
Breaking of ensemble equivalence for complex networks
Roccaverde, A.

Citation
Roccaverde, A. (2018, December 5). Breaking of ensemble equivalence for complex networks.
Retrieved from https://hdl.handle.net/1887/67095
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/67095
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/67095


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
 http://hdl.handle.net/1887/67095 
 
 
Author: Roccaverde, A. 
Title: Breaking of ensemble equivalence for complex networks 
Issue Date: 2018-12-05 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/67095
https://openaccess.leidenuniv.nl/handle/1887/1�


Breaking of Ensemble Equivalence
for Complex Networks

Andrea Roccaverde





Breaking of Ensemble Equivalence
for Complex Networks

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 5 december 2018

klokke 15.00 uur

door

Andrea Roccaverde
geboren te Modena

in 1990



Samenstelling van de promotiecommissie:

1e Promotor:
Prof. dr. W. Th. F. den Hollander (Universiteit Leiden)

2e Promotor:
Dr. D. Garlaschelli (Universiteit Leiden)

Overige Leden:
Prof. dr. A. Doelman (Universiteit Leiden, secretary)
Prof. dr. R.W. van der Hofstad (Universiteit Eindhoven)
Dr. T. Squartini (IMT Institute for Advanced Studies in Lucca)
Prof. dr. H. Touchette (Stellenbosch University)



Contents

1 Introduction 9
§1.1 Gibbs Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
§1.2 Equivalence of Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . 11
§1.3 Definition of Ensemble Equivalence . . . . . . . . . . . . . . . . . . . . 12

§1.3.1 Measure equivalence . . . . . . . . . . . . . . . . . . . . . . . . 13
§1.4 Statistical Ensembles for Complex Networks . . . . . . . . . . . . . . . 14

§1.4.1 Microcanonical and Canonical Ensemble for Complex Networks 15
§1.4.2 αn-Equivalence of Ensembles . . . . . . . . . . . . . . . . . . . 16

§1.5 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
§1.6 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
§1.7 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
§1.8 Summary of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
§1.9 Summary of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
§1.10Development of the chapters . . . . . . . . . . . . . . . . . . . . . . . . 20
§1.11Conclusions and Open Problems . . . . . . . . . . . . . . . . . . . . . 21

2 Ensemble Nonequivalence in Random Graphs with Modular Struc-
ture 25
§2.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . 26

§2.1.1 Background and outline . . . . . . . . . . . . . . . . . . . . . . 26
§2.1.2 Microcanonical ensemble, canonical ensemble, relative entropy 28
§2.1.3 Main Theorems (Theorems 2.1.1-2.1.10) . . . . . . . . . . . . . 30

§2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
§2.2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . 37
§2.2.2 Special cases of empirical relevance . . . . . . . . . . . . . . . . 41

§2.3 Proofs of Theorems 2.1.1-2.1.10 . . . . . . . . . . . . . . . . . . . . . . 48
§2.3.1 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . 48
§2.3.2 Proof of Theorem 2.1.4 . . . . . . . . . . . . . . . . . . . . . . 49
§2.3.3 Proof of Theorem 2.1.5 . . . . . . . . . . . . . . . . . . . . . . 50
§2.3.4 Proof of Theorem 2.1.6 . . . . . . . . . . . . . . . . . . . . . . 52
§2.3.5 Proof of Theorem 2.1.7 . . . . . . . . . . . . . . . . . . . . . . 54
§2.3.6 Proof of Theorem 2.1.8 . . . . . . . . . . . . . . . . . . . . . . 55
§2.3.7 Proof of Theorem 2.1.9 . . . . . . . . . . . . . . . . . . . . . . 58
§2.3.8 Proof of Theorem 2.1.10 . . . . . . . . . . . . . . . . . . . . . . 60

v



3 Covariance structure behind breaking of ensemble equivalence in
random graphs 65
§3.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . 66

§3.1.1 Background and outline . . . . . . . . . . . . . . . . . . . . . . 66
§3.1.2 Constraint on the degree sequence . . . . . . . . . . . . . . . . 67
§3.1.3 Relevant regimes . . . . . . . . . . . . . . . . . . . . . . . . . . 68
§3.1.4 Linking ensemble nonequivalence to the canonical covariances . 69
§3.1.5 Discussion and outline . . . . . . . . . . . . . . . . . . . . . . . 71

§3.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . 75
§3.2.1 Preparatory lemmas . . . . . . . . . . . . . . . . . . . . . . . . 75
§3.2.2 Proof (Theorem 3.1.5) . . . . . . . . . . . . . . . . . . . . . . . 77

§A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
§B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Is Breaking of Ensemble Equivalence Monotone in the Number of
Constraints? 85
§4.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . 86

§4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
§4.1.2 Constraint on the full degree sequence . . . . . . . . . . . . . . 87
§4.1.3 Constraint on the partial degree sequence . . . . . . . . . . . . 88
§4.1.4 Linking ensemble nonequivalence to the canonical covariances . 90
§4.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

§4.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . 95
§4.2.1 Preparatory lemmas . . . . . . . . . . . . . . . . . . . . . . . . 95
§4.2.2 Proof (Theorem 4.1.4) . . . . . . . . . . . . . . . . . . . . . . . 98

§A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
§B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Ensemble Equivalence for dense graphs 103
§5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

§5.1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . 104
§5.1.2 Relevant literature . . . . . . . . . . . . . . . . . . . . . . . . . 105
§5.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

§5.2 Key notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
§5.2.1 Microcanonical ensemble, canonical ensemble, relative entropy 106
§5.2.2 Graphons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
§5.2.3 Large deviation principle for the Erdős-Rényi random graph . . 109

§5.3 Variational characterisation of ensemble equivalence . . . . . . . . . . 111
§5.3.1 Subgraph counts . . . . . . . . . . . . . . . . . . . . . . . . . . 111
§5.3.2 From graphs to graphons . . . . . . . . . . . . . . . . . . . . . 112
§5.3.3 Variational formula for specific relative entropy . . . . . . . . . 113

§5.4 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
§5.5 Choice of the tuning parameter . . . . . . . . . . . . . . . . . . . . . . 117

§5.5.1 Tuning parameter for fixed n . . . . . . . . . . . . . . . . . . . 118
§5.5.2 Tuning parameter for n→∞ . . . . . . . . . . . . . . . . . . . 120

vi



§5.6 Proof of the Main Theorem 5.4.1 . . . . . . . . . . . . . . . . . . . . . 123
§5.6.1 Proof of (I)(a) (Triangle model T ∗2 ≥ 1

8 ) . . . . . . . . . . . . . 123
§5.6.2 Proof of (I)(b) (T ∗2 = 0) . . . . . . . . . . . . . . . . . . . . . . 123
§5.6.3 Proof of (II)(a) (Edge-Triangle model T ∗2 = T ∗31 ) . . . . . . . . 124
§5.6.4 Proof of (II)(b) (T ∗2 6= T ∗31 and T ∗2 ≥ 1

8 ) . . . . . . . . . . . . . 124
§5.6.5 Proof of (II)(c) (T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1

2 and 0 < T ∗32 < 1
8 ) . . . 125

§5.6.6 Proof of (II)(d) ((T ∗1 , T ∗2 ) on the scallopy curve) . . . . . . . . . 126
§5.6.7 Proof of (II)(e) (0 < T ∗1 ≤ 1

2 and T ∗2 = 0) . . . . . . . . . . . . 127
§5.6.8 Proof of (III) (Star model T [j]∗ ≥ 0) . . . . . . . . . . . . . . 127

§A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Breaking of Ensemble Equivalence for Perturbed Erdős-Rényi Ran-
dom Graphs 133
§6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
§6.2 Definitions and preliminaries . . . . . . . . . . . . . . . . . . . . . . . 135
§6.3 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
§6.4 Proofs of Theorems 6.3.1-6.3.3 . . . . . . . . . . . . . . . . . . . . . . 142

§6.4.1 Proof of Theorem 6.3.1 . . . . . . . . . . . . . . . . . . . . . . 142
§6.4.2 Proof of Theorem 6.3.2 . . . . . . . . . . . . . . . . . . . . . . 144
§6.4.3 Proof of Theorem 6.3.3 . . . . . . . . . . . . . . . . . . . . . . 145

§6.5 Proofs of Propositions 6.3.5–6.3.7 . . . . . . . . . . . . . . . . . . . . . 146
§6.5.1 Proof of Proposition 6.3.5 . . . . . . . . . . . . . . . . . . . . . 147
§6.5.2 Proof of Lemma 6.5.1 and Lemma 6.5.2 . . . . . . . . . . . . . 154

Bibliography 162

Samenvatting 169

Acknowledgements 171

Curriculum Vitae 173

vii





CHAPTER 1
Introduction



1. Introduction

C
h
a
pt

er
1 §1.1 Gibbs Ensembles

In order to provide an introduction to Gibbs Ensembles we borrow from Garlaschelli,
den Hollander, Roccaverde [49].

Statistical physics aims at describing collective behavior in systems consisting of a
very large number of interacting particles (= atoms or molecules). This is a daunting
task: a glass of water or a piece of iron can easily contain 1023 particles. Still, the
hope is that the macroscopic properties of these particles as a whole can be explained
from the microscopic interactions between them. For instance, we want to explain
why water turns into ice (or vapor) at an appropriate temperature and how this
transition exactly takes place. Similarly, we want to explain why a piece of iron at
low temperature becomes magnetized when it is moved close to a magnet and remains
magnetized after it is moved away from the magnet. We also want to understand why
this does not happen when the temperature is high. For most physical systems the
trajectories of the particles are so chaotic that they cannot be captured by explicit
formulas. A full description would require knowledge of the positions and the speeds
of all the particles at all times, which clearly is hopeless. Yet, we need large numbers
of particles to explain collective phenomena: a single water molecule cannot transit
from water to ice (or vapor).

The way out of this dilemma is offered by statistical physics: for most purposes a
full microscopic description is not necessary: it suffices to have a macroscopic descrip-
tion in terms of a small number of relevant quantities, such as pressure, density and
temperature. In statistical physics, the system is assumed to be a random sample,
drawn from a set of allowed microscopic configurations that are consistent with a set
of given macroscopic constraints. These constraints determine the pressure, density
and temperature of the system. Collective phenomena, such as whether the system
is a solid (ice), a liquid (water) or a gas (vapor), should follow from a combination of
the microscopic interactions and the macroscopic constraints.

A physical system is rarely isolated. Typically, it is part of a larger system, that
in turn is part of an even larger system, etc. For example, the molecules in a glass
of water depend on what is outside the glass. The molecules at the top of the glass
interact with the air above it. This air also contains water molecules, and a lively
exchange takes place close to the surface of the water. We are thus tempted to
believe that, in order to understand what happens inside the glass of water, we need
to model all the molecules around the glass as well, and perhaps even all the molecules
in the room the glass finds itself in. Fortunately, this is not the case, since the water
molecules can only interact over short distances.

Statistical physics deals with the definition of the appropriate probability distri-
bution over the set of allowed microscopic configuration, such as the locations and
the speeds of the particles and how they bounce off each other and the wall of the
container. These distributions need to take the macroscopic constraints into account.
For instance, when the temperature is high the particles move quickly, which should
be reflected in the choice of the probability distribution for the positions and the
speeds. These probability distributions are called, in statistical physics, ensembles.
They were introduced for the first time by Boltzmann [19] and then reformulated

10
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in their modern probabilistic form by Gibbs [54]. Each ensemble describes how the
system interacts with its surroundings and therefore represents a particular physical
situation.

1 The microcanonical ensemble, where hard constraints are placed on both the
energy and the number of particles: both are set to fixed values and are not
allowed to vary.

2 The canonical ensemble, where a soft constraint is placed on the energy of the
particles (in the sense that it may vary but with a fixed average), while a hard
constraint is placed on the number of particles.

3 The grandcanonical ensemble, where both the energy and the number of particles
are soft.

For systems of finite size, the three ensembles lead to different behavior. Therefore,
in practical situations, the choice of ensemble is important and must be based on the
physical situation that is described. In particular, an experimental physicist would use
the microcanonical ensemble to model an isolated system (= a system that exchanges
neither heat nor particles with its surroundings), the canonical ensemble to model
a closed system (= a system that exchanges heat with an "external reservoir", with
which it is in thermal equilibrium, but no particles), and the grandcanonical ensemble
to model an open system (= a system that exchanges both heat and particles with the
external reservoir, with which it is in thermal and chemical equilibrium). Choosing the
wrong ensemble amounts to choosing the wrong microscopic probability distribution
on which the computation of macroscopic quantities is based. For instance, if the
experimental physicist is certain that the system under study does not exchange
particles with its surroundings, then the grandcanonical ensemble is clearly not the
right choice, and it would make the microscopic description of the system more noisy
than is necessary.

§1.2 Equivalence of Ensembles

Statistical physics also deals with the problem of determining whether the ensembles
give the same predictions when the system is very large. Traditionally, in physics
books the three ensembles are assumed to be thermodynamically equivalent : for large
systems fluctuations of macroscopic quantities around their average value are expected
to be small and to be asymptotically vanishing as the number of particles tends to
infinity. In the latter limit, called the thermodynamic limit, the soft constraints
effectively become hard constraints. The assumption of ensemble equivalence dates
back to Gibbs [54] and has been verified for traditional models of physical systems with
short-range microscopic interactions and subject to a small number of macroscopic
constraints. However, ensemble equivalence is not a simple concept. It has to be
defined and studied carefully: depending on the level of description considered it can
take different forms. We will talk about this in more detail in Section 1.3.

11
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The general idea is that ensemble equivalence is convenient because it allows us
to choose any of the three ensembles to work with. Soft constraints often are compu-
tationally easier to work with than hard constraints, which makes the choice of the
canonical ensemble and the grandcanonical ensemble more convenient than that of
the microcanonical ensemble. If ensemble equivalence holds and the system is large
enough, then all three ensembles lead to the same macroscopic outcome for most of
the relevant quantities. However, ensemble equivalence does not hold in general. This
fact is important because, in such a situation, an experimental physicist must make a
careful choice what ensemble to use for modeling the system, even when the system is
large. A wrong choice means a wrong answer to macroscopic questions. Despite the
fact that many textbooks still convey the message that ensemble equivalence holds
for all physical systems, over the last decades various examples of physical systems
have been found for which it breaks down ([85], [86], [87] and [29]).

Thus, breaking of ensemble equivalence means that different choices of ensemble
lead to asymptotically different behavior. Consequently, while for applications based
on ensemble equivalent models the choice of the working ensemble can be arbitrary
and can be based on mathematical convenience, for those based on nonequivalent
models the choice must be dictated by a criterion indicating which ensemble is the
appropriate one to use. This criterion must be based on the a priori knowledge that
is available about the network, i.e., which form of constraint (hard or soft) applies in
practice.

§1.3 Definition of Ensemble Equivalence

In this section we give a brief introduction to the problem of ensemble equivalence. In
his treatise [54], Gibbs argued that, in the so-called thermodynamic limit (when the
number of particles goes to infinity), the microcanonical and the canonical ensemble
become equivalent. Gibbs’s argument was that, when the system is large, the fluctu-
ations of the energy, in the canonical ensemble, become negligible with respect to the
total energy. The canonical ensemble therefore essentially chooses a unique value of
the energy, equal to the energy used to define the microcanonical ensemble. In this
sense the use of the canonical ensemble, instead of the more complicated microcanon-
ical ensemble, is justified and the ensembles are said to be equivalent. In other words,
the equilibrium properties of the system can be described by using either the energy
or the temperature as parameters. This equivalence can be proved in simple cases,
for example, an ideal gas or non-interacting systems.

Many other complex systems have been studied with the help of statistical en-
sembles, which brought physicists to assume that the two ensembles are always equi-
valent ([89, 59, 6, 68, 91]). However more recently systems have been found where
breaking of ensemble equivalence occurs. These examples include models of fluid
turbulence [41], star formation [72] and networks [7, 85, 95].

The problem of ensemble (non)equivalence has been formulated in a more rigorous
manner. Ellis, Haven and Turkington [40] studied two types of (non)equivalence. The
first type is equivalence at the thermodynamic level, that has been studied the most
so far. The second type is equivalence at the macrostate level, introduced in [40].

12
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Another type of equivalence is the equivalence the measure level. Following [97], we
present the problem of ensemble equivalence in these three different forms:

• Thermodynamic equivalence: the microcanonical and the canonical ensemble
are said to be thermodynamically equivalent when the entropy (as a function of
the energy) and the free energy (as a function of the temperature) are one-to-one
related by a Legendre transform.

• Macrostate equivalence: the microcanonical and the canonical ensemble are
said to be macrostate equivalent when the equilibrium values of the macrostate
predicted by the microcanonical ensemble and the equilibrium values of the
macrostate predicted by the canonical ensemble are the same.

• Measure equivalence: the microcanonical and the canonical ensemble are said
to be measure equivalent when the Gibbs distribution defining the canonical en-
semble at the microstate level converges to the distribution defined by Boltzmann’s
equiprobability postulate defining the microcanonical ensemble.

Touchette [97] proves that thermodynamic nonequivalence occurs whenever the mi-
crocanonical entropy function has one or more points of non-concavity and that mac-
rostate and the thermodynamic equivalence are essentially equivalent. Measure equi-
valence is also proved to be equivalent to the other two types of equivalence. The
main conclusion is that the three ‘different’ levels of ensemble equivalence are equi-
valent, whenever the setting is a general particle system, under the assumption that
thermodynamic functions and equilibrium macrostates exists and are defined through
large deviation principles (see [97] for more details).

The physical reason behind ensemble nonequivalence still remains to be clarified
and part of this thesis is to understand some of the hidden mechanisms behind it.
The type of equivalence considered throughout the thesis is that at the measure level.
In the following we give the precise definition of the latter.

§1.3.1 Measure equivalence
Equivalence at the measure level concerns convergence of the canonical ensemble to
the microcanonical ensemble at the microscopic level. In this section we give the
mathematical definition of this type of equivalence and explain the idea behind it.

Relative entropy

P and Q are two discrete probability measures defined on the same space X , with P
absolutely continuous with respect to Q (P � Q). The relative entropy of P with
respect to Q is defined as

S(P |Q) =
∑
i∈X

P (i) ln
P (i)

Q(i)
. (1.1)

The relative entropy S(P |Q) is not a distance (it is not symmetric and does not satisfy
the triangle inequality). However, S(P |Q) is non-negative and equals zero if and only

13
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if P = Q almost everywhere. Moreover, Pinsker’s inequality shows that S(P |Q) is an
upper bound on the total variation distance, namely,

dTV (P,Q) =
1

2

∑
i∈X
|P (i)−Q(i)| ≤

√
S(P |Q). (1.2)

In the case of the microcanonical and the canonical ensemble, defined for anN -particle
system (i.e., see equations (1.6) and (1.9)), we get PNmic � PNcan (but not vice versa).
Therefore, the relative entropy of the microcanonical ensemble with respect to the
canonical ensemble can be computed and takes the form

S(PNmic|PNcan) =
∑
i∈X

PNmic(i) ln
PNmic(i)

PNcan(i)
. (1.3)

The specific relative entropy is defined as the limit

s∞ = lim
N→∞

1

N
S(PNmic|PNcan). (1.4)

1.3.1 Definition (Measure equivalence). The microcanonical and the canonical
ensemble are said to be equivalent at the measure level if

s∞ = 0.

The immediate implication of ensemble equivalence (at the measure level) combined
with Pinsker’s inequality in (1.2) is that the total variation dTV (PNmic, P

N
can) grows

slower than
√
N as N →∞.

§1.4 Statistical Ensembles for Complex Networks

Ensemble (non)equivalence is usually studied for systems in which the Boltzmann dis-
tribution describes a certain physical interaction that is encapsulated in the energy.
However, as already shown by Jaynes [61], the Boltzmann distribution describes much
more general ensembles of systems with given constraints, namely, all solutions to the
maximum-entropy problem of inference from partial information. In what follows we
argue that, for any discrete enumeration problem where we need to count microcanon-
ical configurations compatible with a given constraint, there exists a ‘dual’ problem
involving canonical configurations induced by the same constraint. We define mi-
crocanonical and canonical ensembles for complex networks, and provide examples of
networks that exhibit equivalence and nonequivalence of the ensembles at the measure
level, introduced in Definition 1.3.1. The statistical mechanics approach turns out to
be very powerful in the study of real-world networks, for which a detailed knowledge
of the architecture is typically not available. The way proposed here is to study the
complex networks through a probabilistic description, i.e., statistical ensembles. To
that end the network is assumed to be a random sample drawn from a set of allowed
configurations that are consistent with a set of known topological constraints [95]. In
the following we give a rigorous definition of these statistical ensembles for complex
networks.

14
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§1.4.1 Microcanonical and Canonical Ensemble for
Complex Networks

In Section 1.1 we explained why statistical physics deals with the definition of the
appropriate probability distribution and what are the possible effects this has on the
experiments. Here we consider two of the key choices of probability distribution,
namely:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual configuration).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual configurations may violate the constraints).

(In both ensembles, the entropy ismaximal subject to the given constraints.) We start
by giving the rigorous definitions of the microcanonical and the canonical ensemble
for complex networks.

For n ∈ N, let Gn denote the set of all simple undirected graphs with n nodes.
Any graph G ∈ Gn can be represented as an n× n matrix with elements

gij(G) =

{
1 if there is a link between node i and node j,
0 otherwise.

(1.5)

Let ~C denote a vector-valued function on Gn. Given is a specific value ~C∗, which we
assume to be graphical, i.e., realisable by at least one graph in Gn.
The microcanonical probability distribution on Gn with hard constraint ~C∗ is defined
as

Pmic(G) =

{
Ω−1
~C∗
, if ~C(G) = ~C∗,

0, else,
(1.6)

where
Ω~C∗ = |{G ∈ Gn : ~C(G) = ~C∗}| (1.7)

is the number of graphs that realise ~C∗. The canonical probability distribution Pcan(G)

on Gn is defined as the solution of the maximisation of the entropy

Sn(Pcan) = −
∑
G∈Gn

Pcan(G) lnPcan(G) (1.8)

subject to the normalisation condition
∑
G∈Gn Pcan(G) = 1 and to the soft constraint

〈~C〉 = ~C∗, where 〈·〉 denotes the average w.r.t. Pcan. This gives the formula (see [61])

Pcan(G) =
exp[−H(G, ~θ∗)]

Z(~θ∗)
, (1.9)

where
H(G, ~θ ) = ~θ · ~C(G) (1.10)
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is the Hamiltonian and

Z(~θ ) =
∑
G∈Gn

exp[−H(G, ~θ )] (1.11)

is the partition function. In (1.9) the parameter ~θ must be set equal to the particular
value ~θ∗ that realises 〈~C〉 = ~C∗. This value is unique and maximises the likelihood of
the model given the data (see [51]). We next proceed with the equivalence definition
of the ensembles.

§1.4.2 αn-Equivalence of Ensembles
In order to define the equivalence at the measure level for complex networks, we follow
[92, 48, 50] and define the relative entropy of Pmic w.r.t. Pcan as

Sn(Pmic | Pcan) =
∑
G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
, (1.12)

and the αn-relative entropy as [50]

sαn = αn
−1 Sn(Pmic | Pcan), (1.13)

where αn is a scale parameter. The limit of the relative entropy αn-density is defined
as

sα∞ ≡ lim
n→∞

sαn = lim
n→∞

αn
−1 Sn(Pmic | Pcan) ∈ [0,∞]. (1.14)

We say that the microcanonical and the canonical ensemble are equivalent on scale
αn if and only if

sα∞ = 0. (1.15)

This is a generalization of the standard measure equivalence definition given in Section
1.3.1. In fact, for complex networks, a specific parameter corresponding to the number
of particles (the volume of the system) does not exist. For example, we could decide to
use the number of nodes n as the parameter representing the volume of the system. On
the other hand, we could also use the number of edges

(
n
2

)
, or even other n dependent

factors instead. It becomes clear that computing the specific relative entropy, i.e.,
dividing by the number n of particles, does not have a precise meaning in the context
of complex networks. This is the main reason why we choose to be general and use
a parameter αn. The choice of the scale αn at which we check for (non)equivalence
in this thesis is flexible and depends on the number of nodes n, on the constraint at
hand and on its value as well. Indeed, we consider different choices of αn for different
models. In certain cases, we in fact prefer to reverse the point of view and look for
the ‘natural’ or ‘critical’ scale αn at which sα∞ is positive and finite. This second
approach allows us to immediately conclude that the ensembles are βn-equivalent for
all βn = ω(αn) and nonequivalent when βn = Ω(αn). For instance, if the constraint
is on the degree sequence, then in the sparse regime the critical scale turns out to be
αn = n [92], [48] (in which case sα∞ is the specific relative entropy ‘per vertex’), while
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in the dense regime it turns out to be αn = n log n [50]. For more details, see Section
1.5 for the sparse regime and Section 1.6 for the dense regime. On the other hand,
if the constraint is on the total numbers of edges and triangles, with values different
from what is typical for the Erdős-Renyi random graph in the dense regime, then the
critical scale turns out to be αn = n2 [38] (in which case sα∞ is the specific relative
entropy ‘per edge’). This is discussed in more detail in Section 1.8.

Before considering specific cases, we recall an important observation made in [92].
The definition of H(G, ~θ ) ensures that, for any G1, G2 ∈ Gn, Pcan(G1) = Pcan(G2)

whenever ~C(G1) = ~C(G2) (i.e., the canonical probability is the same for all graphs
having the same value of the constraint). We may therefore rewrite (1.12) as

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
, (1.16)

where G∗ is any graph in Gn such that ~C(G∗) = ~C∗ (recall that we have assumed that
~C∗ is realisable by at least one graph in Gn). The definition in (1.14) then becomes

sα∞ = lim
n→∞

αn
−1
[

logPmic(G∗)− logPcan(G∗)
]
, (1.17)

which shows that breaking of ensemble equivalence coincides with Pmic(G∗) and
Pcan(G∗) having different large deviation behavior on scale αn. (This is perfectly
in line with what was discussed in Section 1.3). Note that (1.17) involves the mi-
crocanonical and canonical probabilities of a single configuration G∗ realising the
hard constraint. Apart from its theoretical importance, this fact greatly simplifies
mathematical calculations.

To analyse breaking of ensemble equivalence, ideally we would like to be able
to identify an underlying large deviation principle on a natural scale αn. This is
generally difficult, and so far has only been achieved in the dense regime with the
help of graphons. See [38] and Section 1.8 to understand why.

§1.5 Summary of Chapter 2

While there is consensus that nonequivalence occurs when the microcanonical specific
entropy is non-concave as a function of the energy density in the thermodynamic limit,
the classification of the physical mechanisms at the origin of nonequivalence is still
open. A possible and natural mechanism is the presence of long-range interactions.
Similarly, phase transitions are naturally associated with long-range order. These
“standard mechanisms” for ensemble nonequivalence have been documented also in
the study of random graphs.

In Chapter 2 we study certain classes of unipartite networks [92], and show that
ensemble nonequivalence can manifest itself via an additional, novel mechanism, un-
related to non-additivity or phase transitions: namely, the presence of an extensive
number of local topological constraints, i.e., the degrees and/or the strengths (for
weighted graphs) of all nodes.1 This finding explains previously documented sig-
natures of nonequivalence in random graphs with local constraints, such as a finite

1While in binary (i.e., simple) graphs the degree of a node is defined as the number of edges
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difference between the microcanonical and the canonical entropy densities [1] and the
non-vanishing of the relative fluctuations of the constraints [95]. How generally this
result holds beyond the specific uni-partite and bi-partite cases considered so far re-
mains an open question. By considering a much more general class of random graphs
with a variable number of constraints, we confirm that the presence of an extens-
ive number of local topological constraints breaks ensemble equivalence, even in the
absence of phase transitions or non-additivity.

We start from the characterization of nonequivalence in the simple cases of uni-
partite and bi-partite graphs already explored in [92], and subsequently move on to
a very general class of graphs with an arbitrary multilayer structure and tunable
intra-layer and inter-layer connectivity. The main theorems proved, which (mostly)
concern the sparse regime, not only characterize nonequivalence qualitatively, they also
provide a quantitative formula for the specific relative entropy. We discuss various
important implications of our results, describing properties that are fully general, but
also focusing on several special cases of empirical relevance. In addition, we provide
an interpretation of the specific relative entropy formula in terms of Poissonisation of
the degrees. We also discuss the implications of our results for the study of several
empirically relevant classes of “modular” networks that have recently attracted interest
in the literature, such as networks with a so-called multi-partite, multiplex [16], time-
varying [58], block-model [57], [62] or community structure [43], [84].

§1.6 Summary of Chapter 3

In Chapter 3 we take a fresh look at breaking of ensemble equivalence by analyzing a
formula for the relative entropy, based on the covariance structure of the canonical en-
semble, recently put forward by Squartini and Garlaschelli [93]. We consider the case
of a random graph with a given degree sequence (configuration model) and show that
the formula correctly predicts that the specific relative entropy is determined by the
scaling of the determinant of the covariance matrix of the constraints in the so called
δ-tame dense regime, while it requires an extra correction term in the sparse regime
and the ultra-dense regime. We also show that the different behaviors found in the
different regimes correspond to the degrees being asymptotically Gauss in the dense
regime and asymptotically Poisson in the sparse regime, and the dual degrees being
asymptotically Poisson in the ultra-dense regime. We also show that, in general, in
the canonical ensemble the degrees are distributed according to a multivariate version
of the Poisson-Binomial distribution [100], which admits the Gauss distribution and
the Poisson distribution as limits in appropriate regimes.

incident to that node, in weighted graphs (i.e., graphs where edges can carry weights) the strength
of a node is defined as the total weight of all the edges incident to that node. In Chapter 2, we focus
on binary graphs only.
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§1.7 Summary of Chapter 4

In Chapters 2 and 3 breaking of ensemble equivalence between the microcanonical
ensemble and the canonical ensemble is shown to occur when the constraint is put
on the degree sequence (configuration model). In this case the constraint becomes
a function of the number n of nodes and we can therefore ask an interesting ques-
tion: How is the relative entropy affected when the number of constraints is reduced,
possibly in a way that depends on n?

In Chapter 4 we answer this question by analyzing the effect on the relative en-
tropy when the number of constraints is reduced, i.e., when only part of the nodes
are constrained degree (and the remaining nodes are left unconstrained). Intuitively,
the relative entropy is expected to decrease as the number of constraints decreases.
However, this is not a trivial issue, because when the number of constraints is reduced
both the microcanonical ensemble and the canonical ensemble change. We consider
random graphs with a prescribed partial degree sequence (reduced constraint). The
breaking of ensemble equivalence is studied by analyzing how the relative entropy
changes as a function of the number of constraints. In particular it is shown that the
relative entropy is a monotone function in the number of constraints at the macro-
scopic level, i.e., when a positive fraction of the constraints is removed. More precisely,
when only m nodes are constrained and the remaining n−m nodes are unconstrained,
the relative entropy turns out to grow like m log n as n→∞.

Our analysis is based on a recent formula put forward by Squartini and Gar-
laschelli [93]. This formula predicts that the relative entropy is determined by the
covariance matrix of the constraints in the canonical ensemble, in the regime where the
graph is dense. Our result implies that ensemble equivalence breaks down whenever
the dense regime is δ-tame, irrespective of the number of degrees m that are con-
strained, provided m is not too close to n. It is further shown that the expression
of the relative entropy corresponds, in the dense regime, to the degrees in the mi-
crocanonical ensemble being asymptotically multivariate Dirac and in the canonical
ensemble being asymptotically Gauss.

§1.8 Summary of Chapter 5

In Chapter 5 we analyze breaking of ensemble equivalence for the case in which
topological constraints are imposed not only on the total number of edges but also
on the total number of wedges, triangles, etc. We work in the dense regime, in which
the number of edges per vertex scales proportionally with the number of vertices n.
We compute the relative entropy of the two ensembles in the limit as n goes to ∞,
where the two ensembles are said to be equivalent if this relative entropy divided by
n2 tends to zero (which, up to a constant, can be interpreted as the relative entropy
per edge). In particular, we show that the relative entropy divided by n2 tends to
s∞ > 0 when the constraints are frustrated. We base our analysis on a large deviation
principle for graphons and we provide results for three different choices of constraints.
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In Chapter 5 we considered a random graph subject to constraints on the total number
of edges and the total number of triangles, in the dense regime. With the help
of large deviation theory for graphons, we derived a variational formula for s∞ =

limn→∞ n−2sn, where n is the number of vertices and sn is the relative entropy of the
microcanonical ensemble with respect to the canonical ensemble. In Chapter 6 we
analyze the behavior of s∞ when the constraints are close to but different from those
of the Erdős-Rényi random graph. It turns out that the behavior changes when the
total number of triangles is larger, respectively, smaller than that of the Erdős-Rényi
random graph with a given total number of edges. In particular, we find that s∞ > 0

when the constraints are frustrated, i.e., T ∗2 6= T ∗31 with T ∗1 the edge density and T ∗2
the triangle density. The Erdős-Rényi random graph corresponds to T ∗2 = T ∗31 , for
which s∞ = 0. We identify the scaling behavior of s∞ for fixed T ∗1 and T ∗2 ↓ T ∗31 ,
respectively, T ∗2 ↑ T ∗31 , and prove that the way in which s∞ tends to zero is different
for the two limits. We also identify what the constrained random graph asymptotically
looks like in the microcanonical ensemble.

§1.10 Development of the chapters

This thesis presents new results about breaking of ensemble equivalence for complex
networks. Chapter 2 investigates the role of the number of constraints in the breaking
of ensemble equivalence phenomenon. Chapter 2 continues and generalizes the work
in [92] and shows that nonequivalence occurs in the presence of an extensive number
of topological constraints. Chapter 2 first considers the class of unipartite graphs with
the constraint on the degree sequence, in the sparse regime. After that, results are
extended to the class of bipartite graphs, and to more complicated classes of graphs
with a modular structure. The dense regime is investigated in Chapter 3, where a
formula of the relative entropy based on the covariance structure of the canonical
ensemble, recently put forward by Garlaschelli and Squartini [93], is confirmed. The
study of the configuration model is continued in Chapter 4, where a different question
is answered. While extensivity of the number of constraints in the number of nodes
was shown to play a crucial role in the phenomenon of breaking of ensemble equival-
ence, it remains an open question how reduction of the number of constraints affects
this phenomenon. Chapter 4 analyzes the effect on the relative entropy when the
number of constraint is reduced. It shows that, under certain hypothesis, breaking of
ensemble equivalence is monotone in the number of constraints.

Chapters 5 and 6 conclude this thesis with a study of dense graphs with con-
straints on subgraph structures. In Chapter 5 breaking of ensemble equivalence is
analyzed for the case of topological constraints on the number of edges and differ-
ent subgraphs (wedges, triangles, etc.) at the same time. Here a large deviation
principle for graphons is used to prove that breaking of ensemble equivalence occurs
whenever the constraints are frustrated. Chapter 6 is a continuation of Chapter 5,
for the case where the constraints are on the number of edges and triangles at the
same time. In particular, constraints are chosen to be close to, but different from, the
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so called Erdős-Rényi line. It turns out that when the total number of triangles is
larger or smaller then the total number of edges, the behavior of the relative entropy
is completely different.

