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1. Introduction

§1.1 Gibbs Ensembles

In order to provide an introduction to Gibbs Ensembles we borrow from Garlaschelli,
den Hollander, Roccaverde [49].

Statistical physics aims at describing collective behavior in systems consisting of a
very large number of interacting particles (= atoms or molecules). This is a daunting
task: a glass of water or a piece of iron can easily contain 1023 particles. Still, the
hope is that the macroscopic properties of these particles as a whole can be explained
from the microscopic interactions between them. For instance, we want to explain
why water turns into ice (or vapor) at an appropriate temperature and how this
transition exactly takes place. Similarly, we want to explain why a piece of iron at
low temperature becomes magnetized when it is moved close to a magnet and remains
magnetized after it is moved away from the magnet. We also want to understand why
this does not happen when the temperature is high. For most physical systems the
trajectories of the particles are so chaotic that they cannot be captured by explicit
formulas. A full description would require knowledge of the positions and the speeds
of all the particles at all times, which clearly is hopeless. Yet, we need large numbers
of particles to explain collective phenomena: a single water molecule cannot transit
from water to ice (or vapor).

The way out of this dilemma is offered by statistical physics: for most purposes a
full microscopic description is not necessary: it suffices to have a macroscopic descrip-
tion in terms of a small number of relevant quantities, such as pressure, density and
temperature. In statistical physics, the system is assumed to be a random sample,
drawn from a set of allowed microscopic configurations that are consistent with a set
of given macroscopic constraints. These constraints determine the pressure, density
and temperature of the system. Collective phenomena, such as whether the system
is a solid (ice), a liquid (water) or a gas (vapor), should follow from a combination of
the microscopic interactions and the macroscopic constraints.

A physical system is rarely isolated. Typically, it is part of a larger system, that
in turn is part of an even larger system, etc. For example, the molecules in a glass
of water depend on what is outside the glass. The molecules at the top of the glass
interact with the air above it. This air also contains water molecules, and a lively
exchange takes place close to the surface of the water. We are thus tempted to
believe that, in order to understand what happens inside the glass of water, we need
to model all the molecules around the glass as well, and perhaps even all the molecules
in the room the glass finds itself in. Fortunately, this is not the case, since the water
molecules can only interact over short distances.

Statistical physics deals with the definition of the appropriate probability distri-
bution over the set of allowed microscopic configuration, such as the locations and
the speeds of the particles and how they bounce off each other and the wall of the
container. These distributions need to take the macroscopic constraints into account.
For instance, when the temperature is high the particles move quickly, which should
be reflected in the choice of the probability distribution for the positions and the
speeds. These probability distributions are called, in statistical physics, ensembles.
They were introduced for the first time by Boltzmann [I9] and then reformulated
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81.2. Equivalence of Ensembles

in their modern probabilistic form by Gibbs [64]. Each ensemble describes how the
system interacts with its surroundings and therefore represents a particular physical
situation.

1 The microcanonical ensemble, where hard constraints are placed on both the
energy and the number of particles: both are set to fixed values and are not
allowed to vary.

2 The canonical ensemble, where a soft constraint is placed on the energy of the
particles (in the sense that it may vary but with a fixed average), while a hard
constraint is placed on the number of particles.

3 The grandcanonical ensemble, where both the energy and the number of particles
are soft.

For systems of finite size, the three ensembles lead to different behavior. Therefore,
in practical situations, the choice of ensemble is important and must be based on the
physical situation that is described. In particular, an experimental physicist would use
the microcanonical ensemble to model an isolated system (= a system that exchanges
neither heat nor particles with its surroundings), the canonical ensemble to model
a closed system (= a system that exchanges heat with an "external reservoir", with
which it is in thermal equilibrium, but no particles), and the grandcanonical ensemble
to model an open system (= a system that exchanges both heat and particles with the
external reservoir, with which it is in thermal and chemical equilibrium). Choosing the
wrong ensemble amounts to choosing the wrong microscopic probability distribution
on which the computation of macroscopic quantities is based. For instance, if the
experimental physicist is certain that the system under study does not exchange
particles with its surroundings, then the grandcanonical ensemble is clearly not the
right choice, and it would make the microscopic description of the system more noisy
than is necessary.

