is the vector of Lagrange multipliers coming from

(4.7). Equation (4.30) can be rewritten as

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | Qn[ ~k∗]

)
, (4.33)

where δ[ ~k∗] =
∏m
i=1 δ[k

∗
i ] is the multivariate Dirac distribution with average ~k∗. We

can interpret the relative entropy between Pmic and Pcan on the set of graphs Gn as
the relative entropy between δ[ ~k∗] and Qn[ ~k∗] on the set of degree sequences. More
precisely, combining (4.31) and (4.32), we can rewrite Qn[ ~k∗](~k) as

Qn[ ~k∗](~k) = Ωn~k 2−(n−m2 )
m∏
i=1

x∗i
ki

(1 + x∗i )
n−m

∏
1≤i<j≤m

(1 + x∗i x
∗
j )
−1. (4.34)

The distribution in (4.34) is a multivariate version of the Poisson-Binomial distri-
bution [100]. The univariate Poisson-Binomial distribution describes the probability
of a certain number of successes out of a total number of independent, possibly non-
identical, Bernoulli trials. In our case, the marginal probability that node i has degree
ki, under the canonical ensemble, irrespectively of the degree of any other node, is a
univariate Poisson-Binomial distribution with a total number of n−1 Bernoulli trials:
m−1 independent Bernoulli trials with success probabilities {p∗ij}1≤j 6=i≤m and n−m
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independent Bernoulli trials with the same success probability p∗i . The relation in
(4.33) therefore becomes

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | PoissonBinomial[ ~k∗]

)
, (4.35)

where PoissonBinomial[ ~k∗] is the multivariate Poisson-Binomial distribution given by
(4.34), i.e.,

Qn[ ~k∗] = PoissonBinomial[ ~k∗]. (4.36)

The relative entropy between the microcanonical and the canonical ensemble can be
seen as coming from the limiting situation in which the microcanonical ensemble forces
the degree sequence to be exactly ~k∗, while the canonical ensemble forces the degree
sequence to be distributed as a multivariate Poisson-Binomial with average ~k∗.

Two different regimes for the Poisson-Binomial distribution. As has already
been said in Chapter 3, the univariate Poisson-Binomial distribution admits two
asymptotic limits: Poisson or Gaussian [100]. A Poisson limit occurs whenever∑
j 6=i p

∗
ij → λ > 0 and

∑
j 6=i(p

∗
ij)

2 → 0 as n → ∞, while a Gaussian limit occurs
whenever p∗ij → λj > 0 for all j 6= i as n → ∞. In the simple case of identical
Bernoulli trials, i.e., all the probabilities {p∗ij}j 6=i are equal, the univariate Poisson-
Binomial distribution reduces to a Binomial distribution, which is known to admit
Poisson and Gaussian limits. This implies that also the multivariate Poisson-Binomial
distribution in (4.34) admits limits that should be consistent with the Poisson and
Gaussian ones for its marginals. Below we present two different situations.

Gaussian constrained degrees in the δ-tame regime. Comparing (4.25) and
(4.29), and using (4.24), we see that Theorem 4.1.4 shows that if the constraint is on
the partial degree sequence, then

Sn(Pmic | Pcan) ∼ m log n ∼ log
√

det(2πQ) (4.37)

in the δ-tame regime and under the condition in (4.28). Equation (4.37) can be
reinterpreted as

Sn(Pmic | Pcan) ∼ S
(
δ[ ~k∗] | Normal[ ~k∗, Q]

)
, (4.38)

where Normal[ ~k∗, Q] is the multivariate Normal distribution with mean ~k∗ and cov-
ariance matrix Q. Basically, in the δ-tame regime,

Qn[ ~k∗] ∼ Normal[ ~k∗, Q]. (4.39)

The multivariate Poisson-Binomial distribution in (4.34) becomes asymptotically a
multivariate Gaussian distribution which, in general, has a non-diagonal covariance
matrix, i.e., there can be dependence between the degrees of the different nodes.