§1.11 Conclusions and Open Problems

In this thesis we analyze breaking of ensemble equivalence for Complex Networks with
different types of constraints and in different regimes. The main conclusion of Chapter
2 and 3 is that the physical mechanism behind breaking of ensemble equivalence seems
to be the extensivity of the number of constraints. In fact, both in the sparse and
in the dense regime, the ensembles are shown to be non-equivalent whenever the
the number of constraints grows extensively with the number of nodes. Moreover,
Chapter 4 shows how breaking of ensemble equivalence reduces as the number of
constrained nodes is reduced. On the other hand, Chapter 5 and 6 show a completely
different mechanism behind breaking of ensemble equivalence, namely, frustration of
the constraints. In the specific case where the constraint is on the number of edges and
the number of triangles, the canonical ensemble scales like an Erdős-Rényi random
graph with an appropriate edge density, but the microcanonical ensemble does not.

We conclude this introductory chapter with a number of open problems that can
serve as a starting point for a future study of breaking of ensemble equivalence phe-
nomenon in complex networks.

1 Meaning of (non)equivalence

In this thesis we analyze breaking of ensemble equivalence at the measure level,
i.e., we study the limit of the αn-relative entropy (1.17) for different constraints,
for different regimes and for different values of αn. One consequence of αn-
equivalence can be derived through (1.2), also known as Pinsker’s inequality.
This relates a pseudo distance (the relative entropy) to a distance (the total
variation distance) and implies that, whenever the ensembles are αn-equivalent,
the total variation distance between the microcanonical and the canonical en-
semble does not grow faster than

√
αn. On the other hand, Pinsker’s inequality

does not provide full information about what nonequivalence means for typical
quantities characterizing the network. It would be interesting to understand
what nonequivalence translates into for simulations of real-world networks.

2 Monotonicity of the relative entropy in the number of constraints

In Chapter 4 we analyze the effect on the breaking of ensemble equivalence
when the number of constraints is reduced, i.e., when only part of the nodes are
constrained in their degree (and the remaining nodes are left unconstrained).
We find that the relative entropy is a monotone function in the number of
constraints when a positive fraction of the constraints is removed.

a The result of Chapter 4 is based on a formula recently put forward by
Squartini and Garlaschelli (see [93], which provides compelling evidence
but not a rigorous proof). It would be interesting to prove the monotonicity
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property for the relative entropy in a way that does not depend on this
formula and possibly for different regimes and other types of constraints
as well.

b Chapter 4 analyzes the relative entropy at a macroscopic level, but nothing
is said about the microscopic level. More precisely, it would be interesting
to understand how the relative entropy changes when a single constraint is
removed, rather than a positive fraction of constraints. For example, what
is the effect when the longest degree is removed? Is the effect the same or
not when we decide to remove the smallest degree, or any other degree for
that matter?

3 Functions of the constraints

In this thesis we analyze breaking of ensemble equivalence for a few specific
types of constraint. The constraint is put on the number of edges in Chapter
2 and on the degree sequence in Chapters 3 and 4. In Chapter 5 and 6 the
constraint is put on the number of edges and the number of triangles. It would
be interesting to have a theorem proving the (non)equivalence of ensembles for
general types of constraint, and possibly for general functions of the constraints
as well.
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CHAPTER 2
Ensemble Nonequivalence in

Random Graphs with Modular
Structure

This chapter is based on:
D. Garlaschelli, F. den Hollander, and A. Roccaverde. Ensemble nonequivalence in
random graphs with modular structure. J. Phys. A, 50(1):015001, 35, 2017

Abstract

Breaking of equivalence between the microcanonical ensemble and the canonical en-
semble, describing a large system subject to hard and soft constraints, respectively,
was recently shown to occur in large random graphs. Hard constraints must be met
by every graph, soft constraints must be met only on average, subject to maximal
entropy. In Squartini, de Mol, den Hollander and Garlaschelli (2015) it was shown
that ensembles of random graphs are nonequivalent when the degrees of the nodes
are constrained, in the sense of a non-zero limiting specific relative entropy as the
number of nodes diverges. In that paper, the nodes were placed either on a single
layer (uni-partite graphs) or on two layers (bi-partite graphs). In the present pa-
per we consider an arbitrary number of intra-connected and inter-connected layers,
thus allowing for modular graphs with a multi-partite, multiplex, time-varying, block-
model or community structure. We give a full classification of ensemble equivalence
in the sparse regime, proving that breakdown occurs as soon as the number of local
constraints (i.e., the number of constrained degrees) is extensive in the number of
nodes, irrespective of the layer structure. In addition, we derive an explicit formula
for the specific relative entropy and provide an interpretation of this formula in terms
of Poissonisation of the degrees.
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§2.1 Introduction and main results

§2.1.1 Background and outline
For systems with many interacting components a detailed microscopic description is
infeasible and must be replaced by a probabilistic description, where the system is
assumed to be a random sample drawn from a set of allowed microscopic configura-
tions that are consistent with a set of known macroscopic properties, referred to as
constraints. Statistical physics deals with the definition of the appropriate probability
distribution over the set of microscopic configurations and with the calculation of the
resulting macroscopic properties of the system. The three main choices of probability
distribution are: (1) the microcanonical ensemble, where the constraints are hard (i.e.,
are satisfied by each individual configuration); (2) the canonical ensemble, where the
constraints are soft (i.e., hold as ensemble averages, while individual configurations
may violate the constraints); (3) the grandcanonical ensemble, where also the number
of components is considered as a soft constraint.

For systems that are large but finite, the three ensembles are obviously differ-
ent and, in fact, represent different physical situations: (1) the microcanonical en-
semble models completely isolated systems (where both the energy and the number
of particles are “hard”); (2) the canonical ensemble models closed systems in thermal
equilibrium with a heat bath (where the energy is “soft” and the number of particles
is “hard”); (3) the grandcanonical ensemble models open systems in thermal and
chemical equilibrium (where both the energy and the number of particles are “soft”).
However, in the limit as the number of particles diverges, the three ensembles are tra-
ditionally assumed to become equivalent as a result of the expected vanishing of the
fluctuations of the soft constraints, i.e., the soft constraints are expected to become
asymptotically hard. This assumption of ensemble equivalence, which dates back to
Gibbs [53], has been verified in traditional models of physical systems with short-
range interactions and a finite number of constraints, but it does not hold in general.
Nonetheless, equivalence is considered to be one of the pillars of statistical physics
and underlies many of the results that contribute to our current understanding of
large real-world systems.

Despite the fact that many textbooks still convey the message that ensemble equi-
valence holds for all systems, as some sort of universal asymptotic property, over the
last decades various examples have been found for which it breaks down. These ex-
amples range from astrophysical processes [73], [96], [56], [72], [32], quantum phase
separation [15], [8], [98], nuclear fragmentation [35], and fluid turbulence [40], [41].
Across these examples, the signatures of ensemble nonequivalence differ, which calls
for a rigorous mathematical definition of ensemble (non)equivalence: (i) thermody-
namic equivalence refers to the existence of an invertible Legendre transform between
the microcanonical entropy and canonical free energy [98]; (ii) macrostate equivalence
refers to the equivalence of the canonical and microcanonical sets of equilibrium val-
ues of macroscopic properties [98]; (iii) measure equivalence refers to the asymptotic
equivalence of the microcanonical and canonical probability distributions in the ther-
modynamic limit, i.e., the vanishing of their specific relative entropy [97]. The latter
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reference reviews the three definitions and shows that, under certain hypotheses, they
are identical.

In the present paper we focus on the equivalence between microcanonical and ca-
nonical ensembles, although nonequivalence can in general involve the grandcanonical
ensemble as well [106]. While there is consensus that nonequivalence occurs when the
microcanonical specific entropy is non-concave as a function of the energy density in
the thermodynamic limit, the classification of the physical mechanisms at the origin of
nonequivalence is still open. In most of the models studied in the literature, nonequi-
valence appears to be associated with the non-additivity of the energy of the subparts
of the system or with phase transitions [23], [24], [97]. A possible and natural mech-
anism for non-additivity is the presence of long-range interactions. Similarly, phase
transitions are naturally associated with long-range order. These “standard mechan-
isms” for ensemble nonequivalence have been documented also in the study of random
graphs. In [7], a Potts model on a random regular graph is studied in both the mi-
crocanonical and canonical ensemble, where the microscopic configurations are the
spin configurations (not the configurations of the network itself). It is found that the
long-range nature of random connections, which makes the model non-additive and
the microcanonical entropy non-concave, ultimately results in ensemble nonequival-
ence. In [85], [86], [87] and [29], random networks with given densities of edges
and triangles are considered, and phase transitions characterised by jumps in these
densities are found, with an associated breaking of ensemble equivalence (where the
microscopic configurations are network configurations).

Recently, the study of certain classes of uni-partite and bi-partite random graphs
[92], [47] has shown that ensemble nonequivalence can manifest itself via an additional,
novel mechanism, unrelated to non-additivity or phase transitions: namely, the pres-
ence of an extensive number of local topological constraints, i.e., the degrees and/or
the strengths (for weighted graphs) of all nodes.1 This finding explains previously
documented signatures of nonequivalence in random graphs with local constraints,
such as a finite difference between the microcanonical and canonical entropy densities
[1] and the non-vanishing of the relative fluctuations of the constraints [95]. How
generally this result holds beyond the specific uni-partite and bi-partite cases con-
sidered so far remains an open question, on which we focus in the present paper. By
considering a much more general class of random graphs with a variable number of
constraints, we confirm that the presence of an extensive number of local topological
constraints breaks ensemble equivalence, even in the absence of phase transitions or
non-additivity.

The remainder of our paper is organised as follows. In Section 2.1.2 we give the
definition of measure equivalence and, following [92], show that it translates into a
simple pointwise criterion for the large deviation properties of the microcanonical
and canonical probabilities. In Section 2.1.3 we introduce our main theorems in
pedagogical order, starting from the characterisation of nonequivalence in the simple

1While in binary (i.e., simple) graphs the degree of a node is defined as the number of edges
incident to that node, in weighted graphs (i.e., graphs where edges can carry weights) the strength
of a node is defined as the total weight of all edges incident to that node. In this paper, we focus on
binary graphs only.
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cases of uni-partite and bi-partite graphs already explored in [92], and subsequently
moving on to a very general class of graphs with arbitrary multilayer structure and
tunable intra-layer and inter-layer connectivity. Our main theorems, which (mostly)
concern the sparse regime, not only characterise nonequivalence qualitatively, they
also provide a quantitative formula for the specific relative entropy. In Section 2.2
we discuss various important implications of our results, describing properties that
are fully general but also focussing on several special cases of empirical relevance. In
addition, we provide an interpretation of the specific relative entropy formula in terms
of Poissonisation of the degrees. We also discuss the implications of our results for the
study of several empirically relevant classes of “modular” networks that have recently
attracted interest in the literature, such as networks with a so-called multi-partite,
multiplex [16], time-varying [58], block-model [57], [62] or community structure [43],
[84]. In Section 2.3, finally, we provide the proofs of our theorems.

In future work we will address the dense regime, which requires the use of graphons.
In that regime we expect nonequivalence to persist, and in some cases become even
more pronounced.

§2.1.2 Microcanonical ensemble, canonical ensemble,
relative entropy

For n ∈ N, let Gn denote the set of all simple undirected graphs with n nodes.
Let G]n ⊆ Gn be some non-empty subset of Gn, to be specified later. Informally, the
restriction from Gn to G]n allows us to forbid the presence of certain links, in such a way
that the n nodes are effectively partitioned intoM ∈ N groups of nodes (or “layers”) of
sizes n1, . . . , nM with

∑M
i=1 ni = n. This restriction can be made explicit and rigorous

through the definition of a superstructure, which we call the master graph, that will
be introduced later. A given choice of G]n corresponds to the selection of a specific
class of multilayer graphs with desired intra-layer and inter-layer connectivity, such
as graphs with a multipartite, multiplex, time-varying, block-model or community
structure. In the simplest case, G]n = Gn, which reduces to the ordinary choice of
uni-partite (single-layer) graphs. This example, along with various more complicated
examples, is considered explicitly later on.

In general, any graph G ∈ G]n can be represented as an n×n matrix with elements

gi,j(G) =

{
1 if there is a link between node i and node j,
0 otherwise.

(2.1)

Let ~C denote a vector-valued function on G]n. Given a specific value ~C∗, which we
assume to be graphic, i.e., realisable by at least one graph in G]n, the microcanonical
probability distribution on G]n with hard constraint ~C∗ is defined as

Pmic(G) =

{
1/Ω~C∗ , if ~C(G) = ~C∗,
0, else,

(2.2)

where
Ω~C∗ = |{G ∈ G]n : ~C(G) = ~C∗}| > 0 (2.3)
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is the number of graphs that realise ~C∗. The canonical probability distribution Pcan(G)

on G]n is defined as the solution of the maximisation of the entropy

Sn(Pcan) = −
∑

G∈G]n

Pcan(G) lnPcan(G) (2.4)

subject to the soft constraint 〈~C〉 = ~C∗, where 〈·〉 denotes the average w.r.t. Pcan,
and subject to the normalisation condition

∑
G∈G]n Pcan(G) = 1. This gives

Pcan(G) =
exp[−H(G, ~θ∗)]

Z(~θ∗)
, (2.5)

where
H(G, ~θ) = ~θ · ~C(G) (2.6)

is the Hamiltonian (or energy) and

Z(~θ ) =
∑

G∈G]n

exp[−H(G, ~θ )] (2.7)

is the partition function. Note that in (2.5) the parameter ~θ must be set to the
particular value ~θ∗ that realises 〈~C〉 = ~C∗. This value also maximises the likelihood
of the model, given the data [51].

It is worth mentioning that, in the social network analysis literature [25], maximum-
entropy canonical ensembles of graphs are traditionally known under the name of Ex-
ponential Random Graphs (ERGs). Indeed, many of the examples of canonical graph
ensembles that we will consider in this paper, or variants thereof, have been studied
previously as ERG models of social networks. Recently, ERGs have also entered the
physics literature [1], [2], [14], [81], [94], [95], [74], [45] ,[46], [62], [44], [82], [13] because
of the wide applicability of techniques from statistical physics for the calculation of
canonical partition functions. We will refer more extensively to these models, and to
the empirical situations for which they have been proposed, in Section 2.2.2. Apart
for a few exceptions [1], [82], [92], these previous studies have not addressed the prob-
lem of ensemble (non)equivalence of ERGs. The aim of the present paper is to do so
exhaustively, and in a mathematically rigorous way, via the following definitions.

The relative entropy of Pmic w.r.t. Pcan is

Sn(Pmic | Pcan) =
∑

G∈G]n

Pmic(G) ln
Pmic(G)

Pcan(G)
, (2.8)

and the specific relative entropy is

sn = n−1 Sn(Pmic | Pcan). (2.9)

Following [97], [92], we say that the two ensembles are measure equivalent if and only
if their specific relative entropy vanishes in the thermodynamic limit n→∞, i.e.,

s∞ = lim
n→∞

n−1 Sn(Pmic | Pcan) = 0. (2.10)
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It should be noted that, for a given choice of G]n and ~C, there may be different
ways to realise the thermodynamic limit, corresponding to different ways in which
the numbers {ni}Mi=1 of nodes inside the M layers grow relatively to each other. So,
(2.10) implicitly requires an underlying specific definition of the thermodynamic limit.
Explicit examples will be considered in each case separately, and certain different
realisations of the thermodynamic limit will indeed be seen to lead to different results.
With this in mind, we suppress the n-dependence from our notation of quantities like
G, ~C, ~C∗, Pmic, Pcan, H, Z. When letting n→∞ it will be understood that G ∈ G]n
always.

Before considering specific cases, we recall an important observation made in [92].
The definition of H(G, ~θ ) ensures that, for any G1,G2 ∈ G]n, Pcan(G1) = Pcan(G2)

whenever ~C(G1) = ~C(G2) (i.e., the canonical probability is the same for all graphs
having the same value of the constraint). We may therefore rewrite (2.8) as

Sn(Pmic | Pcan) = ln
Pmic(G∗)

Pcan(G∗)
, (2.11)

where G∗ is any graph in G]n such that ~C(G∗) = ~C∗ (recall that we have assumed
that ~C∗ is realisable by at least one graph in G]n). The condition for equivalence in
(2.10) then becomes

lim
n→∞

n−1
[

lnPmic(G∗)− lnPcan(G∗)
]

= 0, (2.12)

which shows that the breaking of ensemble equivalence coincides with Pmic(G∗) and
Pcan(G∗) having different large deviation behaviour. Importantly, this condition is
entirely local, i.e., it involves the microcanonical and canonical probabilities of a single
configuration G∗ realising the hard constraint. Apart from its theoretical importance,
this fact greatly simplifies mathematical calculations. Note that (2.12), like (2.10),
implicitly requires a specific definition of the thermodynamic limit. For a given choice
of G]n and ~C, different definitions of the thermodynamic limit may result either in
ensemble equivalence or in ensemble nonequivalence.

§2.1.3 Main Theorems (Theorems 2.1.1-2.1.10)
Most of the constraints that will be considered below are extensive in the number of
nodes.

Single layer: uni-partite graphs

The first class of random graphs we consider is specified by M = 1 and G]n = Gn.
This choice corresponds to the class of (simple and undirected) uni-partite graphs,
where links are allowed between each pair of nodes. We can think of these graphs as
consisting of a single layer of nodes, inside which all links are allowed. Note that in
this simple case the thermodynamic limit n → ∞ can be realised in a unique way,
which makes (2.10) and (2.12) already well-defined.
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Constraints on the degree sequence. For a uni-partite graph G ∈ Gn, the degree
sequence is defined as ~k(G) = (ki(G))ni=1 with ki(G) =

∑
j 6=i gi,j(G). In what follows

we constrain the degree sequence to a specific value ~k∗, which (in accordance with
our aforementioned general prescription for ~C∗) we assume to be graphical, i.e., there
is at least one graph with degree sequence ~k∗. The constraints are therefore

~C∗ = ~k∗ = (k∗i )ni=1 ∈ Nn0 , (2.13)

where N0 = N∪{0} with N = {1, 2, . . .}. This class is also known as the configuration
model ([11], [18], [77], [78], [33], [95]; see also [99, Chapter 7]). In [92] the breaking of
ensemble equivalence was studied in the sparse regime defined by the condition

m∗ = max
1≤i≤n

k∗i = o(
√
n). (2.14)

Let P(N0) denote the set of probability distributions on N0. Let

fn = n−1
n∑
i=1

δk∗i ∈ P(N0), (2.15)

be the empirical degree distribution, where δk denotes the point measure at k. Suppose
that there exists a degree distribution f ∈ P(N0) such that

lim
n→∞

‖fn − f‖`1(g) = 0, (2.16)

where g : N0 → [0,∞) is given by

g(k) = log

(
k!

kke−k

)
, k ∈ N0, (2.17)

and `1(g) is the vector space of functions h : Z→ R with ‖h‖`1(g) =
∑
k∈N0

|h(k)|g(k) <

∞. For later use we note that

g(0) = 0, k 7→ g(k) is strictly increasing, g(k) = 1
2 log(2πk)+O(k−1), k →∞.

(2.18)

2.1.1 Theorem. Subject to (2.13)–(2.14) and (2.16), the specific relative entropy
equals

s∞ = ‖f‖`1(g) > 0. (2.19)

Thus, when we constrain the degrees we break the ensemble equivalence.

2.1.2 Remark. It is known that ~k∗ is graphical if and only if
∑n
i=1 k

∗
i is even and

j∑
i=1

k∗i ≤ j(j − 1) +

n∑
i=j+1

min(j, k∗i ), j = 1, . . . , n− 1. (2.20)

In [5], the case where k∗i , i ∈ N, are i.i.d. with probability distribution f is considered,
and it is shown that

lim
n→∞

f⊗n
(

(k∗1 , . . . , k
∗
n) is graphical

∣∣∣ n∑
i=1

k∗i is even
)

= 1 (2.21)
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as soon as f satisfies 0 <
∑
k even f(k) < 1 and limn→∞ n

∑
k≥n f(k) = 0. (The latter

condition is slightly weaker than the condition
∑
k∈N0

kf(k) < ∞.) In what follows
we do not require the degrees to be drawn in this manner, but when we let n → ∞
we always implicitly assume that the limit is taken within the class of graphical degree
sequences.

2.1.3 Remark. A different yet similar definition of sparse regime, replacing (2.14),
is given in van der Hofstad [99, Chapter 7]. This condition is formulated in terms
of bounded second moment of the empirical degree distribution fn in the limit as
n→∞. Theorem 2.1.1 carries over.

Constraints on the total number of links only. We now relax the constraints,
and fix only the total number of links L(G) = 1

2

∑n
i=1 ki(G). The constraint therefore

becomes
~C∗ = L∗. (2.22)

It should be note that in this case, the canonical ensemble coincides with the Erdős-
Rényi random graph model, where each pair of nodes is independently connected
with the same probability. As shown in [1], [92], in this case the usual result that the
ensembles are asymptotically equivalent holds.

2.1.4 Theorem. Subject to (2.22), the specific relative entropy equals s∞ = 0.

Two layers: bi-partite graphs

The second class of random graphs we consider are bi-partite graphs. Here M = 2

and nodes are placed on two (non-overlapping) layers (say, top and bottom), and
only links across layers are allowed. Let Λ1 and Λ2 denote the sets of nodes in
the top and bottom layer, respectively. The set of all bi-partite graphs consisting of
n1 = |Λ1| nodes in the top layer and n2 = |Λ2| nodes in the bottom layer is denoted by
G]n = Gn1,n2

⊂ Gn. Bi-partiteness means that, for all G ∈ Gn1,n2
, we have gi,j(G) = 0

if i, j ∈ Λ1 or i, j ∈ Λ2.
In a bipartite graph G ∈ Gn1,n2

, we define the degree sequence of the top layer
as ~k1→2(G) = (ki(G))i∈Λ1 , where ki(G) =

∑
j∈Λ2

gi,j(G). Similarly, we define the
degree sequence of the bottom layer as ~k2→1(G) = (k′i(G))i∈Λ2 , where k′i(G) =∑
j∈Λ1

gi,j(G). The symbol s → t highlights the fact that the degree sequence of
layer s is built from links pointing from Λs to Λt (s, t = 1, 2). The degree sequences
~k1→2(G) and ~k2→1(G) are related by the condition that they both add up to the total
number of links L(G):

L(G) =
∑
i∈Λ1

ki(G) =
∑
j∈Λ2

k′j(G). (2.23)

Constraints on the top and the bottom layer. We first fix the degree sequence
on both layers, i.e., we constrain ~k1→2(G) and ~k2→1(G) to the values ~k∗1→2 = (k∗i )i∈Λ1

and ~k∗2→1 = (k′∗i )i∈Λ2 respectively. The constraints are therefore

~C∗ = {~k∗1→2,
~k∗2→1}. (2.24)
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As mentioned before, we allow n1 and n2 to depend on n, i.e., n1 = n1(n) and
n2 = n2(n). In order not to overburden the notation, we suppress the dependence on
n from the notation.

We abbreviate

m∗ = max
i∈Λ1

k∗i , m′∗ = max
j∈Λ2

k′∗j ,

f
(n1)
1→2 = n1

−1
∑
i∈Λ1

δk∗i , f
(n2)
2→1 = n2

−1
∑
j∈Λ2

δk′∗j ,
(2.25)

and assume the existence of

A1 = lim
n→∞

n1

n1 + n2
, A2 = lim

n→∞

n2

n1 + n2
. (2.26)

(This assumption is to be read as follows: choose n1 = n1(n) and n2 = n2(n) in such
a way that the limiting fractions A1 and A2 exist.) The sparse regime corresponds to

m∗m′∗ = o(L∗2/3), n→∞. (2.27)

We further assume that there exist f1→2, f2→1 ∈ P(N0) such that

lim
n→∞

‖f (n1)
1→2 − f1→2‖`1(g) = 0, lim

n→∞
‖f (n2)

2→1 − f2→1‖`1(g) = 0. (2.28)

The specific relative entropy is

sn1+n2
=
Sn1+n2

(Pmic | Pcan)

n1 + n2
. (2.29)

2.1.5 Theorem. Subject to (2.24) and (2.26)–(2.28),

s∞ = lim
n→∞

Sn1+n2(Pmic | Pcan)

n1 + n2
= A1 ‖f1→2‖`1(g) +A2 ‖f2→1‖`1(g). (2.30)

Since A1 +A2 = 1, it follows that s∞ > 0, so in this case ensemble equivalence never
holds.

Constraints on the top layer only. We now partly relax the constraints and only
fix the degree sequence ~k1→2(G) to the value

~C∗ = ~k∗1→2 =
(
k∗i
)
i∈Λ1

, (2.31)

while leaving ~k2→1(G) unspecified (apart for the condition (2.23)). The microcanon-
ical number of graphs satisfying the constraint is

Ω~k∗1→2
=
∏
i∈Λ1

(
n2

k∗i

)
. (2.32)

The canonical ensemble can be obtained from (2.5) by setting

H(G, ~θ) = ~θ · ~k1→2(G). (2.33)
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Setting ~θ = ~θ∗ in order that equation (2.5) is satisfied, we can write the canonical
probability as

Pcan(G) =
∏
i∈Λ1

(p∗i )
ki(G)(1− p∗i )n2−ki(G) (2.34)

with p∗i =
k∗i
n2

. Let

fn1 = n2
−1
∑
i∈Λ2

δk∗i ∈ P(N0). (2.35)

Suppose that there exists an f ∈ P(N0) such that

lim
n→∞

‖fn1
− f‖`1(g) = 0. (2.36)

The relative entropy per node can be written as

sn1+n2 =
Sn1+n2(Pmic | Pcan)

n1 + n2
=

n1

n1 + n2
‖fn1‖`1(gn2

), (2.37)

with
gn2

(k) = − log
[
Bin

(
n2,

k
n2

)
(k)
]
I0≤k≤n2

, k ∈ N0, (2.38)

and Bin(n2,
k
n2

)(k) =
(
n2

k

)
( kn2

)k(n2−k
k )n2−k for k = 0, . . . , n2 and equals to 0 for

k > n2. We follow the convention 0 log(0) = 0.
In this partly relaxed case, different scenarios are possible depending on the specific

realisation of the thermodynamic limit, i.e., on how n1, n2 tend to infinity. The ratio
between the sizes of the two layers c = limn→∞

n2

n1
= A2

A1
plays an important role.

2.1.6 Theorem. Subject to (2.31) and (2.36):
(1) If n2 →n→∞ ∞ with n1 fixed (c =∞), then s∞ = limn→∞ sn1+n2

= 0.
(2) If n1, n2 →n→∞ ∞ with c =∞, then s∞ = limn→∞ sn1+n2

= 0.
(3) If n1 →n→∞ ∞ with n2 fixed (c = 0), then

s∞ = lim
n→∞

sn1+n2 = ‖f‖`1(gn2
). (2.39)

(4) If n1, n2 →n→∞ ∞ with c ∈ [0,∞), then

s∞ =
1

1 + c
‖f‖`1(g). (2.40)

Constraints on the total number of links only. We now fully relax the con-
straints and only fix the total number of links, i.e.,

~C∗ = L∗. (2.41)

In analogy with the corresponding result for the uni-partite case (Theorem 2.1.4), in
this case ensemble equivalence is restored.

2.1.7 Theorem. Subject to (2.41), the specific relative entropy equals s∞ = 0.
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Multiple layers

We now come to our most general setting where we fix a finite number M ∈ N of
layers. Each layer s has ns nodes, with

∑M
s=1 ns = n. Let v(s)

i denote the i-th node
of layer s, and Λs = {v(s)

1 , . . . , v
(s)
ns } denote the set of nodes in layer s. We may allow

links both within and across layers, while constraining the numbers of links among
different layers separately. But we may as well switch off links inside or between
(some of the) layers. The actual choice can be specified by a superstructure, which
we denote as the master graph Γ, in which self-loops are allowed but multi-links are
not. The nodes set of Γ is {1, . . . ,M} and the associated adjacency matrix has entries

γs,t(Γ) =

{
1 if a link between layers s and t exists
0 otherwise.

(2.42)

The chosen set of all multi-layer graphs with given numbers of nodes, layers, and
admissible edges (we admit edges only between layers connected in the master graph)
is G]n = Gn1,...,nM (Γ) ⊆ Gn. In 2.2.2 we discuss various empirically relevant choices of
Γ explicitly, while here we keep our discussion entirely general.

Given a graph G, for each pair of layers s and t (including s = t) we define
the t-targeted degree sequence of layer s as ~ks→t(G) =

(
kti(G)

)
i∈Λs

, where kti(G) =∑
j∈Λt

gi,j(G) is the number of links connecting node i to all other nodes in layer t. For
each pair of layers s and t such that γs,t(Γ) = 1, we enforce the value ~k ∗s→t =

(
k∗ ti
)
i∈Λs

as a constraint for the t-targeted degree sequence of layer s. For γs,t(Γ) = 0 we have
~k ∗s→t = ~0, but this constraint is automatically enforced by the master graph. Thus,
the relevant constraints are

~C∗ =
{
~k ∗s→t : s, t = 1, . . . ,M γs,t(Γ) = 1

}
. (2.43)

We abbreviate

L∗s,t =
∑
i∈Λs

k∗ ti =
∑
j∈Λt

k∗ sj , m∗s→t = max
i∈Λs

k∗ ti , f
(ns)
s→t = n−1

s

∑
i∈Λs

δk∗ ti , (2.44)

where L∗s,t is the number of links between layers s and t (note that L∗s,s is twice the
number of links inside layer s), and assume the existence of

As = lim
n1,...,nM→∞

ns
n
∀ s, (2.45)

where
∑M
s=1As = 1. (As before, this assumption is to be read as follows: choose

ns = ns(n), 1 ≤ s ≤ M , in such a way that the limiting fractions As,1 ≤ s ≤ M ,
exist.) The sparse regime corresponds to

m∗s→tm
∗
t→s = o(L∗s,t

2/3), ns, nt →∞ ∀ s 6= t,

m∗s→s = o(n
1/2
s ), ns →∞ ∀ s.

(2.46)

We further assume that there exists fs→t ∈ P(N0) such that

lim
ns→∞

‖f (ns)
s→t − fs→t‖`1(g), lim

ns→∞
‖f (ns)
s→s − fs→s‖`1(g) = 0. (2.47)
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2.1.8 Theorem. Subject to (2.43) and (2.45)–(2.47),

s∞ =

M∑
s,t=1

γs,t(Γ)=1

As ‖fs→t‖`1(g). (2.48)

The above result shows that, unless As = 0 whenever γs,t(Γ) = 1 (i.e., unless only the
nodes of the master graph that have no links or self-loops contribute a finite fraction
of nodes in the corresponding layers), ensemble equivalence does not hold.

Relaxing constraints in the multilayer case

We next study the effects of relaxing constraints. This deserves a separate discus-
sion, since in the multi-partite setting there are more possible ways of relaxing the
constraints than in the uni-partite and bi-partite settings.

One class of layers. We first fix two kinds of constraints: (1) the total num-
ber of links between some pairs of layers; (2) the degree sequence between some
other pairs of layers. We define the set of the edges of the master graph as E =

{(s, t) ∈ (M ×M) : γs,t(Γ) = 1}. Then, we partition E into two parts, namely D,L ⊆
E , with D ∩ L = ∅, D and L symmetric, by requiring that (s, t) ∈ D (∈ L) when
(t, s) ∈ D (∈ L). For each pair of layers (s, t) ∈ D we fix the degree sequence ~k ∗s→t of
every node of Λs linking to Λt. As before, we impose that

∑
i∈Λs

k∗ ti =
∑
j∈Λt

k∗ sj .
For each pair of layers (s, t) ∈ L we fix the total number of links L∗s,t (L∗s,t = L∗t,s).

The effect of relaxing some constraints affects the specific relative entropy: this
will decrease because the pairs of layers with relaxed constraints (i.e., the pairs in L)
no longer contribute.

2.1.9 Theorem. Subject to the above relaxation,

s∞ =
∑

(s,t)∈D

As ‖fs→t‖`1(g). (2.49)

In particular, equivalence holds if and only if D = ∅ or As = 0 for all s endpoints of
elements in E . Note that, if D = ∅, then we have a finite number of constraints (at
most M2), and this implies equivalence of the ensembles.

Two classes of layers. We may further generalise Theorem 2.1.8 as follows. Sup-
pose that we have two classes of layers,M1 andM2. For every pair of layers s, t ∈M1

such that γs,t(Γ) = 1, we fix the degree sequences ~k ∗s→t and ~k ∗t→s. For every pair of
layers s ∈M1, t ∈M2, γs,t(Γ) = 1 we fix the degree sequence ~k ∗s→t from the layer in
M1 to the layer inM2 (but not vice versa). We show that the resulting specific rel-
ative entropy is a mixture of the one in Theorem 2.1.8 and the one in Theorem 2.1.6.
For s = 1, . . . ,M we set As = limn1,n2,...,nM→∞

ns
n .

2.1.10 Theorem. Subject to the above relaxation,

s∞ =
∑

s∈M1, t∈M1∪M2

γs,t(Γ)=1

As ‖fs→t‖`1(g).
(2.50)
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In particular,

s∞ = 0 ⇐⇒ As = 0 ∀ s ∈
{
u ∈M1 : ∃ t ∈M1 ∪M2 with γu,t(Γ) = 1

}
. (2.51)

Another way for relaxing constraints. We may think about another way for
relaxing the constraints. We assume that γs,t(Γ) = 1 for all s, t = 1, 2, . . . ,M and
we fix ~k ∗s =

∑M
t=1

~k ∗s→t for each s = 1, 2, . . . ,M . This means that for each node we
fix its degree sequence (no matter to which target layer, possibly its own layer). In
this case we lose the multi-layer structure: constraints are no longer involving pairs
of layers and the graphs are effectively uni-partite. This is the same case described
in the configuration model of Theorem 2.1.1. There are still an extensive number of
local constraints, and the ensembles are nonequivalent.

§2.2 Discussion

In this section we discuss various important implications of our results. We first
consider properties that are fully general, and afterwards focus on several special
cases of empirical relevance.

§2.2.1 General considerations
Poissonisation. The function g in (2.17) has an interesting interpretation, namely,

g(k) = S
(
δ[k] | Poisson[k]

)
(2.52)

is the relative entropy of the Poisson distribution with average k w.r.t. the Dirac
distribution with average k. The specific relative entropy in (2.1.1) for the uni-partite
setting can therefore be seen as a sum over k of contributions coming from the nodes
with fixed, respectively, average degree k. The microcanonical ensemble forces the
degree of these nodes to be exactly k (which corresponds to δ[k]), while the canonical
ensemble, under the sparseness condition in (2.14), forces their degree to be Poisson
distributed with average k. The same condition ensures that in the limit as n → ∞
the constraints act on the nodes essentially independently.