§1.2 Equivalence of Ensembles

Statistical physics also deals with the problem of determining whether the ensembles
give the same predictions when the system is very large. Traditionally, in physics
books the three ensembles are assumed to be thermodynamically equivalent: for large
systems fluctuations of macroscopic quantities around their average value are expected
to be small and to be asymptotically vanishing as the number of particles tends to
infinity. In the latter limit, called the thermodynamic limit, the soft constraints
effectively become hard constraints. The assumption of ensemble equivalence dates
back to Gibbs [54] and has been verified for traditional models of physical systems with
short-range microscopic interactions and subject to a small number of macroscopic
constraints. However, ensemble equivalence is not a simple concept. It has to be
defined and studied carefully: depending on the level of description considered it can
take different forms. We will talk about this in more detail in Section [L.3l
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1. Introduction

The general idea is that ensemble equivalence is convenient because it allows us
to choose any of the three ensembles to work with. Soft constraints often are compu-
tationally easier to work with than hard constraints, which makes the choice of the
canonical ensemble and the grandcanonical ensemble more convenient than that of
the microcanonical ensemble. If ensemble equivalence holds and the system is large
enough, then all three ensembles lead to the same macroscopic outcome for most of
the relevant quantities. However, ensemble equivalence does not hold in general. This
fact is important because, in such a situation, an experimental physicist must make a
careful choice what ensemble to use for modeling the system, even when the system is
large. A wrong choice means a wrong answer to macroscopic questions. Despite the
fact that many textbooks still convey the message that ensemble equivalence holds
for all physical systems, over the last decades various examples of physical systems
have been found for which it breaks down ([85], [86], [87] and [29]).

Thus, breaking of ensemble equivalence means that different choices of ensemble
lead to asymptotically different behavior. Consequently, while for applications based
on ensemble equivalent models the choice of the working ensemble can be arbitrary
and can be based on mathematical convenience, for those based on nonequivalent
models the choice must be dictated by a criterion indicating which ensemble is the
appropriate one to use. This criterion must be based on the a priori knowledge that
is available about the network, i.e., which form of constraint (hard or soft) applies in
practice.

§1.3 Definition of Ensemble Equivalence

In this section we give a brief introduction to the problem of ensemble equivalence. In
his treatise [54], Gibbs argued that, in the so-called thermodynamic limit (when the
number of particles goes to infinity), the microcanonical and the canonical ensemble
become equivalent. Gibbs’s argument was that, when the system is large, the fluctu-
ations of the energy, in the canonical ensemble, become negligible with respect to the
total energy. The canonical ensemble therefore essentially chooses a unique value of
the energy, equal to the energy used to define the microcanonical ensemble. In this
sense the use of the canonical ensemble, instead of the more complicated microcanon-
ical ensemble, is justified and the ensembles are said to be equivalent. In other words,
the equilibrium properties of the system can be described by using either the energy
or the temperature as parameters. This equivalence can be proved in simple cases,
for example, an ideal gas or non-interacting systems.

Many other complex systems have been studied with the help of statistical en-
sembles, which brought physicists to assume that the two ensembles are always equi-
valent ([89] 59| [0 68, OT]). However more recently systems have been found where
breaking of ensemble equivalence occurs. These examples include models of fluid
turbulence [41], star formation [72] and networks [, [85] ©5].

The problem of ensemble (non)equivalence has been formulated in a more rigorous
manner. Ellis, Haven and Turkington [40] studied two types of (non)equivalence. The
first type is equivalence at the thermodynamic level, that has been studied the most
so far. The second type is equivalence at the macrostate level, introduced in [40].
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§1.3. Definition of Ensemble Equivalence

Another type of equivalence is the equivalence the measure level. Following [97], we
present the problem of ensemble equivalence in these three different forms:

e Thermodynamic equivalence: the microcanonical and the canonical ensemble
are said to be thermodynamically equivalent when the entropy (as a function of
the energy) and the free energy (as a function of the temperature) are one-to-one
related by a Legendre transform.
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e Macrostate equivalence: the microcanonical and the canonical ensemble are
said to be macrostate equivalent when the equilibrium values of the macrostate
predicted by the microcanonical ensemble and the equilibrium values of the
macrostate predicted by the canonical ensemble are the same.

e Measure equivalence: the microcanonical and the canonical ensemble are said
to be measure equivalent when the Gibbs distribution defining the canonical en-
semble at the microstate level converges to the distribution defined by Boltzmann’s
equiprobability postulate defining the microcanonical ensemble.

