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CHAPTER 3
Covariance structure behind

breaking of ensemble equivalence in
random graphs

This chapter is based on:
D. Garlaschelli, F. den Hollander, and A. Roccaverde. Covariance structure behind
breaking of ensemble equivalence in random graphs. J. Stat. Phys., Jul 2018

Abstract

For a random graph subject to a topological constraint, the microcanonical ensemble
requires the constraint to be met by every realisation of the graph (‘hard constraint’),
while the canonical ensemble requires the constraint to be met only on average (‘soft
constraint’). It is known that breaking of ensemble equivalence may occur when the
size of the graph tends to infinity, signalled by a non-zero specific relative entropy
of the two ensembles. In this paper we analyse a formula for the relative entropy of
generic discrete random structures recently put forward by Squartini and Garlaschelli.
We consider the case of a random graph with a given degree sequence (configuration
model), and show that in the dense regime this formula correctly predicts that the
specific relative entropy is determined by the scaling of the determinant of the matrix
of canonical covariances of the constraints. The formula also correctly predicts that
an extra correction term is required in the sparse regime and in the ultra-dense re-
gime. We further show that the different expressions correspond to the degrees in the
canonical ensemble being asymptotically Gaussian in the dense regime and asymp-
totically Poisson in the sparse regime (the latter confirms what we found in earlier
work), and the dual degrees in the canonical ensemble being asymptotically Poisson
in the ultra-dense regime. In general, we show that the degrees follow a multivariate
version of the Poisson-Binomial distribution in the canonical ensemble.
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§3.1 Introduction and main results

§3.1.1 Background and outline
For most real-world networks, a detailed knowledge of the architecture of the network
is not available and one must work with a probabilistic description, where the network
is assumed to be a random sample drawn from a set of allowed configurations that
are consistent with a set of known topological constraints [95]. Statistical physics
deals with the definition of the appropriate probability distribution over the set of
configurations and with the calculation of the resulting properties of the system. Two
key choices of probability distribution are:

(1) the microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual configuration);

(2) the canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual configurations may violate the constraints).

(In both ensembles, the entropy is maximal subject to the given constraints.)
In the limit as the size of the network diverges, the two ensembles are traditionally

assumed to become equivalent, as a result of the expected vanishing of the fluctuations
of the soft constraints (i.e., the soft constraints are expected to become asymptotically
hard). However, it is known that this equivalence may be broken, as signalled by a
non-zero specific relative entropy of the two ensembles (= on an appropriate scale).
In earlier work various scenarios were identified for this phenomenon (see [92], [48],
[38] and references therein). In the present paper we take a fresh look at breaking
of ensemble equivalence by analysing a formula for the relative entropy, based on
the covariance structure of the canonical ensemble, recently put forward by Squartini
and Garlaschelli [93]. We consider the case of a random graph with a given degree
sequence (configuration model) and show that this formula correctly predicts that
the specific relative entropy is determined by the scaling of the determinant of the
covariance matrix of the constraints in the dense regime, while it requires an extra
correction term in the sparse regime and the ultra-dense regime. We also show that
the different behaviours found in the different regimes correspond to the degrees being
asymptotically Gaussian in the dense regime and asymptotically Poisson in the sparse
regime, and the dual degrees being asymptotically Poisson in the ultra-dense regime.
We further note that, in general, in the canonical ensemble the degrees are distributed
according to a multivariate version of the Poisson-Binomial distribution [100], which
admits the Gaussian distribution and the Poisson distribution as limits in appropriate
regimes.

Our results imply that, in all three regimes, ensemble equivalence breaks down
in the presence of an extensive number of constraints. This confirms the need for a
principled choice of the ensemble used in practical applications. Three examples serve
as an illustration:

(a) Pattern detection is the identification of nontrivial structural properties in a real-
world network through comparison with a suitable null model, i.e., a random

66



§3.1. Introduction and main results

C
h
a
pter

3

graph model that preserves certain local topological properties of the network
(like the degree sequence) but is otherwise completely random.

(b) Community detection is the identification of groups of nodes that are more
densely connected with each other than expected under a null model, which is
a popular special case of pattern detection.

(c) Network reconstruction employs purely local topological information to infer
higher-order structural properties of a real-world network. This problem arises
whenever the global properties of the network are not known, for instance,
due to confidentiality or privacy issues, but local properties are. In such cases,
optimal inference about the network can be achieved by maximising the entropy
subject to the known local constraints, which again leads to the two ensembles
considered here.

Breaking of ensemble equivalence means that different choices of the ensemble lead
to asymptotically different behaviours. Consequently, while for applications based on
ensemble-equivalent models the choice of the working ensemble can be arbitrary and
can be based on mathematical convenience, for those based on ensemble-nonequivalent
models the choice should be dictated by a criterion indicating which ensemble is the
appropriate one to use. This criterion must be based on the a priori knowledge that
is available about the network, i.e., which form of the constraint (hard or soft) applies
in practice.