The right-hand side of (4.38) deserves clarification, because it has to be properly
interpreted. In fact, it describes the relative entropy of a discrete distribution with
respect to a continuous distribution. Technically, the Dirac distribution δ[ ~k∗] must be
smoothed to a continuous distribution with support on a small ball around ~k∗. Since
the degrees are large, this does not affect the asymptotics.
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Poisson-Binomial unconstrained degrees in the δ-tame regime. It is inter-
esting to study the distribution of the degrees of the unconstrained nodes in the
canonical ensemble. The canonical probability of the (m + 1)-th degree (the first
unconstrained node) can be computed and the same steps can be used to compute
the canonical probabilities of the other unconstrained nodes, which follow the same
probability law. The canonical probability that the (m+ 1)-th node is equal to some
value x ∈ {0, 1, . . . , n− 1} can be written as:∑

G∈Gn
km+1(G)=x

Pcan(G)

= 2−(n−m2 )
∑
G∈Gn

km+1(G)=x

∏
1≤i<j≤m

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

m∏
i=1

(p∗i )
si(G)

(1− p∗i )
n−m−si(G)

= 2−(n−m2 )
∑
G∈A

m∏
i=1

(p∗i )
gim+1(G)

(1− p∗i )
1−gim+1(G)

= 2−(n−m2 )2(n−m−1
2 )

∑
G∈A∩B

m∏
i=1

p∗i
gim+1(G) (1− p∗i )

1−gim+1(G)

=
∑

G∈A∩B

(
1
2

)(n−m−1)
m∏
i=1

p∗i
gim+1(G) (1− p∗i )

1−gim+1(G)

= P (Po−Bi[p∗1, . . . , p∗m, 1
2 , . . . ,

1
2 ] = x),

(4.40)

where

A = {G ∈ Gn : km+1(G) = x, gij(G) = 0 ∀i ∈ [1,m], j =∈ [1, n] \ {m+ 1}, i 6= j} ,
B = {G ∈ Gn : gij(G) = 0 ∀i = m+ 2, . . . , n, j = m+ 2, . . . , n, i 6= j} ,

(4.41)
and Po−Bi[p∗1, . . . , p∗m, 1

2 , . . . ,
1
2 ] is the Poisson-Binomial distribution given by the m

independent trials p∗i , i = 1, . . . ,m, and the n −m − 1 independent Bernoulli trials
with the same success probability 1

2 . This means that, for each j = m + 1, . . . , n,
the canonical probability of the degree of the j-th node is distributed as a Poisson-
Binomial random variable with n− 1 entries: p∗1, . . . , p∗1,

1
2 , . . . ,

1
2 .

§4.2 Proof of the Main Theorem

The proof is based on two lemmas, which are stated and proved in Section 4.2.1. In
Section 4.2.2 Theorem 4.1.4 is proved.

§4.2.1 Preparatory lemmas
The following lemma gives an expression for the relative entropy.
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4.2.1 Lemma. If the constraint is on the partial degree sequence (k∗i )mi=1, then the
relative entropy in (1.16) equals

Sn(Pmic | Pcan) = 1
2 log[det(2πQ)]− log T ∗, (4.42)

where Q is the covariance matrix in (4.18) and T ∗ is the error in (4.20). The matrix
Q = (qij) takes the form{

qii =
∑

1≤j≤m,j 6=i p
∗
ij(1− p∗ij) + (n−m)p∗i (1− p∗i ), 1 ≤ i ≤ m,

qij = p∗ij(1− p∗ij), 1 ≤ i 6= j ≤ m.
(4.43)

Proof. To compute qij = CovPcan(ki, kj), take the second order derivatives of the
log-likelihood function

L(~θ) = logPcan(G∗ | ~θ)

= log

2−(n−m2 )
∏

1≤i<j≤n

p
gij(G

∗)
ij (1− pij)(1−gij(G∗))

m∏
i=1

p
si(G

∗)
i (1− pi)n−m−si(G

∗)

 ,
(4.44)

with

pij =
e−θi−θj

1 + e−θi−θj
, pi =

e−θi

1 + e−θi
, (4.45)

in the point ~θ = ~θ∗ [93]. It is easy to show that the first-order derivatives are [51]

∂

∂θi
L(~θ ) = 〈ki〉 − k∗i ,

∂

∂θi
L(~θ )

∣∣∣∣
~θ= ~θ∗

= k∗i − k∗i = 0 (4.46)

and the second-order derivatives are

∂2

∂θi∂θj
L(~θ)

∣∣∣∣
~θ= ~θ∗

= 〈ki〉〈kj〉 − 〈ki kj〉 = −CovPcan(ki, kj). (4.47)

Taking the second-order derivatives of the log-likelihood function, we get (4.43). The
proof of (4.42) uses [93, Formula 25].