The same interpretation applies to Theorems 2.1.5–2.1.6 and 2.1.8–2.1.10. The
result in Theorem 2.1.6(3) shows that in the bi-partite setting, when one of the layers
tends to infinity while the other layer does not, Poissonisation does not set in fully.
Namely, we have

sn =

n∑
k=1

f(k)gn(k), gn(k) = S
(
δ[k] | Bin(n, kn )

)
. (2.53)

In words, the canonical ensemble forces the nodes in the infinite layer with average
degree k to draw their degrees towards the n nodes in the finite layer essentially
independently, giving rise to a binomial distribution. Only in the limit as n → ∞
does this distribution converge to the Poisson distribution with average k.
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Additivity vs. non-additivity. In all the other examples known so far in the
literature, the generally accepted explanation for the breaking of ensemble equivalence
is the presence of a non-additive energy, induced e.g. by long-range interactions [23],
[24]. However, in the examples considered in the present paper, nonequivalence has
a different origin, namely, the presence of an extensive number of local constraints.
As we now show, this mechanism is completely unrelated to non-additivity and is
therefore a novel mechanism for ensemble nonequivalence.

Intuitively, the energy of a system is additive when, upon partitioning the units
of the system into non-overlapping subunits, the ‘interaction’ energy between these
subunits is negligible with respect to the internal energy of the subunits themselves.
The ‘physical’ size of the systems considered in this paper is given by the number n of
nodes, i.e., we are defining the network to become ‘twice as large’ when the number
of nodes is doubled. Think, for instance, of a population of n individuals and the
corresponding social network connecting these individuals: we say that the size of the
network doubles when the population doubles. Consistently, in (2.9) we have defined
the specific relative entropy sn by diving Sn by n. In accordance with this reasoning,
in order to establish whether in our systems ensemble equivalence has anything to do
with energy additivity, we need to define the latter node-wise, i.e., with respect to
partitioning the set of nodes into nonoverlapping subsets. Note that, in the presence
of more than one layer, we have allowed for the number of nodes in some layer(s) to
remain finite (in general, to grow subextensively) as the total number of nodes goes
to infinity (see for instance Theorem 2.1.6). In such a situation it makes sense to
study additivity only with respect to the nodes in those layers that are allowed to
grow extensively in the thermodynamic limit.

Formally, if we let I denote the union of all layers for which As > 0 (see (2.45)),
then we say that the energy is node-additive if the Hamiltonian (2.6) can be written
as

H(G, ~θ) =
∑
i∈I

Hi(G, ~θ) ∀G ∈ G]n, (2.54)

where the {Hi}i∈I do not depend on common subgraphs of G (i.e., each of them
can be restricted to a distinct subgraph of G), and are therefore independent random
variables.

The case of uni-partite graphs with fixed degree sequence (Theorem 2.1.1) is an ex-
ample of ensemble nonequivalence with non-additive Hamiltonian, because the latter
is defined as H(G, ~θ) =

∑n
i=1 θiki(G) and cannot be rewritten in the form of (2.54)

with independent {Hi(G, ~θ)}: the degrees ki(G) and kj(G) of any two distinct nodes
i and j depend on a common subgraph of G, i.e., the dyad gi,j(G). In the example
of uni-partite graphs with a fixed total number of links (see (2.22)), the energy has
the form H(G, ~θ) = θL(G) = 1

2θ
∑n
i=1 ki(G), which is still non-additive. However,

the ensembles are in this case equivalent (see Theorem 2.1.4).
By contrast, the case of bi-partite graphs with fixed degree sequence on the top

layer and the nodes in the other layer growing subextensively (case (3) of The-
orem 2.1.6) is an example of ensemble nonequivalence with an additive Hamiltonian.
Indeed, from (2.33) we see that H(G, ~θ) is now a linear combination of the n1 degrees
of the nodes in layer Λ1, each of which depends only on the (bi-partite) subgraph ob-
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tained from the corresponding node of the top layer and all the nodes of the bottom
layer. Here, unlike the uni-partite case, all these subgraphs are disjoint. Despite being
node-additive, when A1 = 1 (c = 0) this Hamiltonian leads to nonequivalence, as es-
tablished in (2.39). Similar examples can be engineered using some of the relaxations
in Section 2.1.3. Finally, the case of bi-partite graphs with fixed total number of links
(Theorem 2.1.7) is an example of ensemble equivalence with an additive Hamiltonian.

The four examples above show that additivity or non-additivity of the Hamiltonian
does not influence the breaking of ensembles equivalence in the examples considered
here. What matters is the extensiveness of the number of constraints. This observa-
tion was already made in [92], and is confirmed in full generality for the multi-layer
setting treated in the present paper. Indeed, our results indicate that, whenever the
number κ of constraints on the degrees is subextensive, i.e., κ = o(n) where n is the
number of nodes, ensemble equivalence is restored.

Note that the above notion of node additivity should not be confused with that
of edge additivity, i.e., the fact that the Hamiltonian can be written as a sum over
independent pairs of nodes. Due to the linearity of the chosen (local) constraints on
the entries {gi,j}ni,j=1 of the adjacency matrix of the graph G, our examples are always
edge-additive (irrespective of whether they are ensemble-equivalent), while they may
or may not be node-equivalent, as we have seen. In either case, there is no relation
between additivity and equivalence.

We stress again that the extensivity of the (local) constraints is, with respect to the
mechanisms for nonequivalence already explored in the literature so far, an additional
(and previously unrecognised) sufficient mechanism. It is obviously not the only one,
and definitely not a necessary one, as exemplified by the fact that, in dense networks,
nonequivalence has been found even in the presence of only two constraints, such as the
total numbers of edges and triangles [85, 86, 87, 29]. However, while in the previous
examples the breaking of equivalence arises from the nonlinearity (with respect to
{gi,j}) of some constraint and is typically found in a specific (usually critical) region
of the parameter space separating phases where ensemble equivalence still applies, in
our setting ensemble nonequivalence arises from the extensiveness of the number of
(linear) constraints and extends to the entire space of parameters of the models. In
this sense it is a stronger form of nonequivalence. Moreover, while the nonequivalence
of network ensembles with a finite number of constraints was previously reported only
for dense graphs, we are documenting it for the unexplored regime of sparse graphs.

A principled choice of ensembles. Ensembles of random graphs with constraints
are used for many practical purposes. Two important examples are pattern detection
and network reconstruction. For concreteness, we briefly illustrate these examples
before we emphasize the implications that our results have for these and other applic-
ations.

Pattern detection is the identification of nontrivial structural properties in a real-
world network, through the comparison of such network with a suitable null model
[94]. For instance, community detection is the identification of groups of nodes that
are more densely connected with each other than expected under a null model [43], [84]
(in Section 2.2.2 we discuss the relation between our models and community detection
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in more detail). A null model is a random graph model that preserves some simple
topological properties of the real network (typically local, like the degree sequence)
and is otherwise completely random. So, maximum-entropy ensembles of graphs with
given degrees are a key tool for pattern detection.

Network reconstruction employs purely local topological information to infer the
higher-order structural properties of a real-world network [74]. This problem arises
whenever the complete structure of a network is not known (for instance, due to
confidentiality or privacy issues), but local properties are. An example relevant for
the epidemiology of sexually transmitted diseases is the network of sexual contacts
among people, for which only aggregate information (the total number of contacts with
different partners) can be typically surveyed in a population. In such cases, optimal
inference about the network can be achieved by maximising the entropy subject to
the known (local) constraints, which again leads to the ensembles with fixed degrees
considered here.

The aforementioned applications, along with similar ones, make use of random
graphs with local constraints. Our proof of nonequivalence of the corresponding
ensembles have the following important implication. While for ensemble-equivalent
models it makes practically no difference whether a microcanonical or canonical im-
plementation is applied to large networks, for nonequivalent models different choices
of the ensemble lead to asymptotically different results. As a consequence, while for
applications based on ensemble-equivalent models the choice of the working ensemble
can be arbitrary or be done on mathematical convenience (as usually done), for those
based on nonequivalent models the choice should be principled, i.e., dictated by a
theoretical criterion that indicates a priori which ensemble is the appropriate one.

Among the possible criteria, we suggest one that we believe appropriate whenever
the available data are subject to (even small) errors, i.e., when the measured value
~C∗ entering as input in the construction of the random graph ensemble is, strictly
speaking, the best available estimate for some unknown ‘true’ (error-free) value ~C×.
In this situation, we want that possible small deviations of ~C∗ from ~C× result in
small devations of P ∗mic and P ∗can from the corresponding P×mic and P×can. Now, if
~C∗ 6= ~C× (no matter how “small” and in which norm this difference is taken), then
P ∗mic will attach zero probability to any graph G× that realises the ‘true’ constraint
~C×: P ∗mic(G

×) = 0, while P×mic(G
×) 6= 0. Indeed, P ∗mic and P×mic will have non-

overlapping supports, so they will sample distinct sets of graphs. This means that
even small initial errors in the knowledge of the constraints will be severely propagated
to the entire microcanonical ensemble, and inference based on the latter will be highly
biased. In particular, the ‘true’ network will never be sampled by P ∗mic. On the other
hand, if the difference between ~C∗ and ~C× is small, then the difference between P ∗can
and P×can will also be small. So, even though ~C× is unknown, any graph G× that
realises this value will be given a probability P ∗can(G×) that is nonzero and not very
different from the probability P×can(G×) that would be obtained by knowing the true
value ~C×. In general, small deviations of ~C∗ from ~C× imply that P ∗can(G) is not very
different from P×can(G) for any graph G, as desired. This implies that even if ~C∗ is
affected by small errors, then a principled choice of ensembles is the canonical one. So,
besides being the mathematically simpler option, we argue that canonical ensembles
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are also the most appropriate choice in the presence of ‘noise’. A similar claim was
already made in [95], and is here strengthened by our proof of nonequivalence.

§2.2.2 Special cases of empirical relevance
Different choices of the master graph Γ induce different structural features in the
graphs of the ensemble G]n. Convenient choices allow us to consider certain classes of
graphs that have been introduced recently to study appropriate types of real-world
networks of empirical relevance. We discuss some of these choices below. The full
generality of our results in Section 2.1.3 allows us to immediately draw conclusions
about the (non)equivalence of the corresponding ensembles in each case of interest.
As an important outcome of this discussion, all the empirically relevant ensembles of
graphs turn out to be nonequivalent. In line with our general observation at the end
of the previous section, this implies that a principled choice of ensembles is needed in
all practical applications.

Scale-free uni-partite networks. Clearly, the trivial case when the master graph
has a single node (M = 1) with a self-loop, i.e., γ11(Γ) = 1, corresponds to the class
of uni-partite graphs we considered in Section 2.1.3. Many real-world networks, at
least at a certain level of aggregation, admit such uni-partite representation. Ex-
amples include the Internet, the World Wide Web and many biological, social and
economic networks. A common property displayed by most of these real-world net-
works is the presence of a “broad” empirical degree distribution, often consistent with
a power-law distribution with an upper cut-off [17]. Networks with a power-law de-
gree distribution are said to be scale-free [22]. This empirical observation implies that
real-world networks are very different from Erdős-Rényi random graphs (which have
a much narrower degree distribution) and are more closely reproduced by a config-
uration model with a truncated power-law degree distribution fn (see (2.15)) of the
form fn(k) = Aγ,nk

−γI1≤k≤kc(n) with γ > 1, Aγ,n the normalisation constant, and
limn→∞ kc(n) =∞ and kc(n) = o(

√
n). The so-called structural cut-off kc(n) makes

the networks sparse, as in condition (2.14) [17]. Since limn→∞ ‖fn− f‖`1(g) = 0 with
f(k) = k−γ/ζ(γ) for k ≥ 1 and 0 elsewhere, where ζ is the Riemann zeta-function,
our result in (2.19) tells us that

s∞ =
∑
k∈N

g(k) f(k) =
1

ζ(γ)

∑
k∈N

g(k) k−γ . (2.55)

Since g(k) = 1
2 log(2πk) + O(k−1) as k → ∞, we find that s∞ tends to 1 as γ → ∞

and diverges like ∼ 1/2(γ − 1) as γ ↓ 1. This result shows that the simplest ran-
dom graph ensemble consistent with the scale-free character of real-world networks is
nonequivalent. Interestingly, as the tail exponent γ decreases, the degree distribution
becomes broader and the degree of nonequivalence increases. A similar conclusion
was drawn in [92].

2.2.1 Remark. Suppose that for each n ∈ N the degrees are drawn in an i.i.d. man-
ner from the truncated degree distribution fn. Suppose further that

∑
k∈N0

kf(k) <
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∞, i.e., γ > 2. Then, because supn∈N
∑
k∈N0

kfn(k) =
∑
k∈N0

kf(k) <∞, conditional
on the sum of the degrees being even, the degree sequence is graphical with a probab-
ility tending to one as n→∞. This fact is the analogue of the result in [5] mentioned
in Remark 2.1.2, and its proof is a straightforward extension of the argument in [5].
Truncation improves the chance of being graphical.

Multipartite networks. The case when the master graph has only M = 2 inter-
connected nodes and no self-loops, i.e., γ1,2(Γ) = γ2,1(Γ) = 1 and γ1,1(Γ) = γ2,2(Γ) =

0, coincides with the class of bi-partite graphs discussed in Section 2.1.3. Popular
real-world examples relevant to economics, ecology and scientometrics are bank-firm,
plant-pollinator and author-paper networks, respectively. In this case as well, empir-
ical evidence shows that real-world bi-partite networks have broad degree distributions
(at least on one of the two layers, and typically on both). Random graph models with
only a global constraint on the total number of links (as in Theorem 2.1.7) are there-
fore unrealistic. The minimal ensemble that is consistent with the properties of most
real-world bi-partite networks requires the specification of the degree sequence(s) as
constraint(s) and is therefore nonequivalent.

A direct generalisation of the bi-partite case is when Γ is anM -dimensional matrix
with zeroes along the diagonal and ones off the diagonal: γs,s(Γ) = 0 ∀s and γs,t(Γ) =

1 for all s 6= t. The induced graphs in G]n have an “all-to-all” multipartite structure
(i.e., links are allowed between all pairs of distinct layers, but not inside layers). From
our Theorem 2.1.8 it follows that if the t-targeted degree sequences are specified as a
constraint, then the relative entropy in the all-to-all multipartite case is

s∞ =

M∑
s,t=1
s6=t

As ‖fs→t‖`1(g) > 0, (2.56)

which proves again ensemble nonequivalence.

Stochastic block-models. Another important example is when the master graph
is a complete graph with all self-loops realised, i.e., γs,t(Γ) = 1 for all s, t. This
prescription generates the class of so-called stochastic block-models, which are very
popular in the social network analysis literature [57], [62], [44]. The earliest and
simplest stochastic block-model [57] is one where only the total numbers of links
between all pairs of blocks (including within each block) are specified. When we
identify blocks with layers, this model coincides with our relaxed model considered
in Theorem 2.1.9, with D = ∅. It follows as a corollary that this model is ensemble
equivalent:

s∞ = 0. (2.57)

However, this model predicts that, within each block, the expected topological prop-
erties of the network are those of an Erdős-Rényi random graph, a property that
is contradicted by empirical evidence. So, unless the number of blocks is chosen to
be comparable with the number of nodes (which in our case is contradicted by the
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requirement that M is finite), the traditional block-model is not a good model of
real-world networks.

More recently, emphasis has been put on the more realistic degree-corrected stochastic
block-model [62], where an additional constraint is put on the degree of all nodes. An
even more constrained variant of this model has been proposed in [44], where the
constraints coincide with the t-targeted degree sequences {~ks→t}s,t among all pairs
of blocks. To distinguish this model from the “generic” degree-corrected block-model,
we call it the targeted degree-corrected block-model. This coincides with our model in
Section 2.1.3, with the block structure given by the (complete) master graph. From
Theorem 2.1.8 we calculate the relative entropy as

s∞ =

M∑
s,t=1

As ‖fs→t‖`1(g) > 0. (2.58)

We can therefore conclude that, unlike the traditional block-model considered
above, the targeted degree-corrected model is ensemble nonequivalent. We also note
that, unlike stated in [44], the targeted degree-corrected block-model is not just a re-
parametrisation of the untargeted degree-corrected model. While fixing the targeted
degree sequences automatically realises the constraints of the untargeted model, the
converse is not true. Being a relaxation of the targeted model, we expect the untar-
geted model to have a relative entropy smaller than in (2.58), further illustrating the
difference between the two models. Yet, we expect the relative entropy in the untar-
geted model to be strictly positive for, every choice of the degree sequence, since there
is still an extensive number of active constraints. This would support the claim made
in [82] that, for small values of the degrees, the degree-corrected block-models with
soft and hard constraints are not equivalent in the thermodynamic limit. At the same
time, it would contradict the claim made in the same reference that, if all degrees
become large (but still in the sparse regime), the two ensembles become equivalent.
Indeed, from the behaviour of g(k) for large k (see (2.18)) and the normalisation by
n in (2.9), we expect a finite specific relative entropy in that case as well.

Networks with community structure. Another very important class of graphs
that are studied intensively in the literature are graphs with community structure
[43], [84]. This class is related to the block-models described above, but is in general
different. Community structure is loosely defined as the presence of groups of nodes
that are more densely interconnected internally than with each other. One of the
possible ways to quantitatively define the presence of communities in a real-world
network is in terms of a positive difference between the realised number of intra-
community links and the corresponding expected number calculated under a certain
null hypothesis. This definition can be made more explicit by introducing the concept
of modularity [43], [84]. For a graph with n nodes, a non-overlapping partition of
nodes into M communities can be specified by the n-dimensional vector ~σ, where the
i-th entry σi ∈ {1, . . . ,M} is an integer number labelling the community to which
node i is assigned by that particular partition. For a given real-world graph G∗, the
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modularity is a function on the space of possible partitions, defined as

QG∗(~σ) = KG∗

∑
1≤i<j≤n

(gij(G
∗)− 〈gij〉) δσi,σj , (2.59)

where KG∗ is an (inessential) normalisation constant (independent of the partition
~σ) intended to have the property QG∗ ∈ [−1,+1], and 〈gij〉 is the expected value of
gij(G) under the null hypothesis. The null hypothesis leads to a null model for the
real-world network G∗. The most popular choice for this null model is the canonical
configuration model in the sparse regime, which gives 〈gij〉 = k∗i k

∗
j /2L

∗ for i 6= j and
〈gii〉 = 0, where k∗i , k∗j and L∗ are all calculated on G∗ (see (2.72) in the proof of
Theorem 2.1.1).

Now, if the real-world network G∗ is indeed composed of communities, then the
partition ~σ† that encodes these communities will be such that QG∗(~σ

†) > 0, i.e., the
total number of links inside communities will be larger than the expected number
under the null model. More stringently, the ‘optimal’ partition into communities can
be defined as the one that maximises QG∗(~σ), provided that the corresponding value
max~σ QG∗(~σ) is positive. Indeed, one of the most popular ways in which communities
are looked for in real-world networks is through the process of modularity maximisa-
tion. The higher the value of the maximised modularity, the sharper the community
structure. In practice, the problem of community detection is complicated by the
possible existence of many local minima of QG∗(~σ) and by the fact that QG∗(~σ

†)

may be positive even for “noisy communities”, i.e., communities induced by chance
only out of randomness in the data.

In our setting, community structure can be easily induced in the multilayer graph
ensemble G]n = Gn1,...,nM (Γ) through a convenient choice of the master graph Γ and
of the constrained t-targeted degree sequences {~k∗s→t}. First, we identify theM layers
{Λs} with the desired communities and define the corresponding partition ~σ† through
σ†i = Λs if i ∈ Λs. Next, we require that the master graph Γ has all possible self-
loops, plus a desired number of additional edges that need not be maximal (pairs of
distinct communities are not necessarily connected in real-world networks). Finally,
we need to require that the t-targeted degree sequences induce an excess of intra-
community links with respect to the null model, so that the modularity is at least
positive, i.e., QG∗(~σ

†) > 0, and at best maximised by the desired partition, i.e.,
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~σ† = argmax~σ QG∗(~σ). To this end, we rewrite

QG∗(~σ
†) = KG∗

∑
1≤i<j≤n

(gij(G
∗)− 〈gij〉) δσ†i ,σ†j

=
KG∗

2

∑
1≤i,j≤n

(gij(G
∗)− 〈gij〉) δσ†i ,σ†j

=
KG∗

2

M∑
s=1

∑
i,j∈Λs

(
gij(G

∗)−
k∗i k
∗
j

2L∗

)

=
KG∗

2

M∑
s=1

(
L∗s,s −

1

2L∗

( ∑
i∈Λs

k∗i

)2
)

=
KG∗

2

M∑
s=1

(
L∗s,s −

1∑M
s,t=1 L

∗
s,t

( M∑
t=1

L∗s,t

)2
)
,

(2.60)

where we use gii(G∗) = 〈gii〉 = 0, k∗i =
∑M
t=1 k

∗t
i and 2L∗ =

∑M
s,t=1 L

∗
s,t. So,

the weaker condition QG∗(~σ
†) > 0 is realised by requiring that {~k∗s→t} satisfies the

inequality
M∑
s=1

L∗s,s >

∑M
s=1

(∑M
t=1 L

∗
s,t

)2

∑M
s,t=1 L

∗
s,t

, (2.61)

where L∗s,t =
∑
i∈Λs

k∗ti . The above inequality explicitly states that the number of
realised intra-community edges counted in the left-hand side should be larger than
the expected number calculated in the right-hand side. The stronger condition ~σ† =

argmax~σ QG∗(~σ) should instead be enforced by looking for the specific {~k∗s→t} that
maximises (2.60).

Independently of how communities are induced in our framework, our results show
that ensembles of random graphs with community structure (according to the defini-
tion above) are nonequivalent, with a relative entropy given by (2.48) where the degree
distributions {fs→t} are induced by suitable t-targeted degree sequences that realise
(2.61) and possibly also ~σ† = argmax~σ QG∗(~σ).

Multiplex networks and time-varying graphs. Two other important classes of
graphs that have recently gained attention are those of multiplex networks [16] and
time-varying graphs [58].

Multiplex networks are networks where the same set of nodes can be connected by
M different types of links [16]. Two examples, both studies in [52], are the multiplex of
international trade in different products (where nodes are world countries and links of
different type represent international trade in different products) and the multiplex
of flights by different airlines (where nodes are airports and links of different type
represent flights operated by different companies). An equivalent and widely used
representation for a multiplex is one where a number M of layers is introduced, the
same nodes are replicated in each layer, and inside each layer an ordinary graph is
constructed, specified by all links of a single type. Links only exist within layers,
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and not across layers. Indeed, what ‘couples’ the different layers and makes a real-
world multiplex different from a collection of independent layers is the empirical fact
that the topological properties of the layer-specific networks are typically strongly
(either positively or negatively) correlated. For instance, networks of trade in different
products have a similar structure, and most notably countries that are ‘hubs’ in one
layer are likely to be hubs in other layers as well. By contrast, airports that are hubs
for a domestic airline are likely not to be hubs for other domestic airlines [52]. This
means that, for each node i in real-world networks, theM numbers of intra-layer links
(i.e., the intra-layer degrees) are in general (anti)correlated.

Time-varying graphs are collections of temporal snapshots of the same network
[58]. If the set of nodes in the network does not change with time, then a time-varying
graph can be represented as a multiplex where each temporal snapshot is a single layer.
(Note that multiplex networks themselves can vary over time [79].) Again, while not
interacting directly via links, the different layers are mutually dependent because of
empirical correlations between the properties of the same physical network across its
temporal snapshots. Therefore this type of time-varying graphs can be treated in a
way formally similar to that used for multiplex networks, the only difference being
that a natural temporal ordering can be defined for the snapshots of time-varying
graphs, while this is in general not true for the layers of a multiplex.

In our framework, a multiplex or time-varying network can be introduced by
identifying each link type with a layer Λs and by requiring that the only edges of the
master graph Γ are self-loops, i.e., γs,s(Γ) = 1 for s = 1,M and γs,t(Γ) = 0 for s 6= t.
Note that this specification, which implies ~k∗s→t = ~0 for s 6= t, is somehow ‘dual’ to
the one defining all-to-all multipartite networks (see above). The fact that nodes in
different layers are replicas of the same set of n nodes implies that |Λs| is the same
for all s, i.e., ns = n/M . Finally, the ‘coupling’ between the topological properties
of different layers can be introduced by assigning (anti)correlated t-targeted degree
sequences, i.e., by choosing (anti)correlated entries for every pair of vectors ~k∗s→s and
~k∗t→t, s 6= t. Real-world multiplexes, including the two examples made above, are well
reproduced by such a model [52]. Our results imply that the relevant ensembles are
nonequivalent. In particular, as a corollary of Theorem 2.1.8 we have

s∞ =
1

M

M∑
s=1

‖fs→s‖`1(g). (2.62)

So, the relative entropy between the microcanonical and canonical distributions is
the average of the relative entropy of all layers, where for each layer s the relative
entropy is the same as that obtained for a uni-partite network with n/M nodes and
limiting degree distribution fs→s (see Theorem 2.1.1). Moreover, the presence of
correlations between ~k∗s→s and ~k∗t→t translate into dependencies between ‖fs→s‖`1(g)

and ‖ft→t‖`1(g). In particular, in case of perfect correlation (~k∗s→s = ~k∗t→t for all s, t),
all the degree distributions are equal to a common one fs→s = f ∀s, and we get

s∞ = ‖f‖`1(g). (2.63)

In this case, the degree of nonequivalence is the same as that obtained for a single
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uni-partite network with n/M nodes and limiting degree distribution f (see The-
orem 2.1.1).

Interdependent multilayer networks. Finally, we discuss the class of interde-
pendent multilayer networks, which are multiplex networks with the addition of inter-
layer links [16]. Nodes in different layers are still replicas of the same set of nodes,
so we still have ns = n/M for all s. Similarly, the topological properties of different
intra-layer networks are still (anti)correlated, which can be again realised by choosing
(anti)correlated entries for every pair of vectors ~k∗s→s and ~k∗t→t, s 6= t. However, while
we still require γs,s(Γ) = 1 for s = 1,M , now we no longer require γs,t(Γ) = 0 for
s 6= t. Therefore the degree of nonequivalence can only increase with respect to (2.62).
Indeed, Theorem 2.1.8 now leads to

s∞ =
1

M

M∑
s,t=1

γs,t(Γ)=1

‖fs→t‖`1(g), (2.64)

which shows that the relative entropy is no longer only an average over the layer-
specific relative entropies, since inter-layer relative entropies give additional contribu-
tions.

Networks of networks. A final class of graphs worth mentioning is the so-called
networks of networks, sometimes constructed by different ‘micro-networks’ that are
coupled together into a ‘macro-network’ where each node is a micro-network itself [34].
This class is similar to the interdependent multilayer networks considered above, but
here there is no identification of the nodes in different layers to the same physical en-
tity. An example is provided by multi-scale transport networks, where different cities
are internally characterised by their local urban transport networks and at the same
time are coupled through a long-distance inter-city transport network (like highways
or flights). In our framework, this class of network can be induced by identifying
the master graph Γ with the macro-network, and the M intra-layer subgraphs with
the micro-networks. To have all micro-networks non-empty, the master graph must
have all self-loops realised. This case is similar to the block-model mentioned above,
but now the master graph itself can be chosen to have nontrivial structural proper-
ties, such as community structure, to resemble the specific properties of real-world
networks of networks.

If the t-targeted degree sequences {~k∗s→t} (s, t = 1,M) are all enforced as con-
straints, then the relative entropy is given by (2.48) with γs,s(Γ) = 1 for all s. How-
ever, in this class of models it is often more natural to assume that the internal degree
sequence ~k∗s→s of each micro-network (layer) s is enforced (in order to get realistic
micro-network topologies), while between every pair s, t (s 6= t) of micro-networks
only the number of links L∗s,t is fixed (because the topology of the master graph is
already chosen in order to replicate the empirical macro-network). This leads to the
relaxed model in Theorem 2.1.9 with D = {(s, s) : s = 1,M}. The relative entropy is
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therefore

s∞ =

M∑
s=1

As ‖fs→s‖`1(g) (2.65)

and is still positive, even though the links among micro-networks do not contribute
to it.

§2.3 Proofs of Theorems 2.1.1-2.1.10

§2.3.1 Proof of Theorem 2.1.1
Proof. The microcanonical number Ω~k? is not known in general, but asymptotic res-
ults exist in the sparse regime defined by the condition (2.14). For this regime it was
shown in [10], [76] that

Ω~k∗ =

√
2 ( 2L∗

e )L
∗∏n

i=1 k
∗
i !

e−(k∗2/2k∗)2+ 1
4 +o(n−1k∗

3
), (2.66)

where k∗ = n−1
∑n
i=1 k

∗
i (average degree), L∗ = nk∗/2 (number of links), k∗2 =

n−1
∑n
i=1 k

∗2
i (average square degree). The canonical ensemble has Hamiltonian

H(G, ~θ) =
∑n
i=1 θiki(G), where G is a graph belonging to Gn, and ki(G) =∑

j 6=i gi,j(G) is the degree of the node i. The partition function equals

Z(θ) =
∑

G∈Gn

e−H(G,~θ) =
∑

G∈Gn

∏
1≤i<j≤n

e−θigi,j(G)

=
∑

G∈Gn

∏
1≤i<j≤n

e−(θi+θj)gi,j(G) =
∏

1≤i<j≤n

(1 + e−(θi+θj)).
(2.67)

The canonical probability equals

Pcan(G | ~θ) =

∏
1≤i<j≤n e

−(θi+θj)gi,j(G)

Z(~θ)
=

∏
1≤i<j≤n

e−(θi+θj)gi,j(G)

1 + e−(θi+θj)
. (2.68)

Setting p∗ij ≡ e−θ
∗
i−θ

∗
j /(1 + e−θ

∗
i−θ

∗
j ), and ~θ∗ such that

∑
j 6=i

e−θ
∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

= k∗i ∀ i (2.69)

we have
Pcan(G) =

∏
1≤i<j≤n

(p∗ij)
gij (1− p∗ij)1−gij . (2.70)

It is ensured by (2.14) that limn→∞
1
n

∑
1≤i<j≤n p̂

∗ 2
ij = 0, a condition under which

we can show that (2.70) has the same asymptotic behaviour as

P̂can(G) =
∏

1≤i<j≤n

(p̂ ∗ij)
gij (1− p̂ ∗ij)1−gij , (2.71)
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with

p̂ ∗ij = e−θ
∗
i−θ

∗
j =

k∗i k
∗
j

2L∗
. (2.72)

Indeed,

1

n
log

(
P̂can(G)

Pcan(G)

)
=

1

n

∑
1≤i<j≤n

gi,j log(1−p̂ ∗ij)−
1

n

∑
1≤i<j≤n

log(1−p̂ ∗ij
2)→ 0, n→∞,

(2.73)
because ∑

1≤i<j≤n

gi,j log(1− p̂ ∗ij) ≤ (m∗)2 +O(p̂ ∗ij
2) (2.74)

and

0 ≤ 1

n

∑
1≤i<j≤n

p̂ 2
ij =

1

2

[ ∑n
i=1 k

2
i√

n
∑n
i=1 ki

]2

≤ 1

2

(m∗)2

n
→ 0, n→∞. (2.75)

This implies
∑

1≤i<j≤n ln(1− p∗ij) = −
∑

1≤i<j≤n k
∗
i k
∗
j /2L

∗ + o(n). Thus,

lnPcan(G∗) =

n∑
i=1

k∗i ln k∗i − L∗ ln(2L∗)− L∗ + o(n). (2.76)

Combining (2.66) and (2.76), we obtain (recall (2.17))

Sn(Pmic | Pcan) =

n∑
i=1

g(k∗i ) + o(n), n→∞, (2.77)

where g(k) = log
(

k!
kke−k

)
, as defined in (2.17). With the help of (2.15) this reads

n−1 Sn(Pmic | Pcan) =
∑
k∈N0

fn(k)g(k) + o(1) = ‖fn‖`1(g) + o(1), (2.78)

which together with (2.16) yields the claim.

§2.3.2 Proof of Theorem 2.1.4
Proof. The microcanonical ensemble is easy: the number of graphs with a fixed frac-
tion λ ∈ (0, 1) of links is

ΩL∗ =

((n
2

)
L∗

)
=

(
K

λK

)
, K =

(
n

2

)
. (2.79)

The canonical ensemble has the Hamiltonian H(G, θ) = θL(G), where G is a graph
belonging to Gn, and L(G) =

∑
1≤i<j≤n gi,j(G) is the number of links in G. The

partition function equals

Z(θ) =
∑

G∈Gn

e−H(G,θ) =
∑

G∈Gn

∏
1≤i<j≤n

e−θgi,j(G) =
∏

1≤i<j≤n

(1 + e−θ). (2.80)
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The canonical probability equals

Pcan(G | θ) =
e−

∑
1≤i<j≤n θgi,j(G)

Z(θ)
=

∏
1≤i<j≤n

e−θgi,j(G)

1 + e−θ

=
∏

1≤i<j≤n

pgi,j(G)(1− p)1−gi,j(G)

(2.81)

with p = e−θ

1+e−θ
. We search for θ∗ such that

L∗ =
∑

1≤i<j≤n

p∗, p∗ =
e−θ

∗

1 + e−θ∗
. (2.82)

It follows that p∗ = λ. Thus,

logPmic(G∗) = − log(K)! + log(λK)! + log((1− λ)K)!

= −K[logK − 1] + λK[log λK − 1]

+ [(1− λ)K][log((1− λ)K)− 1] + o(n)

= K log(1− λ) + λK log

(
λ

1− λ

)
+ o(n),

logPcan(G∗) = λK log(λ) + (1− λ)K log(1− λ).

(2.83)

This in turn implies that

lim
n→∞

Sn(Pmic | Pcan)

n
= 0. (2.84)

§2.3.3 Proof of Theorem 2.1.5
Proof. We start by describing the canonical ensemble. The Hamiltonian is

H(G|~θ, ~φ) =
∑
i∈Λ1

ki(G)θi +
∑
j∈Λ2

k′j(G)φj

=
∑
i∈Λ1

∑
j∈Λ2

θigi,j(G) +
∑
i∈Λ1

∑
j∈Λ2

φjgi,j(G) =
∑
i∈Λ1

∑
j∈Λ2

(θi + φj)gi,j(G).