The remainder of this section is organised as follows. In Section 3.1.2 we introduce
the constraints to be considered, which are on the degree sequence. In Section 3.1.3
we introduce the various regimes we will be interested in and state a formula for
the relative entropy when the constraint is on the degree sequence. In Section 3.1.4
we state the formula for the relative entropy proposed in [93] and present our main
theorem. In Section 3.1.5 we close with a discussion of the interpretation of this
theorem and an outline of the remainder of the paper.

The microcanonical and the canonical ensemble, as well as the relative entropy
density have been defined in Section 1.4.1 and 1.4.2.

§3.1.2 Constraint on the degree sequence

The degree sequence of a graph G ∈ Gn is defined as ~k(G) = (ki(G))ni=1 with ki(G) =∑
j 6=i gij(G). In what follows we constrain the degree sequence to a specific value ~k∗,

which we assume to be graphical, i.e., there is at least one graph with degree sequence
~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )ni=1 ∈ {1, 2, . . . , n− 2}n, (3.1)

The microcanonical ensemble, when the constraint is on the degree sequence, is known
as the configuration model and has been studied intensively (see [95, 92, 99]). For
later use we recall the form of the canonical probability in the configuration model,
namely,

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G) (3.2)
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with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

(3.3)

and with the vector of Lagrange multipliers tuned to the value ~θ∗ = (θ∗i )ni=1 such that

〈ki〉 =
∑
j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (3.4)

Using (1.16), we can write

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
= − log[Ω ~k∗Pcan(G∗)] = − logQ[ ~k∗]( ~k∗), (3.5)

where Ω~k is the number of graphs with degree sequence ~k,

Q[ ~k∗](~k ) = Ω~k Pcan

(
G
~k
)

(3.6)

is the probability that the degree sequence is equal to ~k under the canonical en-
semble with constraint ~k∗, G~k denotes an arbitrary graph with degree sequence ~k,
and Pcan

(
G
~k
)
is the canonical probability in (3.2) rewritten for one such graph:

Pcan

(
G
~k
)

=
∏

1≤i<j≤n

(
p∗ij
)gij(G~k) (

1− p∗ij
)1−gij(G~k)

=

n∏
i=1

(x∗i )
ki

∏
1≤i<j≤n

(1 + x∗i x
∗
j )
−1.

(3.7)
In the last expression, x∗i = e−θ

∗
i , and ~θ = (θ∗i )ni=1 is the vector of Lagrange multipliers

coming from (3.3).

§3.1.3 Relevant regimes
The breaking of ensemble equivalence was analysed in [48] in the so-called sparse
regime, defined by the condition

max
1≤i≤n

k∗i = o(
√
n ). (3.8)

It is natural to consider the opposite setting, namely, the ultra-dense regime in which
the degrees are close to n− 1,

max
1≤i≤n

(n− 1− k∗i ) = o(
√
n ). (3.9)

This can be seen as the dual of the sparse regime. We will see in Appendix B that
under the map k∗i 7→ n − 1 − k∗i the microcanonical ensemble and the canonical
ensemble preserve their relationship, in particular, their relative entropy is invariant.

It is a challenge to study breaking of ensemble equivalence in between the sparse
regime and the ultra-dense regime, called the dense regime. In what follows we con-
sider a subclass of the dense regime, called the δ-tame regime, in which the graphs
are subject to a certain uniformity condition.
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3.1.1 Definition. A degree sequence ~k∗ = (k∗i )ni=1 is called δ-tame if and only if
there exists a δ ∈

(
0, 1

2

]
such that

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ n, (3.10)

where p∗ij are the canonical probabilities in (3.2)–(3.4).

3.1.2 Remark. The name δ-tame is taken from [9], which studies the number of
graphs with a δ-tame degree sequence. Definition 3.1.1 is actually a reformulation of
the definition given in [9]. See Appendix A for details.

The condition in (3.10) implies that

(n− 1)δ ≤ k∗i ≤ (n− 1)(1− δ), 1 ≤ i ≤ n, (3.11)

i.e., δ-tame graphs are nowhere too thin (sparse regime) nor too dense (ultra-dense
regime).

It is natural to ask whether, conversely, condition (3.11) implies that the degree
sequence is δ′-tame for some δ′ = δ′(δ). Unfortunately, this question is not easy to
settle, but the following lemma provides a partial answer.

3.1.3 Lemma. Suppose that ~k∗ = (k∗i )ni=1 satisfies

(n− 1)α ≤ k∗i ≤ (n− 1)(1− α), 1 ≤ i ≤ n, (3.12)

for some α ∈ ( 1
4 ,

1
2 ]. Then there exist δ = δ(α) > 0 and n0 = n0(α) ∈ N such that

~k∗ = (k∗i )ni=1 is δ-tame for all n ≥ n0.

Proof. The proof follows from [9, Theorem 2.1]. In fact, by picking β = 1−α in that
theorem, we find that we need α > 1

4 . The theorem also gives information about the
values of δ = δ(α) and n0 = n0(α).