The following lemma shows that a diagonal approximation of the matrix Q is good
for a δ-tame partial degree sequence and αn = m log n.

4.2.2 Lemma. Under the δ-tame condition,

log(detQD) + o(m log n) ≤ log(detQ) ≤ log(detQD) (4.48)

with QD = diag(Q) the matrix that coincides with Q on the diagonal and is zero off
the diagonal.

Proof. Use [60, Theorem 2.3], which says that if

(1) det(Q) is real,
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(2) QD is non-singular with det(QD) real,

(3) λi(A) > −1, 1 ≤ i ≤ m,

then
e
− mρ2(A)

1+λmin(A) detQD ≤ detQ ≤ detQD. (4.49)

Here, A = Q−1
D Qoff , with Qoff the matrix that coincides with Q off the diagonal and is

zero on the diagonal, λi(A) is the i-th eigenvalue of A (arranged in decreasing order),
λmin(A) = min1≤i≤n λi(A), and ρ(A) = max1≤i≤n |λi(A)|.
We verify (1)–(3).
(1) Since Q is a symmetric matrix with real entries, detQ exists and is real.

(2) This property holds thanks to the δ-tame condition and Lemma B.1. In fact

0 < δ2 ≤ qij ≤ (1− δ)2 < 1, (4.50)

and

(m− 1)δ2 + (n−m)δ′2 ≤ qii =≤ (m− 1)(1− δ)2 + (n−m)(1− δ′)2. (4.51)

(3) It is easy to show that A = (aij) is given by

aij =

{
qij
qii

=
p∗ij(1−p

∗
ij)∑

1≤k≤m,k 6=i p
∗
ik(1−p∗ik)+(n−m)p∗i (1−p∗i ) , 1 ≤ i 6= j ≤ m

0 1 ≤ i = j ≤ m,
(4.52)

where qij is given by (4.43). The Gershgorin circle theorem says the eigenvalues of
the matrix A satisfy

| λi(A) |≤ Ri =
∑
j 6=i

aij =

∑
1≤k≤m,k 6=i p

∗
ik(1− p∗ik)∑

1≤k≤m,k 6=i p
∗
ik(1− p∗ik) + (n−m)p∗i (1− p∗i )

, 1 ≤ i ≤ m.

(4.53)
Using the δ-tame condition, we find the bound

| λi(A) |≤ max
1≤i≤m

Ri < 1−A(δ), (4.54)

with A(δ) = (n−m)δ′

(m−1)(1−δ)2+(n−m)(1−δ′) . In principle, A(δ) also depends on δ′, but δ′ is
itself function of δ. Equation (4.54) immediately gives ρ(A) < 1, namely

− mρ2(A)

1 + λmin(A)
> − m

1 + λmin(A)
. (4.55)

Next we show that
− m

1 + λmin(A)
= o(m log n). (4.56)

Together with (4.49) this will settle the claim in (4.48). We must show that

lim
n→∞

(1 + λmin(A)) log n =∞. (4.57)
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Using equation (4.54) again, it follows 1 + λmin(A) > A(δ). Therefore it suffices to
prove that

lim
n→∞

A(δ) log n =∞. (4.58)

The result is trivial when A(δ) is constant (n−mm → constant) or A(δ)→∞ (n−mm →
∞) . On the other hand, when A(δ)→ 0 (n−mm → 0), the condition n−m

m log n→∞
is needed to conclude the proof.