(2.85)
The partition function is

Z(~θ, ~φ) =
∑

G∈Gn1,n2

e−
∑
i∈Λ1

∑
j∈Λ2

(θi+φj)gi,j(G) =
∏
i∈Λ1

∏
j∈Λ2

(
1 + e−(θi+φj)

)
. (2.86)

The canonical probability becomes

Pcan(G | ~θ, ~φ) =
e−

∑
i∈Λ1

∑
j∈Λ2

(θi+φj)gi,j(G)

Z(~θ, ~φ)

=
∏
i∈Λ1

∏
j∈Λ2

e−(θi+φj)gi,j(G)

1 + e−(θi+φj)
=
∏
i∈Λ1

∏
j∈Λ2

p
gi,j(G)
i,j (1− pi,j)1−gi,j(G),

(2.87)
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where pi,j = e−(θi+φj)

1+e−(θi+φj) . We search for (~θ∗, ~φ∗) that solves the system of equations{∑
j∈Λ2

p∗i,j = k∗i ,∑
i∈Λ1

p∗i,j = k′∗j ,
(2.88)

where p∗i,j = e
−(θ∗i +φ∗j )

1+e
−(θ∗

i
+φ∗

j
) . If G∗ is any graph in Gn1,n2

such that ki(G∗) = k∗i and

k′j(G
∗) = k′∗j , then

Pcan(G) =
∏
i∈Λ1

∏
j∈Λ2

p∗i,j
gi,j(G)(1− p∗i,j)1−gi,j(G). (2.89)

Under the sparseness condition (2.27), we can replace p∗i,j with the following quant-
ity. Define p̂ ∗i,j = e−(θ∗i+φ∗j ) and consider the system of equations{∑

j∈Λ2
p̂ ∗i,j = k∗i ,∑

i∈Λ1
p̂ ∗i,j = k′∗j .

(2.90)

This has solution

p̂ ∗i,j =
k∗i k
′∗
j

L∗
, L∗ =

∑
i∈Λ1

k∗i =
∑
j∈Λ2

k′∗j . (2.91)

We define
P̂can(G) =

∏
i∈Λ1

∏
j∈Λ2

(p̂ ∗i,j)
gij(G)(1− p̂ ∗i,j)1−gij(G), (2.92)

and note that

1

n1 + n2
log

(
P̂can(G)

Pcan(G)

)
→ 0, n1, n2 →∞. (2.93)

The crucial point is to prove that 1
n1+n2

∑
i∈Λ1

∑
j∈Λ2

p̂ ∗ 2
i,j → 0. This allows us to

write∑
i∈Λ1

∑
j∈Λ2

log(1− p∗i,j) = −
∑
i∈Λ1

∑
j∈Λ2

k∗i k
′∗
j

L∗
+ o(n1 + n2), n1, n2 →∞. (2.94)

Indeed,

0 ≤ 1

n1 + n2

∑
i∈Λ1

∑
j∈Λ2

p̂ ∗ 2
i,j =

1

n1 + n2

∑
i∈Λ1

k∗i
2∑

j∈Λ2
k′∗j

2∑
i∈Λ1

k∗i
∑
j∈Λ2

k′∗j
≤ m∗m′∗
√
n1n2

√
n1n2

n1 + n2
→ 0,

(2.95)
because m∗m′∗ = o(L∗2/3) implies m∗m′∗ = o(

√
n1n2).

Combining (2.89) and (2.94), we have

logPcan(G∗) =
∑
i∈Λ1

∑
j∈Λ2

gi,j(G
∗) log

(
k∗i k
′∗
j

L∗

)
−
∑
i∈Λ1

∑
j∈Λ2

k∗i k
′∗
j

L∗
+ o(n1 + n2)

=
∑
i∈Λ1

k∗i log (k∗i ) +
∑
j∈Λ2

k′∗j log
(
k′∗j
)
− L∗ logL∗ − L∗ + o(n1 + n2), (2.96)
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which concludes our computation for the canonical ensemble.
Microcanonical probabilities come from the results in [55], where it is shown that,

as n→∞, the number of bi-partite graphs with degree sequences ~k∗, ~k′∗ on the two
layers is given by

Ω ~k∗, ~k′∗ =
L∗!∏

i∈Λ1
k∗i !
∏
j∈Λ2

k′∗j !
eo(n1+n2). (2.97)

Hence

logPmic(G∗) = − log Ω ~s∗, ~t∗ =
∑
i∈Λ1

k∗i ! +
∑
j∈Λ2

k′
∗
j !− log(L∗!) + o(n1 + n2). (2.98)

From (2.96) and (2.98) we get

Sn1+n2(Pcan | Pmic) = logPmic(G∗)− logPcan(G∗)

=
∑
i∈Λ1

log

(
k∗i !

k∗i
k∗i

)
+
∑
j∈Λ2

log

(
k′∗j !

k′∗j
k′∗j

)
+ L∗ logL∗ + L∗ − log(L∗!) + o(n1 + n2)

=
∑
i∈Λ1

g(k∗i ) +
∑
j∈Λ2

g(k′∗j ) + o(n1 + n2),

(2.99)

where in the last line we use L∗ =
∑
i∈Λ1

k∗i =
∑
j∈Λ2

k′
∗
j and Stirling’s approximation

for log(L∗!). Since

n1
−1
∑
i∈Λ1

g(k∗i ) =

n2∑
k∈N0

f
(n1)
1→2(k)g(k) = ‖f (n1)

1→2‖`1(g),

n2
−1
∑
j∈Λ2

g(k′∗j ) =

n1∑
k∈N0

f
(n2)
2→1(k)g(k) = ‖f (n2)

2→1‖`1(g),

(2.100)

we get, with the help of (2.28),

lim
n→∞

Sn1+n2
(Pcan | Pmic)

n1 + n2
= A1 ‖f1→2‖`1(g) +A2 ‖f2→1‖`1(g), (2.101)

which proves the claim.

§2.3.4 Proof of Theorem 2.1.6

Proof. The number of bi-partite graphs with constraint ~k∗ on the top layer is

Ω~k∗ =
∏
i∈Λ1

(
n2

k∗i

)
. (2.102)

In order to calculate the canonical probability, we calculate the partition function:

Z(~θ) =
∑

G∈Gn1,n2

e−
∑
i∈Λ1

θi
∑
j∈Λ2

gi,j(G)

=
∑

G∈Gn1,n2

∏
i∈Λ1

∏
j∈Λ2

e−θigi,j(G) =
∏
i∈Λ1

∏
j∈Λ2

[1 + e−θi ].
(2.103)
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The canonical probability becomes

Pcan(G|~θ) =
e−

∑
i∈Λ1

θi
∑
j∈Λ2

gi,j(G)

Z(~θ)

=
∏
i∈Λ1

∏
j∈Λ2

e−θigi,j(G)

1 + e−θi
=
∏
i∈Λ1

∏
j∈Λ2

p
gi,j(G)
i (1− pi)1−gi,j(G)

(2.104)

with pi = e−θi

1+e−θi
. We search for θ∗i such that

k∗i =
∑
j∈Λ2

p∗i = n2p
∗
i , p∗i =

e−θ
∗
i

1 + e−θ
∗
i
. (2.105)

It follows that pi =
k∗i
n2

(recall (2.34)). According to (2.11) we have

Sn1+n2
(Pmic | Pcan) = ln

Pmic(G∗)

Pcan(G∗)

= −
∑
i∈Λ1

log

(
n2

k∗i

)
−
∑
i∈Λ1

k∗i log

(
k∗i
n2

)
−
∑
i∈Λ1

(n2 − k∗i ) log

(
1− k∗i

n2

)
= n1n2 log n2 −

∑
i∈Λ1

log

[(
n2

k∗i

)
k∗i
k∗i (n2 − k∗i )

(n2−k∗i )

]
.

(2.106)

Abbreviate Ua(x) ≡ log
[(
a
x

)
xx(a− x)

a−x
]
and write

Sn1+n2
(Pmic | Pcan) = n1n2 log n2−

∑
i∈Λ1

Un2
(k∗i ) = n1n2 log n2−n1

n2∑
k=0

fn1
(k)Un2

(k).

(2.107)
For the relative entropy per node this gives

sn1+n2
=

n1

n1 + n2

n2∑
k=0

fn1
(k)n2 log n2 −

n1

n1 + n2

n2∑
k=0

fn1
(k)Un2

(k)

= − n1

n1 + n2

n2∑
k=0

fn1
(k) log Bin

(
n2,

k
n2

)
(k) =

n1

n1 + n2
‖fn1
‖`1(gn2

).

(2.108)

Case (1). Recall (2.17). Note that x 7→ z(x) = eg(x) is non-decreasing:

z(x− 1)

z(x)
=

(
x

x− 1

)x−1
1

e
≤ 1. (2.109)
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It therefore follows that

‖fn1‖`1(gn2
) = −

n2∑
k=0

fn1(k) log Bin
(
n2,

k
n2

)
(k) =

n2∑
k=0

fn1(k) log

(
z(k)z(n2 − k)

z(n2)

)
=
∑
k∈N0

fn1(k) log

(
z(k)z(n2 − k)

z(n2)

)
Ik≤n2 ≤

∑
k∈N0

I0≤k≤n2 fn1(k) log z(k)

≤
∑
k∈N0

fn1
(k) log z(k) = ‖fn1

‖`1(g) <∞.

(2.110)
By (2.36) and dominated convergence, we may exchange limit and sum to obtain

lim
n→∞

sn1,n2
= lim
n2→∞

n1

n1 + n2

∑
k∈N0

fn1
(k) lim

n2→∞
log

(
z(k)z(n2 − k)

z(n2)

)
I0≤k≤n2

= 0,

(2.111)
where we use that limn→∞

n1

n1+n2
= 0 and limn→∞

z(n2−k)
z(n2) = 1 for all k ∈ N0.

Case (2). Using (2.110) and (2.36), we get

0 ≤ sn1,n2
=

n1

n1 + n2
‖fn1
‖`1(g) →n→∞ 1

1 + c
‖f‖`1(g) = 0. (2.112)

Case (3). Estimate

0 ≤ |‖fn1‖`1(gn2
)−‖fn1‖`1(gn2

)| ≤ ‖fn1−f‖`1(gn2
) ≤ ‖fn1−f‖`1(g) →n→∞ 0. (2.113)

Case (4).

0 ≤ |‖fn1‖`1(gn2 )−‖f‖`1(g)| ≤
∑
k∈N0

|fn1(k)−f(k)||gn2(k)Ik≤n2−g(k)| ≤ 2‖fn1−f‖`1(g).

(2.114)
Since n1

n1+n2
= 1

1+
n2
n1

→ 1
1+c , the claim follows.

§2.3.5 Proof of Theorem 2.1.7
Proof. The microcanonical ensemble is easy: the number of bi-partite graphs with a
fixed fraction λ ∈ (0, 1) of links is

ΩL∗ =

(
n1n2

L∗

)
=

(
n1n2

λn1n2

)
. (2.115)

The canonical ensemble has the Hamiltonian H(G, θ) = θL(G), where G is a bi-
partite graph belonging to Gn1,n2 , and L(G) =

∑
i∈Λ1

∑
j∈Λ2

gi,j(G) is the number
of links in G. The partition function equals

Z(θ) =
∑

G∈Gn1,n2

e−H(G,θ) =
∑

G∈Gn1,n2

∏
i∈Λ1

∏
j∈Λ2

e−θgi,j(G) =
∏
i∈Λ1

∏
j∈Λ2

(1 + e−θ).

(2.116)
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The canonical probability equals

Pcan(G | ~θ) =
e−

∑
i∈Λ1

∑
j∈Λ2

θgi,j(G)

Z(~θ)

=
∏
i∈Λ1

∏
j∈Λ2

e−θgi,j(G)

1 + e−θ
=
∏
i∈Λ1

∏
j∈Λ2

pgi,j(G)(1− p)1−gi,j(G)

(2.117)

with p = e−θ

1+e−θ
. We search for θ∗ such that

L∗ =
∑
i∈Λ1

∑
j∈Λ2

p∗, p∗ =
e−θ

∗

1 + e−θ∗
. (2.118)

It follows that p∗ = λ. Thus,

logPmic(G∗) = − log(n1n2)! + log(λn1n2)! + log((1− λ)n1n2)!

= −n1n2[log n1n2 − 1] + λn1n2[log λn1n2 − 1]

+ [1− λn1n2][log((1− λ)n1n2)− 1] + o(n1 + n2)

= n1n2 log(1− λ) + λn1n2 log

(
λ

1− λ

)
+ o(n1 + n2),

logPcan(G∗) = n1n2 log(1− λ) + λn1n2 log

(
λ

1− λ

)
.

(2.119)

This in turn implies that

lim
n1,n2→∞

Sn1+n2
(Pmic | Pcan)

n1 + n2
= 0. (2.120)

§2.3.6 Proof of Theorem 2.1.8
Proof. The proof is based on the previous theorems. We start by looking at the
Hamiltonian of the system. For each admitted pair of layers (γs,t(Γ) = 1) we define
Lagrange multipliers ~θs→t = (θ

(t)
1 , . . . , θ

(t)
ns ). The Hamiltonian equals

H
(
G | ~θs→t; s, t = 1, . . . ,M, γs,t(Γ) = 1

)
=

∑
1≤s<t≤M
γs,t(Γ)=1

∑
i∈Λs
j∈Λt

(θti + θsj )gi,j(G) +

M∑
s=1

γs,s(Γ)=1

∑
i,j∈Λs
i<j

(θsi + θsj )gi,j(G)

=
∑

1≤s<t≤M
γs,t(Γ)=1

∑
i∈Λs
j∈Λt

Hs,t(G
(st) | ~θs→t, ~θt→s) +

M∑
s=1

γs,s(Γ)=1

∑
i,j∈Λs
i<j

Hs,s(G
(ss) | ~θs→s),

(2.121)
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where

Hs,t(G
(st) | ~θs→t, ~θt→s) =

∑
i∈Λs
j∈Λt

(θti + θsj )gi,j(G
(st)),

Hs,s(G
(ss) | ~θs→s) =

∑
i,j∈Λs
i<j

(θsi + θsj )gi,j(G
(ss)),

(2.122)

and G(st) (G(ss)) is the bi-partite (uni-partite) graph between layers s and t (inside
layer s) obtained from the multi-partite graph G. The ns×nt matrix representing the
bi-partite graph has, for each i ∈ Λs and j ∈ Λt, elements gi,j(G(st)) = gi,j(G). Note
that Hs,t(G

(st) | ~θs→t, ~θt→s) is the Hamiltonian of the bi-partite graph G(st) between
layers s and t with constraints ~k ∗s→t, and Hs,s(G

(ss) | ~θs→s) is the Hamiltonian of the
uni-partite graph G(ss) of the layer s with constraints ~k ∗s→s.

The partition function of the canonical ensemble equals

Z
(
~θs→t; s, t = 1, . . . ,M, γs,t(Γ) = 1

)
=

∑
G∈Gn1,...,nM

(Γ)

e−H(G | ~θs→t; s,t=1,2,...,M : γs,t(Γ)=1)

=
∏

1≤s<t≤M
γs,t(Γ)=1

∑
G(st)∈Gns,nt

e−Hs,t(G
(st) | ~θs→t,~θt→s)

M∏
s=1

γs,s(Γ)=1

∑
G(ss)∈Gns,ns

e−Hs,s(G
(ss) | ~θs→s)

=
∏

1≤s<t≤M
γs,t(Γ)=1

Z(st)(~θs→t, ~θt→s)

M∏
s=1

γs,s(Γ)=1

Z(ss)(~θs→s),

(2.123)
where Z(st)(~θs→t, ~θt→s) is the partition function of the set of bi-partite graphs Gns,nt
with constraints ~k ∗s→t on the top layer and ~k ∗t→s on the bottom layer, and Z(ss)(~θs→s)

is the partition function of the set of graph Gns with constraint ~k ∗s→s. The canonical
ensemble is

Pcan(G) =
∏

1≤s<t≤M
γs,t(Γ)=1

P (st)
can (G(st))

M∏
s=1

γs,s(Γ)=1

P (ss)
can (G(ss)), (2.124)

where P (st)
can (G(st)) is the canonical probability of the bi-partite graph G(st) with

constraints ~k ∗s→t on the top layer and ~k ∗t→s on the bottom layer, and P (ss)
can (G(ss)) is

the canonical probability of the uni-partite graph G(ss) with constraint ~k ∗s→s.

We can split the microcanonical probability as products of microcanonical prob-
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abilities for simpler cases. The number of graphs with constraints ~C∗ is

Ω~k ∗s→t; s,t∈{1,...,M}, γs,t(Γ)=1

=

∣∣∣∣∣∣
G ∈ Gn1,...,nM (Γ) :

∑
j∈Λt

gi,j(G) = k∗ ti ∀ i ∈ Λs ∀ γs,t = 1


∣∣∣∣∣∣

=
∏

1≤s<t≤M
γs,t(Γ)=1

|Ast ∩Bst|
M∏
s=1

γs,s(Γ)=1

∣∣∣∣∣∣
G(ss) ∈ Gns :

∑
j∈Λs

gi,j(G
(ss)) = s∗hi ∀ i ∈ Λs


∣∣∣∣∣∣

=
∏

1≤s<t≤M
γs,t(Γ)=1

Ω~k ∗s→t,~k ∗t→s

M∏
s=1

γs,s(Γ)=1

Ω~k ∗s→s
,

(2.125)
where Ast =

{
G(st) ∈ Gns,nk :

∑
j∈Λt

gi,j(G
(st)) = k∗ ti ∀ i ∈ Λs

}
and

Bst =
{
G(st) ∈ Gns,nk :

∑
i∈Λs

gi,j(G
(st)) = k∗ sj ∀ j ∈ Λt

}
.

This means the microcanonical probability can be factorised as

Pmic(G) =
∏

1≤s<t≤M
γs,t(Γ)=1

P
(st)
mic (G(st))

M∏
s=1

γs,s(Γ)=1

P
(ss)
mic (G(ss)), (2.126)

where P (st)
mic (G(st)) is the microcanonical probability of the bi-partite graph G(st) with

constraints ~k ∗s→t on the top layer and ~k ∗t→s on the bottom layer, and P (ss)
mic (G(ss)) is

the microcanonical probability of the uni-partite graph G(ss) with constraint ~k ∗s→s.

Equations (2.124) and (2.126) imply that the relative entropy equals the sum

Sn(Pmic | Pcan) =
∑

1≤s<t≤M
γs,t(Γ)=1

Sn(P
(st)
mic | P

(st)
can ) +

M∑
s=1

γs,s(Γ)=1

Sn(P
(ss)
mic | P

(ss)
can ). (2.127)

We can now apply Theorems 2.1.1 and 2.1.5 to get the asymptotic relative entropy
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per nodes as

lim
n1,...,nM→∞

Sn(Pmic | Pcan)

n

=
∑

1≤s<t≤M
γs,t(Γ)=1

lim
n1,...,nM→∞

Sn(P
(st)
mic | P

(st)
can )

n
+

M∑
s=1

γs,s(Γ)=1

lim
n1,...,nM→∞

Sn(P
(ss)
mic | P

(ss)
can )

n

=
∑

1≤s<t≤M
γs,t(Γ)=1

{
As ‖fs→t‖`1(g) +At ‖ft→s‖`1(g)

}
+

M∑
s=1

γs,s(Γ)=1

{
As ‖fs→s‖`1(g)

}

=

M∑
s,t=1
γs,t(Γ)

As ‖fs→t‖`1(g).

(2.128)

§2.3.7 Proof of Theorem 2.1.9

Proof. We start by studying the Hamiltonian. For each pair (s, t) of layers in D, we
define Lagrange multipliers ~θs→t = (θt1, . . . , θ

t
ns). For each pair (s, t) of layers in L,

we define a Lagrange multiplier θs,t. The Hamiltonian is

H
(
G | ~θs→t, θl,m; (s, t) ∈ D, (l,m) ∈ L

)
= HD(G | ~θs→t; (s, t) ∈ D) +HL(G | θl,m; (l,m) ∈ L)

(2.129)

with

HD(G | ~θs→t; (s, t) ∈ D) =
∑

1≤s<t≤M
(s,t)∈D

∑
i∈Λs
j∈Λt

(θti + θsj )gi,j(G)

+

M∑
s=1

(s,s)∈D

∑
i,j∈Λs
i<j

(θsi + θsj )gi,j(G),

HL(G | θs,t; (s, t) ∈ L) =
∑

1≤s<t≤M
(s,t)∈L

∑
i∈Λs
j∈Λt

(θs,t)gi,j(G) +

M∑
s=1

(s,s)∈L

∑
i,j∈Λs
i<j

(θs,s)gi,j(G).

(2.130)
Consequently, the canonical ensemble is

Pcan(G) = PDcan(G)PLcan(G) (2.131)
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with

PDcan(G) =
∏

1≤s<t≤M
(s,t)∈D

P (st)
can

D
(G(st))

M∏
s=1

(s,s)∈D

P (ss)
can

D
(G(ss)),

PLcan(G) =
∏

1≤s<t≤M
(s,t)∈L

P (st)
can

L
(G(st))

M∏
s=1

(s,s)∈L

P (ss)
can

L
(G(ss)).

(2.132)

Here,

• G(st) (G(ss) ) is the bi-partite (uni-partite) graph between layers s and t (and
itself) obtained from the multi-partite graph G. The ns × nt (ns × ns) matrix
representing this bi-partite (uni-partite) graph has, for each i ∈ Λs and j ∈ Λt
(for each i, j ∈ Λs), elements gi,j(G(st)) = gi,j(G) (gi,j(G(ss)) = gi,j(G)).

• P
(st)
can

D
(G(st)) (P (ss)

can

D
(G(ss))) is the canonical probability of the bi-partite (uni-

partite) graph G(st) (G(ss)) with constraints ~k ∗s→t on the top layer and ~k ∗t→s on
the bottom layer (with constraint ~k ∗s→s).

• P
(st)
can

L
(G(st)) (P (ss)

can

L
(G(ss))) is the canonical probability of the bi-partite (uni-

partite) graph G(st) (G(ss)) with constraint L∗s,t (L∗s,s).

We can split the microcanonical probability as products of microcanonical prob-
abilities of simpler cases. The number of graphs with such a type of constraints is

Ω~k ∗s→t,L∗l,m; (s,t)∈D,(l,m)∈L = Ω~k ∗s→t;(s,t)∈D
ΩLl,m;(l,m)∈L. (2.133)

This means that the microcanonical probability can be factorised as

Pmic(G) = PDmic(G)PLmic(G) (2.134)

with

PDmic(G) =
∏

1≤s<t≤M
(s,t)∈D

P
(st)
mic

D
(G(st))

M∏
s=1

(s,s)∈D

P
(ss)
mic

D
(G(ss)),

PLmic(G) =
∏

1≤s<t≤M
(s,t)∈L

P
(st)
mic

L
(G(st))

M∏
s=1

(s,s)∈L

P
(ss)
mic

L
(G(ss)).

(2.135)

Here,

• P
(st)
mic

D
(G(st)) (P (ss)

mic

D
(G(ss))) is the microcanonical probability of the bi-partite

(uni-partite) graph G(st) (G(ss)) with constraints ~k ∗s→t on the top layer and ~k ∗t→s
on the bottom layer (with constraint ~k ∗s→s).

• P
(st)
mic

L
(G(st)) (P (ss)

mic

L
(G(ss))) is the microcanonical probability of the bi-partite

(uni-partite) graph G(st) (G(ss)) with constraint L∗s,t (L∗s,s).
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The relative entropy becomes

Sn(Pmic | Pcan) = Sn(PDmic | PDcan) + Sn(PLmic | PLcan). (2.136)

It follows that

lim
n1,...,nM→∞

Sn(Pmic | Pcan)

n

= lim
n1,...,nM→∞

Sn(PDmic | PDcan)

n
+ lim
n1,...,nM→∞

Sn(PLmic | PLcan)

n
.

(2.137)

Using Theorem 2.1.8 we get

lim
n1,...,nM→∞

Sn(PDmic | PDcan)

n
=

∑
(s,t)∈D

As ‖fs→t‖`1(g). (2.138)

Moreover,

lim
n1,...,nM→∞

Sn(PLmic | PLcan)

n

= lim
n1,...,nM→∞

∑
1≤s<t≤M

(s,t)∈L

Sn(P
(st)
mic

L
| P (st)

can

L
)

n
+ lim
n1,...,nM→∞

M∑
s=1

(s,s)∈L

Sn(P
(ss)
mic

L
| P (ss)

can

L
)

n
.

(2.139)
Using Theorems 2.1.4 and 2.1.7, we get

lim
n1,...,nM→∞

Sn(P
(st)
mic

L
| P (st)

can

L
)

n
= lim
n1,...,nM→∞

Sn(P
(ss)
mic

L
| P (ss)

can

L
)

n
= 0, (2.140)

which proves the claim.

§2.3.8 Proof of Theorem 2.1.10
Proof. The proof is based on the previous theorems. For each pair of layers s, t ∈M1

we define Lagrange multipliers ~θs→t = (θt1, . . . , θ
t
ns) and ~θt→s = (θs1, . . . , θ

s
nt). For

each pair of layers s,∈M1, t ∈M2 we define ~θs→t = (θt1, . . . , θ
t
ns). The Hamiltonian

is

H
(
G | ~θs→t; s ∈M1, t ∈M1 ∪M2, γs,t(Γ) = 1

)
=

∑
s,t∈M1

γs,t(Γ)=1

~θs→t~ss→t(G) +
∑
s∈M1

γs,s(Γ)=1

~θs→s~ss→s(G) +
∑

s∈M1, t∈M2

γs,t(Γ)=1

~θs→t~ss→t(G)

= HM1→M1
+HM1→M2

,
(2.141)

with

HM1→M1
=

∑
s,t∈M1

γs,t(Γ)=1

~θs→t~ss→t(G) +
∑
s∈M1

γs,s(Γ)=1

~θs→s~ss→s(G),

HM1→M2
=

∑
s∈M1, t∈M2

γs,t(Γ)=1

~θs→t~ss→t(G).
(2.142)
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Consequently, the canonical ensemble is

Pcan(G) = PM1→M1
can (G)PM1→M2

can (G) (2.143)

with

PM1→M1
can (G) =

∏
s,t∈M1

γs,t(Γ)=1

P (st)
can

top,bot
(G(st))

∏
s∈M1

γs,s(Γ)=1

P (ss)
can (G(ss)),

PM1→M2
can (G) =

∏
s∈M1, t∈M2

γs,t(Γ)=1

P (st)
can

top
(G(st)).

(2.144)

Here,

• G(st) (G(ss)) is the bi-partite (uni-partite) graph between layers s and t (itself)
obtained from the multi-partite graph G. The ns × nt (ns × ns) matrix repres-
enting this bi-partite (uni-partite) graph has, for each i ∈ Λs and j ∈ Λt (for
each i, j ∈ s), elements gi,j(G(st)) = gi,j(G) (gi,j(G(ss)) = gi,j(G)).

• P
(st)
can

top,bot
(G(st)) is the canonical probability of the bi-partite graph G(st) with

constraints ~k ∗s→t on the top layer and ~k ∗t→s on the bottom layer.

• P
(ss)
can (G(ss)) is the canonical probability of the uni-partite graph G(ss) with

constraint ~k ∗s→s.

• P
(st)
can

top
(G(st)) is the canonical probability of the bi-partite graph G(st) with

constraint ~k ∗s→t on the top layer.

We can split the microcanonical probability as products of microcanonical prob-
abilities for simpler cases. The number of graphs with such a type of constraints
is

Ω~k ∗s→t; s∈M1, t∈M1∪M2, γs,t(Γ)=1 (2.145)

= Ω~k ∗s→t; s,t∈M1, γs,t(Γ)=1Ω~k ∗s→t; s∈M1, t∈M2, γs,t(Γ)=1. (2.146)

This means that the microcanonical probability can be factorised as

Pmic(G) = PM1→M1

mic (G)PM1→M2

mic (G) (2.147)

with

PM1→M1

mic (G) =
∏

s,t∈M1

γs,t(Γ)=1

P
(st)
mic

top,bot
(G(st))

∏
s∈M1

γs,s(Γ)=1

P
(ss)
mic (G(ss)),

PM1→M2

mic (G) =
∏

s∈M1, t∈M2

γs,t(Γ)=1

P
(st)
mic

top
(G(st)).

(2.148)

Here,
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• P
(st)
mic

top,bot
(G(st)) is the microcanonical probability of the bi-partite graph G(st)

with constraints ~k ∗s→t on the top layer and ~k ∗t→s on the bottom layer.

• P
(ss)
mic (G(ss)) is the microcanonical probability of the uni-partite graph G(ss)

with constraint ~k ∗s→s.

• P
(st)
mic

top
(G(st)) is the microcanonical probability of the bi-partite graph G(st)

with constraint ~k ∗s→t on the top layer.

The relative entropy becomes

Sn(Pmic | Pcan) = Sn(PM1→M1

mic | PM1→M1
can ) + Sn(PM1→M2

mic | PM1→M2
can ). (2.149)

It follows that

lim
n1,...,nM→∞

Sn(Pcan | Pcan)

n

= lim
n1,...,nM→∞

Sn(PM1→M1

mic | PM1→M1
can )

n
+ lim
n1,...,nM→∞

Sn(PM1→M2

mic | PM1→M2
can )

n
.

(2.150)
Using again Theorem 2.1.8 we get

lim
n1,...,nM→∞

Sn(PM1→M1

mic | PM1→M1
can )

n

=
∑

s,t∈M1

γs,t(Γ)=1

{
As ‖fs→t‖`1(g) +At ‖ft→s‖`1(g)

}
+

∑
s∈M1

γs,s(Γ)=1

As ‖fs→s‖`1(g)

=
∑

s,t∈M1

γs,t(Γ)=1

As ‖fs→t‖`1(g).

(2.151)

From Theorem 2.1.6 we get

lim
n1,...,nM→∞

Sn(PM1→M2

mic | PM1→M2
can )

n

= lim
n1,...,nM→∞

∑
s∈M1, t∈M2

γs,t(Γ)=1

Sn(P
(st)
mic

M1→M2

| P (st)
can

M1→M2

)

n

=
∑

s∈M1, t∈M2

γs,t(Γ)=1

As ‖fs→l‖`1(g),

(2.152)

which concludes the proof.

62



§2.3. Proofs of Theorems 2.1.1-2.1.10

C
h
a
pter

2

63





CHAPTER 3
Covariance structure behind

breaking of ensemble equivalence in
random graphs

This chapter is based on:
D. Garlaschelli, F. den Hollander, and A. Roccaverde. Covariance structure behind
breaking of ensemble equivalence in random graphs. J. Stat. Phys., Jul 2018

Abstract

For a random graph subject to a topological constraint, the microcanonical ensemble
requires the constraint to be met by every realisation of the graph (‘hard constraint’),
while the canonical ensemble requires the constraint to be met only on average (‘soft
constraint’). It is known that breaking of ensemble equivalence may occur when the
size of the graph tends to infinity, signalled by a non-zero specific relative entropy
of the two ensembles. In this paper we analyse a formula for the relative entropy of
generic discrete random structures recently put forward by Squartini and Garlaschelli.
We consider the case of a random graph with a given degree sequence (configuration
model), and show that in the dense regime this formula correctly predicts that the
specific relative entropy is determined by the scaling of the determinant of the matrix
of canonical covariances of the constraints. The formula also correctly predicts that
an extra correction term is required in the sparse regime and in the ultra-dense re-
gime. We further show that the different expressions correspond to the degrees in the
canonical ensemble being asymptotically Gaussian in the dense regime and asymp-
totically Poisson in the sparse regime (the latter confirms what we found in earlier
work), and the dual degrees in the canonical ensemble being asymptotically Poisson
in the ultra-dense regime. In general, we show that the degrees follow a multivariate
version of the Poisson-Binomial distribution in the canonical ensemble.
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§3.1 Introduction and main results

§3.1.1 Background and outline
For most real-world networks, a detailed knowledge of the architecture of the network
is not available and one must work with a probabilistic description, where the network
is assumed to be a random sample drawn from a set of allowed configurations that
are consistent with a set of known topological constraints [95]. Statistical physics
deals with the definition of the appropriate probability distribution over the set of
configurations and with the calculation of the resulting properties of the system. Two
key choices of probability distribution are:

(1) the microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual configuration);

(2) the canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual configurations may violate the constraints).

(In both ensembles, the entropy is maximal subject to the given constraints.)
In the limit as the size of the network diverges, the two ensembles are traditionally

assumed to become equivalent, as a result of the expected vanishing of the fluctuations
of the soft constraints (i.e., the soft constraints are expected to become asymptotically
hard). However, it is known that this equivalence may be broken, as signalled by a
non-zero specific relative entropy of the two ensembles (= on an appropriate scale).
In earlier work various scenarios were identified for this phenomenon (see [92], [48],
[38] and references therein). In the present paper we take a fresh look at breaking
of ensemble equivalence by analysing a formula for the relative entropy, based on
the covariance structure of the canonical ensemble, recently put forward by Squartini
and Garlaschelli [93]. We consider the case of a random graph with a given degree
sequence (configuration model) and show that this formula correctly predicts that
the specific relative entropy is determined by the scaling of the determinant of the
covariance matrix of the constraints in the dense regime, while it requires an extra
correction term in the sparse regime and the ultra-dense regime. We also show that
the different behaviours found in the different regimes correspond to the degrees being
asymptotically Gaussian in the dense regime and asymptotically Poisson in the sparse
regime, and the dual degrees being asymptotically Poisson in the ultra-dense regime.
We further note that, in general, in the canonical ensemble the degrees are distributed
according to a multivariate version of the Poisson-Binomial distribution [100], which
admits the Gaussian distribution and the Poisson distribution as limits in appropriate
regimes.

Our results imply that, in all three regimes, ensemble equivalence breaks down
in the presence of an extensive number of constraints. This confirms the need for a
principled choice of the ensemble used in practical applications. Three examples serve
as an illustration:

(a) Pattern detection is the identification of nontrivial structural properties in a real-
world network through comparison with a suitable null model, i.e., a random
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graph model that preserves certain local topological properties of the network
(like the degree sequence) but is otherwise completely random.

(b) Community detection is the identification of groups of nodes that are more
densely connected with each other than expected under a null model, which is
a popular special case of pattern detection.

(c) Network reconstruction employs purely local topological information to infer
higher-order structural properties of a real-world network. This problem arises
whenever the global properties of the network are not known, for instance,
due to confidentiality or privacy issues, but local properties are. In such cases,
optimal inference about the network can be achieved by maximising the entropy
subject to the known local constraints, which again leads to the two ensembles
considered here.

Breaking of ensemble equivalence means that different choices of the ensemble lead
to asymptotically different behaviours. Consequently, while for applications based on
ensemble-equivalent models the choice of the working ensemble can be arbitrary and
can be based on mathematical convenience, for those based on ensemble-nonequivalent
models the choice should be dictated by a criterion indicating which ensemble is the
appropriate one to use. This criterion must be based on the a priori knowledge that
is available about the network, i.e., which form of the constraint (hard or soft) applies
in practice.