§3.1.4 Linking ensemble nonequivalence to the ca-
nonical covariances

In this section we investigate an important formula, recently put forward in [93], for
the scaling of the relative entropy under a general constraint. The analysis in [93]
allows for the possibility that not all the constraints (i.e., not all the components of the
vector ~C) are linearly independent. For instance, ~C may contain redundant replicas
of the same constraint(s), or linear combinations of them. Since in the present paper
we only consider the case where ~C is the degree sequence, the different components
of ~C (i.e., the different degrees) are linearly independent.

When a K-dimensional constraint ~C∗ = (C∗i )Ki=1 with independent components is
imposed, then a key result in [93] is the formula

Sn(Pmic | Pcan) ∼ log

√
det(2πQ)

T
, n→∞, (3.13)
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where
Q = (qij)1≤i,j≤K (3.14)

is theK×K covariance matrix of the constraints under the canonical ensemble, whose
entries are defined as

qij = CovPcan
(Ci, Cj) = 〈Ci Cj〉 − 〈Ci〉〈Cj〉, (3.15)

and

T =
K∏
i=1

[
1 +O

(
1/λ

(K)
i (Q)

)]
, (3.16)

with λ(K)
i (Q) > 0 the i-th eigenvalue of the K ×K covariance matrix Q. This result

can be formulated rigorously as

3.1.1 Formula ([93]). If all the constraints are linearly independent, then the lim-
iting relative entropy αn-density equals

sα∞ = lim
n→∞

log
√

det(2πQ)

αn
+ τα∞ (3.17)

with αn the ‘natural’ speed and

τα∞ = − lim
n→∞

log T

αn
. (3.18)

The latter is zero when

lim
n→∞

|IKn,R|
αn

= 0 ∀R <∞, (3.19)

where IK,R = {i = 1, . . . ,K : λ
(K)
i (Q) ≤ R} with λ(K)

i (Q) the i-th eigenvalue of the
K-dimensional covariance matrix Q (the notation Kn indicates that K may depend
on n). Note that 0 ≤ IK,R ≤ K. Consequently, (3.19) is satisfied (and hence τα∞ = 0)
when limn→∞Kn/αn = 0, i.e., when the number Kn of constraints grows slower than
αn.

3.1.4 Remark ([93]). Formula 3.1.1, for which [93] offers compelling evidence but
not a mathematical proof, can be rephrased by saying that the natural choice of αn
is

α̃n = log
√

det(2πQ). (3.20)

Indeed, if all the constraints are linearly independent and (3.19) holds, then τα̃n = 0

and

sα̃∞ = 1, (3.21)
Sn(Pmic | Pcan) = [1 + o(1)] α̃n. (3.22)
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We now present our main theorem, which considers the case where the constraint is
on the degree sequence: Kn = n and ~C∗ = ~k∗ = (k∗i )ni=1. This case was studied in [48],
for which αn = n in the sparse regime with finite degrees. Our results here focus on
three new regimes, for which we need to increase αn: the sparse regime with growing
degrees, the δ-tame regime, and the ultra-dense regime with growing dual degrees.
In all these cases, since limn→∞Kn/αn = limn→∞ n/αn = 0, Formula 3.1.1 states
that (3.17) holds with τα̃n = 0. Our theorem provides a rigorous and independent
mathematical proof of this result.

3.1.5 Theorem. Formula 3.1.1 is true with τα∞ = 0 when the constraint is on the
degree sequence ~C∗ = ~k∗ = (k∗i )ni=1, the scale parameter is αn = n fn with

fn = n−1
n∑
i=1

fn(k∗i ) with fn(k) =
1

2
log

[
k(n− 1− k)

n

]
, (3.23)

and the degree sequence belongs to one of the following three regimes:

• The sparse regime with growing degrees:

max
1≤i≤n

k∗i = o(
√
n ), lim

n→∞
min

1≤i≤n
k∗i =∞. (3.24)

• The δ-tame regime (see (3.2) and Lemma 3.1.3):

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ n. (3.25)

• The ultra-dense regime with growing dual degrees:

max
1≤i≤n

(n− 1− k∗i ) = o(
√
n ), lim

n→∞
min

1≤i≤n
(n− 1− k∗i ) =∞. (3.26)

In all three regimes there is breaking of ensemble equivalence, and

sα∞ = lim
n→∞

sαn = 1. (3.27)

§3.1.5 Discussion and outline
Comparing (3.21) and (3.27), and using (3.20), we see that Theorem 3.1.5 shows that
if the constraint is on the degree sequence, then

Sn(Pmic | Pcan) ∼ nfn ∼ log
√

det(2πQ) (3.28)

in each of the three regimes considered. Below we provide a heuristic explanation
for this result (as well as for our previous results in [48]) that links back to (3.5). In
Section 3.2 we prove Theorem 3.1.5.
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Poisson-Binomial degrees in the general case. Note that (3.5) can be rewritten
as

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | Q[ ~k∗]

)
, (3.29)

where δ[ ~k∗] =
∏n
i=1 δ[k

∗
i ] is the multivariate Dirac distribution with average ~k∗. This

has the interesting interpretation that the relative entropy between the distributions
Pmic and Pcan on the set of graphs coincides with the relative entropy between δ[ ~k∗]
and Q[ ~k∗] on the set of degree sequences.