§4.2.2 Proof (Theorem 4.1.4)

Proof. When αn = m logn
2 , Lemma 4.2.1 says

lim
n→∞

Sn(Pmic | Pcan)

αn
= lim
n→∞

log 2π

m log n
+ lim
n→∞

log(detQ)

m log n
− lim
n→∞

log T ∗

2m log n
. (4.59)

The last term (the error) tends to zero. In fact, in [93] it is proved that limn→∞
log T∗

m logn =

0 unless the number of eigenvalues of Q that have a finite limit as n → ∞ which is
indeed the case when a partial δ-tame degree sequence is put as a constraint and
αn = m logn

2 .
Using the δ-tame condition, we get from Lemma 4.2.2 that

lim
n→∞

log(detQ)

m log n
= lim
n→∞

log(detQD)

m log n
. (4.60)

To conclude the proof it therefore suffices to show that

lim
n→∞

log(detQD)

m log n
= 1. (4.61)

Using (4.51), we have

log[(m− 1)δ2 + (n−m)δ′]

log n
≤
∑m
i=1 log qii
m log n

=
log(detQD)

m log n

≤ log[(m− 1)(1− δ)2 + (n−m)(1− δ′)]
log n

.

(4.62)

Both sides tend to 1 as n→∞, and so (4.61) follows.

§A Appendix

In this appendix we identify the structure of the canonical ensemble when the con-
straint is put on the partial degree sequence for the first m < n nodes. The partial
degree sequence ~k(G) = (ki(G))mi=1 is set to a specific m-dimensional vector ~k∗, which
is assumed to be graphical, i.e., there is at least one graph G∗ ∈ Gn with partial degree
sequence ~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )mi=1 ∈ {1, 2, . . . , n− 2}m. (4.63)
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The canonical ensemble has Hamiltonian H(G, ~θ) =
∑m
i=1 θiki(G), where G is a

graph belonging to Gn, and ki(G) =
∑
j 6=i gij(G) is the degree of node i. It is easy to

transform the Hamiltonian into

H(G, ~θ) =
∑

1≤i<j≤m

(θi + θj)gij(G) +

m∑
i=1

θi

n∑
j=m+1

gij(G) (4.64)

Using this form, we see that the partition function equals

Z(~θ) =
∑
G∈Gn

e−H(G,~θ) =
∑
G∈Gn

∏
1≤i<j≤m

e−(θi+θj)gij(G)
m∏
i=1

n∏
j=m+1

e−θigij(G)

= 2(n−m2 )
∏

1≤i<j≤m

(1 + e−(θi+θj))

m∏
i=1

n∏
j=m+1

(1 + e−θi)

= 2(n−m2 )
∏

1≤i<j≤m

(1 + e−(θi+θj))

m∏
i=1

(1 + e−θi)(n−m).

(4.65)

Inserting the partition function into the canonical expression, we get

Pcan(G | θ) = 2−(n−m2 )
∏

1≤i<j≤m

p
gij(G)
ij (1− pij)1−gij(G)

m∏
i=1

p
si(G)
i (1− pi)n−m−si(G)

(4.66)
with

pij =
e−θi−θj

1 + e−θi−θj
, pi =

e−θi

1 + e−θi
, si(G) =

n∑
j=m+1

gij(G). (4.67)

It remains to tune the Lagrange multipliers to the values such that the average con-
straint equals the vector ~C∗ = ~k∗ = (k∗i )mi=1 ∈ {1, 2, . . . , n− 2}m. The average energy
of the i-th degree with respect to the probability distribution Pcan(· | θ) corresponds
to the derivative with respect to θi of the logarithm of the partition function (free
energy). This means that the values (θ∗i )mi=1 must satisfy

〈ki〉 =
∑

1≤j≤m
j 6=i

p∗ij + (n−m)p∗i = k∗i , 1 ≤ i ≤ m (4.68)

with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

, p∗i =
e−θ

∗
i

1 + e−θ
∗
i
. (4.69)

The canonical ensemble therefore takes the form

Pcan(G) = 2−(n−m2 )
∏

1≤i<j≤m

p∗ij
gij(G) (1− p∗ij)1−gij(G)

m∏
i=1

p∗i
si(G) (1− p∗i )

n−m−si(G)
.