The remainder of this section is organised as follows. In Section 3.1.2 we introduce
the constraints to be considered, which are on the degree sequence. In Section 3.1.3
we introduce the various regimes we will be interested in and state a formula for
the relative entropy when the constraint is on the degree sequence. In Section 3.1.4
we state the formula for the relative entropy proposed in [93] and present our main
theorem. In Section 3.1.5 we close with a discussion of the interpretation of this
theorem and an outline of the remainder of the paper.

The microcanonical and the canonical ensemble, as well as the relative entropy
density have been defined in Section 1.4.1 and 1.4.2.

§3.1.2 Constraint on the degree sequence

The degree sequence of a graph G ∈ Gn is defined as ~k(G) = (ki(G))ni=1 with ki(G) =∑
j 6=i gij(G). In what follows we constrain the degree sequence to a specific value ~k∗,

which we assume to be graphical, i.e., there is at least one graph with degree sequence
~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )ni=1 ∈ {1, 2, . . . , n− 2}n, (3.1)

The microcanonical ensemble, when the constraint is on the degree sequence, is known
as the configuration model and has been studied intensively (see [95, 92, 99]). For
later use we recall the form of the canonical probability in the configuration model,
namely,

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G) (3.2)
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with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

(3.3)

and with the vector of Lagrange multipliers tuned to the value ~θ∗ = (θ∗i )ni=1 such that

〈ki〉 =
∑
j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (3.4)

Using (1.16), we can write

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
= − log[Ω ~k∗Pcan(G∗)] = − logQ[ ~k∗]( ~k∗), (3.5)

where Ω~k is the number of graphs with degree sequence ~k,

Q[ ~k∗](~k ) = Ω~k Pcan

(
G
~k
)

(3.6)

is the probability that the degree sequence is equal to ~k under the canonical en-
semble with constraint ~k∗, G~k denotes an arbitrary graph with degree sequence ~k,
and Pcan

(
G
~k
)
is the canonical probability in (3.2) rewritten for one such graph:

Pcan

(
G
~k
)

=
∏

1≤i<j≤n

(
p∗ij
)gij(G~k) (

1− p∗ij
)1−gij(G~k)

=

n∏
i=1

(x∗i )
ki

∏
1≤i<j≤n

(1 + x∗i x
∗
j )
−1.

(3.7)
In the last expression, x∗i = e−θ

∗
i , and ~θ = (θ∗i )ni=1 is the vector of Lagrange multipliers

coming from (3.3).

§3.1.3 Relevant regimes
The breaking of ensemble equivalence was analysed in [48] in the so-called sparse
regime, defined by the condition

max
1≤i≤n

k∗i = o(
√
n ). (3.8)

It is natural to consider the opposite setting, namely, the ultra-dense regime in which
the degrees are close to n− 1,

max
1≤i≤n

(n− 1− k∗i ) = o(
√
n ). (3.9)

This can be seen as the dual of the sparse regime. We will see in Appendix B that
under the map k∗i 7→ n − 1 − k∗i the microcanonical ensemble and the canonical
ensemble preserve their relationship, in particular, their relative entropy is invariant.

It is a challenge to study breaking of ensemble equivalence in between the sparse
regime and the ultra-dense regime, called the dense regime. In what follows we con-
sider a subclass of the dense regime, called the δ-tame regime, in which the graphs
are subject to a certain uniformity condition.
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3.1.1 Definition. A degree sequence ~k∗ = (k∗i )ni=1 is called δ-tame if and only if
there exists a δ ∈

(
0, 1

2

]
such that

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ n, (3.10)

where p∗ij are the canonical probabilities in (3.2)–(3.4).

3.1.2 Remark. The name δ-tame is taken from [9], which studies the number of
graphs with a δ-tame degree sequence. Definition 3.1.1 is actually a reformulation of
the definition given in [9]. See Appendix A for details.

The condition in (3.10) implies that

(n− 1)δ ≤ k∗i ≤ (n− 1)(1− δ), 1 ≤ i ≤ n, (3.11)

i.e., δ-tame graphs are nowhere too thin (sparse regime) nor too dense (ultra-dense
regime).

It is natural to ask whether, conversely, condition (3.11) implies that the degree
sequence is δ′-tame for some δ′ = δ′(δ). Unfortunately, this question is not easy to
settle, but the following lemma provides a partial answer.

3.1.3 Lemma. Suppose that ~k∗ = (k∗i )ni=1 satisfies

(n− 1)α ≤ k∗i ≤ (n− 1)(1− α), 1 ≤ i ≤ n, (3.12)

for some α ∈ ( 1
4 ,

1
2 ]. Then there exist δ = δ(α) > 0 and n0 = n0(α) ∈ N such that

~k∗ = (k∗i )ni=1 is δ-tame for all n ≥ n0.

Proof. The proof follows from [9, Theorem 2.1]. In fact, by picking β = 1−α in that
theorem, we find that we need α > 1

4 . The theorem also gives information about the
values of δ = δ(α) and n0 = n0(α).

§3.1.4 Linking ensemble nonequivalence to the ca-
nonical covariances

In this section we investigate an important formula, recently put forward in [93], for
the scaling of the relative entropy under a general constraint. The analysis in [93]
allows for the possibility that not all the constraints (i.e., not all the components of the
vector ~C) are linearly independent. For instance, ~C may contain redundant replicas
of the same constraint(s), or linear combinations of them. Since in the present paper
we only consider the case where ~C is the degree sequence, the different components
of ~C (i.e., the different degrees) are linearly independent.

When a K-dimensional constraint ~C∗ = (C∗i )Ki=1 with independent components is
imposed, then a key result in [93] is the formula

Sn(Pmic | Pcan) ∼ log

√
det(2πQ)

T
, n→∞, (3.13)
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where
Q = (qij)1≤i,j≤K (3.14)

is theK×K covariance matrix of the constraints under the canonical ensemble, whose
entries are defined as

qij = CovPcan
(Ci, Cj) = 〈Ci Cj〉 − 〈Ci〉〈Cj〉, (3.15)

and

T =
K∏
i=1

[
1 +O

(
1/λ

(K)
i (Q)

)]
, (3.16)

with λ(K)
i (Q) > 0 the i-th eigenvalue of the K ×K covariance matrix Q. This result

can be formulated rigorously as

3.1.1 Formula ([93]). If all the constraints are linearly independent, then the lim-
iting relative entropy αn-density equals

sα∞ = lim
n→∞

log
√

det(2πQ)

αn
+ τα∞ (3.17)

with αn the ‘natural’ speed and

τα∞ = − lim
n→∞

log T

αn
. (3.18)

The latter is zero when

lim
n→∞

|IKn,R|
αn

= 0 ∀R <∞, (3.19)

where IK,R = {i = 1, . . . ,K : λ
(K)
i (Q) ≤ R} with λ(K)

i (Q) the i-th eigenvalue of the
K-dimensional covariance matrix Q (the notation Kn indicates that K may depend
on n). Note that 0 ≤ IK,R ≤ K. Consequently, (3.19) is satisfied (and hence τα∞ = 0)
when limn→∞Kn/αn = 0, i.e., when the number Kn of constraints grows slower than
αn.

3.1.4 Remark ([93]). Formula 3.1.1, for which [93] offers compelling evidence but
not a mathematical proof, can be rephrased by saying that the natural choice of αn
is

α̃n = log
√

det(2πQ). (3.20)

Indeed, if all the constraints are linearly independent and (3.19) holds, then τα̃n = 0

and

sα̃∞ = 1, (3.21)
Sn(Pmic | Pcan) = [1 + o(1)] α̃n. (3.22)
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We now present our main theorem, which considers the case where the constraint is
on the degree sequence: Kn = n and ~C∗ = ~k∗ = (k∗i )ni=1. This case was studied in [48],
for which αn = n in the sparse regime with finite degrees. Our results here focus on
three new regimes, for which we need to increase αn: the sparse regime with growing
degrees, the δ-tame regime, and the ultra-dense regime with growing dual degrees.
In all these cases, since limn→∞Kn/αn = limn→∞ n/αn = 0, Formula 3.1.1 states
that (3.17) holds with τα̃n = 0. Our theorem provides a rigorous and independent
mathematical proof of this result.

3.1.5 Theorem. Formula 3.1.1 is true with τα∞ = 0 when the constraint is on the
degree sequence ~C∗ = ~k∗ = (k∗i )ni=1, the scale parameter is αn = n fn with

fn = n−1
n∑
i=1

fn(k∗i ) with fn(k) =
1

2
log

[
k(n− 1− k)

n

]
, (3.23)

and the degree sequence belongs to one of the following three regimes:

• The sparse regime with growing degrees:

max
1≤i≤n

k∗i = o(
√
n ), lim

n→∞
min

1≤i≤n
k∗i =∞. (3.24)

• The δ-tame regime (see (3.2) and Lemma 3.1.3):

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ n. (3.25)

• The ultra-dense regime with growing dual degrees:

max
1≤i≤n

(n− 1− k∗i ) = o(
√
n ), lim

n→∞
min

1≤i≤n
(n− 1− k∗i ) =∞. (3.26)

In all three regimes there is breaking of ensemble equivalence, and

sα∞ = lim
n→∞

sαn = 1. (3.27)

§3.1.5 Discussion and outline
Comparing (3.21) and (3.27), and using (3.20), we see that Theorem 3.1.5 shows that
if the constraint is on the degree sequence, then

Sn(Pmic | Pcan) ∼ nfn ∼ log
√

det(2πQ) (3.28)

in each of the three regimes considered. Below we provide a heuristic explanation
for this result (as well as for our previous results in [48]) that links back to (3.5). In
Section 3.2 we prove Theorem 3.1.5.
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Poisson-Binomial degrees in the general case. Note that (3.5) can be rewritten
as

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | Q[ ~k∗]

)
, (3.29)

where δ[ ~k∗] =
∏n
i=1 δ[k

∗
i ] is the multivariate Dirac distribution with average ~k∗. This

has the interesting interpretation that the relative entropy between the distributions
Pmic and Pcan on the set of graphs coincides with the relative entropy between δ[ ~k∗]
and Q[ ~k∗] on the set of degree sequences.

To be explicit, using (3.6) and (3.7), we can rewrite Q[ ~k∗](~k) as

Q[ ~k∗](~k) = Ω~k

n∏
i=1

(x∗i )
ki

∏
1≤i<j≤n

(1 + x∗i x
∗
j )
−1. (3.30)

We note that the above distribution is a multivariate version of the Poisson-Binomial
distribution (or Poisson’s Binomial distribution; see Wang [100]). In the univariate
case, the Poisson-Binomial distribution describes the probability of a certain num-
ber of successes out of a total number of independent and (in general) not identical
Bernoulli trials [100]. In our case, the marginal probability that node i has degree ki
in the canonical ensemble, irrespectively of the degree of any other node, is indeed a
univariate Poisson-Binomial given by n− 1 independent Bernoulli trials with success
probabilities {p∗ij}j 6=i. The relation in (3.29) can therefore be restated as

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | PoissonBinomial[ ~k∗]

)
, (3.31)

where PoissonBinomial[ ~k∗] is the multivariate Poisson-Binomial distribution given by
(3.30), i.e.,

Q[ ~k∗] = PoissonBinomial[ ~k∗]. (3.32)

The relative entropy can therefore be seen as coming from a situation in which the
microcanonical ensemble forces the degree sequence to be exactly ~k∗, while the ca-
nonical ensemble forces the degree sequence to be Poisson-Binomial distributed with
average ~k∗.

It is known that the univariate Poisson-Binomial distribution admits two asymp-
totic limits: (1) a Poisson limit (if and only if, in our notation,

∑
j 6=i p

∗
ij → λ > 0 and∑

j 6=i(p
∗
ij)

2 → 0 as n → ∞ [100]); (2) a Gaussian limit (if and only if p∗ij → λj > 0

for all j 6= i as n → ∞, as follows from a central limit theorem type of argument).
If all the Bernoulli trials are identical, i.e., if all the probabilities {p∗ij}j 6=i are equal,
then the univariate Poisson-Binomial distribution reduces to the ordinary Binomial
distribution, which also exhibits the well-known Poisson and Gaussian limits. These
results imply that also the general multivariate Poisson-Binomial distribution in (3.30)
admits limiting behaviours that should be consistent with the Poisson and Gaussian
limits discussed above for its marginals. This is precisely what we confirm below.

Poisson degrees in the sparse regime. In [48] it was shown that, for a sparse
degree sequence,

Sn(Pmic | Pcan) ∼
n∑
i=1

S
(
δ[k∗i ] | Poisson[k∗i ]

)
. (3.33)
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The right-hand side is the sum over all nodes i of the relative entropy of the Dirac
distribution with average k∗i w.r.t. the Poisson distribution with average k∗i . We
see that, under the sparseness condition, the constraints act on the nodes essentially
independently. We can therefore reinterpret (3.33) as the statement

Sn(Pmic | Pcan) ∼ S
(
δ[ ~k∗] | Poisson[ ~k∗]

)
, (3.34)

where Poisson[ ~k∗] =
∏n
i=1 Poisson[k∗i ] is the multivariate Poisson distribution with

average ~k∗. In other words, in this regime

Q[ ~k∗] ∼ Poisson[ ~k∗], (3.35)

i.e. the joint multivariate Poisson-Binomial distribution (3.30) essentially decouples
into the product of marginal univariate Poisson-Binomial distributions describing the
degrees of all nodes, and each of these Poisson-Binomial distributions is asymptotically
a Poisson distribution.

Note that the Poisson regime was obtained in [48] under the condition in (3.8),
which is less restrictive than the aforementioned condition k∗i =

∑
j 6=i p

∗
ij → λ > 0,∑

j 6=i(p
∗
ij)

2 → 0 under which the Poisson distribution is retrieved from the Poisson-
Binomial distribution [100]. In particular, the condition in (3.8) includes both the case
with growing degrees included in Theorem 3.1.5 (and consistent with Formula 3.1.1
with τα∞ = 0) and the case with finite degrees, which cannot be retrieved from
Formula 3.1.1 with τα∞ = 0, because it corresponds to the case where all the n = αn
eigenvalues of Q remain finite as n diverges (as the entries of Q themselves do not
diverge), and indeed (3.19) does not hold.

Poisson degrees in the ultra-dense regime. Since the ultra-dense regime is
the dual of the sparse regime, we immediately get the heuristic interpretation of the
relative entropy when the constraint is on an ultra-dense degree sequence ~k∗. Using
(3.34) and the observations in Appendix B (see, in particular (B.2)), we get

Sn(Pmic | Pcan) ∼ S
(
δ[ ~̀∗] | Poisson[ ~̀∗]

)
, (3.36)

where ~̀∗ = (`∗i )
n
i=1 is the dual degree sequence given by `∗i = n − 1 − k∗i . In other

words, under the microcanonical ensemble the dual degrees follow the distribution
δ[ ~̀∗], while under the canonical ensemble the dual degrees follow the distribution
Q[ ~̀∗], where in analogy with (3.35),

Q[ ~̀∗] ∼ Poisson[ ~̀∗]. (3.37)

Similar to the sparse case, the multivariate Poisson-Binomial distribution (3.30) re-
duces to a product of marginal, and asymptotically Poisson, distributions governing
the different degrees.

Again, the case with finite dual degrees cannot be retrieved from Formula 3.1.1
with τα∞ = 0, because it corresponds to the case where Q has a diverging (like
n = αn) number of eigenvalues whose value remains finite as n → ∞, and (3.19)
does not hold. By contrast, the case with growing dual degrees can be retrieved from
Formula 3.1.1 with τα∞ = 0 because (3.19) holds, as confirmed in Theorem 3.1.5.
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Gaussian degrees in the dense regime. We can reinterpet (3.28) as the state-
ment

Sn(Pmic | Pcan) ∼ S
(
δ[ ~k∗] | Normal[ ~k∗, Q]

)
, (3.38)

where Normal[ ~k∗, Q] is the multivariate Normal distribution with mean ~k∗ and cov-
ariance matrix Q. In other words, in this regime

Q[ ~k∗] ∼ Normal[ ~k∗, Q], (3.39)

i.e., the multivariate Poisson-Binomial distribution (3.30) is asymptotically a mul-
tivariate Gaussian distribution whose covariance matrix is in general not diagonal,
i.e., the dependencies between degrees of different nodes do not vanish, unlike in the
other two regimes. Since all the degrees are growing in this regime, so are all the
eigenvalues of Q, implying (3.19) and consistently with Formula 3.1.1 with τα∞ = 0,
as proven in Theorem 3.1.5.

Note that the right-hand side of (3.38), being the relative entropy of a discrete dis-
tribution with respect to a continuous distribution, needs to be properly interpreted:
the Dirac distribution δ[ ~k∗] needs to be smoothened to a continuous distribution with
support in a small ball around ~k∗. Since the degrees are large, this does not affect
the asymptotics.

Crossover between the regimes. An easy computation gives

S
(
δ[k∗i ] | Poisson[k∗i ]

)
= g(k∗i ) with g(k) = log

(
k!

e−kkk

)
. (3.40)

Since g(k) = [1 + o(1)] 1
2 log(2πk), k → ∞, we see that, as we move from the sparse

regime with finite degrees to the sparse regime with growing degrees, the scaling of
the relative entropy in (3.33) nicely links up with that of the dense regime in (3.38)
via the common expression in (3.28). Note, however, that since the sparse regime
with growing degrees is in general incompatible with the dense δ-tame regime, in
Theorem 3.1.5 we have to obtain the two scalings of the relative entropy under disjoint
assumptions. By contrast, Formula 3.1.1 with τα∞ = 0, and hence (3.22), unifies the
two cases under the simpler and more general requirement that all the eigenvalues of
Q, and hence all the degrees, diverge. Actually, (3.22) is expected to hold in the even
more general hybrid case where there are both finite and growing degrees, provided
the number of finite-valued eigenvalues of Q grows slower than αn [93].

Other constraints. It would be interesting to investigate Formula 3.1.1 for con-
straints other than on the degrees. Such constraints are typically much harder to
analyse. In [38] constraints are considered on the total number of edges and the total
number of triangles simultaneously (K = 2) in the dense regime. It was found that,
with αn = n2, breaking of ensemble equivalence occurs for some ‘frustrated’ choices of
these numbers. Clearly, this type of breaking of ensemble equivalence does not arise
from the recently proposed [93] mechanism associated with a diverging number of
constraints as in the cases considered in this paper, but from the more traditional [97]
mechanism of a phase transition associated with the frustration phenomenon.
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Outline. Theorem 3.1.5 is proved in Section 3.2. In Appendix A we show that the
canonical probabilities in (3.2) are the same as the probabilities used in [9] to define
a δ-tame degree sequence. In Appendix B we explain the duality between the sparse
regime and the ultra-dense regime.

§3.2 Proof of the Main Theorem

In Section 3.2.2 we prove Theorem 3.1.5. The proof is based on two lemmas, which
we state and prove in Section 3.2.1.

§3.2.1 Preparatory lemmas
The following lemma gives an expression for the relative entropy.

3.2.1 Lemma. If the constraint is a δ-tame degree sequence, then the relative en-
tropy in (1.16) scales as

Sn(Pmic | Pcan) = [1 + o(1)] 1
2 log[det(2πQ)], (3.41)

where Q is the covariance matrix in (3.14). This matrix Q = (qij) takes the form{
qii = k∗i −

∑
j 6=i(p

∗
ij)

2 =
∑
j 6=i p

∗
ij(1− p∗ij), 1 ≤ i ≤ n,

qij = p∗ij(1− p∗ij), 1 ≤ i 6= j ≤ n.
(3.42)

Proof. To compute qij = CovPcan
(ki, kj) we take the second order derivatives of the

log-likelihood function

L(~θ) = logPcan(G∗ | ~θ)

= log

 ∏
1≤i<j≤n

p
gij(G

∗)
ij (1− pij)(1−gij(G∗))

 , pij =
e−θi−θj

1 + e−θi−θj

(3.43)

in the point ~θ = ~θ∗ [93]. Indeed, it is easy to show that the first-order derivatives
are [51]

∂

∂θi
L(~θ ) = 〈ki〉 − k∗i ,

∂

∂θi
L(~θ )

∣∣∣∣
~θ= ~θ∗

= k∗i − k∗i = 0 (3.44)

and the second-order derivatives are

∂2

∂θi∂θj
L(~θ)

∣∣∣∣
~θ= ~θ∗

= 〈ki kj〉 − 〈ki〉〈kj〉 = CovPcan
(ki, kj). (3.45)

This readily gives (3.42).
The proof of (3.41) uses [9, Eq. (1.4.1)], which says that if a δ-tame degree sequence

is used as constraint, then

P−1
mic(G∗) = Ω~C∗ =

eH(p∗)

(2π)n/2
√

det(Q)
eC , (3.46)
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where Q and p∗ are defined in (3.42) and (3.70) below, while eC is sandwiched between
two constants that depend on δ:

γ1(δ) ≤ eC ≤ γ2(δ). (3.47)

From (3.46) and the relation H(p∗) = − logPcan(G∗), proved in Lemma A.1 below,
we get the claim.

The following lemma shows that the diagonal approximation of log(detQ)/nfn is
good when the degree sequence is δ-tame.

3.2.2 Lemma. Under the δ-tame condition,

log(detQD) + o(n fn) ≤ log(detQ) ≤ log(detQD) (3.48)

with QD = diag(Q) the matrix that coincides with Q on the diagonal and is zero off
the diagonal.

Proof. We use [60, Theorem 2.3], which says that if

(1) det(Q) is real,

(2) QD is non-singular with det(QD) real,

(3) λi(A) > −1, 1 ≤ i ≤ n,

then

e
− nρ2(A)

1+λmin(A) detQD ≤ detQ ≤ detQD. (3.49)

Here, A = Q−1
D Qoff , with Qoff the matrix that coincides with Q off the diagonal and is

zero on the diagonal, λi(A) is the i-th eigenvalue of A (arranged in decreasing order),
λmin(A) = min1≤i≤n λi(A), and ρ(A) = max1≤i≤n |λi(A)|.

We begin by verifying (1)–(3).

(1) Since Q is a symmetric matrix with real entries, detQ exists and is real.

(2) This property holds thanks to the δ-tame condition. Indeed, since qij = p∗i,j(1 −
p∗i,j), we have

0 < δ2 ≤ qij ≤ (1− δ)2 < 1, (3.50)

which implies that

0 < (n− 1)δ2 ≤ qii =
∑
j 6=i

qij ≤ (n− 1)(1− δ)2. (3.51)

(3) It is easy to show that A = (aij) is given by

aij =

{ qij
qii
, 1 ≤ i 6= j ≤ n,

0, 1 ≤ i ≤ n, (3.52)
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where qij is given by (3.42). Since qij = qji, the matrix A is symmetric. Moreover,
since qii =

∑
j 6=i qij , the matrix A is also Markov. We therefore have

1 = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) ≥ −1. (3.53)

From (3.50) and (3.52) we get

0 <
1

n− 1

(
δ

1− δ

)2

≤ aij ≤
1

n− 1

(
1− δ
δ

)2

. (3.54)

This implies that the Markov chain on {1, . . . , n} with transition matrix A starting
from i can return to i with a positive probability after an arbitrary number of steps
≥ 2. Consequently, the last inequality in (3.53) is strict.

We next show that
nρ2(A)

1 + λmin(A)
= o(n fn). (3.55)

Together with (3.49) this will settle the claim in (3.48). From (3.53) it follows ρ(A) =

1, so we must show that

lim
n→∞

[1 + λmin(A)] fn =∞. (3.56)

Using [104, Theorem 4.3], we get

λmin(A) ≥ −1 +
min1≤i 6=j≤n πiaij

min1≤i≤n πi
µmin(L) + 2γ. (3.57)

Here, π = (πi)
n
i=1 is the invariant distribution of the reversible Markov chain with

transition matrix A, while µmin(L) = min1≤i≤n λi(L) and γ = min1≤i≤n aii, with
L = (Lij) the matrix such that, for i 6= j, Lij = 1 if and only if aij > 0, while
Lii =

∑
j 6=i Lij .

We find that πi = 1
n for 1 ≤ i ≤ n, Lij = 1 for 1 ≤ i 6= j ≤ n, Lii = n − 1 for

1 ≤ i ≤ n, and γ = 0. Hence (3.57) becomes

λmin(A) ≥ −1 + (n− 2) min
1≤i 6=j≤n

aij ≥ −1 +
n− 2

n− 1

(
δ

1− δ

)2

, (3.58)

where the last inequality comes from (3.54). To get (3.56) it therefore suffices to show
that f∞ = limn→∞ fn =∞. But, using the δ-tame condition, we can estimate

1

2
log

[
(n− 1)δ(1− δ + nδ)

n

]
≤ fn =

1

2n

n∑
i=1

log

[
k∗i (n− 1− k∗i )

n

]
≤ 1

2
log

[
(n− 1)(1− δ)(δ + n(1− δ))

n

]
,

(3.59)

and both bounds scale like 1
2 log n as n→∞.

§3.2.2 Proof (Theorem 3.1.5)
Proof. We deal with each of the three regimes in Theorem 3.1.5 separatetely.
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The sparse regime with growing degrees. Since ~k∗ = (k∗i )ni=1 is a sparse degree
sequence, we can use [48, Eq. (3.12)], which says that

Sn(Pmic | Pcan) =

n∑
i=1

g(k∗i ) + o(n), n→∞, (3.60)

where g(k) = log
(

k!
kke−k

)
is defined in (3.40). Since the degrees are growing, we can

use Stirling’s approximation g(k) = 1
2 log(2πk) + o(1), k →∞, to obtain

n∑
i=1

g(k∗i ) = 1
2

n∑
i=1

log (2πk∗i ) + o(n) = 1
2

[
n log 2π +

n∑
i=1

log k∗i

]
+ o(n). (3.61)

Combining (3.60)–(3.61), we get

Sn(Pmic | Pcan)

n fn
= 1

2

[
log 2π

fn
+

∑n
i=1 log k∗i
nfn

]
+ o(1). (3.62)

Recall (3.23). Because the degrees are sparse, we have

lim
n→∞

∑n
i=1 log k∗i
nfn

= 2. (3.63)

Because the degrees are growing, we also have

f∞ = lim
n→∞

fn =∞. (3.64)

Combining (3.62)–(3.64) we find that limn→∞ Sn(Pmic | Pcan)/n fn = 1.

The ultra-dense regime with growing dual degrees. If ~k∗ = (k∗i )ni=1 is an
ultra-dense degree sequence, then the dual ~̀∗ = (`∗i )

n
i=1 = (n− 1− k∗i )ni=1 is a sparse

degree sequence. By Lemma B.2, the relative entropy is invariant under the map
k∗i → `∗i = n − 1 − k∗i . So is f̄n, and hence the claim follows from the proof in the
sparse regime.

The δ-tame regime. It follows from Lemma 3.2.1 that

lim
n→∞

Sn(Pmic | Pcan)

n fn
= 1

2

[
lim
n→∞

log 2π

fn
+ lim
n→∞

log(detQ)

n fn

]
. (3.65)

From (3.59) we know that f∞ = limn→∞ fn = ∞ in the δ-tame regime. It follows
from Lemma 3.2.2 that

lim
n→∞

log(detQ)

n fn
= lim
n→∞

log(detQD)

n fn
. (3.66)

To conclude the proof it therefore suffices to show that

lim
n→∞

log(detQD)

n fn
= 2. (3.67)
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Using (3.51) and (3.59), we may estimate

2 log[(n− 1)δ2]

log (n−1)(1−δ)(δ+n(1−δ))
n

≤
∑n
i=1 log(qii)

n fn
=

log(detQD)

n fn
≤ 2 log[(n− 1)(1− δ)2]

log (n−1)δ(1−δ+nδ)
n

.

(3.68)
Both sides tend to 2 as n→∞, and so (3.67) follows.

§A Appendix

Here we show that the canonical probabilities in (3.2) are the same as the probabilities
used in [9] to define a δ-tame degree sequence.

For q = (qij)1≤i,j≤n, let

E(q) = −
∑

1≤i 6=j≤n

qij log qij + (1− qij) log(1− qij). (3.69)

be the entropy of q. For a given degree sequence (k∗i )ni=1, consider the following
maximisation problem: 

maxE(q),∑
j 6=i qij = k∗i , 1 ≤ i ≤ n,

0 ≤ qij ≤ 1, 1 ≤ i 6= j ≤ n.
(3.70)

Since q 7→ E(q) is strictly concave, it attains its maximum at a unique point.

A.1 Lemma. The canonical probability takes the form

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

, (3.71)

where p∗ = (p∗ij) solves (3.70). In addition,

logPcan(G∗) = −H(p∗). (3.72)

Proof. It was shown in [48] that, for a degree sequence constraint,

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G) (3.73)

with p∗ij = e
−θ∗i −θ

∗
j

1+e
−θ∗
i
−θ∗
j
, where ~θ∗ has to be tuned such that∑

j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (3.74)

On the other hand, the solution of (3.70) via the Lagrange multiplier method gives
that

q∗ij =
e−φ

∗
i−φ

∗
j

1 + e−φ
∗
i−φ∗j

, (3.75)
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where ~φ∗ has to be tuned such that∑
j 6=i

q∗ij = k∗i , 1 ≤ i ≤ n. (3.76)

This implies that q∗ij = p∗ij for all 1 ≤ i 6= j ≤ n. Moreover,

logPcan(G∗) +H(p∗) =
∑

1≤i<j≤n

gij(G
∗) log

(
p∗ij

1− p∗ij

)
−

∑
1≤i<j≤n

p∗ij log

(
p∗ij

1− p∗ij

)

= −
∑

1≤i<j≤n

gij(G
∗)(θ∗i + θ∗j ) +

∑
1≤i<j≤n

p∗ij(θ
∗
i + θ∗j ) =

n∑
i=1

θ∗i
∑
j 6=i

(p∗ij − gij(G∗)) = 0,

(3.77)
where the last equation follows from the fact that∑

j 6=i

gij(G
∗) =

∑
j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (3.78)

§B Appendix

We explain the duality between the sparse regime and the ultra-dense regime.
Let ~k∗ = (k∗i )ni=1 be an ultra-dense degree sequence,

max
1≤i≤n

(n− 1− k∗i ) = o(
√
n), (3.79)

and let ~̀∗ = (`∗i )
n
i=1 be the dual degree sequence defined by `∗i = n− 1− k∗i . Clearly,

~̀∗ = (`∗i )
n
i=1 is a sparse degree sequence,

max
1≤i≤n

`∗i = o(
√
n). (3.80)

B.1 Lemma. Let Pcan and P̂can denote the canonical ensembles in (1.9) when ~C∗ =
~k∗ = (k∗i )ni=1, respectively, ~C∗ = ~̀∗ = (`∗i )

n
i=1. Then

Pcan(G) = P̂can(Gc), G ∈ Gn, (3.81)

where G and Gc are complementary graphs, i.e.,

gij(Gc) = 1− gij(G), 1 ≤ i 6= j ≤ n. (3.82)

Proof. From the definition of the canonical probabilities we have

Pcan(G) = Pcan(G | ~θ∗), P̂can(G) = Pcan(G | ~φ∗), (3.83)

where

Pcan(G | ~θ) =
exp[−~θ · ~k(G)]

Z(~θ)
, ~k(G) =

∑
j 6=i

gij(G), (3.84)
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and the values ~θ∗ and ~φ∗ are such that

∂F (~θ )

∂θi

∣∣∣∣
~θ=~θ∗

= −〈ki〉Pcan(· | ~θ∗) = −k∗i , (3.85)

∂F (~θ )

∂θi

∣∣∣∣
~θ=~φ∗

= −〈ki〉Pcan(· | ~φ∗) = −`∗i . (3.86)

The free energy is F (~θ) = logZ(~θ), and its i-th partial derivative in the Lagrange
multiplier that fixes the average of the i-th constraint. We show that ~θ∗ = −~φ∗.

Write

Z(~θ ) =
∑
G∈Gn

e−
~θ·~k(G) =

∑
G∈Gn

e−
∑n
i=1 θi(n−1−k(Gc)) = e−(n−1)

∑n
i=1 θi Z(−~θ ). (3.87)

Using (3.85) and (3.87), we get

−k∗i =
∂F (~θ )

∂θi

∣∣∣∣
~θ=~θ∗

= −(n− 1) + 〈ki〉Pcan(· | − ~θ∗). (3.88)

Since k∗i = n− 1− `∗i , we obtain

`∗i = 〈ki〉Pcan(· | −~θ∗). (3.89)

From (3.86), (3.89) and the uniqueness of the Lagrange multipliers, we get

~θ∗ = −~φ∗. (3.90)

Using (3.87) and (3.90), we obtain

P̂can(Gc) = Pcan(Gc | ~φ∗) = Pcan(Gc | −~θ∗) =
exp[~θ∗ · ~k(Gc)]

Z(−~θ∗)

=
exp[−~θ∗ · ~k(G)]

Z(−~θ∗) e−(n−1)
∑n
i=1 θ

∗
i

=
exp[−~θ∗ · ~k(G)]

Z(~θ∗)
= Pcan(G),

(3.91)

which settles (3.81).

B.2 Lemma. Let

• Pmic and Pcan denote the microcanonical ensemble in (1.6), respectively, the
canonical ensemble in (1.9), when ~C∗ = ~k∗ = (k∗i )ni=1 with k∗i satisfying (3.79).

• P̂mic and P̂can denote the microcanonical ensemble in (1.6), respectively, the
canonical ensemble in (1.9), when ~C∗ = ~̀∗ = (`∗i )

n
i=1 with `∗i = n − 1 − k∗i the

dual degree satisfying (3.80).

Then the relative entropy in (1.16) satisfies

Sn(Pmic | Pcan) = Sn(P̂mic | P̂can). (3.92)
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Proof. Consider a graph G∗ with degree sequence ~k(G∗) = ~k∗. Then

Pmic(G∗) = |{G ∈ Gn : ~k(G) = ~k∗}|−1 = |{G ∈ Gn : ~k(G) = ~̀∗}|−1 = P̂mic(G∗c),

(3.93)
where G∗c and G∗ are complementary graphs, so that ~k(G∗c) = ~̀∗. Using Lemma B.1,
we have

Pcan(G∗) = P̂can(G∗c). (3.94)

Combine (1.16), (3.93) and (3.94), to get

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
= log

P̂mic(G∗c)

P̂can(G∗c)
= Sn(P̂mic | P̂can). (3.95)
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CHAPTER 4
Is Breaking of Ensemble Equivalence

Monotone in the Number of
Constraints?