Touchette [97] proves that thermodynamic nonequivalence occurs whenever the mi-
crocanonical entropy function has one or more points of non-concavity and that mac-
rostate and the thermodynamic equivalence are essentially equivalent. Measure equi-
valence is also proved to be equivalent to the other two types of equivalence. The
main conclusion is that the three ‘different’ levels of ensemble equivalence are equi-
valent, whenever the setting is a general particle system, under the assumption that
thermodynamic functions and equilibrium macrostates exists and are defined through
large deviation principles (see [97] for more details).

The physical reason behind ensemble nonequivalence still remains to be clarified
and part of this thesis is to understand some of the hidden mechanisms behind it.
The type of equivalence considered throughout the thesis is that at the measure level.
In the following we give the precise definition of the latter.

§1.3.1 Measure equivalence

Equivalence at the measure level concerns convergence of the canonical ensemble to
the microcanonical ensemble at the microscopic level. In this section we give the
mathematical definition of this type of equivalence and explain the idea behind it.

Relative entropy

P and @ are two discrete probability measures defined on the same space X', with P
absolutely continuous with respect to Q (P < Q). The relative entropy of P with
respect to () is defined as

P(i)
o0 (1.1)

S(PIQ) =) P(i)ln

ieX

The relative entropy S(P|Q) is not a distance (it is not symmetric and does not satisfy
the triangle inequality). However, S(P|Q) is non-negative and equals zero if and only
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1. Introduction

if P = @ almost everywhere. Moreover, Pinsker’s inequality shows that S(P|Q) is an
upper bound on the total variation distance, namely,

drv(P,Q) = Z |P(i) — Q)] < /S(PIQ). (12)

162\?‘

In the case of the microcanonical and the canonical ensemble, defined for an N-particle
system (i.e., see equations (L.6) and (1.9)), we get P, < PC]XD (but not vice versa).
Therefore, the relative entropy of the microcanonical ensemble with respect to the

canonical ensemble can be computed and takes the form

PN (5
S(PY P, = 37 PN, (i) In Zmeld). (13)

iex can(l)

The specific relative entropy is defined as the limit

Soo = hm —S(PIQCC Can) (1.4)

1.3.1 Definition (Measure equivalence). The microcanonical and the canonical
ensemble are said to be equivalent at the measure level if

0 = 0.

The immediate implication of ensemble equivalence (at the measure level) combined
with Pinsker’s inequality in (1.2)) is that the total variation dry (PN, PY.) grows
slower than v N as N — oo.

§1.4 Statistical Ensembles for Complex Networks

Ensemble (non)equivalence is usually studied for systems in which the Boltzmann dis-
tribution describes a certain physical interaction that is encapsulated in the energy.
However, as already shown by Jaynes [61], the Boltzmann distribution describes much
more general ensembles of systems with given constraints, namely, all solutions to the
mazximum-entropy problem of inference from partial information. In what follows we
argue that, for any discrete enumeration problem where we need to count microcanon-
ical configurations compatible with a given constraint, there exists a ‘dual’ problem
involving canonical configurations induced by the same constraint. We define mi-
crocanonical and canonical ensembles for complex networks, and provide examples of
networks that exhibit equivalence and nonequivalence of the ensembles at the measure
level, introduced in Definition [[.3.1} The statistical mechanics approach turns out to
be very powerful in the study of real-world networks, for which a detailed knowledge
of the architecture is typically not available. The way proposed here is to study the
complex networks through a probabilistic description, i.e., statistical ensembles. To
that end the network is assumed to be a random sample drawn from a set of allowed
configurations that are consistent with a set of known topological constraints [95]. In
the following we give a rigorous definition of these statistical ensembles for complex
networks.

14



§1.4. Statistical Ensembles for Complex Networks

§1.4.1 Microcanonical and Canonical Ensemble for
Complex Networks

In Section [1.1] we explained why statistical physics deals with the definition of the
appropriate probability distribution and what are the possible effects this has on the
experiments. Here we consider two of the key choices of probability distribution,
namely:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual configuration).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual configurations may violate the constraints).

(In both ensembles, the entropy is mazimal subject to the given constraints.) We start
by giving the rigorous definitions of the microcanonical and the canonical ensemble

for complex networks.
For n € N, let G,, denote the set of all simple undirected graphs with n nodes.
Any graph G € G,, can be represented as an n X n matrix with elements
0,(G) = {1 if there is a link between node ¢ and node j, (1.5)

0 otherwise.