To be explicit, using (3.6) and (3.7), we can rewrite Q[ ~k∗](~k) as

Q[ ~k∗](~k) = Ω~k

n∏
i=1

(x∗i )
ki

∏
1≤i<j≤n

(1 + x∗i x
∗
j )
−1. (3.30)

We note that the above distribution is a multivariate version of the Poisson-Binomial
distribution (or Poisson’s Binomial distribution; see Wang [100]). In the univariate
case, the Poisson-Binomial distribution describes the probability of a certain num-
ber of successes out of a total number of independent and (in general) not identical
Bernoulli trials [100]. In our case, the marginal probability that node i has degree ki
in the canonical ensemble, irrespectively of the degree of any other node, is indeed a
univariate Poisson-Binomial given by n− 1 independent Bernoulli trials with success
probabilities {p∗ij}j 6=i. The relation in (3.29) can therefore be restated as

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | PoissonBinomial[ ~k∗]

)
, (3.31)

where PoissonBinomial[ ~k∗] is the multivariate Poisson-Binomial distribution given by
(3.30), i.e.,

Q[ ~k∗] = PoissonBinomial[ ~k∗]. (3.32)

The relative entropy can therefore be seen as coming from a situation in which the
microcanonical ensemble forces the degree sequence to be exactly ~k∗, while the ca-
nonical ensemble forces the degree sequence to be Poisson-Binomial distributed with
average ~k∗.

It is known that the univariate Poisson-Binomial distribution admits two asymp-
totic limits: (1) a Poisson limit (if and only if, in our notation,

∑
j 6=i p

∗
ij → λ > 0 and∑

j 6=i(p
∗
ij)

2 → 0 as n → ∞ [100]); (2) a Gaussian limit (if and only if p∗ij → λj > 0

for all j 6= i as n → ∞, as follows from a central limit theorem type of argument).
If all the Bernoulli trials are identical, i.e., if all the probabilities {p∗ij}j 6=i are equal,
then the univariate Poisson-Binomial distribution reduces to the ordinary Binomial
distribution, which also exhibits the well-known Poisson and Gaussian limits. These
results imply that also the general multivariate Poisson-Binomial distribution in (3.30)
admits limiting behaviours that should be consistent with the Poisson and Gaussian
limits discussed above for its marginals. This is precisely what we confirm below.

Poisson degrees in the sparse regime. In [48] it was shown that, for a sparse
degree sequence,

Sn(Pmic | Pcan) ∼
n∑
i=1

S
(
δ[k∗i ] | Poisson[k∗i ]

)
. (3.33)
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The right-hand side is the sum over all nodes i of the relative entropy of the Dirac
distribution with average k∗i w.r.t. the Poisson distribution with average k∗i . We
see that, under the sparseness condition, the constraints act on the nodes essentially
independently. We can therefore reinterpret (3.33) as the statement

Sn(Pmic | Pcan) ∼ S
(
δ[ ~k∗] | Poisson[ ~k∗]

)
, (3.34)

where Poisson[ ~k∗] =
∏n
i=1 Poisson[k∗i ] is the multivariate Poisson distribution with

average ~k∗. In other words, in this regime

Q[ ~k∗] ∼ Poisson[ ~k∗], (3.35)

i.e. the joint multivariate Poisson-Binomial distribution (3.30) essentially decouples
into the product of marginal univariate Poisson-Binomial distributions describing the
degrees of all nodes, and each of these Poisson-Binomial distributions is asymptotically
a Poisson distribution.

Note that the Poisson regime was obtained in [48] under the condition in (3.8),
which is less restrictive than the aforementioned condition k∗i =

∑
j 6=i p

∗
ij → λ > 0,∑

j 6=i(p
∗
ij)

2 → 0 under which the Poisson distribution is retrieved from the Poisson-
Binomial distribution [100]. In particular, the condition in (3.8) includes both the case
with growing degrees included in Theorem 3.1.5 (and consistent with Formula 3.1.1
with τα∞ = 0) and the case with finite degrees, which cannot be retrieved from
Formula 3.1.1 with τα∞ = 0, because it corresponds to the case where all the n = αn
eigenvalues of Q remain finite as n diverges (as the entries of Q themselves do not
diverge), and indeed (3.19) does not hold.

Poisson degrees in the ultra-dense regime. Since the ultra-dense regime is
the dual of the sparse regime, we immediately get the heuristic interpretation of the
relative entropy when the constraint is on an ultra-dense degree sequence ~k∗. Using
(3.34) and the observations in Appendix B (see, in particular (B.2)), we get

Sn(Pmic | Pcan) ∼ S
(
δ[ ~̀∗] | Poisson[ ~̀∗]

)
, (3.36)

where ~̀∗ = (`∗i )
n
i=1 is the dual degree sequence given by `∗i = n − 1 − k∗i . In other

words, under the microcanonical ensemble the dual degrees follow the distribution
δ[ ~̀∗], while under the canonical ensemble the dual degrees follow the distribution
Q[ ~̀∗], where in analogy with (3.35),

Q[ ~̀∗] ∼ Poisson[ ~̀∗]. (3.37)

Similar to the sparse case, the multivariate Poisson-Binomial distribution (3.30) re-
duces to a product of marginal, and asymptotically Poisson, distributions governing
the different degrees.