This chapter is based on:
A. Roccaverde. Is breaking of ensemble equivalence monotone in the number of
constraints? Indagationes Mathematicae, 2018

Abstract

Breaking of ensemble equivalence between the microcanonical ensemble and the ca-
nonical ensemble may occur for random graphs whose size tends to infinity, and is
signaled by a non-zero specific relative entropy of the two ensembles. In [48] and [50]
it was shown that breaking occurs when the constraint is put on the degree sequence
(configuration model). It is not known what is the effect on the relative entropy when
the number of constraints is reduced, i.e., when only part of the nodes are constrained
in their degree (and the remaining nodes are left unconstrained). Intuitively, the re-
lative entropy is expected to decrease. However, this is not a trivial issue because
when constraints are removed both the microcanonical ensemble and the canonical
ensemble change. In this paper a formula for the relative entropy valid for generic
discrete random structures, recently formulated by Squartini and Garlaschelli, is used
to prove that the relative entropy is monotone in the number of constraints when
the constraint is on the degrees of the nodes. It is further shown that the expression
for the relative entropy corresponds, in the dense regime, to the degrees in the mi-
crocanonical ensemble being asymptotically multivariate Dirac and in the canonical
ensemble being asymptotically Gaussian.
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§4.1 Introduction and main results

§4.1.1 Background
For most real-world networks, a detailed knowledge of the architecture of the network
is not available and one must work with a probabilistic description, where the network
is assumed to be a random sample drawn from a set of allowed configurations that
are consistent with a set of known topological constraints [95]. Statistical physics
deals with the definition of the appropriate probability distribution over the set of
configurations and with the calculation of the resulting properties of the system. Two
key choices of probability distribution are:

(1) the microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual configuration);

(2) the canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual configurations may violate the constraints).

(In both ensembles, the entropy is maximal subject to the given constraints.)
Breaking of ensemble equivalence means that different choices of the ensemble

lead to asymptotically different behaviors. Consequently, while for applications based
on ensemble-equivalent models the choice of ensemble can be based on mathematical
convenience, for those based on ensemble-nonequivalent models the choice should
be determined by the system one wants to apply to, i.e., dictated by a theoretical
criterion that indicates a priori which ensemble is the appropriate one to be used. It
is known that ensemble equivalence may be broken, signaled by a non-zero specific
relative entropy between the two ensembles. It is expected that when the number of
constraints grows extensively in the number of nodes, then typically there is breaking
of ensemble equivalence. This has been shown to be the case when the setting is
simple or bipartite graphs and the constraint is on the number of links (1 constraint
and ensemble equivalence) or on the full degree sequence (n constraints and non-
equivalence) [48]. Later, in [50] and [38], also the dense regime was investigated
and it was shown that the relative entropy between the two ensembles grows even
faster. In general, the constraint is a multidimensional vector and its components
represent the single quantities that are constrained. From now on, with the word
‘constraint’ we mean the ‘vector constraint’ and with the plural ‘constraints’ we mean
the ‘components’ of the vector. This means when we talk about the number of
constraints we actually mean the dimension of the vector constraint. In some cases
this number can be very large, for example, when the constraint is on the degree
sequence (a large number of nodes which need all to have the right degree).

Once the constraint becomes a function of the number n of nodes (for example,
the degree sequence), we can ask an interesting question: How is the relative entropy
affected when the number of constraints is reduced, possibly in a way that depends
on n? Intuitively, the relative entropy should decrease, but this is not a trivial is-
sue because both the microcanonical and the canonical ensemble change when the
constraints are changed. Of particular interest for the present paper is the main
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result of [50]. There it was proven that, when a δ-tame degree sequence is put as
a constraint on the set of simple graphs, than the relative entropy between the two
ensembles grows as n log n. We consider random graphs with a prescribed partial de-
gree sequence (reduced constraint). The breaking of ensemble equivalence is studied
by analyzing how the relative entropy changes as a function of the number of con-
straints, in particular, it is shown that the relative entropy is a monotone function of
the number of constraints. More precisely, when only m nodes are constrained and
the remaining n −m nodes are left unconstrained, the relative entropy is shown to
grow like m log n. Our analysis is based on a recent formula put forward by Squartini
and Garlaschelli [93]. This formula predicts that the relative entropy is determined
by the covariance matrix of the constraints under the canonical ensemble, in the re-
gime where the graph is dense. Our result implies that ensemble equivalence breaks
down whenever the regime is δ-tame, irrespective of the number of degrees m that
are constrained, provided m is not of order n.

Outline
Our paper is organized as follows. In Section 4.1 the background, the model and the
main theorem are discussed. In Section 4.2 the main theorem is proved, together with
a few basic lemmas that are needed along the way. Appendix A derives an expres-
sion for the canonical ensemble when a partial degree sequence is put as constraint.
Appendix B discusses the δ-tame condition for a partial degree sequence.

The remainder of Section 4.1 is organized as follows. In Section 4.1.1 we discussed
the background of the problem. In Section 4.1.2 we describe the model when the
constraint is put on the full degree sequence, in Section 4.1.3 when the constraint is
put on the partial degree sequence. Here we also define the δ-tame regime when the
constraint is on the partial degree sequence. In Section 4.1.4 we state a formula for
the relative entropy presented in [93] and state the main theorem. In section 4.1.5
we interpret the main theorem by stating how the degrees are distributed in the two
ensembles.

The microcanonical and the canonical ensemble, as well as the relative entropy
density have been defined in Section 1.4.1 and 1.4.2.

§4.1.2 Constraint on the full degree sequence
The model of this section comes from [48] and [50]. The full degree sequence of a
graph G ∈ Gn is defined as the vector ~k(G) = (ki(G))ni=1 with ki(G) =

∑
j 6=i gij(G).

The degree sequence is set to a specific value ~k∗, which we assume to be graphical,
i.e., there is at least one graph with degree sequence ~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )ni=1 ∈ {1, 2, . . . , n− 2}n. (4.1)

This constraint was studied in various regimes: in [48] in the sparse regime, and in
[50] in the ultra-dense and the δ-tame regime. The microcanonical ensemble, when
the constraint is put on the degree sequence, is known as the configuration model and
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has been studied in detail (see [95, 92, 99]). In the sparse (and in the ultra-dense)
regime, the microcanonical ensemble cannot be computed exactly, but there are good
approximations with an error that is vanishing when the relative entropy is computed
in the limit as n → ∞ [48], [9]. In the δ-tame regime, this approximation does not
hold, but the relative entropy can still be investigated with other tools [50]. The
canonical ensemble can be computed in every regime and takes the form

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

, (4.2)

with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

, (4.3)

and with the vector of Lagrange multipliers ~θ∗ = (θ∗i )ni=1 tuned such that

〈ki〉 =
∑

1≤j≤n
j 6=i

p∗ij = k∗i , ∀ 1 ≤ i ≤ n. (4.4)

The results in [48] show that there is breaking of ensemble equivalence with αn = n

when the regime is sparse and ultra-dense. The results in [50] show that the relative
entropy grows like αn = 1

2n log n. The purpose of the paper is to investigate what
happens when part of the n constraints degrees are removed and how the relative
entropy is affected by this. In the next section the partial constraint is presented and
the main theorem is stated.

§4.1.3 Constraint on the partial degree sequence
In this section we look at a different model. The constraint is put on the partial
degree sequence instead of on the full degree sequence, more precisely, only the first
m < n nodes are constrained while the remaining nodes are left unconstrained. The
partial degree sequence of a graph G ∈ Gn is defined as the vector ~k(G) = (ki(G))mi=1

where ki(G) =
∑

1≤j 6=j≤n gij(G). The constraint is set to be a specific m-dimensional
vector ~k∗, which we assume to be graphical, i.e., there exist at least one graph G∗ ∈ Gn
with partial degree sequence ~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )mi=1 ∈ {1, 2, . . . , n− 2}m, (4.5)

As mentioned above, the microcanonical ensemble can be computed approximately
when the constraint is put on the full degree sequence. However, when the constraint is
put on the partial degree sequence, no good approximation is available. The situation
is different for the canonical ensemble, which can still be computed. Appendix A is
dedicated to the study of the canonical ensemble when a partial degree sequence is
put as a constraint. This leads to

Pcan(G) = 2−(n−m2 )
∏

1≤i<j≤m

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

m∏
i=1

(p∗i )
si(G)

(1− p∗i )
n−m−si(G)

(4.6)
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with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

, p∗i =
e−θ

∗
i

1 + e−θ
∗
i
, si(G) =

n∑
j=m+1

gij(G), (4.7)

and with the vector of Lagrange multipliers ~θ∗ = (θ∗i )mi=1 tuned such that

〈ki〉 =
∑

1≤j≤m
j 6=i

p∗ij + (n−m)p∗i = k∗i , 1 ≤ i ≤ m. (4.8)

The canonical ensemble has an interesting dual structure, consisting of the product
of two canonical probabilities, which we call unipartite probability and bipartite prob-
ability, and an overall factor 2−(n−m2 ). The unipartite probability,∏

1≤i<j≤m

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

,

is precisely the canonical ensemble obtained when the constraint is put on the full
degree sequence ~u∗ = (u∗i )

m
i=1, with u∗i =

∑
1≤j≤m
j 6=i

p∗ij , on the subset of graphs with
m nodes Gm. The bipartite probability,

m∏
i=1

(p∗i )
si(G)

(1− p∗i )
n−m−si(G)

,

is precisely the canonical bipartite probability obtained when the constraint is put on
the top layer of a bipartite graph. More precisely, the configuration space is the set
of bipartite graphs Gm,n−m with m nodes in the top layer and n − m nodes in the
bottom layer. The constraint is put on the degree sequence in the top layer only and
corresponds to the vector ~b∗ = (b∗i )

m
i=1 with b∗i = (n −m)p∗i . Moreover, the average

i-th degree 〈ki〉 with respect to the canonical ensemble (4.6) equals k∗i and is given by
the balance equation (4.8). This equation shows that the i-th unipartite constraint
u∗i and the i-th bipartite constraint b∗i sum up to the i-th original constraint k∗i .

4.1.1 Definition. A partial degree sequence ~k∗ = (k∗i )mi=1, put as a constraint on
the set of configurations Gn with m < n, is said to be δ-tame if and only if there exists
a δ ∈

(
0, 1

2

]
such that

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ m, (4.9)

where p∗ij are the canonical probabilities in (4.6)–(4.8).

It is easy to prove that, given a δ-tame partial degree sequence ~k∗ = (k∗i )mi=1, the
bipartite probabilities (p∗i )

m
i=1 are also δ-tame, namely, satisfy

δ′ ≤ p∗i ≤ 1− δ′, ∀ 1 ≤ i ≤ m, (4.10)

for some δ′ ∈
(
0, 1

2

]
. This is discussed in more detail in Appendix B. Condition (4.9)

has a trivial implication for the degree sequence:

(m− 1)δ ≤ u∗i ≤ (m− 1)(1− δ), 1 ≤ i ≤ m, (4.11)
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(n−m)δ′ ≤ b∗i ≤ (n−m)(1− δ′), 1 ≤ i ≤ m. (4.12)

Since δ′ = 1
1+( 1−δ

δ )3/2
< δ for all δ ∈ [0, 1/2) and u∗i + b∗i = k∗i , it follows that

(n− 1)δ′ ≤ k∗i ≤ (n− 1)(1− δ′), 1 ≤ i ≤ m. (4.13)

This means that δ-tame graphs are neither too thin (sparse regime) nor too dense
(ultra-dense regime). It is natural to ask whether, conversely, condition (4.13), or
a similar condition involving only the original degrees ~k∗ = (k∗i )mi=1, is sufficient to
prove that the partial degree sequence is δ-tame for some δ = δ(δ′), in the sense of
Definition 4.1.1. Unfortunately, this question is not easy to settle, but the following
lemma provides a partial answer.

4.1.2 Lemma. Suppose that ~k∗ = (k∗i )mi=1 satisfies

(n− 1)δ′ + (n−m) ≤ k∗i ≤ (n− 1)(1− δ′), 1 ≤ i ≤ m, (4.14)

for some δ′ ∈ ( 1
4 ,

1
2 ]. Then there exist δ = δ(δ′) > 0 and n0 = n0(δ′) ∈ N such that

~k∗ = (k∗i )mi=1 is a δ-tame partial degree sequence, in the sense of Definition 4.1.1, for
all n ≥ n0.

Proof. Condition (4.14), with u∗i = k∗i − b∗i and b∗i ∈ [0, n−m], gives

(n− 1)δ′ ≤ u∗i ≤ (n− 1)(1− δ′), 1 ≤ i ≤ m. (4.15)

The proof follows from (4.15) and [9, Theorem 2.1]. In fact, applying that theorem
with α = δ′, β = 1− δ′ and with δ′ > 1

4 , we get

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ m. (4.16)

Moreover, [9, Theorem 2.1] also gives information about the values of δ = δ(δ′) and
n0 = n0(δ′).

§4.1.4 Linking ensemble nonequivalence to the ca-
nonical covariances

In this section we describe an important formula, recently put forward in [93], for the
scaling of the relative entropy under a general constraint. The analysis in [93] allows
for the possibility that not all the constraints (i.e., not all the components of the
vector ~C) are linearly independent. For instance, ~C may contain redundant replicas
of the same constraint(s), or linear combinations of them. Since in the present paper
we only consider the case where ~C is the degree sequence, the different components
of ~C (i.e., the different degrees) are linearly independent.

When a K-dimensional constraint ~C∗ = (C∗i )Ki=1 with independent components is
imposed, then a key result in [93] is the formula

Sn(Pmic | Pcan) ∼ log

√
det(2πQ)

T
, n→∞, (4.17)
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where
Q = (qij)1≤i,j≤K (4.18)

is theK×K covariance matrix of the constraints under the canonical ensemble, whose
entries are defined as

qij = CovPcan(Ci, Cj) = 〈Ci Cj〉 − 〈Ci〉〈Cj〉, (4.19)

and

T =

K∏
i=1

[
1 +O

(
1/λ

(K)
i (Q)

)]
, (4.20)

with λ(K)
i (Q) > 0 the i-th eigenvalue of the K ×K covariance matrix Q. This result

can be formulated more rigorously as follows.

4.1.1 Formula ([93]). If all the constraints are linearly independent, then the lim-
iting relative entropy αn-density equals

sα∞ = lim
n→∞

log
√

det(2πQ)

αn
+ τα∞ (4.21)

with
τα∞ = − lim

n→∞

log T

αn
. (4.22)

The latter is zero when

lim
n→∞

|IKn,R|
αn

= 0 ∀R <∞, (4.23)

where IK,R = {i = 1, . . . ,K : λ
(K)
i (Q) ≤ R} with λ(K)

i (Q) the i-th eigenvalue of the
K-dimensional covariance matrix Q (the notation Kn indicates that K may depend
on n). Note that 0 ≤ IK,R ≤ K. Consequently, (4.23) is satisfied (and hence τα∞ = 0)
when limn→∞Kn/αn = 0, i.e., when the number Kn of constraints grows slower than
αn.

4.1.3 Remark ([93]). Formula 4.1.1, for which [93] offers compelling evidence but
not a mathematical proof, can be rephrased by saying that the natural choice of αn
is

α̃n = log
√

det(2πQ). (4.24)

Indeed, if all the constraints are linearly independent and (4.23) holds, then τα̃n = 0

and

sα̃∞ = 1, (4.25)
Sn(Pmic | Pcan) = [1 + o(1)] α̃n. (4.26)

Formula 4.1.1 has been verified in several examples, namely, all the models in [48]
and [50].

Next we present our main theorem, which considers the case where the constraint
is on the partial degree sequence ~C∗ = ~k∗ = (k∗i )mi=1 in the δ-tame regime defined in
Definition 4.1.1.
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4.1.4 Theorem. Suppose that:

• The constraint is put on the partial degree sequence ~C∗ = ~k∗ = (k∗i )mi=1 on the
space of simple graphs Gn with 0 ≤ m ≤ n.

• ~C∗ = ~k∗ = (k∗i )mi=1 is a δ-tame partial degree sequence, namely, the canonical
probabilities (p∗ij)1≤i 6=j≤m satisfy

δ ≤ p∗ij ≤ 1− δ, 1 ≤ i 6= j ≤ m. (4.27)

• Formula 4.1.1 is valid in the above framework.

• The scale parameter is αn =
m log n

2
.

• m = m(n) satisfies

lim
n→∞

n−m
m

log n =∞. (4.28)

Then there is breaking of ensemble equivalence, and

sα∞ = lim
n→∞

sαn = 1. (4.29)

Condition (4.28) fails when n−m = O( m
logn ), i.e., when the number of unconstrained

nodes is sufficiently small. We expect that (4.29) continues to hold even in this case,
but our proof breaks down.

§4.1.5 Discussion
Theorem 4.1.4 analyses the relative entropy at a macroscopic level, but says nothing
about what happens at the microscopic level. More precisely, it does not identify
how the relative entropy changes when a single constraint is removed, rather than a
positive fraction of constraints. A microscopic analysis could reveal what is the effect
when e.g. the longest degree is removed, or the smallest degree, or any other degree.
The result in Theorem 4.1.4 is far from trivial. In fact, when the number of constraints
is reduced, it can become either easier or more difficult to compute microcanonical
and canonical ensembles. The case when the constraint is put on the degree sequence
provides a clear example. If the constraint is put on the full degree sequence, then the
microcanonical ensemble can be asymptotically computed [9]. As soon as one or more
degrees are removed (meaning that some nodes are left unconstrained), the structure
of the problem changes completely. The symmetry of the constraints is broken by
the removal, and this makes it more difficult to compute the number of graphs with
a prescribed partial degree sequence. On the other hand, the canonical problem can
still be solved and has an interesting structure (Appendix A). This makes it possible
to use the formula proposed by Garlaschelli and Squartini [93], which only makes use
of the canonical ensemble to analyze the relative entropy between the two ensembles.
Theorem 4.1.4 clearly exhibits the monotonicity property of the relative entropy in
the case where the constraint is put on the degrees. Indeed, under the hypotheses
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written above, the relative entropy Sn(Pmic | Pcan) grows like m log n, where m is the
number of constrained nodes and n is the total number of nodes. This shows that the
relative entropy is monotone in the number of constraints on scale n.

We next provide a heuristic explanation for Theorem 4.1.4 (in analogy with what
was done in [48] and [50]).

Heuristic explanation of Theorem 4.1.4. Using (1.16), we can write the relative
entropy between the ensembles as

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
= − log[Ωn~k∗Pcan(G∗)] = − logQn[ ~k∗]( ~k∗), (4.30)

where Ωn~k∗ is the number of graphs with n nodes and partial degree sequence ~k∗ =

(k∗i )mi=1,
Qn[ ~k∗](~k ) = Ωn~k Pcan

(
G
~k
)

(4.31)

is the probability that the partial degree sequence is equal to ~k under the canonical
ensemble with constraint ~k∗, G~k denotes an arbitrary graph with partial degree se-
quence ~k, and Pcan

(
G
~k
)
is the canonical probability rewritten for one such graph.

Indeed, (1.9) shows that the canonical probability is constant for all graphs with the
same constraint, in our case, for all graphs with the same partial degree sequence.
Using (1.9) and (4.65) we can rewrite the canonical probability in the form

Pcan

(
G
~k
)

= 2−(n−m2 )
m∏
i=1

x∗i
ki

(1 + x∗i )
n−m

∏
1≤i<j≤m

(1 + x∗i x
∗
j )
−1, (4.32)

where x∗i = e−θ
∗
i , and ~θ∗ = (θ∗i )mi=1 is the vector of Lagrange multipliers coming from

(4.7). Equation (4.30) can be rewritten as

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | Qn[ ~k∗]

)
, (4.33)

where δ[ ~k∗] =
∏m
i=1 δ[k

∗
i ] is the multivariate Dirac distribution with average ~k∗. We

can interpret the relative entropy between Pmic and Pcan on the set of graphs Gn as
the relative entropy between δ[ ~k∗] and Qn[ ~k∗] on the set of degree sequences. More
precisely, combining (4.31) and (4.32), we can rewrite Qn[ ~k∗](~k) as

Qn[ ~k∗](~k) = Ωn~k 2−(n−m2 )
m∏
i=1

x∗i
ki

(1 + x∗i )
n−m

∏
1≤i<j≤m

(1 + x∗i x
∗
j )
−1. (4.34)

The distribution in (4.34) is a multivariate version of the Poisson-Binomial distri-
bution [100]. The univariate Poisson-Binomial distribution describes the probability
of a certain number of successes out of a total number of independent, possibly non-
identical, Bernoulli trials. In our case, the marginal probability that node i has degree
ki, under the canonical ensemble, irrespectively of the degree of any other node, is a
univariate Poisson-Binomial distribution with a total number of n−1 Bernoulli trials:
m−1 independent Bernoulli trials with success probabilities {p∗ij}1≤j 6=i≤m and n−m
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independent Bernoulli trials with the same success probability p∗i . The relation in
(4.33) therefore becomes

Sn(Pmic | Pcan) = S
(
δ[ ~k∗] | PoissonBinomial[ ~k∗]

)
, (4.35)

where PoissonBinomial[ ~k∗] is the multivariate Poisson-Binomial distribution given by
(4.34), i.e.,

Qn[ ~k∗] = PoissonBinomial[ ~k∗]. (4.36)

The relative entropy between the microcanonical and the canonical ensemble can be
seen as coming from the limiting situation in which the microcanonical ensemble forces
the degree sequence to be exactly ~k∗, while the canonical ensemble forces the degree
sequence to be distributed as a multivariate Poisson-Binomial with average ~k∗.

Two different regimes for the Poisson-Binomial distribution. As has already
been said in Chapter 3, the univariate Poisson-Binomial distribution admits two
asymptotic limits: Poisson or Gaussian [100]. A Poisson limit occurs whenever∑
j 6=i p

∗
ij → λ > 0 and

∑
j 6=i(p

∗
ij)

2 → 0 as n → ∞, while a Gaussian limit occurs
whenever p∗ij → λj > 0 for all j 6= i as n → ∞. In the simple case of identical
Bernoulli trials, i.e., all the probabilities {p∗ij}j 6=i are equal, the univariate Poisson-
Binomial distribution reduces to a Binomial distribution, which is known to admit
Poisson and Gaussian limits. This implies that also the multivariate Poisson-Binomial
distribution in (4.34) admits limits that should be consistent with the Poisson and
Gaussian ones for its marginals. Below we present two different situations.

Gaussian constrained degrees in the δ-tame regime. Comparing (4.25) and
(4.29), and using (4.24), we see that Theorem 4.1.4 shows that if the constraint is on
the partial degree sequence, then

Sn(Pmic | Pcan) ∼ m log n ∼ log
√

det(2πQ) (4.37)

in the δ-tame regime and under the condition in (4.28). Equation (4.37) can be
reinterpreted as

Sn(Pmic | Pcan) ∼ S
(
δ[ ~k∗] | Normal[ ~k∗, Q]

)
, (4.38)

where Normal[ ~k∗, Q] is the multivariate Normal distribution with mean ~k∗ and cov-
ariance matrix Q. Basically, in the δ-tame regime,

Qn[ ~k∗] ∼ Normal[ ~k∗, Q]. (4.39)

The multivariate Poisson-Binomial distribution in (4.34) becomes asymptotically a
multivariate Gaussian distribution which, in general, has a non-diagonal covariance
matrix, i.e., there can be dependence between the degrees of the different nodes.

The right-hand side of (4.38) deserves clarification, because it has to be properly
interpreted. In fact, it describes the relative entropy of a discrete distribution with
respect to a continuous distribution. Technically, the Dirac distribution δ[ ~k∗] must be
smoothed to a continuous distribution with support on a small ball around ~k∗. Since
the degrees are large, this does not affect the asymptotics.
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Poisson-Binomial unconstrained degrees in the δ-tame regime. It is inter-
esting to study the distribution of the degrees of the unconstrained nodes in the
canonical ensemble. The canonical probability of the (m + 1)-th degree (the first
unconstrained node) can be computed and the same steps can be used to compute
the canonical probabilities of the other unconstrained nodes, which follow the same
probability law. The canonical probability that the (m+ 1)-th node is equal to some
value x ∈ {0, 1, . . . , n− 1} can be written as:∑

G∈Gn
km+1(G)=x

Pcan(G)

= 2−(n−m2 )
∑
G∈Gn

km+1(G)=x

∏
1≤i<j≤m

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G)

m∏
i=1

(p∗i )
si(G)

(1− p∗i )
n−m−si(G)

= 2−(n−m2 )
∑
G∈A

m∏
i=1

(p∗i )
gim+1(G)

(1− p∗i )
1−gim+1(G)

= 2−(n−m2 )2(n−m−1
2 )

∑
G∈A∩B

m∏
i=1

p∗i
gim+1(G) (1− p∗i )

1−gim+1(G)

=
∑

G∈A∩B

(
1
2

)(n−m−1)
m∏
i=1

p∗i
gim+1(G) (1− p∗i )

1−gim+1(G)

= P (Po−Bi[p∗1, . . . , p∗m, 1
2 , . . . ,

1
2 ] = x),

(4.40)

where

A = {G ∈ Gn : km+1(G) = x, gij(G) = 0 ∀i ∈ [1,m], j =∈ [1, n] \ {m+ 1}, i 6= j} ,
B = {G ∈ Gn : gij(G) = 0 ∀i = m+ 2, . . . , n, j = m+ 2, . . . , n, i 6= j} ,

(4.41)
and Po−Bi[p∗1, . . . , p∗m, 1

2 , . . . ,
1
2 ] is the Poisson-Binomial distribution given by the m

independent trials p∗i , i = 1, . . . ,m, and the n −m − 1 independent Bernoulli trials
with the same success probability 1

2 . This means that, for each j = m + 1, . . . , n,
the canonical probability of the degree of the j-th node is distributed as a Poisson-
Binomial random variable with n− 1 entries: p∗1, . . . , p∗1,

1
2 , . . . ,

1
2 .

§4.2 Proof of the Main Theorem

The proof is based on two lemmas, which are stated and proved in Section 4.2.1. In
Section 4.2.2 Theorem 4.1.4 is proved.

§4.2.1 Preparatory lemmas
The following lemma gives an expression for the relative entropy.
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4.2.1 Lemma. If the constraint is on the partial degree sequence (k∗i )mi=1, then the
relative entropy in (1.16) equals

Sn(Pmic | Pcan) = 1
2 log[det(2πQ)]− log T ∗, (4.42)

where Q is the covariance matrix in (4.18) and T ∗ is the error in (4.20). The matrix
Q = (qij) takes the form{

qii =
∑

1≤j≤m,j 6=i p
∗
ij(1− p∗ij) + (n−m)p∗i (1− p∗i ), 1 ≤ i ≤ m,

qij = p∗ij(1− p∗ij), 1 ≤ i 6= j ≤ m.
(4.43)

Proof. To compute qij = CovPcan(ki, kj), take the second order derivatives of the
log-likelihood function

L(~θ) = logPcan(G∗ | ~θ)

= log

2−(n−m2 )
∏

1≤i<j≤n

p
gij(G

∗)
ij (1− pij)(1−gij(G∗))

m∏
i=1

p
si(G

∗)
i (1− pi)n−m−si(G

∗)

 ,
(4.44)

with

pij =
e−θi−θj

1 + e−θi−θj
, pi =

e−θi

1 + e−θi
, (4.45)

in the point ~θ = ~θ∗ [93]. It is easy to show that the first-order derivatives are [51]

∂

∂θi
L(~θ ) = 〈ki〉 − k∗i ,

∂

∂θi
L(~θ )

∣∣∣∣
~θ= ~θ∗

= k∗i − k∗i = 0 (4.46)

and the second-order derivatives are

∂2

∂θi∂θj
L(~θ)

∣∣∣∣
~θ= ~θ∗

= 〈ki〉〈kj〉 − 〈ki kj〉 = −CovPcan(ki, kj). (4.47)

Taking the second-order derivatives of the log-likelihood function, we get (4.43). The
proof of (4.42) uses [93, Formula 25].

The following lemma shows that a diagonal approximation of the matrix Q is good
for a δ-tame partial degree sequence and αn = m log n.

4.2.2 Lemma. Under the δ-tame condition,

log(detQD) + o(m log n) ≤ log(detQ) ≤ log(detQD) (4.48)

with QD = diag(Q) the matrix that coincides with Q on the diagonal and is zero off
the diagonal.

Proof. Use [60, Theorem 2.3], which says that if

(1) det(Q) is real,
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(2) QD is non-singular with det(QD) real,

(3) λi(A) > −1, 1 ≤ i ≤ m,

then
e
− mρ2(A)

1+λmin(A) detQD ≤ detQ ≤ detQD. (4.49)

Here, A = Q−1
D Qoff , with Qoff the matrix that coincides with Q off the diagonal and is

zero on the diagonal, λi(A) is the i-th eigenvalue of A (arranged in decreasing order),
λmin(A) = min1≤i≤n λi(A), and ρ(A) = max1≤i≤n |λi(A)|.
We verify (1)–(3).
(1) Since Q is a symmetric matrix with real entries, detQ exists and is real.

(2) This property holds thanks to the δ-tame condition and Lemma B.1. In fact

0 < δ2 ≤ qij ≤ (1− δ)2 < 1, (4.50)

and

(m− 1)δ2 + (n−m)δ′2 ≤ qii =≤ (m− 1)(1− δ)2 + (n−m)(1− δ′)2. (4.51)

(3) It is easy to show that A = (aij) is given by

aij =

{
qij
qii

=
p∗ij(1−p

∗
ij)∑

1≤k≤m,k 6=i p
∗
ik(1−p∗ik)+(n−m)p∗i (1−p∗i ) , 1 ≤ i 6= j ≤ m

0 1 ≤ i = j ≤ m,
(4.52)

where qij is given by (4.43). The Gershgorin circle theorem says the eigenvalues of
the matrix A satisfy

| λi(A) |≤ Ri =
∑
j 6=i

aij =

∑
1≤k≤m,k 6=i p

∗
ik(1− p∗ik)∑

1≤k≤m,k 6=i p
∗
ik(1− p∗ik) + (n−m)p∗i (1− p∗i )

, 1 ≤ i ≤ m.

(4.53)
Using the δ-tame condition, we find the bound

| λi(A) |≤ max
1≤i≤m

Ri < 1−A(δ), (4.54)

with A(δ) = (n−m)δ′

(m−1)(1−δ)2+(n−m)(1−δ′) . In principle, A(δ) also depends on δ′, but δ′ is
itself function of δ. Equation (4.54) immediately gives ρ(A) < 1, namely

− mρ2(A)

1 + λmin(A)
> − m

1 + λmin(A)
. (4.55)

Next we show that
− m

1 + λmin(A)
= o(m log n). (4.56)

Together with (4.49) this will settle the claim in (4.48). We must show that

lim
n→∞

(1 + λmin(A)) log n =∞. (4.57)
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Using equation (4.54) again, it follows 1 + λmin(A) > A(δ). Therefore it suffices to
prove that

lim
n→∞

A(δ) log n =∞. (4.58)

The result is trivial when A(δ) is constant (n−mm → constant) or A(δ)→∞ (n−mm →
∞) . On the other hand, when A(δ)→ 0 (n−mm → 0), the condition n−m

m log n→∞
is needed to conclude the proof.

§4.2.2 Proof (Theorem 4.1.4)

Proof. When αn = m logn
2 , Lemma 4.2.1 says

lim
n→∞

Sn(Pmic | Pcan)

αn
= lim
n→∞

log 2π

m log n
+ lim
n→∞

log(detQ)

m log n
− lim
n→∞

log T ∗

2m log n
. (4.59)

The last term (the error) tends to zero. In fact, in [93] it is proved that limn→∞
log T∗

m logn =

0 unless the number of eigenvalues of Q that have a finite limit as n → ∞ which is
indeed the case when a partial δ-tame degree sequence is put as a constraint and
αn = m logn

2 .
Using the δ-tame condition, we get from Lemma 4.2.2 that

lim
n→∞

log(detQ)

m log n
= lim
n→∞

log(detQD)

m log n
. (4.60)

To conclude the proof it therefore suffices to show that

lim
n→∞

log(detQD)

m log n
= 1. (4.61)

Using (4.51), we have

log[(m− 1)δ2 + (n−m)δ′]

log n
≤
∑m
i=1 log qii
m log n

=
log(detQD)

m log n

≤ log[(m− 1)(1− δ)2 + (n−m)(1− δ′)]
log n

.

(4.62)

Both sides tend to 1 as n→∞, and so (4.61) follows.

§A Appendix

In this appendix we identify the structure of the canonical ensemble when the con-
straint is put on the partial degree sequence for the first m < n nodes. The partial
degree sequence ~k(G) = (ki(G))mi=1 is set to a specific m-dimensional vector ~k∗, which
is assumed to be graphical, i.e., there is at least one graph G∗ ∈ Gn with partial degree
sequence ~k∗. The constraint is therefore

~C∗ = ~k∗ = (k∗i )mi=1 ∈ {1, 2, . . . , n− 2}m. (4.63)
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The canonical ensemble has Hamiltonian H(G, ~θ) =
∑m
i=1 θiki(G), where G is a

graph belonging to Gn, and ki(G) =
∑
j 6=i gij(G) is the degree of node i. It is easy to

transform the Hamiltonian into

H(G, ~θ) =
∑

1≤i<j≤m

(θi + θj)gij(G) +

m∑
i=1

θi

n∑
j=m+1

gij(G) (4.64)

Using this form, we see that the partition function equals

Z(~θ) =
∑
G∈Gn

e−H(G,~θ) =
∑
G∈Gn

∏
1≤i<j≤m

e−(θi+θj)gij(G)
m∏
i=1

n∏
j=m+1

e−θigij(G)

= 2(n−m2 )
∏

1≤i<j≤m

(1 + e−(θi+θj))

m∏
i=1

n∏
j=m+1

(1 + e−θi)

= 2(n−m2 )
∏

1≤i<j≤m

(1 + e−(θi+θj))

m∏
i=1

(1 + e−θi)(n−m).

(4.65)

Inserting the partition function into the canonical expression, we get

Pcan(G | θ) = 2−(n−m2 )
∏

1≤i<j≤m

p
gij(G)
ij (1− pij)1−gij(G)

m∏
i=1

p
si(G)
i (1− pi)n−m−si(G)

(4.66)
with

pij =
e−θi−θj

1 + e−θi−θj
, pi =

e−θi

1 + e−θi
, si(G) =

n∑
j=m+1

gij(G). (4.67)

It remains to tune the Lagrange multipliers to the values such that the average con-
straint equals the vector ~C∗ = ~k∗ = (k∗i )mi=1 ∈ {1, 2, . . . , n− 2}m. The average energy
of the i-th degree with respect to the probability distribution Pcan(· | θ) corresponds
to the derivative with respect to θi of the logarithm of the partition function (free
energy). This means that the values (θ∗i )mi=1 must satisfy

〈ki〉 =
∑

1≤j≤m
j 6=i

p∗ij + (n−m)p∗i = k∗i , 1 ≤ i ≤ m (4.68)

with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

, p∗i =
e−θ

∗
i

1 + e−θ
∗
i
. (4.69)

The canonical ensemble therefore takes the form

Pcan(G) = 2−(n−m2 )
∏

1≤i<j≤m

p∗ij
gij(G) (1− p∗ij)1−gij(G)

m∏
i=1

p∗i
si(G) (1− p∗i )

n−m−si(G)
.