(4.70)
The expression in (4.70) has an interpretation. Indeed, the canonical formula che be
split into two parts:

Pcan(G) = PUcan(G)PBcan(G) 2−(n−m2 ), (4.71)
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with
PUcan(G) =

∏
1≤i<j≤m

p∗ij
gij(G) (1− p∗ij)1−gij(G) (4.72)

and

PBcan(G) =

m∏
i=1

p∗i
si(G) (1− p∗i )

n−m−si(G)
. (4.73)

The unipartite probability, PUcan(G), is the canonical probability obtained when the
constraint is put on the full degree sequence ~u∗ = (u∗i )

m
i=1 on the set Gm. The

constrained degree sequence is precisely u∗i =
∑

1≤j≤m
j 6=i

p∗ij . The bipartite probability

PBcan(G) is the canonical bipartite probability obtained when the constraint is put
only on the top layer of a bipartite graph. In this case the configuration space is the
set of bipartite graphs Gm,n−m with m nodes on the top layer and n −m nodes on
the bottom layer. The constrained top layer degree sequence is ~b∗ = (b∗i )

m
i=1, where

b∗i = (n − m)p∗i . The third factor 2−(n−m2 ) is the inverse of the number of possible
(unconstrained) graphs with n −m nodes. In conclusion, the canonical probability
in (4.70) can be interpreted as the product of two canonical probabilities, PUcan(G)

and PBcan(G), and the number 2−(n−m2 ). Both canonical probabilities have an m-
dimensional degree sequence as a constraint ~u∗ = (u∗i )

m
i=1 and ~b∗ = (b∗i )

m
i=1, put on

the respective configuration spaces. Furthermore, two degree sequences sum up to
the original degree sequence, namely,

u∗i + b∗i = k∗i ∀i = 1, . . . ,m. (4.74)

For this reason (p∗ij)
m
i,j=1 are called the unipartite probabilities and (p∗i )

m
i=1 the bi-

partite probabilities.

§B Appendix

In this appendix we identify the structure of the δ-tame condition when a partial
degree sequence (k∗i )mi=1 is put as a constraint on Gn. The definition comes from the
situation where a full degree sequence (k∗i )ni=1 is fixed on Gn [9]. In the full degree
sequence situation the canonical probability takes the form

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G) (4.75)

with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

∀ i 6= j, (4.76)

and with the vector of Lagrange multipliers ~θ∗ = (θ∗i )ni=1 tuned such that

〈ki〉 =
∑

1≤j≤n
j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (4.77)
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The degree sequence (k∗i )ni=1 is said to be δ-tame when there exists a δ ∈ (0, 1
2 ] such

that, for each 1 ≤ i 6= j ≤ n, the canonical probabilites satisfy

δ < p∗ij < 1− δ. (4.78)

B.1 Definition (δ-tame partial degree sequence). We say that such a sequence
is δ-tame when there exists a δ ∈ (0, 1

2 ] such that, for each 1 ≤ i 6= j ≤ m, the canon-
ical probabilites defined in (4.6)–(4.8) satisfy

δ < p∗ij < 1− δ ∀ 1 ≤ i 6= j ≤ m. (4.79)

B.2 Lemma. If (k∗i )mi=1 is a partial degree sequence on Gn and it is δ-tame in the
sense of Definition B.1, then the canonical bipartite probabilities satisfy

δ′ < p∗i < 1− δ′ ∀ 1 ≤ i 6= j ≤ m, (4.80)

for some δ′ ∈ (0, 1
2 ].

Proof. The canonical probabilities, tuned with the proper (θ∗i )mi=1, satisfy

p∗ij =
xixj

1 + xixj
, p∗i =

xi
1 + xi

, xi = e−θ
∗
i . (4.81)

Since (ki)
m
i=1 is a partial δ-tame degree sequence, Definition B.1 says that

δ < p∗ij < (1− δ). (4.82)

From this it follows that
δ

1− δ
< xixj <

1− δ
δ

. (4.83)

Using (4.83) for different indices i, j, k, we get(
δ

1− δ

)2

< x2
ixjxk <

(
1− δ
δ

)2

. (4.84)

Using again (4.83) for the indices j and k, we get(
δ

1− δ

)3/2

< xi <

(
1− δ
δ

)3/2

. (4.85)

Using (4.85) and p∗i = xi
1+xi

= 1
1+ 1

xi

, we obtain that

δ′ < p∗i < 1− δ′ (4.86)

with δ′ = 1
1+( 1−δ

δ )3/2
. Note that 0 < δ ≤ 1

2 implies 0 < δ′ ≤ 1
2 .
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