Let C denote a vector-valued function on G,,. Given is a specific value C_"*, which we
assume to be graphical, i.e., realisable by at least one graph in G,.

The microcanonical probability distribution on G, with hard constraint C* is defined
as

ozl ifd(G) =0,

1.6
0, else, (16)

Pric(G) = {

where

Qa. = {G € G,: C(G) =C"}| (1.7)

is the number of graphs that realise C*. The canonical probability distribution Pean(G)
on G, is defined as the solution of the maximisation of the entropy

Sn(Pean) = = Y Pean(G) In Pean (G) (1.8)
GeGn

subject to the normalisation condition » ;g Pean(G) = 1 and to the soft constraint
(C) = C*, where (-) denotes the average w.r.t. Py. This gives the formula (see [61])

o exp[_H(G7 5*)]
PC&H(G) - Z(a—'*) ’ (19)
where
H(G,0)=0-C(G) (1.10)
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1. Introduction

is the Hamiltonian and

Z(0)= > exp[-H(G,0)] (1.11)
Gegn

is the partition function. In the parameter 6 must be set equal to the particular
value §* that realises (é) = (. This value is unique and maximises the likelihood of
the model given the data (see [51]). We next proceed with the equivalence definition
of the ensembles.

§1.4.2 «a,-Equivalence of Ensembles

In order to define the equivalence at the measure level for complex networks, we follow
[92] [48] [50] and define the relative entropy of Ppic W.r.t. Pean as

Pmic(G)
Sn(Pmic | Pcan) = E Pmic(G) log ’ (112)
GeGn PC&H(G)
and the a,-relative entropy as [50]
Sa,, = an71 Sn(Pmic | Pcan)a (113)

where «,, is a scale parameter. The limit of the relative entropy «,-density is defined
as

= lim 54, = lim a, ' Sp(Puic | Pean) € [0, 0c]. (1.14)
—

We say that the microcanonical and the canonical ensemble are equivalent on scale
ay, if and only if
Sao, = 0. (1.15)

oo

This is a generalization of the standard measure equivalence definition given in Section
In fact, for complex networks, a specific parameter corresponding to the number
of particles (the volume of the system) does not exist. For example, we could decide to
use the number of nodes n as the parameter representing the volume of the system. On
the other hand, we could also use the number of edges (g), or even other n dependent
factors instead. It becomes clear that computing the specific relative entropy, i.e.,
dividing by the number n of particles, does not have a precise meaning in the context
of complex networks. This is the main reason why we choose to be general and use
a parameter «,. The choice of the scale a;,, at which we check for (non)equivalence
in this thesis is flexible and depends on the number of nodes n, on the constraint at
hand and on its value as well. Indeed, we consider different choices of ., for different
models. In certain cases, we in fact prefer to reverse the point of view and look for
the ‘natural’ or ‘critical’ scale «, at which s,_ is positive and finite. This second
approach allows us to immediately conclude that the ensembles are 3,,-equivalent for
all 8, = w(a,) and nonequivalent when 3, = Q(«,,). For instance, if the constraint
is on the degree sequence, then in the sparse regime the critical scale turns out to be
ayn, = n [92], [48] (in which case s, is the specific relative entropy ‘per vertex’), while

16



§1.5. Summary of Chapter 2

in the dense regime it turns out to be a;,, = nlogn [50]. For more details, see Section
[ for the sparse regime and Section [I.6] for the dense regime. On the other hand,
if the constraint is on the total numbers of edges and triangles, with values different
from what is typical for the ErdGs-Renyi random graph in the dense regime, then the
critical scale turns out to be a,, = n? [38] (in which case s,_ is the specific relative
entropy ‘per edge’). This is discussed in more detail in Section

Before considering specific cases, we recall an important observation made in [92].
The definition of H(G,é) ensures that, for any G1,G2 € Gy, Pean(G1) = Pean(G2)
whenever C(G1) = C(Gs) (i.e., the canonical probability is the same for all graphs
having the same value of the constraint). We may therefore rewrite as

Pric(G¥)

51 (Paic | Pean) = log P (G’ (1.16)
where G* is any graph in G,, such that C(G*) = C* (recall that we have assumed that
C* is realisable by at least one graph in G,,). The definition in then becomes

Sae = lim oy, " [log Puic(G*) — log Pean(G*)], (1.17)

n—oo

which shows that breaking of ensemble equivalence coincides with Pp;.(G*) and
P..n(G*) having different large deviation behavior on scale «,,. (This is perfectly
in line with what was discussed in Section . Note that involves the mi-
crocanonical and canonical probabilities of a single configuration G* realising the
hard constraint. Apart from its theoretical importance, this fact greatly simplifies
mathematical calculations.