Again, the case with finite dual degrees cannot be retrieved from Formula 3.1.1
with τα∞ = 0, because it corresponds to the case where Q has a diverging (like
n = αn) number of eigenvalues whose value remains finite as n → ∞, and (3.19)
does not hold. By contrast, the case with growing dual degrees can be retrieved from
Formula 3.1.1 with τα∞ = 0 because (3.19) holds, as confirmed in Theorem 3.1.5.
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Gaussian degrees in the dense regime. We can reinterpet (3.28) as the state-
ment

Sn(Pmic | Pcan) ∼ S
(
δ[ ~k∗] | Normal[ ~k∗, Q]

)
, (3.38)

where Normal[ ~k∗, Q] is the multivariate Normal distribution with mean ~k∗ and cov-
ariance matrix Q. In other words, in this regime

Q[ ~k∗] ∼ Normal[ ~k∗, Q], (3.39)

i.e., the multivariate Poisson-Binomial distribution (3.30) is asymptotically a mul-
tivariate Gaussian distribution whose covariance matrix is in general not diagonal,
i.e., the dependencies between degrees of different nodes do not vanish, unlike in the
other two regimes. Since all the degrees are growing in this regime, so are all the
eigenvalues of Q, implying (3.19) and consistently with Formula 3.1.1 with τα∞ = 0,
as proven in Theorem 3.1.5.

Note that the right-hand side of (3.38), being the relative entropy of a discrete dis-
tribution with respect to a continuous distribution, needs to be properly interpreted:
the Dirac distribution δ[ ~k∗] needs to be smoothened to a continuous distribution with
support in a small ball around ~k∗. Since the degrees are large, this does not affect
the asymptotics.

Crossover between the regimes. An easy computation gives

S
(
δ[k∗i ] | Poisson[k∗i ]

)
= g(k∗i ) with g(k) = log

(
k!

e−kkk

)
. (3.40)

Since g(k) = [1 + o(1)] 1
2 log(2πk), k → ∞, we see that, as we move from the sparse

regime with finite degrees to the sparse regime with growing degrees, the scaling of
the relative entropy in (3.33) nicely links up with that of the dense regime in (3.38)
via the common expression in (3.28). Note, however, that since the sparse regime
with growing degrees is in general incompatible with the dense δ-tame regime, in
Theorem 3.1.5 we have to obtain the two scalings of the relative entropy under disjoint
assumptions. By contrast, Formula 3.1.1 with τα∞ = 0, and hence (3.22), unifies the
two cases under the simpler and more general requirement that all the eigenvalues of
Q, and hence all the degrees, diverge. Actually, (3.22) is expected to hold in the even
more general hybrid case where there are both finite and growing degrees, provided
the number of finite-valued eigenvalues of Q grows slower than αn [93].

Other constraints. It would be interesting to investigate Formula 3.1.1 for con-
straints other than on the degrees. Such constraints are typically much harder to
analyse. In [38] constraints are considered on the total number of edges and the total
number of triangles simultaneously (K = 2) in the dense regime. It was found that,
with αn = n2, breaking of ensemble equivalence occurs for some ‘frustrated’ choices of
these numbers. Clearly, this type of breaking of ensemble equivalence does not arise
from the recently proposed [93] mechanism associated with a diverging number of
constraints as in the cases considered in this paper, but from the more traditional [97]
mechanism of a phase transition associated with the frustration phenomenon.
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Outline. Theorem 3.1.5 is proved in Section 3.2. In Appendix A we show that the
canonical probabilities in (3.2) are the same as the probabilities used in [9] to define
a δ-tame degree sequence. In Appendix B we explain the duality between the sparse
regime and the ultra-dense regime.

§3.2 Proof of the Main Theorem

In Section 3.2.2 we prove Theorem 3.1.5. The proof is based on two lemmas, which
we state and prove in Section 3.2.1.

§3.2.1 Preparatory lemmas
The following lemma gives an expression for the relative entropy.

3.2.1 Lemma. If the constraint is a δ-tame degree sequence, then the relative en-
tropy in (1.16) scales as

Sn(Pmic | Pcan) = [1 + o(1)] 1
2 log[det(2πQ)], (3.41)

where Q is the covariance matrix in (3.14). This matrix Q = (qij) takes the form{
qii = k∗i −

∑
j 6=i(p

∗
ij)

2 =
∑
j 6=i p

∗
ij(1− p∗ij), 1 ≤ i ≤ n,

qij = p∗ij(1− p∗ij), 1 ≤ i 6= j ≤ n.
(3.42)

Proof. To compute qij = CovPcan
(ki, kj) we take the second order derivatives of the

log-likelihood function

L(~θ) = logPcan(G∗ | ~θ)

= log

 ∏
1≤i<j≤n

p
gij(G

∗)
ij (1− pij)(1−gij(G∗))