(4.70)
The expression in (4.70) has an interpretation. Indeed, the canonical formula che be
split into two parts:

Pcan(G) = PUcan(G)PBcan(G) 2−(n−m2 ), (4.71)
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with
PUcan(G) =

∏
1≤i<j≤m

p∗ij
gij(G) (1− p∗ij)1−gij(G) (4.72)

and

PBcan(G) =

m∏
i=1

p∗i
si(G) (1− p∗i )

n−m−si(G)
. (4.73)

The unipartite probability, PUcan(G), is the canonical probability obtained when the
constraint is put on the full degree sequence ~u∗ = (u∗i )

m
i=1 on the set Gm. The

constrained degree sequence is precisely u∗i =
∑

1≤j≤m
j 6=i

p∗ij . The bipartite probability

PBcan(G) is the canonical bipartite probability obtained when the constraint is put
only on the top layer of a bipartite graph. In this case the configuration space is the
set of bipartite graphs Gm,n−m with m nodes on the top layer and n −m nodes on
the bottom layer. The constrained top layer degree sequence is ~b∗ = (b∗i )

m
i=1, where

b∗i = (n − m)p∗i . The third factor 2−(n−m2 ) is the inverse of the number of possible
(unconstrained) graphs with n −m nodes. In conclusion, the canonical probability
in (4.70) can be interpreted as the product of two canonical probabilities, PUcan(G)

and PBcan(G), and the number 2−(n−m2 ). Both canonical probabilities have an m-
dimensional degree sequence as a constraint ~u∗ = (u∗i )

m
i=1 and ~b∗ = (b∗i )

m
i=1, put on

the respective configuration spaces. Furthermore, two degree sequences sum up to
the original degree sequence, namely,

u∗i + b∗i = k∗i ∀i = 1, . . . ,m. (4.74)

For this reason (p∗ij)
m
i,j=1 are called the unipartite probabilities and (p∗i )

m
i=1 the bi-

partite probabilities.

§B Appendix

In this appendix we identify the structure of the δ-tame condition when a partial
degree sequence (k∗i )mi=1 is put as a constraint on Gn. The definition comes from the
situation where a full degree sequence (k∗i )ni=1 is fixed on Gn [9]. In the full degree
sequence situation the canonical probability takes the form

Pcan(G) =
∏

1≤i<j≤n

(
p∗ij
)gij(G) (

1− p∗ij
)1−gij(G) (4.75)

with

p∗ij =
e−θ

∗
i−θ

∗
j

1 + e−θ
∗
i−θ∗j

∀ i 6= j, (4.76)

and with the vector of Lagrange multipliers ~θ∗ = (θ∗i )ni=1 tuned such that

〈ki〉 =
∑

1≤j≤n
j 6=i

p∗ij = k∗i , 1 ≤ i ≤ n. (4.77)
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The degree sequence (k∗i )ni=1 is said to be δ-tame when there exists a δ ∈ (0, 1
2 ] such

that, for each 1 ≤ i 6= j ≤ n, the canonical probabilites satisfy

δ < p∗ij < 1− δ. (4.78)

B.1 Definition (δ-tame partial degree sequence). We say that such a sequence
is δ-tame when there exists a δ ∈ (0, 1

2 ] such that, for each 1 ≤ i 6= j ≤ m, the canon-
ical probabilites defined in (4.6)–(4.8) satisfy

δ < p∗ij < 1− δ ∀ 1 ≤ i 6= j ≤ m. (4.79)

B.2 Lemma. If (k∗i )mi=1 is a partial degree sequence on Gn and it is δ-tame in the
sense of Definition B.1, then the canonical bipartite probabilities satisfy

δ′ < p∗i < 1− δ′ ∀ 1 ≤ i 6= j ≤ m, (4.80)

for some δ′ ∈ (0, 1
2 ].

Proof. The canonical probabilities, tuned with the proper (θ∗i )mi=1, satisfy

p∗ij =
xixj

1 + xixj
, p∗i =

xi
1 + xi

, xi = e−θ
∗
i . (4.81)

Since (ki)
m
i=1 is a partial δ-tame degree sequence, Definition B.1 says that

δ < p∗ij < (1− δ). (4.82)

From this it follows that
δ

1− δ
< xixj <

1− δ
δ

. (4.83)

Using (4.83) for different indices i, j, k, we get(
δ

1− δ

)2

< x2
ixjxk <

(
1− δ
δ

)2

. (4.84)

Using again (4.83) for the indices j and k, we get(
δ

1− δ

)3/2

< xi <

(
1− δ
δ

)3/2

. (4.85)

Using (4.85) and p∗i = xi
1+xi

= 1
1+ 1

xi

, we obtain that

δ′ < p∗i < 1− δ′ (4.86)

with δ′ = 1
1+( 1−δ

δ )3/2
. Note that 0 < δ ≤ 1

2 implies 0 < δ′ ≤ 1
2 .
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CHAPTER 5
Ensemble Equivalence for dense

graphs

This chapter is based on:
F. den Hollander, M. Mandjes, A. Roccaverde, and N. J. Starreveld. Ensemble equi-
valence for dense graphs. Electron. J. Probab., 23:Paper No. 12, 26, 2018

Abstract

In this paper we consider a random graph on which topological restrictions are im-
posed, such as constraints on the total number of edges, wedges, and triangles. We
work in the dense regime, in which the number of edges per vertex scales proportion-
ally to the number of vertices n. Our goal is to compare the micro-canonical ensemble
(in which the constraints are satisfied for every realization of the graph) with the ca-
nonical ensemble (in which the constraints are satisfied on average), both subject to
maximal entropy. We compute the relative entropy of the two ensembles in the limit
as n grows large, where two ensembles are said to be equivalent in the dense regime
if this relative entropy divided by n2 tends to zero. Our main result, whose proof
relies on large deviation theory for graphons, is that breaking of ensemble equivalence
occurs when the constraints are frustrated. Examples are provided for three different
choices of constraints.
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§5.1 Introduction

Section 5.1.1 gives background and motivation, Section 5.1.2 describes relevant liter-
ature, while Section 5.1.3 outlines the remainder of the paper.

§5.1.1 Background and motivation
For large networks a detailed description of the architecture of the network is infeasible
and must be replaced by a probabilistic description, where the network is assumed to
be a random sample drawn from a set of allowed graphs that are consistent with a set
of empirically observed features of the network, referred to as constraints. Statistical
physics deals with the definition of the appropriate probability distribution over the
set of graphs and with the calculation of its relevant properties (Gibbs [53]). The two
main choices1 of probability distribution are:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual graph).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual graphs may violate the constraints).

For networks that are large but finite, the two ensembles are obviously different
and, in fact, represent different empirical situations: they serve as null-models for
the network after incorporating what is known about the network a priori via the
constraints. Each ensemble represents the unique probability distribution with max-
imal entropy respecting the constraints. In the limit as the size of the graph diverges,
the two ensembles are traditionally assumed to become equivalent as a result of the
expected vanishing of the fluctuations of the soft constraints, i.e., the soft constraints
are expected to become asymptotically hard. This assumption of ensemble equival-
ence, which is one of the corner stones of statistical physics, does however not hold
in general (we refer to Touchette [97] for more background).

In Squartini et al. [92] the question of the possible breaking of ensemble equivalence
was investigated for two types of constraint:

(I) The total number of edges.

(II) The degree sequence.

In the sparse regime, where the empirical degree distribution converges to a limit as
the number of vertices n tends to infinity such that the maximal degree is o(

√
n),

it was shown that the relative entropy of the micro-canonical ensemble w.r.t. the
canonical ensemble divided by n (which can be interpreted as the relative entropy per
vertex) tends to s∞, with s∞ = 0 in case the constraint concerns the total number of
edges, and s∞ > 0 in case the constraint concerns the degree sequence. For the latter

1The microcanonical ensemble and the canonical ensemble work with a fixed number of vertices.
There is a third ensemble, the grandcanonical ensemble, where also the size of the graph is considered
as a soft constraint.
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case, an explicit formula was derived for s∞, which allows for a quantitative analysis
of the breaking of ensemble equivalence.

In the present paper we analyse what happens in the dense regime, where the
number of edges per vertex is of order n. We consider case (I), yet allow for constraints
not only on the total number of edges but also on the total number of wedges, triangles,
etc. We show that the relative entropy divided by n2 (which, up to a constant, can
be interpreted as the relative entropy per edge) tends to s∞, with s∞ > 0 when the
constraints are frustrated. Our analysis is based on a large deviation principle for
graphons.

§5.1.2 Relevant literature
In the past few years, several papers have studied the microcanonical ensemble and the
canonical ensemble. Most papers focus on dense graphs, but there are some interesting
advances for sparse graphs as well. Closely related to the canonical ensemble are the
exponential random graph model (Bhamidi et al. [12], Chatterjee and Diaconis [29])
and the constrained exponential random model (Aristoff and Zhu [3], Kenyon and
Yin [67], Yin [102], Zhu [105]).

In Aristoff and Zhu [3], Kenyon et al. [63], Radin and Sadun [86], the authors
study the microcanonical ensemble, focusing on the constrained entropy density. In
[3] directed graphs are considered with a hard constraint on the number of directed
edges and j-stars, while in [63, 86] the focus is on undirected graphs with a hard
constraint on the edge density, j-star density and triangle density, respectively. Fol-
lowing the work in Bhamidi et al. [12] and in Chatterjee and Diaconis [29], a deeper
understanding has developed of how these models behave as the size of the graph
tends to infinity. Most results concern the asymptotic behaviour of the partition
function (Chatterjee and Diaconis [29], Kenyon, Radin, Ren and Sadun [63]) and the
identification of regions where phase transitions occur (Aristoff and Zhu [4], Lubetsky
and Zhao [70], Yin [101]). For more details we refer the reader to the recent mono-
graph by Chatterjee [27], and references therein. Significant contributions for sparse
graphs were made in Chatterjee and Dembo [28] and in subsequent work of Yin and
Zhu [103].

For an overview on random graphs and their role as models of complex networks,
we refer the reader to the recent monograph by van der Hofstad [99]. The most
important distinction between our paper and the existing literature on exponential
random graphs is that in the canonical ensemble we impose a soft constraint.

§5.1.3 Outline
The remainder of this paper is organised as follows. Section 5.2 defines the two
ensembles, gives the definition of equivalence of ensembles in the dense regime, recalls
some basic facts about graphons, and states the large deviation principle for the Erdős-
Rényi random graph. Section 5.3 states a key theorem in which we give a variational
representation of s∞ when the constraint is on subgraph counts, properly normalised.
Section 5.4 presents our main theorem for ensemble equivalence, which provides three
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examples for which breaking of ensemble equivalence occurs when the constraints are
frustrated. In particular, the constraints considered are on the number of edges,
triangles and/or stars. Frustration corresponds to the situation where the canonical
ensemble scales like an Erdős-Rényi random graph model with an appropriate edge
density but the microcanonical ensemble does not. The proof of the main theorem is
given in Sections 5.5–5.6, and relies on various papers in the literature dealing with
exponential random graph models. Appendix A discusses convergence of Lagrange
multipliers associated with the canonical ensemble.

§5.2 Key notions

In Section 5.2.1 we introduce the model and give our definition of equivalence of
ensembles in the dense regime (Definition 5.2.1 below). In Section 5.2.2 we recall some
basic facts about graphons (Propositions 5.2.4–5.2.6 below). In Section 5.2.3 we recall
the large deviation principle for the Erdős-Rényi random graph (Proposition 5.2.7 and
Theorem 5.2.8 below), which is the key tool in our paper.

§5.2.1 Microcanonical ensemble, canonical ensemble,
relative entropy

For n ∈ N, let Gn denote the set of all 2(n2) simple undirected graphs with n vertices.
Any graph G ∈ Gn can be represented by a symmetric n× n matrix with elements

hG(i, j) :=

{
1 if there is an edge between vertex i and vertex j,
0 otherwise.

(5.1)

Let ~C denote a vector-valued function on Gn. We choose a specific vector ~C∗, which
we assume to be graphic, i.e., realisable by at least one graph in Gn. For this ~C∗

the microcanonical ensemble is the probability distribution Pmic on Gn with hard
constraint ~C∗ defined as

Pmic(G) :=

{
1/Ω~C∗ , if ~C(G) = ~C∗,
0, otherwise,

G ∈ Gn, (5.2)

where
Ω~C∗ := |{G ∈ Gn : ~C(G) = ~C∗}| (5.3)

is the number of graphs that realise ~C∗. The canonical ensemble Pcan is the unique
probability distribution on Gn that maximises the entropy

Sn(P) := −
∑
G∈Gn

P(G) log P(G) (5.4)

subject to the soft constraint 〈~C〉 = ~C∗, where

〈~C〉 :=
∑
G∈Gn

~C(G) P(G). (5.5)
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This gives the formula (see Jaynes [61])

Pcan(G) :=
1

Z(~θ∗)
eH(~θ∗, ~C(G)), G ∈ Gn, (5.6)

with

H(~θ∗, ~C(G)) := ~θ∗ · ~C(G), Z(~θ∗ ) :=
∑
G∈Gn

e
~θ∗· ~C(G), (5.7)

denoting the Hamiltonian and the partition function, respectively. In (5.6)–(5.7) the
parameter ~θ∗ (which is a real-valued vector the size of the constraint playing the role
of a Langrange multiplier) must be set to the unique value that realises 〈~C〉 = ~C∗. The
Lagrange multiplier ~θ∗ exists and is unique. Indeed, the gradients of the constraints
in (5.5) are linearly independent vectors. Consequently, the Hessian matrix of the
entropy of the canonical ensemble in (5.6) is a positive definite matrix, which implies
uniqueness of the Lagrange multiplier.

The relative entropy of Pmic with respect to Pcan is defined as

Sn(Pmic | Pcan) :=
∑
G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
. (5.8)

5.2.1 Definition. In the dense regime, if 2

s∞ := lim
n→∞

1

n2
Sn(Pmic|Pcan) = 0, (5.9)

then Pmic and Pcan are said to be equivalent.

Before proceeding, we recall an important observation made in Squartini et al. [92].
For any G1, G2 ∈ Gn, Pcan(G1) = Pcan(G2) whenever ~C(G1) = ~C(G2), i.e., the
canonical probability is the same for all graphs with the same value of the constraint.
We may therefore rewrite (5.8) as

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
, (5.10)

where G∗ is any graph in Gn such that ~C(G∗) = ~C∗ (recall that we assumed that ~C∗

is realisable by at least one graph in Gn). This fact greatly simplifies computations.

5.2.2 Remark. All the quantities above depend on n. In order not to burden the
notation, we exhibit this n-dependence only in the symbols Gn and Sn(Pmic | Pcan).
When we pass to the limit n → ∞, we need to specify how ~C(G), ~C∗ and ~θ∗ are
chosen to depend on n. This will be done in Section 5.3.1.

2In Squartini et al. [92], which was concerned with the sparse regime, the relative entropy was
divided by n (the number of vertices). In the dense regime, however, it is appropriate to divide by
n2 (the order of the number of edges).
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§5.2.2 Graphons
There is a natural way to embed a simple graph on n vertices in a space of functions
called graphons. LetW be the space of functions h : [0, 1]2 → [0, 1] such that h(x, y) =

h(y, x) for all (x, y) ∈ [0, 1]2. A finite simple graph G on n vertices can be represented
as a graphon hG ∈W in a natural way as (see Fig. 5.1)

hG(x, y) :=

{
1 if there is an edge between vertex dnxe and vertex dnye,
0 otherwise. (5.11)

1
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4

x

y

1
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6
1

1
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2
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4

6

5

6

1

hG(x, y) = 1, on

hG(x, y) = 0, else

Figure 5.1: An example of a graph G and its graphon representation hG.

The space of graphons W is endowed with the cut distance

d�(h1, h2) := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

dxdy [h1(x, y)− h2(x, y)]

∣∣∣∣ , h1, h2 ∈W. (5.12)

On W there is a natural equivalence relation ≡. Let Σ be the space of measure-
preserving bijections σ : [0, 1]→ [0, 1]. Then h1(x, y) ≡ h2(x, y) if h1(x, y) = h2(σx, σy)

for some σ ∈ Σ. This equivalence relation yields the quotient space (W̃ , δ�), where
δ� is the metric defined by

δ�(h̃1, h̃2) := inf
σ1,σ2

d�(hσ1
1 , hσ2

2 ), h̃1, h̃2 ∈ W̃ . (5.13)

To avoid cumbersome notation, throughout the sequel we suppress the n-dependence.
Thus, by G we denote any simple graph on n vertices, by hG its image in the graphon
space W , and by h̃G its image in the quotient space W̃ . Let F and G denote two
simple graphs with vertex sets V (F ) and V (G), respectively, and let hom(F,G) be
the number of homomorphisms from F to G. The homomorphism density is defined
as

t(F,G) :=
1

|V (G)||V (F )| hom(F,G). (5.14)

Two graphs are said to be similar when they have similar homomorphism densities.

5.2.3 Definition. A sequence of labelled simple graphs (Gn)n∈N is left-convergent
when (t(F,Gn))n∈N converges for any simple graph F .
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Consider a simple graph F on k vertices with edge set E(F ), and let h ∈W . Similarly
as above, define the density

t(F, h) :=

∫
[0,1]k

dx1 · · · dxk
∏

(i,j)∈E(F )

h(xi, xj). (5.15)

If hG is the image of a graph G in the space W , then

t(F, hG) =

∫
[0,1]k

dx1 · · · dxk
∏

(i,j)∈E(F )

hG(xi, xj) =
1

|V (G)||V (F )| hom(F,G) = t(F,G).

(5.16)
Hence a sequence of graphs (Gn)n∈N is left-convergent to h ∈W when

lim
n→∞

t(F,Gn) = t(F, h). (5.17)

We conclude this section with three basic facts that will be needed later on. The
first gives the relation between left-convergence of sequences of graphs and conver-
gence in the quotient space (W̃ , δ�), the second is a compactness property, while the
third shows that the homomorphism density is Lipschitz continuous with respect to
the δ�-metric.

5.2.4 Proposition (Borgs et al. [20]). For a sequence of labelled simple graphs
(Gn)n∈N the following properties are equivalent:
(i) (Gn)n∈N is left-convergent.
(ii) (h̃Gn)n∈N is a Cauchy sequence in the metric δ�.
(iii) (t(F, hGn))n∈N converges for all finite simple graphs F .
(iv) There exists an h ∈W such that limn→∞ t(F, hGn) = t(F, h) for all finite simple
graphs F .

5.2.5 Proposition (Lovász and Szegedy [69]). (W̃ , δ�) is compact.

5.2.6 Proposition (Borgs et al. [20]). Let G1, G2 be two labelled simple graphs,
and let F be a simple graph. Then

|t(F,G1)− t(F,G2)| ≤ 4|E(F )|δ�(G1, G2). (5.18)

For a more detailed description of the structure of the space (W̃ , δ�) we refer the
reader to Borgs et al. [20, 21] and Diao et at. [39].

§5.2.3 Large deviation principle for the Erdős-Rényi
random graph

In this section we recall a few key facts from the literature about rare events in Erdős-
Rényi random graphs, formulated in terms of a large deviation principle. Importantly,
the scale that is used is n2, the order of the number of edges in the graph.
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We start by introducing the large deviation rate function. For p ∈ (0, 1) and
u ∈ [0, 1], let

Ip(u) :=
1

2
u log

(
u

p

)
+

1

2
(1− u) log

(
1− u
1− p

)
,

I(u) :=
1

2
u log u+

1

2
(1− u) log(1− u) = I 1

2
(u)− 1

2 log 2,

(5.19)

with the convention that 0 log 0 = 0. For h ∈ W we write, with a mild abuse of
notation,

Ip(h) :=

∫
[0,1]2

dxdy Ip(h(x, y)), I(h) :=

∫
[0,1]2

dx dy I(h(x, y)). (5.20)

On the quotient space (W̃ , δ�) we define Ip(h̃) = Ip(h), where h is any element of the
equivalence class h̃.

5.2.7 Proposition (Chatterjee and Varadhan [31]). The function Ip is well-
defined on W̃ and is lower semi-continuous under the δ�-metric.

Consider the set Gn of all graphs on n vertices and the Erdős-Rényi probability
distribution Pn,p on Gn. Through the mappingsG→ hG → h̃G we obtain a probability
distribution on W (with a slight abuse of notation again denoted by Pn,p), and a
probability distribution P̃n,p on W̃ .

5.2.8 Theorem (Chatterjee and Varadhan [31]). For every p ∈ (0, 1), the se-
quence of probability distributions (P̃n,p)n∈N satisfies the large deviation principle on
(W̃ , δ�) with rate function Ip defined by (5.20), i.e.,

lim sup
n→∞

1

n2
log P̃n,p(C̃) ≤ − inf

h̃∈W̃
Ip(h̃) ∀ C̃ ⊂ W̃ closed,

lim inf
n→∞

1

n2
log P̃n,p(Õ) ≥ − inf

h̃∈Õ
Ip(h̃) ∀ Õ ⊂ W̃ open.

(5.21)

Using the large deviation principle we can find asymptotic expressions for the
number of simple graphs on n vertices with a given property. In what follows a
property of a graph is defined through an operator T : W → Rm for some m ∈ N.
We assume that the operator T is continuous with respect to the δ�-metric, and for
some ~T ∗ ∈ Rm we consider the sets

W̃ ∗ :=
{
h̃ ∈ W̃ : T (h̃) = ~T ∗

}
, W̃ ∗n :=

{
h̃ ∈ W̃ ∗ : h̃ = h̃G for some G on n vertices

}
.

(5.22)
By the continuity of the operator T , the set W̃ ∗ is closed. Therefore, using The-
orem 5.2.8, we obtain the following asymptotics for the cardinality of W̃ ∗n .

5.2.9 Corollary (Chatterjee [26]). For any measurable set W̃ ∗ ⊂ W̃ , with W̃ ∗n
as defined in (5.22),

− inf
h̃∈int(W̃∗)

I(h̃) ≤ lim inf
n→∞

log |W̃ ∗n |
n2

≤ lim sup
n→∞

log |W̃ ∗n |
n2

≤ − inf
h̃∈W̃∗

I(h̃), (5.23)

where int(W̃ ∗) is the interior of W̃ ∗.
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§5.3 Variational characterisation of ensemble equi-
valence

In this section we present a number of preparatory results we will need in Section 5.4
to state our theorem on the equivalence between Pmic and Pcan. Our main result
is Theorem 5.3.4 below, which gives us a variational characterisation of ensemble
equivalence. In Section 5.3.1 we introduce our constraints on the subgraph counts. In
Section 5.3.2 we rephrase the canonical ensemble in terms of graphons. In Section 5.3.3
we state and prove Theorem 5.3.4.

§5.3.1 Subgraph counts
First we introduce the concept of subgraph counts, and point out how the corres-
ponding canonical distribution is defined. Label the simple graphs in any order, e.g.,
F1 is an edge, F2 is a wedge, F3 is triangle, etc. Let Ck(G) denote the number of
subgraphs Fk in G. In the dense regime, Ck(G) grows like nVk , where Vk = |V (Fk)| is
the number of vertices in Fk. For m ∈ N, consider the following scaled vector-valued
function on Gn:

~C(G) :=

(
p(Fk)Ck(G)

nVk−2

)m
k=1

= n2

(
p(Fk)Ck(G)

nVk

)m
k=1

. (5.24)

The term p(Fk) counts the edge-preserving permutations of the vertices of Fk, i.e.,
p(F1) = 2 for an edge, p(F2) = 2 for a wedge, p(F3) = 6 for a triangle, etc. The
term Ck(G)/nVk represents a subgraph density in the graph G. The additional n2

guarantees that the full vector scales like n2, the scaling of the large deviation principle
in Theorem 5.2.8. For a simple graph Fk we define the homomorphism density as

t(Fk, G) :=
hom(Fk, G)

nVk
=
p(Fk)Ck(G)

nVk
, (5.25)

which does not distinguish between permutations of the vertices. Hence the Hamilto-
nian becomes

H(~θ, ~T (G)) = n2
m∑
k=1

θk t(Fk, G) = n2(~θ · ~T (G)), G ∈ Gn, (5.26)

where
~T (G) := (t(Fk, G))

m
k=1 . (5.27)

The canonical ensemble with parameter ~θ thus takes the form

Pcan(G | ~θ ) := en
2
[
~θ·~T (G)−ψn(~θ )

]
, G ∈ Gn, (5.28)

where ψn replaces the partition function:

ψn(~θ) :=
1

n2
log

∑
G∈Gn

en
2(~θ · ~T (G)). (5.29)

111



5. Ensemble Equivalence for dense graphs

C
h
a
pt

er
5

In the sequel we take ~θ equal to a specific value ~θ∗, so as to meet the soft constraint,
i.e.,

〈~T 〉 =
∑
G∈Gn

~T (G)Pcan(G) = ~T ∗. (5.30)

The canonical probability then becomes

Pcan(G) = Pcan(G | ~θ∗) (5.31)

In Section 5.5.1 we will discuss how to find ~θ∗.

5.3.1 Remark. (i) The constraint ~T ∗ and the Lagrange multiplier ~θ∗ in general
depend on n, i.e., ~T ∗ = ~T ∗n and ~θ∗ = ~θ∗n (recall Remark 5.2.2). We consider constraints
that converge when we pass to the limit n→∞, i.e.,

lim
n→∞

~T ∗n = ~T ∗∞. (5.32)

Consequently, we expect that
lim
n→∞

~θ∗n = ~θ∗∞. (5.33)

Throughout the sequel we assume that (5.33) holds. If convergence fails, then we
may still consider subsequential convergence. The subtleties concerning (5.33) are
discussed in Appendix A.
(ii) In what follows, we suppress the dependence on n and write ~T ∗, ~θ∗ instead of
~T ∗n ,

~θ∗n, but we keep the notation ~T ∗∞,
~θ∗∞ for the limit. In addition, throughout the

sequel we write ~θ, ~θ∞ instead of ~θ∗, ~θ∗∞ when we view these as parameters that do not
depend on n. This distinction is crucial when we take the limit n→∞.

§5.3.2 From graphs to graphons
In (5.16) we saw that if we map a finite simple graph G to its graphon hG, then
for each finite simple graph F the homomorphism densities t(F,G) and t(F, hG) are
identical. If (Gn)n∈N is left-convergent, then

lim
n→∞

~T (Gn) = (t(Fk, h))
m
k=1 (5.34)

for some h ∈W , as an immediate consequence of Theorem 5.2.4. We further see that
the expression in (5.26) can be written in terms of graphons as

H(~θ, ~T (G)) = n2
m∑
k=1

θk t(Fk, h
G). (5.35)

With this scaling the hard constraint is denoted by ~T ∗, has the interpretation of the
density of an observable quantity in G, and defines a subspace of the quotient space
W̃ , which we denote by W̃ ∗, and which consists of all graphons that meet the hard
constraint, i.e.,

W̃ ∗ := {h̃ ∈ W̃ : ~T (h) = ~T ∗}. (5.36)

The soft constraint in the canonical ensemble becomes 〈~T 〉 = ~T ∗ (recall (5.5)).
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§5.3.3 Variational formula for specific relative entropy

In what follows, the limit as n→∞ of the partition function ψn(~θ) defined in (5.29)
plays an important role. This limit has a variational representation that will be key
to our analysis.

5.3.2 Theorem (Chatterjee and Diaconis [29]). Let ~T : W̃ → Rmbe the oper-
ator defined in (5.27). For any ~θ ∈ Rm (not depending on n),

lim
n→∞

ψn(~θ) = sup
h̃∈W̃

(
~θ · ~T (h̃)− I(h̃)

)
(5.37)

with I and ψn as defined in (5.20) and (5.29).

5.3.3 Theorem (Chatterjee and Diaconis [29]). Let F1, . . . , Fm be subgraphs as
defined in Section 5.3.1. Suppose that θ2, . . . , θm ≥ 0. Then

lim
n→∞

ψn(~θ) = sup
0≤u≤1

(
m∑
i=1

θi u
E(Fk) − I(u)

)
, (5.38)

where E(Fk) denotes the number of edges in the subgraph Fk.

The key result in this section is the following variational formula for s∞ defined
in Definition 5.2.1. Recall that for n ∈ N we write ~θ∗ for ~θ∗n.

5.3.4 Theorem. Consider the microcanonical ensemble defined in (5.2) with con-
straint ~T = ~T ∗ defined in (5.27), and the canonical ensemble defined in (5.28)–(5.29)
with parameter ~θ = ~θ∗ such that, for every n ∈ N, (5.30), (5.32) and (5.33) hold.
Then

s∞ = lim
n→∞

1

n2
Sn(Pmic | Pcan) = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
,

(5.39)
where I is defined in (5.19) and W̃ ∗ = {h̃ ∈ W̃ : ~T (h̃) = ~T ∗∞}.

Proof. From (5.10) we have

s∞ = lim
n→∞

1

n2

[
log Pmic(G∗)− log Pcan(G∗)

]
, (5.40)

where G∗ is any graph in Gn such that ~T (G∗) = ~T ∗. For the microcanonical ensemble
we have

logPmic(G∗) = − log Ω~T∗ = − logP 1
2 ,n

(
{G ∈ Gn : ~T (G) = ~T ∗}

)
−
(
n

2

)
log 2, (5.41)

where
Ω~T∗ = |{G ∈ Gn : ~T (G) = ~T ∗}| > 0. (5.42)
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Define the operator ~T : W → Rm, h 7→ (t(Fk, h))mk=1. This operator can be extended
to an operator (with a slight abuse of notation again denoted by ~T ) on the quotient
space (W̃ , δ�) by defining ~T (h̃) = ~T (h) with h ∈ h̃. Define the following sets

W̃ ∗ :=
{
h̃ ∈ W̃ : T (h̃) = ~T ∗∞

}
, W̃ ∗n :=

{
h̃ ∈ W̃ ∗ : h̃ = h̃G for some G ∈ Gn

}
.

(5.43)
From the continuity of the operator ~T on W̃ , we see that W̃ ∗ is a compact subspace
of W̃ , and hence is also closed. From Theorem 5.2.6 we have that ~T is a Lipschitz
continuous operator on the space (W̃ , δ�). Since W̃ is a compact space, we have that

lim
n→∞

1

n2
logP 1

2 ,n

(
{G ∈ Gn : ~T (G) = ~T ∗}

)
= − inf

h̃∈W̃∗
I 1

2
(h̃) = − inf

h̃∈W̃∗
I(h̃)− 1

2 log 2.

(5.44)
The large deviation principle applied to (5.41) yields

lim
n→∞

1

n2
logPmic(G∗) = inf

h̃∈W̃∗
I(h̃). (5.45)

Consider the canonical ensemble and a graph G∗n on n vertices such that ~T (G∗n) =
~T ∗. By Definition 5.2.3, Proposition 5.2.4, and (5.32) we may suppose that (G∗n)n∈N
is left-convergent and converges to the graphon h∗. Since ~T is continuous, we have
that ~T (G∗n) converges to ~T (h∗) = ~T ∗∞. From (5.28) we have that

lim
n→∞

1

n2
logPcan(G∗n) = ~θ∗∞ · ~T ∗∞ − ψ∞(~θ∗∞). (5.46)

By Theorem 5.3.2,
ψ∞(~θ∗∞) = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
. (5.47)

There is an additional subtlety in proving (5.47) in our setup because ~θ∗ depends on
n. This dependence is treated in Appendix A. Combining (5.45) and (5.47), we get

s∞ = lim
n→∞

1

n2
Sn(Pmic | Pcan) = inf

h̃∈W̃∗
I(h̃)−~θ∗∞ · ~T ∗∞+ sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)−I(h̃)

]
. (5.48)

By definition all elements h̃ ∈ W̃ ∗ satisfy ~T (h̃) = ~T ∗∞. Hence the expression in the
right-hand side of (5.48) can be written as

sup
h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
, (5.49)

which settles the claim.

5.3.5 Remark. Theorem 5.3.4 and the compactness of W̃ ∗ give us a variational
characterisation of ensemble equivalence: s∞ = 0 if and only if at least one of the
maximisers of ~θ∗∞ · ~T (h̃)− I(h̃) in W̃ also lies in W̃ ∗ ⊂ W̃ . Equivalently, s∞ = 0 when
at least one the maximisers of ~θ∗∞ · ~T (h̃)− I(h̃) satisfies the hard constraint.
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§5.4 Main theorem

The variational formula for the relative entropy s∞ in Theorem 5.3.4 allows us to
identify examples where ensemble equivalence holds (s∞ = 0) or is broken (s∞ > 0).
We already know that if the constraint is on the edge density alone, i.e., T (G) =

t(F1, G) = T ∗, then s∞ = 0 (see Garlaschelli et al. [48]). In what follows we will look
at three models:

1
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1

1
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2
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3

6

4

6

5

6

1

hG(x, y) = 1, on

hG(x, y) = 0, else

Figure 5.2: A 5-star graph and its graphon representation.

(I) The constraint is on the triangle density, i.e., ~T2(G) = t(F3, G) = T ∗2 with F3

the triangle. This will be referred to as the Triangle Model.

(II) The constraint is on the edge density and triangle density, i.e., ~T (G) = (t(F1, G),

t(F3, G)) = (T ∗1 , T
∗
2 ) with F1 the edge and F3 the triangle. This will be referred

to as the Edge-Triangle Model.

(III) The constraint is on the j-star density, i.e., ~T (G) = t(T [j], G) = T [j]∗ with T [j]

the j-star graph, consisting of 1 root vertex and j ∈ N \ {1} vertices connected
to the root but not connected to each other (see Fig. 5.2). This will be referred
to as the Star Model.

For a graphon h ∈W (recall (5.15)), the edge density and the triangle density equal

T1(h) =

∫
[0,1]2

dx1dx2 h(x1, x2),

T2(h) =

∫
[0,1]3

dx1dx2dx3 h(x1, x2)h(x2, x3)h(x3, x1),

(5.50)

while the j-star density equals

T [j](h) =

∫
[0,1]

dx

∫
[0,1]j

dx1dx2 · · · dxj
j∏
i=1

h(x, xi). (5.51)

5.4.1 Theorem. For the above three types of constraint:
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(I) (a) If T ∗2 ≥ 1
8 , then s∞ = 0.

(b) If T ∗2 = 0, then s∞ = 0.

(II) (a) If T ∗2 = T ∗31 , then s∞ = 0.

(b) If T ∗2 6= T ∗31 and T ∗2 ≥ 1
8 , then s∞ > 0.

(c) If T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1
2 and 0 < T ∗2 < 1

8 , then s∞ > 0.

(d) If T ∗1 = 1
2 + ε with ε ∈

(
`−2
2` ,

`−1
2`+2

)
, ` ∈ N \ {1}, and T ∗2 is such that

(T ∗1 , T
∗
2 ) lies on the scallopy curve in Fig. 5.3, then s∞ > 0.

(e) If 0 < T ∗1 ≤ 1
2 and T ∗2 = 0, then s∞ = 0.

(III) For every j ∈ N \ {1}, if T [j]∗ ≥ 0, then s∞ = 0.