To analyse breaking of ensemble equivalence, ideally we would like to be able
to identify an underlying large deviation principle on a natural scale «,. This is
generally difficult, and so far has only been achieved in the dense regime with the
help of graphons. See [38] and Section to understand why.

§1.5 Summary of Chapter 2

While there is consensus that nonequivalence occurs when the microcanonical specific
entropy is non-concave as a function of the energy density in the thermodynamic limit,
the classification of the physical mechanisms at the origin of nonequivalence is still
open. A possible and natural mechanism is the presence of long-range interactions.
Similarly, phase transitions are naturally associated with long-range order. These
“standard mechanisms” for ensemble nonequivalence have been documented also in
the study of random graphs.

In Chapter [2| we study certain classes of unipartite networks [92], and show that
ensemble nonequivalence can manifest itself via an additional, novel mechanism, un-
related to non-additivity or phase transitions: namely, the presence of an extensive
number of local topological constraints, i.e., the degrees and/or the strengths (for
weighted graphs) of all nodesEl This finding explains previously documented sig-
natures of nonequivalence in random graphs with local constraints, such as a finite

IWhile in binary (i.e., simple) graphs the degree of a node is defined as the number of edges
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1. Introduction

difference between the microcanonical and the canonical entropy densities [I] and the
non-vanishing of the relative fluctuations of the constraints [95]. How generally this
result holds beyond the specific uni-partite and bi-partite cases considered so far re-
mains an open question. By considering a much more general class of random graphs
with a variable number of constraints, we confirm that the presence of an extens-
ive number of local topological constraints breaks ensemble equivalence, even in the
absence of phase transitions or non-additivity.

We start from the characterization of nonequivalence in the simple cases of uni-
partite and bi-partite graphs already explored in [92], and subsequently move on to
a very general class of graphs with an arbitrary multilayer structure and tunable
intra-layer and inter-layer connectivity. The main theorems proved, which (mostly)
concern the sparse regime, not only characterize nonequivalence qualitatively, they also
provide a quantitative formula for the specific relative entropy. We discuss various
important implications of our results, describing properties that are fully general, but
also focusing on several special cases of empirical relevance. In addition, we provide
an interpretation of the specific relative entropy formula in terms of Poissonisation of
the degrees. We also discuss the implications of our results for the study of several
empirically relevant classes of “modular” networks that have recently attracted interest
in the literature, such as networks with a so-called multi-partite, multiplex [16], time-

varying [58], block-model [57], [62] or community structure [43], [84].

§1.6 Summary of Chapter 3

In Chapter [3] we take a fresh look at breaking of ensemble equivalence by analyzing a
formula for the relative entropy, based on the covariance structure of the canonical en-
semble, recently put forward by Squartini and Garlaschelli [93]. We consider the case
of a random graph with a given degree sequence (configuration model) and show that
the formula correctly predicts that the specific relative entropy is determined by the
scaling of the determinant of the covariance matrix of the constraints in the so called
d-tame dense regime, while it requires an extra correction term in the sparse regime
and the ultra-dense regime. We also show that the different behaviors found in the
different regimes correspond to the degrees being asymptotically Gauss in the dense
regime and asymptotically Poisson in the sparse regime, and the dual degrees being
asymptotically Poisson in the ultra-dense regime. We also show that, in general, in
the canonical ensemble the degrees are distributed according to a multivariate version
of the Poisson-Binomial distribution [100], which admits the Gauss distribution and
the Poisson distribution as limits in appropriate regimes.

incident to that node, in weighted graphs (i.e., graphs where edges can carry weights) the strength
of a node is defined as the total weight of all the edges incident to that node. In Chapterlz we focus
on binary graphs only.

18



§1.7. Summary of Chapter 4

§1.7 Summary of Chapter 4

In Chapters [2] and [3] breaking of ensemble equivalence between the microcanonical
ensemble and the canonical ensemble is shown to occur when the constraint is put
on the degree sequence (configuration model). In this case the constraint becomes
a function of the number n of nodes and we can therefore ask an interesting ques-
tion: How is the relative entropy affected when the number of constraints is reduced,
possibly in a way that depends on n?