 , pij =
e−θi−θj

1 + e−θi−θj

(3.43)

in the point ~θ = ~θ∗ [93]. Indeed, it is easy to show that the first-order derivatives
are [51]

∂

∂θi
L(~θ ) = 〈ki〉 − k∗i ,

∂

∂θi
L(~θ )

∣∣∣∣
~θ= ~θ∗

= k∗i − k∗i = 0 (3.44)

and the second-order derivatives are

∂2

∂θi∂θj
L(~θ)

∣∣∣∣
~θ= ~θ∗

= 〈ki kj〉 − 〈ki〉〈kj〉 = CovPcan
(ki, kj). (3.45)

This readily gives (3.42).
The proof of (3.41) uses [9, Eq. (1.4.1)], which says that if a δ-tame degree sequence

is used as constraint, then

P−1
mic(G∗) = Ω~C∗ =

eH(p∗)

(2π)n/2
√

det(Q)
eC , (3.46)
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where Q and p∗ are defined in (3.42) and (3.70) below, while eC is sandwiched between
two constants that depend on δ:

γ1(δ) ≤ eC ≤ γ2(δ). (3.47)

From (3.46) and the relation H(p∗) = − logPcan(G∗), proved in Lemma A.1 below,
we get the claim.

The following lemma shows that the diagonal approximation of log(detQ)/nfn is
good when the degree sequence is δ-tame.

3.2.2 Lemma. Under the δ-tame condition,

log(detQD) + o(n fn) ≤ log(detQ) ≤ log(detQD) (3.48)

with QD = diag(Q) the matrix that coincides with Q on the diagonal and is zero off
the diagonal.

Proof. We use [60, Theorem 2.3], which says that if

(1) det(Q) is real,

(2) QD is non-singular with det(QD) real,

(3) λi(A) > −1, 1 ≤ i ≤ n,

then

e
− nρ2(A)

1+λmin(A) detQD ≤ detQ ≤ detQD. (3.49)

Here, A = Q−1
D Qoff , with Qoff the matrix that coincides with Q off the diagonal and is

zero on the diagonal, λi(A) is the i-th eigenvalue of A (arranged in decreasing order),
λmin(A) = min1≤i≤n λi(A), and ρ(A) = max1≤i≤n |λi(A)|.

We begin by verifying (1)–(3).

(1) Since Q is a symmetric matrix with real entries, detQ exists and is real.

(2) This property holds thanks to the δ-tame condition. Indeed, since qij = p∗i,j(1 −
p∗i,j), we have

0 < δ2 ≤ qij ≤ (1− δ)2 < 1, (3.50)

which implies that

0 < (n− 1)δ2 ≤ qii =
∑
j 6=i

qij ≤ (n− 1)(1− δ)2. (3.51)

(3) It is easy to show that A = (aij) is given by

aij =

{ qij
qii
, 1 ≤ i 6= j ≤ n,

0, 1 ≤ i ≤ n, (3.52)
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where qij is given by (3.42). Since qij = qji, the matrix A is symmetric. Moreover,
since qii =

∑
j 6=i qij , the matrix A is also Markov. We therefore have

1 = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) ≥ −1. (3.53)

From (3.50) and (3.52) we get

0 <
1

n− 1

(
δ

1− δ

)2

≤ aij ≤
1

n− 1

(
1− δ
δ

)2

. (3.54)

This implies that the Markov chain on {1, . . . , n} with transition matrix A starting
from i can return to i with a positive probability after an arbitrary number of steps
≥ 2. Consequently, the last inequality in (3.53) is strict.

We next show that
nρ2(A)

1 + λmin(A)
= o(n fn). (3.55)

Together with (3.49) this will settle the claim in (3.48). From (3.53) it follows ρ(A) =

1, so we must show that

lim
n→∞

[1 + λmin(A)] fn =∞. (3.56)

Using [104, Theorem 4.3], we get

λmin(A) ≥ −1 +
min1≤i 6=j≤n πiaij

min1≤i≤n πi
µmin(L) + 2γ. (3.57)

Here, π = (πi)
n
i=1 is the invariant distribution of the reversible Markov chain with

transition matrix A, while µmin(L) = min1≤i≤n λi(L) and γ = min1≤i≤n aii, with
L = (Lij) the matrix such that, for i 6= j, Lij = 1 if and only if aij > 0, while
Lii =

∑
j 6=i Lij .

We find that πi = 1
n for 1 ≤ i ≤ n, Lij = 1 for 1 ≤ i 6= j ≤ n, Lii = n − 1 for

1 ≤ i ≤ n, and γ = 0. Hence (3.57) becomes

λmin(A) ≥ −1 + (n− 2) min
1≤i 6=j≤n

aij ≥ −1 +
n− 2

n− 1

(
δ

1− δ

)2

, (3.58)

where the last inequality comes from (3.54). To get (3.56) it therefore suffices to show
that f∞ = limn→∞ fn =∞. But, using the δ-tame condition, we can estimate

1

2
log

[
(n− 1)δ(1− δ + nδ)

n

]
≤ fn =

1

2n

n∑
i=1

log

[
k∗i (n− 1− k∗i )

n

]
≤ 1

2
log

[
(n− 1)(1− δ)(δ + n(1− δ))

n

]
,

(3.59)

and both bounds scale like 1
2 log n as n→∞.