In Chapter [4] we answer this question by analyzing the effect on the relative en-
tropy when the number of constraints is reduced, i.e., when only part of the nodes
are constrained degree (and the remaining nodes are left unconstrained). Intuitively,
the relative entropy is expected to decrease as the number of constraints decreases.
However, this is not a trivial issue, because when the number of constraints is reduced
both the microcanonical ensemble and the canonical ensemble change. We consider
random graphs with a prescribed partial degree sequence (reduced constraint). The
breaking of ensemble equivalence is studied by analyzing how the relative entropy
changes as a function of the number of constraints. In particular it is shown that the
relative entropy is a monotone function in the number of constraints at the macro-
scopic level, i.e., when a positive fraction of the constraints is removed. More precisely,
when only m nodes are constrained and the remaining n—m nodes are unconstrained,
the relative entropy turns out to grow like mlogn as n — oc.

Our analysis is based on a recent formula put forward by Squartini and Gar-
laschelli [93]. This formula predicts that the relative entropy is determined by the
covariance matrix of the constraints in the canonical ensemble, in the regime where the
graph is dense. Our result implies that ensemble equivalence breaks down whenever
the dense regime is J-tame, irrespective of the number of degrees m that are con-
strained, provided m is not too close to n. It is further shown that the expression
of the relative entropy corresponds, in the dense regime, to the degrees in the mi-
crocanonical ensemble being asymptotically multivariate Dirac and in the canonical
ensemble being asymptotically Gauss.

§1.8 Summary of Chapter 5

In Chapter [5| we analyze breaking of ensemble equivalence for the case in which
topological constraints are imposed not only on the total number of edges but also
on the total number of wedges, triangles, etc. We work in the dense regime, in which
the number of edges per vertex scales proportionally with the number of vertices n.
We compute the relative entropy of the two ensembles in the limit as n goes to oo,
where the two ensembles are said to be equivalent if this relative entropy divided by
n? tends to zero (which, up to a constant, can be interpreted as the relative entropy
per edge). In particular, we show that the relative entropy divided by n? tends to
Seo > 0 when the constraints are frustrated. We base our analysis on a large deviation
principle for graphons and we provide results for three different choices of constraints.
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1. Introduction

§1.9 Summary of Chapter 6

In Chapter 5] we considered a random graph subject to constraints on the total number
of edges and the total number of triangles, in the dense regime. With the help
of large deviation theory for graphons, we derived a variational formula for s, =
lim,, 0o n 25, where n is the number of vertices and s,, is the relative entropy of the
microcanonical ensemble with respect to the canonical ensemble. In Chapter [6] we
analyze the behavior of so, when the constraints are close to but different from those
of the Erd&s-Rényi random graph. It turns out that the behavior changes when the
total number of triangles is larger, respectively, smaller than that of the Erdgs-Rényi
random graph with a given total number of edges. In particular, we find that s, > 0
when the constraints are frustrated, i.e., Ty # T;® with T} the edge density and Ty
the triangle density. The Erdés-Rényi random graph corresponds to Ty = T;3, for
which s, = 0. We identify the scaling behavior of s., for fixed T} and Ty | T;3,
respectively, Ty 1 T3, and prove that the way in which s, tends to zero is different
for the two limits. We also identify what the constrained random graph asymptotically
looks like in the microcanonical ensemble.

§1.10 Development of the chapters

This thesis presents new results about breaking of ensemble equivalence for complex
networks. Chapter 2]investigates the role of the number of constraints in the breaking
of ensemble equivalence phenomenon. Chapter [2| continues and generalizes the work
in [92] and shows that nonequivalence occurs in the presence of an extensive number
of topological constraints. Chapter [2]first considers the class of unipartite graphs with
the constraint on the degree sequence, in the sparse regime. After that, results are
extended to the class of bipartite graphs, and to more complicated classes of graphs
with a modular structure. The dense regime is investigated in Chapter [3] where a
formula of the relative entropy based on the covariance structure of the canonical
ensemble, recently put forward by Garlaschelli and Squartini [93], is confirmed. The
study of the configuration model is continued in Chapter [4] where a different question
is answered. While extensivity of the number of constraints in the number of nodes
was shown to play a crucial role in the phenomenon of breaking of ensemble equival-
ence, it remains an open question how reduction of the number of constraints affects
this phenomenon. Chapter [4] analyzes the effect on the relative entropy when the
number of constraint is reduced. It shows that, under certain hypothesis, breaking of
ensemble equivalence is monotone in the number of constraints.

Chapters [5] and [6] conclude this thesis with a study of dense graphs with con-
straints on subgraph structures. In Chapter [5| breaking of ensemble equivalence is
analyzed for the case of topological constraints on the number of edges and differ-
ent subgraphs (wedges, triangles, etc.) at the same time. Here a large deviation
principle for graphons is used to prove that breaking of ensemble equivalence occurs
whenever the constraints are frustrated. Chapter [f] is a continuation of Chapter
for the case where the constraints are on the number of edges and triangles at the
same time. In particular, constraints are chosen to be close to, but different from, the
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§1.11. Conclusions and Open Problems

so called Erd6s-Rényi line. It turns out that when the total number of triangles is
larger or smaller then the total number of edges, the behavior of the relative entropy
is completely different.

§1.11 Conclusions and Open Problems

In this thesis we analyze breaking of ensemble equivalence for Complex Networks with
different types of constraints and in different regimes. The main conclusion of Chapter
[2land[3]is that the physical mechanism behind breaking of ensemble equivalence seems
to be the extensivity of the number of constraints. In fact, both in the sparse and
in the dense regime, the ensembles are shown to be non-equivalent whenever the
the number of constraints grows extensively with the number of nodes. Moreover,
Chapter [4] shows how breaking of ensemble equivalence reduces as the number of
constrained nodes is reduced. On the other hand, Chapter [§ and [6] show a completely
different mechanism behind breaking of ensemble equivalence, namely, frustration of
the constraints. In the specific case where the constraint is on the number of edges and
the number of triangles, the canonical ensemble scales like an Erdés-Rényi random
graph with an appropriate edge density, but the microcanonical ensemble does not.

We conclude this introductory chapter with a number of open problems that can
serve as a starting point for a future study of breaking of ensemble equivalence phe-
nomenon in complex networks.

1 Meaning of (non)equivalence

In this thesis we analyze breaking of ensemble equivalence at the measure level,
i.e., we study the limit of the «,,-relative entropy for different constraints,
for different regimes and for different values of «,. One consequence of «,,-
equivalence can be derived through , also known as Pinsker’s inequality.
This relates a pseudo distance (the relative entropy) to a distance (the total
variation distance) and implies that, whenever the ensembles are «,-equivalent,
the total variation distance between the microcanonical and the canonical en-
semble does not grow faster than ,/a;,. On the other hand, Pinsker’s inequality
does not provide full information about what nonequivalence means for typical
quantities characterizing the network. It would be interesting to understand
what nonequivalence translates into for simulations of real-world networks.

2 Monotonicity of the relative entropy in the number of constraints

In Chapter [4] we analyze the effect on the breaking of ensemble equivalence
when the number of constraints is reduced, i.e., when only part of the nodes are
constrained in their degree (and the remaining nodes are left unconstrained).
We find that the relative entropy is a monotone function in the number of
constraints when a positive fraction of the constraints is removed.

a The result of Chapter [4] is based on a formula recently put forward by
Squartini and Garlaschelli (see [93], which provides compelling evidence
but not a rigorous proof). It would be interesting to prove the monotonicity
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1. Introduction

property for the relative entropy in a way that does not depend on this
formula and possibly for different regimes and other types of constraints
as well.

b Chapter @ analyzes the relative entropy at a macroscopic level, but nothing
is said about the microscopic level. More precisely, it would be interesting
to understand how the relative entropy changes when a single constraint is
removed, rather than a positive fraction of constraints. For example, what
is the effect when the longest degree is removed? Is the effect the same or
not when we decide to remove the smallest degree, or any other degree for
that matter?
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3 Functions of the constraints

In this thesis we analyze breaking of ensemble equivalence for a few specific
types of constraint. The constraint is put on the number of edges in Chapter
[ and on the degree sequence in Chapters [3] and ] In Chapter [§| and [6] the
constraint is put on the number of edges and the number of triangles. It would
be interesting to have a theorem proving the (non)equivalence of ensembles for
general types of constraint, and possibly for general functions of the constraints
as well.
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