§3.2.2 Proof (Theorem 3.1.5)
Proof. We deal with each of the three regimes in Theorem 3.1.5 separatetely.
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The sparse regime with growing degrees. Since ~k∗ = (k∗i )ni=1 is a sparse degree
sequence, we can use [48, Eq. (3.12)], which says that

Sn(Pmic | Pcan) =

n∑
i=1

g(k∗i ) + o(n), n→∞, (3.60)

where g(k) = log
(

k!
kke−k

)
is defined in (3.40). Since the degrees are growing, we can

use Stirling’s approximation g(k) = 1
2 log(2πk) + o(1), k →∞, to obtain

n∑
i=1

g(k∗i ) = 1
2

n∑
i=1

log (2πk∗i ) + o(n) = 1
2

[
n log 2π +

n∑
i=1

log k∗i

]
+ o(n). (3.61)

Combining (3.60)–(3.61), we get

Sn(Pmic | Pcan)

n fn
= 1

2

[
log 2π

fn
+

∑n
i=1 log k∗i
nfn

]
+ o(1). (3.62)

Recall (3.23). Because the degrees are sparse, we have

lim
n→∞

∑n
i=1 log k∗i
nfn

= 2. (3.63)

Because the degrees are growing, we also have

f∞ = lim
n→∞

fn =∞. (3.64)

Combining (3.62)–(3.64) we find that limn→∞ Sn(Pmic | Pcan)/n fn = 1.

The ultra-dense regime with growing dual degrees. If ~k∗ = (k∗i )ni=1 is an
ultra-dense degree sequence, then the dual ~̀∗ = (`∗i )

n
i=1 = (n− 1− k∗i )ni=1 is a sparse

degree sequence. By Lemma B.2, the relative entropy is invariant under the map
k∗i → `∗i = n − 1 − k∗i . So is f̄n, and hence the claim follows from the proof in the
sparse regime.

The δ-tame regime. It follows from Lemma 3.2.1 that

lim
n→∞

Sn(Pmic | Pcan)

n fn
= 1

2

[
lim
n→∞

log 2π

fn
+ lim
n→∞

log(detQ)

n fn

]
. (3.65)

From (3.59) we know that f∞ = limn→∞ fn = ∞ in the δ-tame regime. It follows
from Lemma 3.2.2 that

lim
n→∞

log(detQ)

n fn
= lim
n→∞

log(detQD)

n fn
. (3.66)

To conclude the proof it therefore suffices to show that

lim
n→∞

log(detQD)

n fn
= 2. (3.67)
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Using (3.51) and (3.59), we may estimate

2 log[(n− 1)δ2]

log (n−1)(1−δ)(δ+n(1−δ))
n

≤
∑n
i=1 log(qii)

n fn
=

log(detQD)

n fn
≤ 2 log[(n− 1)(1− δ)2]

log (n−1)δ(1−δ+nδ)
n

.

(3.68)
Both sides tend to 2 as n→∞, and so (3.67) follows.

§A Appendix

Here we show that the canonical probabilities in (3.2) are the same as the probabilities
used in [9] to define a δ-tame degree sequence.

For q = (qij)1≤i,j≤n, let

E(q) = −
∑

1≤i 6=j≤n

qij log qij + (1− qij) log(1− qij). (3.69)

be the entropy of q. For a given degree sequence (k∗i )ni=1, consider the following
maximisation problem: 

maxE(q),∑
j 6=i qij = k∗i , 1 ≤ i ≤ n,

0 ≤ qij ≤ 1, 1 ≤ i 6= j ≤ n.
(3.70)

Since q 7→ E(q) is strictly concave, it attains its maximum at a unique point.

A.1 Lemma. The canonical probability takes the form

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

, (3.71)

where p∗ = (p∗ij) solves (3.70). In addition,

logPcan(G∗) = −H(p∗). (3.72)

Proof. It was shown in [48] that, for a degree sequence constraint,

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G) (3.73)

with p∗ij = e
−θ∗i −θ

∗
j

1+e
−θ∗
i
−θ∗
j
, where ~θ∗ has to be tuned such that∑

j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (3.74)

On the other hand, the solution of (3.70) via the Lagrange multiplier method gives
that

q∗ij =
e−φ

∗
i−φ

∗
j

1 + e−φ
∗
i−φ∗j

, (3.75)
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where ~φ∗ has to be tuned such that∑
j 6=i

q∗ij = k∗i , 1 ≤ i ≤ n. (3.76)

This implies that q∗ij = p∗ij for all 1 ≤ i 6= j ≤ n. Moreover,

logPcan(G∗) +H(p∗) =
∑

1≤i<j≤n

gij(G
∗) log

(
p∗ij

1− p∗ij

)
−

∑
1≤i<j≤n

p∗ij log

(
p∗ij

1− p∗ij

)

= −
∑

1≤i<j≤n

gij(G
∗)(θ∗i + θ∗j ) +

∑
1≤i<j≤n

p∗ij(θ
∗
i + θ∗j ) =

n∑
i=1

θ∗i
∑
j 6=i

(p∗ij − gij(G∗)) = 0,

(3.77)
where the last equation follows from the fact that∑

j 6=i

gij(G
∗) =

∑
j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (3.78)

§B Appendix

We explain the duality between the sparse regime and the ultra-dense regime.
Let ~k∗ = (k∗i )ni=1 be an ultra-dense degree sequence,

max
1≤i≤n

(n− 1− k∗i ) = o(
√
n), (3.79)

and let ~̀∗ = (`∗i )
n
i=1 be the dual degree sequence defined by `∗i = n− 1− k∗i . Clearly,

~̀∗ = (`∗i )
n
i=1 is a sparse degree sequence,

max
1≤i≤n

`∗i = o(
√
n). (3.80)

B.1 Lemma. Let Pcan and P̂can denote the canonical ensembles in (1.9) when ~C∗ =
~k∗ = (k∗i )ni=1, respectively, ~C∗ = ~̀∗ = (`∗i )

n
i=1. Then

Pcan(G) = P̂can(Gc), G ∈ Gn, (3.81)

where G and Gc are complementary graphs, i.e.,

gij(Gc) = 1− gij(G), 1 ≤ i 6= j ≤ n. (3.82)

Proof. From the definition of the canonical probabilities we have

Pcan(G) = Pcan(G | ~θ∗), P̂can(G) = Pcan(G | ~φ∗), (3.83)

where

Pcan(G | ~θ) =
exp[−~θ · ~k(G)]

Z(~θ)
, ~k(G) =

∑
j 6=i

gij(G), (3.84)
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and the values ~θ∗ and ~φ∗ are such that

∂F (~θ )

∂θi

∣∣∣∣
~θ=~θ∗

= −〈ki〉Pcan(· | ~θ∗) = −k∗i , (3.85)

∂F (~θ )

∂θi

∣∣∣∣
~θ=~φ∗

= −〈ki〉Pcan(· | ~φ∗) = −`∗i . (3.86)

The free energy is F (~θ) = logZ(~θ), and its i-th partial derivative in the Lagrange
multiplier that fixes the average of the i-th constraint. We show that ~θ∗ = −~φ∗.

Write

Z(~θ ) =
∑
G∈Gn

e−
~θ·~k(G) =

∑
G∈Gn

e−
∑n
i=1 θi(n−1−k(Gc)) = e−(n−1)

∑n
i=1 θi Z(−~θ ). (3.87)

Using (3.85) and (3.87), we get

−k∗i =
∂F (~θ )

∂θi

∣∣∣∣
~θ=~θ∗

= −(n− 1) + 〈ki〉Pcan(· | − ~θ∗). (3.88)

Since k∗i = n− 1− `∗i , we obtain

`∗i = 〈ki〉Pcan(· | −~θ∗). (3.89)

From (3.86), (3.89) and the uniqueness of the Lagrange multipliers, we get

~θ∗ = −~φ∗. (3.90)

Using (3.87) and (3.90), we obtain

P̂can(Gc) = Pcan(Gc | ~φ∗) = Pcan(Gc | −~θ∗) =
exp[~θ∗ · ~k(Gc)]

Z(−~θ∗)

=
exp[−~θ∗ · ~k(G)]

Z(−~θ∗) e−(n−1)
∑n
i=1 θ

∗
i

=
exp[−~θ∗ · ~k(G)]

Z(~θ∗)
= Pcan(G),

(3.91)

which settles (3.81).

B.2 Lemma. Let

• Pmic and Pcan denote the microcanonical ensemble in (1.6), respectively, the
canonical ensemble in (1.9), when ~C∗ = ~k∗ = (k∗i )ni=1 with k∗i satisfying (3.79).

• P̂mic and P̂can denote the microcanonical ensemble in (1.6), respectively, the
canonical ensemble in (1.9), when ~C∗ = ~̀∗ = (`∗i )

n
i=1 with `∗i = n − 1 − k∗i the

dual degree satisfying (3.80).

Then the relative entropy in (1.16) satisfies

Sn(Pmic | Pcan) = Sn(P̂mic | P̂can). (3.92)
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Proof. Consider a graph G∗ with degree sequence ~k(G∗) = ~k∗. Then

Pmic(G∗) = |{G ∈ Gn : ~k(G) = ~k∗}|−1 = |{G ∈ Gn : ~k(G) = ~̀∗}|−1 = P̂mic(G∗c),

(3.93)
where G∗c and G∗ are complementary graphs, so that ~k(G∗c) = ~̀∗. Using Lemma B.1,
we have

Pcan(G∗) = P̂can(G∗c). (3.94)

Combine (1.16), (3.93) and (3.94), to get

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
= log

P̂mic(G∗c)

P̂can(G∗c)
= Sn(P̂mic | P̂can). (3.95)
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