Here, T ∗1 , T ∗2 , T [j]∗ are in fact the limits T ∗1,∞, T ∗2,∞, T [j]∗∞ in (5.32), but in order to
keep the notation light we now also suppress the index ∞.
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1

(0,0)

(0,1)

(1,0)( 1
2
, 0)

(1,1)

s∞ = 0

s∞ > 0

s∞ > 0

s∞ = ?

T ∗

2
= T

∗
2

3

1

T ∗

2
= T ∗

1
(2T ∗

1
− 1)

T ∗

2
= T ∗3

1

Figure 5.3: The admissible edge-triangle density region is the region on and between the blue
curves (cf. Radin and Sadun [86]).

Theorem 5.4.1, which states our main results on ensemble equivalence and which is
proven in Sections 5.5–5.6, is illustrated in Fig. 5.3. The region on and between the
blue curves corresponds to the set of all realisable graphs: if the pair (e, t) lies in this
region, then there exists a graph with edge density e and triangle density t. The red
curves represent ensemble equivalence, the blue curves and the grey region represent
breaking of ensemble equivalence, while in the white region between the red curve and
the lower blue curve we do not know what happens. Breaking of ensemble equivalence
arises from frustration between the edge and the triangle density.

Each of the cases in Theorem 5.4.1 corresponds to typical behavior of graphs
drawn from the two ensembles:
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• In cases (I)(a) and (II)(a), graphs drawn from both ensembles are asymptotically
like Erdős-Rényi random graphs with parameter p = T

∗1/3
2 .

• In cases (I)(b) and (II)(e), almost all graphs drawn from both ensembles are
asymptotically like bipartite graphs.

• In cases (II)(b), (II)(c) and (II)(d), we do not know what graphs drawn from the
canonical ensemble look like. Graphs drawn from the microcanonical ensemble
do not look like Erdős-Rényi random graphs. The structure of graphs drawn
from the microcanonical ensemble when the constraint is as in (II)(d) has been
determined in Pirkhurko and Razborov [83] and Radin and Sadun [86]. The
vertex set of a graph drawn from the microcanonical ensemble can be partitioned
into ` subsets: the first `− 1 have size bcnc and the last has size between bcnc
and 2bcnc, where c is a known constant depending on `. The graph has the
form of a complete `−partite graph on these pieces, plus some additional edges
in the last piece that create no additional triangles.

• In case (III), graphs drawn from both ensembles are asymptotically like Erdős-
Rényi random graphs with parameter p = T [j]∗1/j .

5.4.2 Remark. Similar results hold for the Edge-Wedge-Triangle Model and the
Edge-Star Model.

Here are three open questions:

• Identify in which cases (5.32) implies (5.33).

• Is s∞ = 0 as soon as the constraint involves a single subgraph count only?

• What happens for subgraphs other than edges, wedges, triangles and stars? Is
again s∞ > 0 under appropriate frustration?

§5.5 Choice of the tuning parameter

The tuning parameter is to be chosen so as to satisfy the soft constraint (5.30),
a procedure that in equilibrium statistical physics is referred to as the averaging
principle. Depending on the choice of constraint, finding ~θ∗ may not be easy, neither
analytically nor numerically. In Section 5.5.1 we investigate how ~θ∗ behaves as we
vary ~T ∗ for fixed n. We focus on the Edge-Triangle Model (a slight adjustment yields
the same results for the Triangle Model). In Section 5.5.2 we investigate how averages
under the canonical ensemble, like (5.30), behave when n → ∞. Here we can treat
general constraints defined in (5.27).

For the behaviour of our constrained models, the sign of the coordinates of the
tuning parameter ~θ∗ is of pivotal importance, both for a fixed n ∈ N and asymp-
totically (see Bhamidi et al. [12], Chatterjee and Diaconis [29], Radin and Yin [87],
and references therein). We must therefore carefully keep track of this sign. The key
results in this direction are Lemmas 5.5.1 and 5.5.2 below.
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§5.5.1 Tuning parameter for fixed n

5.5.1 Lemma. Consider the Triangle Model with the constraint given by the triangle
density T ∗2 . For every n, θ∗ ≥ 0 if and only if T ∗2 ≥ 1

8 .

Proof. The proof is similar to that of Lemma 5.5.2 below.

5.5.2 Lemma. Consider the Edge-Triangle Model. For every n, θ∗2 ≥ 0 if and only
if T ∗2 ≥ 1

8 , irrespective of T ∗1 . Furthermore, θ∗1 ≥ 0 if and only if T ∗1 ≥ 1
2 .

Proof. Define, for θ1, θ2 ∈ R, the function

g(θ1, θ2) :=
∑
G∈Gn

exp
[
n2
(
θ1(T1(G)− 1

2 ) + θ2(T2(G)− 1
8 )
)]
. (5.52)

We first prove that g attains a unique global minimum at (θ1, θ2) = (0, 0). Consider
the canonical ensemble Pcan as defined in (5.28) and (5.31), with ~T as defined above,
and the probability distribution Phom on Gn that assigns probability 2−(n2) to every
graph G ∈ Gn. Since Phom is absolutely continuous with respect to Pcan, the relative
entropy Sn(Phom|Pcan) is well defined:

Sn(Phom | Pcan) =
∑
G∈Gn

Phom(G) log
Phom(G)

Pcan(G)
≥ 0. (5.53)

Using the form of the canonical ensemble we get, after some straightforward calcula-
tions, that, for all θ1, θ2 ∈ R,∑

G∈Gn

exp
[
n2
(
θ1T1(G) + θ2T2(G)

)]
≥ 2(n2) exp

[
n2
(
θ1

1
2 + θ2

1
8

)]
, (5.54)

where the term in the right-hand side comes from the relation∑
G∈Gn

1

2(n2)
(θ1T1(G) + θ2T2(G)) = θ1

1
2 + θ2

1
8 . (5.55)

Observe that the left-hand side represents the average edge and triangle density,
multiplied with θ1, θ2, in an Erdős-Rényi random graph with parameters (n, 1

2 ). From
(5.54) we find that g(θ1, θ2) ≥ 2(n2) = g(0, 0) for all θ1, θ2 ∈ R, and so g attains a global
minimum at (0, 0). In what follows we show that this global minimum is unique. A
straightforward computation shows that ∂θ1g(θ1, θ2) = ∂θ2g(θ1, θ2) = 0 if and only
if 〈T1〉 = 1

2 and 〈T2〉 = 1
8 . Furthermore, the Hessian matrix is a covariance matrix

and hence is positive semi-definite. For ~θ = (θ1, θ2) = (0, 0) we know that 〈T1〉 = 1
2

and 〈T2〉 = 1
8 . Hence, by uniqueness of the multiplier ~θ∗ for the constraint T ∗1 = 1

2 ,
T ∗2 = 1

8 , we obtain that g has a unique global minimum at (0, 0). Moreover, this shows
that g has no other stationary points. Consider the parameter (θ1, θ2) = (θ∗1 , θ

∗
2). We

have

∂θ2g(θ∗1 , θ
∗
2) =

(
〈T2〉 − 1

8

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
=
(
T ∗2 − 1

8

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
.

(5.56)
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If T ∗2 ≥ 1
8 , then ∂θ2g(θ∗1 , θ

∗
2) ≥ 0. Because g has a unique stationary point at (0, 0),

which is a global minimum, we get θ∗2 ≥ 0. Similarly, we can show that if T ∗2 < 1
8 ,

then θ∗2 < 0. Suppose that T ∗1 ≥ 1
2 . For the parameter (θ1, θ2) = (θ∗1 , θ

∗
2) we have

∂θ1g(θ∗1 , θ
∗
2) =

(
〈T1〉 − 1

2

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
=
(
T ∗1 − 1

2

)
exp[−n2(θ∗1

1
2 + θ∗2

1
8 )]

∑
G∈Gn

exp
[
n2 (θ∗1T1(G) + θ∗2T2(G))

]
.

(5.57)
Arguing in a similar way as before, we conclude that θ∗1 ≥ 0 if and only if T ∗1 ≥ 1

2 .

Consider the Edge-Triangle Model and suppose that the constraint (T ∗1 , T
∗
2 ) is

such that T ∗2 = T ∗31 . Then θ∗2 = 0 and θ∗1 matches the constraint on the edge density
only. The following lemma shows that in this case the canonical ensemble behaves
like the Erdős-Rényi model with parameter T ∗1 , a fact that will be needed later to
prove equivalence.

5.5.3 Lemma. Consider the Edge-Triangle Model with the constraint given by the
edge-triangle densities ~T ∗ = (T ∗1 , T

∗
2 ) with T ∗2 = T ∗31 . Consider the canonical ensemble

as defined in (5.31). Then, for every n ∈ N,

θ∗1 =
1

2
log

T ∗1
1− T ∗1

, θ∗2 = 0. (5.58)

Proof. From the definition of the canonical ensemble we have that, for G ∈ Gn,

Pcan(G) = Pcan(G | ~θ∗) = en
2[θ∗1T1(G)+θ∗2T2(G)−ψn(~θ∗)], (5.59)

where ψn(~θ∗) is the partition function defined in (5.29). For the specific value ~θ = ~θ∗

we have that (recall (5.30))

〈T1〉 = T ∗1 , 〈T2〉 = T ∗2 = T ∗31 . (5.60)

We claim that the correct parameter is ~θ∗ = ( 1
2 log

T∗1
1−T∗1

, 0). The average fraction of
edges is T ∗1 (see Park and Newman [81]). The average number of triangles is

〈T2〉 =

∑
G∈Gn T2(G) exp

[
n2
(

1
2 log

T∗1
1−T∗1

T1(G)
)]

∑
G∈Gn exp

[
n2
(

1
2 log

T∗1
1−T∗1

T1(G)
)]

=

∑
G∈Gn T2(G)(T ∗1 )E(G)(1− T ∗1 )(

n
2)−E(G)∑

G∈Gn(T ∗1 )E(G)(1− T ∗1 )(
n
2)−E(G)

= T ∗31 ,

where the last equation comes from the fact we are calculating the average number
of triangles in an Erdős-Rényi model with probability T ∗1 . Since the multiplier ~θ∗ is
unique, the proof is complete.
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§5.5.2 Tuning parameter for n→∞
In Lemma 5.5.4 below we show how averages under the canonical ensemble behave
asymptotically when ~θ does not depend on n. In Lemma A.2 we will look at what
happens when ~θ is a one-dimensional multiplier and depends on n.

5.5.4 Lemma. Suppose that the operator ~T : W → Rm is bounded and continuous
with respect to the δ�-norm as defined in (5.13). For ~θ ∈ Rm independent of n,
consider the variational problem

sup
h̃∈W̃

[
~θ · ~T (h̃)− I(h̃)

]
, (5.61)

where I is defined in (5.19). Suppose that the supremum is attained at a unique point,
denoted by h̃∗(~θ). Then

lim
n→∞

∑
G∈Gn

Tk(G)Pcan(G | ~θ ) = Tk
(
h̃∗(~θ)

)
, k = 1, . . . ,m. (5.62)

Proof. The average of Tk under the canonical probability distribution is equal to∑
G∈Gn

Tk(G)Pcan(G | ~θ) =
∑
G∈Gn

Tk(G) en
2[~θ·~T (G)−ψn(~θ)] =: Jn. (5.63)

Pick δ > 0 and consider the δ-ball Bδ(h̃∗) around the maximiser h̃∗ in the quotient
space (W̃ , δ�), i.e.,

Bδ(h̃
∗) :=

{
h̃ ∈ W̃ : δ�(h̃, h̃∗) < δ

}
. (5.64)

We denote by Gδ a graph on n vertices whose graphon is a representative element
of the class h̃G. With a slight abuse of notation, we denote by Gδ both the graph
and the corresponding graphon, and by h̃G the corresponding equivalence class in the
quotient space (W̃ , δ�). Since (W̃ , δ�) is compact space (recall Proposition 5.2.5),
and the graphons associated with finite graphs form a countable family that is dense
in (W̃ , δ�) (see Diao et al. [39], Lovász and Szegedy [69]), there exists a sequence
(h̃Gn)n∈N such that limn→∞ δ�(h̃Gn , h̃∗) = 0. For n large enough the neighbourhood
Bδ(h̃

∗) contains elements of the sequence (h̃Gn)n∈N and, due to the Lipschitz property
(recall Proposition 5.2.6), δ�(h̃Gn , h̃∗) < δ implies |Tk(h̃Gn)−Tk(h̃∗)| < Ckδ for some
constant Ck > 0 and k = 1, . . . ,m.

Upper bound for Jn. We decompose the sum over G ∈ Gn into two parts: the
first over G whose graphon lies in Bδ(h̃∗), the second over G whose graphon lies in
Bδ(h̃

∗)c =: W̃ δ,#. We further denote by

Gδn :=
{
G ∈ Gn : |Tk(h̃G)− Tk(h̃∗)| < δ, k = 1, . . . ,m

}
, (5.65)

the set of all graphs whose subgraph densities Tk(G) are δ-close to Tk(h̃∗). A graph
from this set is denoted by Gδ. We define the set

Gδ,#n :=
{
G ∈ Gn : h̃G ∈ W̃ δ,#

}
(5.66)
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and, for k = 1, . . . ,m, obtain the following upper bound:

Jn =
∑
G∈Gδn

Tk(G) en
2[~θ·~T (G)−ψn(~θ)] +

∑
G∈Gδ,#n

Tk(G) en
2[~θ·~T (G)−ψn(~θ)]

≤
(Tk(Gδ) + δ)

∑
G∈Gδn

en
2~θ·~T (G)

∑
G∈Gδn

en2~θ·~T (G)
+

∑
G∈Gδ,#n

Tk(G) en
2[~θ·~T (G)−ψn(~θ)]

= (Tk(Gδ) + δ) +

∑
G∈Gδ,#n

Tk(G) en
2~θ·~T (G)

∑
G∈Gn

en2~θ·~T (G)
. (5.67)

Next, we further bound the second term in (5.67). By definition, for every n ∈ N the
range of the operator ~T is a finite set

Rn :=
{
~g ∈ [0,∞)m : ~T (G) = ~g, G ∈ Gn

}
. (5.68)

For the set Rn we observe that |Rn| = o(nm
2

). In addition, introduce the sets

G~gn := {G ∈ Gn : ~T (G) = ~g},

Rδ,#n := {~g ∈ [0,∞)m : ~T (G) = ~g,G ∈ Gδ,#n } ⊂ Rn.
(5.69)

The operator ~T is bounded, and so there exists an M > 0 such that ‖~T (G)‖ ≤M for
all G ∈ Gn. Hence, the second term in (5.67) can be bounded from above by∑

G∈Gδ,#n Tk(G) en
2~θ·~T (G)∑

G∈Gn en2~θ·~T (G)
≤
|Rδ,#n |M exp

[
n2 sup~g∈Rδ,#n (~θ · ~g + 1

n2 log |G~gn|)
]

exp
[
n2 sup~g∈Rn(~θ · ~g + 1

n2 log |G~gn|)
] . (5.70)

By the large deviation principle in Theorem 5.2.8, we have

1

n2
log |G~gn| = inf

h̃∈W̃~g
I(h) + o(1), (5.71)

where W̃ g = {h̃ ∈ W̃ : ~T (h̃) = ~g}. As a consequence, (5.70) is majorised by

M |R∗n| eo(n
2) exp

[
n2

(
sup

~g∈Rδ,#n

[
~θ · ~g − inf

h̃∈W̃~g
I(h̃)

]
− sup
~g∈Rn

[
~θ · ~g − inf

h̃∈W̃~g
I(h̃)

])]
= M |R∗n| eo(n

2)

exp

[
n2

(
sup

~g∈Rδ,#n
sup
h̃∈W̃~g

[
~θ · ~T (h̃)− I(h̃)

]
− sup
~g∈Rn

sup
h̃∈W̃~g

[
~θ · ~T (h̃)− I(h̃)

])]

= M |R∗n| eo(n
2) exp

[
n2

(
sup

h̃∈W̃ δ,#

[
~θ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃

[
~θ · ~T (h̃)− I(h̃)

])]
.

(5.72)
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The last equation can be justified as follows. Define the sets

W̃n =
{
h̃ ∈ W̃ : h̃ = h̃G for some graph G ∈ Gn

}
, W̃ δ,#

n = W̃ δ,# ∩ W̃n. (5.73)

Since the graphons associated with finite graphs form a countable set that is dense in
(W̃ , δ�), we have that

W̃ = cl

(⋃
n∈N

W̃n

)
, W̃ δ,# = cl

(⋃
n∈N

W̃ δ,#
n

)
, (5.74)

where cl denotes closure. Using (5.74), and recalling that ~T is continuous and I is
lower-semicontinuous, we get

lim
n→∞

sup
~g∈Rδ,#n

sup
h̃∈W̃~g

[
~θ · ~T (h̃)− I(h)

]
= sup
h̃∈W̃ δ,#

[
~θ · ~T (h̃)− I(h̃)

]
, (5.75)

and a similar result can be established for the second supremum in the exponent
in (5.72). The exponent in (5.72) is negative for all δ > 0 and is independent of
n. Moreover, by the left-continuity of the graph sequence (Gδn)n∈N, we have that
limn→∞ Tk(Gδn) = Tk(h̃∗) for every k = 1, . . . ,m and every δ > 0. Combined with
the inequality in (5.67), we obtain, for k = 1, . . . ,m,

lim
n→∞

∑
G∈Gn

Tk(G) en
2[~θ·~T (G)−ψn(~θ)] ≤ Tk(h̃∗). (5.76)

Lower bound for Jn. We distinguish two cases: Tk(h̃∗) = 0 and Tk(h̃∗) > 0. For
the first case we trivially get the lower bound

lim
n→∞

∑
G∈Gn

Tk(G) en
2~θ·~T (G) ≥ 0 = Tk(h̃∗). (5.77)

For the second case we show the equivalent upper bound for the inverse, i.e.,

lim
n→∞

∑
G∈Gn en

2~θ·~T (G)∑
G∈Gn Tk(G) en2~θ·~T (G)

≤ 1

Tk(h̃∗)
. (5.78)

Using the fact that Tk(h̃∗) 6= 0 is bounded, and using a similar reasoning as for the
upper bound on Jn, the latter is easily verified.

5.5.5 Remark. The convergence in (5.62) is not necessarily uniform in ~θ. Our res-
ults in Theorem (5.4.1) (II)(b)-(II)(d) indicate that breaking of ensemble equivalence
manifests itself through non uniform convergence in (5.62). In Lemma (A.2) we show
that uniform convergence holds when the constraint is on the triangle density only,
which explains our result in Theorem (5.4.1) (I).

5.5.6 Remark. The analogue of Lemma 5.5.4 when the supremum in (5.61) has
multiple maximisers in W̃ is considerably more involved.

As observed in Remark 5.2.2, in general the tuning parameter ~θ∗ depends on n.
We discuss this dependence in Appendix A.
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§5.6 Proof of the Main Theorem 5.4.1

We proceed by computing the relative entropy s∞. In Sections 5.6.1, 5.6.3, 5.6.4, 5.6.5,
5.6.6 and 5.6.8 we treat the limiting regime where all constraints and parameters are
the limiting parameters as in (5.32) and (5.33). In Sections 5.6.2 and 5.6.7 we write
T ∗∞,1, T

∗
∞,2, θ

∗
∞,1 for the limiting regime.

§5.6.1 Proof of (I)(a) (Triangle model T ∗2 ≥ 1
8)

Proof. Theorem 5.3.4 says that

s∞ = sup
h̃∈W̃

[
θ∗T2(h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
θ∗T2(h̃)− I(h̃)

]
. (5.79)

Consider the first term in the right-hand side (5.79). From Lemma 5.5.1 we know
that θ∗ ≥ 0 if and only if T ∗2 ≥ 1

8 . From Theorem 5.3.3 it follows that if θ∗ ≥ 0, then

sup
h̃∈W̃

[
θ∗T2(h̃)− I(h̃)

]
= sup
u∈[0,1]

[
θ∗u3 − I(u)

]
= sup
u∈[0,1]

`3(u; θ∗). (5.80)

From Radin and Yin [87, Proposition 3.2] we know that `3(u, θ∗) attains a unique
global maximum. Let u∗(θ∗) = arg supu∈[0,1] `3(u; θ∗) be the unique global maximiser.
Using Lemma A.2, we obtain that u∗(θ∗) = T ∗2

1/3, which leads to

sup
u∈[0,1]

`3(u; θ∗) = θ∗u∗(θ∗)3 − I
(
u∗(θ∗)

)
= θ∗T ∗2 − I

(
T
∗1/3
2

)
. (5.81)

As to the second term in the right-hand side of (5.79), we use Chatterjee and Varadhan [31,
Proposition 4.2], which states that, for T ∗2 ∈ ( 1

8 , 1],

inf
h̃∈W̃

I(h̃) := inf
{
I(h̃) : h̃ ∈ W̃ , T2(h̃) = T ∗2

}
= inf

{
I(h̃) : h̃ ∈ W̃ , T2(h̃) ≥ T ∗2

}
.

(5.82)
Moreover, I is convex at the point x = T

∗1/3
2 , and hence from Chatterjee and

Varadhan [31, Theorem 4.3] we have that inf h̃∈W̃∗ I(h̃) = I(T
∗1/3
2 ). Combining this

with (5.81), we conclude that s∞ = 0.

§5.6.2 Proof of (I)(b) (T ∗2 = 0)
Consider the Triangle Model with the constraint given by the triangle density T ∗ =

0. It was proven by Erdős et al. [42] that almost all triangle-free graph have a
bipartite structure. For the case of dense graphs, the condition T ∗ = 0 means that
the number of triangles in the graph is of order o(n2). In the proof we will see that
the two ensembles are equivalent and that graphs drawn from the two ensembles have
a bipartite structure.

Proof. From the construction of the canonical ensemble Pcan in Section 5.1.3, we
observe that Pcan(G) = 0 when T (G) > 0. This is a direct consequence of (5.5). We
write

G0
n := {G ∈ Gn : T (G) = 0} (5.83)
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for the collection of all graphs with triangle density equal to zero. From (5.6) we
obtain that Pcan(G) = 0 if G /∈ G0

n and Pcan(G) = |G0
n|−1 if G ∈ G0

n. Hence Pcan(G) =

Pmic(G) when the constraint is given by T ∗ = 0, which yields

Sn(Pmic | Pcan) = 0 ∀n ∈ N (5.84)

and hence s∞ = 0.

§5.6.3 Proof of (II)(a) (Edge-Triangle model T ∗2 =
T ∗31 )

For the case T ∗1 = T
∗ 1

3
2 we have shown in Lemma 5.5.3 that the canonical ensemble

essentially behaves like an Erdős-Rényi model with parameter p = T ∗1 . Furthermore,
the microcanonical ensemble also has an explicit expression, which is found by using
the following lemma.

5.6.1 Lemma. If T ∗1 = T
∗ 1

3
2 , then

inf
h̃∈W̃∗

I(h̃) = I
(
T
∗ 1

3
2

)
= I
(
T ∗1
)
. (5.85)

Proof. Consider an element h̃ ∈ W̃ ∗ with W̃ ∗ := {h̃ ∈ W̃ : T1(h̃) = T ∗1 = T
∗ 1

3
2 , T2(h̃) =

T ∗2 }. Using the convexity of I on W̃ and Jensen’s inequality, we get

I(h̃) =

∫
[0,1]2

dx dy I(h(x, y)) ≥ I

(∫
[0,1]2

dxdy h(x, y)

)
= I
(
T1(h̃)

)
= I(T ∗1 ).

(5.86)
Hence I(h̃) ≥ I(T

∗ 1
3

2 ) for every h̃ ∈ W̃ ∗, which proves the claim.

Proof of (II)(a). Consider the relative entropy s∞ as defined in (5.9) and (5.10).
Using Lemma 5.5.3, we obtain the expression

s∞ = −1

2
T ∗1 log(T ∗1 )− 1

2
(1− T ∗1 ) log(1− T ∗1 ) + inf

h̃∈W̃∗
I(h̃). (5.87)

From Lemma 5.6.1 we have that inf
h̃∈W̃∗

I(h̃) = I(T ∗1 ), which yields s∞ = 0.

§5.6.4 Proof of (II)(b) (T ∗2 6= T ∗31 and T ∗2 ≥ 1
8)

Proof. From Lemma 5.5.2 we know that if T ∗1 ≥ 1
2 and T ∗2 ≥ 1

8 , then θ∗1 ≥ 0 and
θ∗2 ≥ 0 while if T ∗1 < 1

2 and T ∗2 ≥ 1
8 , then θ

∗
1 < 0 and θ∗2 ≥ 0. An argument similar as

above yields

sup
h̃∈W̃

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= sup
u∈[0,1]

`3(u; ~θ∗), (5.88)

where for θ∗1 ≥ 0 and θ∗2 ≥ 0 the last supremum has a unique solution (see Radin and
Yin [87, Proposition 3.2]), while for θ∗1 < 0 and θ∗2 ≥ 0 it either has a unique solution
or two solutions. We treat these two cases separately.
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Unique solution. Because of the uniqueness of the solution, not all realisable hard
constraints can be met in the limit (see Lemma 5.5.4). We observe that, if T ∗2 ≥ 1

8 and
T ∗2 6= T ∗31 , in the limit as n → ∞ the canonical ensemble becomes Erdős-Rényi with
parameter p. This regime is known as the high-temperature regime (see Bhamidi et al.
[12] and Chatterjee and Diaconis [29]). In what follows we determine the parameter
p of the canonical ensemble in the limit. From Bhamidi et al. [12, Theorem 7] we
have that p = u∗(~θ∗)

1
3 with u∗(~θ∗)

1
3 the unique maximiser of (5.88). The expression

in (5.88) thus takes the form

sup
h̃∈W̃

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= sup
u∈[0,1]

`3(u; ~θ∗) = θ∗1u
∗(~θ∗)

1
3 + θ∗2u

∗(~θ∗)− I
(
u∗(~θ∗)

1
3

)
.

(5.89)

Consider the second term in the right-hand side of (5.39). From the definition of W̃ ∗

it is straightforward to see that

sup
h̃∈W̃∗

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= θ∗1T

∗
1 + θ∗2T

∗
2 − inf

h̃∈W̃∗
I(h̃), (5.90)

where W̃ ∗ = {h̃ ∈ W̃ : T1(h̃) = T ∗1 , T2(h̃) = T ∗2 }. We observe that, due to T ∗2 6= T ∗31 ,
the constant function h ≡ u∗(~θ∗) 1

3 does not lie in W̃ ∗. This shows that s∞ > 0.

Two solutions. The regime in which the right-hand side of (5.88) has two solutions
is known as the low-temperature regime. In this case the hard constraints (T ∗1 , T

∗
2 ),

with T ∗1 ∈ [ 1
4 ,

1
2 ), T ∗2 ≥ 1

8 , lie on a curve on the (T1, T2)-plane in such a way such that
the tuning parameters (θ∗1 , θ

∗
2) lie on the phase transition curve found in Chatterjee

and Diaconis [29] and Radin and Yin [87]. Denote the two solutions of (5.88) by
u∗1, u

∗
2. Because of the constraint we are considering, we have that neither of them

lies in W̃ ∗. From the compactness of the latter space we see that s∞ > 0.

§5.6.5 Proof of (II)(c) (T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1
2 and

0 < T ∗32 < 1
8)

For the case 0 < T ∗1 ≤ 1
2 , T

∗
2 < 1

8 we know from Lemma 5.5.2 that θ∗1 ≤ 0 and θ∗2 < 0

for every n. Hence, because of (5.33), we have that θ∗1 ≤ 0 and θ∗2 < 0. This regime
is significantly harder to analyse than the previous regimes. Consider the relative
entropy s∞ and the variational representation given in (5.39). We consider two cases:
T ∗2 > T ∗31 and T ∗2 ≤ T ∗31 .

Case T ∗2 > T ∗31 . In this case we have the straightforward inequality

s∞ ≥ θ∗2
(
T ∗31 − T ∗2

)
− I(T ∗1 ) + inf

h̃∈W̃∗
I(h̃). (5.91)

Since T ∗31 < T ∗2 , we have θ∗2
(
T ∗31 − T ∗2

)
> 0. We show that

inf
h̃∈W̃∗

I(h̃) = inf{I(h̃) : h̃ ∈ W̃ , T1(h̃) = T ∗1 , T2(h̃) = T ∗2 } > I(T ∗1 ). (5.92)
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Using the convexity of I on W̃ and Jensen’s inequality, we obtain that I(h̃) ≥ I(T ∗1 )

for all h̃ ∈ W̃ ∗. Hence

inf
h̃∈W̃∗

I(h̃) > inf{I(h̃) : h̃ ∈ W̃ , T1(h̃) = T ∗1 } = I(T ∗1 ), (5.93)

which settles (5.92). Hence s∞ > 0.

Case T ∗2 ≤ T ∗31 . We argue similarly as above. We have the straightforward inequal-
ity

s∞ ≥ θ∗1
(
T
∗ 1

3
2 − T ∗1

)
− I(T

∗ 1
3

2 ) + inf
h̃∈W̃

I(h̃). (5.94)

We have seen above that inf h̃∈W̃ I(h̃) > I(T ∗1 ). We further now that I is decreasing
on [0, 1

2 ], and so I(T ∗1 ) ≥ I(T
∗1/3
2 ). Hence s∞ > 0.

§5.6.6 Proof of (II)(d) ((T ∗1 , T ∗2 ) on the scallopy curve)
We show that if (T ∗1 , T

∗
2 ) lies on the lower blue curve in Fig. 5.3 (referred to as the

scallopy curve), then s∞ > 0. The case where T ∗2 ≥ 1
8 can be dealt with directly via

Theorem (II)(b). The proof below deals with the case T ∗2 < 1
8 .

Proof. We give the proof for ` = 2, the extension to ` > 2 being similar.
Suppose that T ∗1 = 1

2 +ε with ε ∈ (0, 1
6 ), and that T ∗2 is chosen as small as possible.

It is known that graphs with a relatively high edge density and with a triangle density
that is as small as possible have a d-partite structure with edges added in a suitable
way so that the desired triangle density is obtained (see Radin and Sadun [86] and
Pikhurko and Raborov [83]). Consider a graph on n vertices, denoted by G, with
edge density T1 ∈ ( 1

2 ,
2
3 ) and triangle density as small as possible. The structure of

such graphs has been described above before Section 5.5. The graphon counterpart
of such graphs is the optimiser of the second supremum in the right-hand side of the
variational formula for s∞. Using Radin and Sadun [86, Theorem 4.2], we obtain

sup
h̃∈W̃∗

[
θ∗1T1(h̃) + θ∗2T2(h̃)− I(h̃)

]
= θ∗1T

∗
1 + θ∗2T

∗
2 −

(1− c(ε))2

2
I(p(ε)), (5.95)

where

c(ε) =
2 +
√

1− 6ε

6
, p(ε) =

4c(ε)(1− 2c(ε))

(1− c(ε))2
. (5.96)

In order to lighten the notation, we drop the dependence of c and p on ε. Furthermore,
the optimising graphon has the form

h∗ε (x, y) =

 1 if x < c < y or y < c < x,
p if c < x < 1+c

2 < y or c < y < 1+c
2 < x,

0 otherwise,
(x, y) ∈ [0, 1]2,

(5.97)
which has triangle density

T2(h∗ε ) =
(2 +

√
1− 6ε)2

36

1−
√

1− 6ε

3
= T (ε). (5.98)

126



§5.6. Proof of the Main Theorem 5.4.1

C
h
a
pter

5

Let F̃ε be the set of all maximisers of θ∗1 T1(h̃) + θ∗2 T2(h̃)− I(h̃) on W̃ . We show that
h∗ε /∈ F̃ε, which yields s∞ > 0. From Chatterjee and Diaconis [29, Theorem 6.1] we
know that if h̃ ∈ W̃ maximises θ∗1 T1(h̃) + θ∗2 T2(h̃)− I(h̃) on W̃ , then it must satisfy
the Euler-Lagrange equations and it must be bounded away from 0 and 1. Hence we
see that h̃∗ε cannot be a stationary point of θ∗1 T1(h̃)+θ∗2 T2(h̃)−I(h̃) on W̃ , and hence
cannot be a maximiser.

§5.6.7 Proof of (II)(e) (0 < T ∗1 ≤ 1
2 and T ∗2 = 0)

Proof. Consider the Edge-Triangle Model with constraint given by the edge and tri-
angle densities T ∗1 ∈ (0, 1

2 ] and T ∗2 = 0. Working as in Section 5.6.2, we find that the
canonical ensemble assigns positive probability only to graphs satisfying the constraint
T ∗2 = 0. Defining G0

n as in (5.83) we obtain

Pcan(G | ~θ) =

{
en

2[θ1T1(G)−ψn(~θ)] if G ∈ G0
n,

0 else,
(5.99)

where ψn(~θ) =
∑
G∈G0

n
en

2θ1T1(G) is the partition function. From (5.99) we observe
that the canonical probability distribution depends only on the edge parameter θ1.
The parameter θ1 is chosen equal to θ∗1 that matches the soft constraint, i.e.,∑

G∈G0
n

T1(G)Pcan(G | ~θ∗) = T ∗1 . (5.100)

Arguing as in the proof of Chatterjee and Diaconis [29, Theorem 3.1] we find that the
relative entropy equals

s∞ = sup
h̃∈W̃ 0

[
θ∗∞,1T1(h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
θ∗∞,1T1(h̃)− I(h̃)

]
, (5.101)

where

W̃ 0 := {h̃ ∈ W̃ : T2(h̃) = 0}, W̃ ∗ := {h̃ ∈ W̃ : T1(h̃) = T ∗∞,1 , T2(h̃) = 0}.
(5.102)

Using Chatterjee and Diaconis [29, Theorem 7.1 and Theorem 8.2], we obtain that
s∞ = 0.

§5.6.8 Proof of (III) (Star model T [j]∗ ≥ 0)
Proof. From Chatterjee and Diaconis [29, Theorem 6.4] we have that, for all θ∗∞ ∈ R,

sup
h̃∈W̃

[
θ∗W (h̃)− I(h̃)

]
= sup
u∈[0,1]

[
θ∗u2 − I(u)

]
, (5.103)

which by Radin and Yin [87, Proposition 3.1] has a unique solution, which we denote
by u∗(θ∗). Using Theorem 5.3.4 we get that

s∞ = θ∗u∗(θ∗)2 − I(u∗(θ∗))− θ∗T ∗ + inf
h̃∈W̃∗

I(h̃), (5.104)
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where, by Lemma A.2, we have that u∗(θ∗) = T ∗
1
2 . This yields

s∞ = −I
(
T ∗

1
2

)
+ inf
h̃∈W̃∗

I(h̃). (5.105)

We show that inf h̃∈W̃∗ I(h̃) = I(T ∗
1
2 ). This is done by slightly modifying the proof

of Chatterjee and Diaconis [29, Theorem 6.4]. Indeed, observe that

T [j](h) =

∫
[0,1]

dxM(x)j , M(x) =

∫
[0,1]

dy h(x, y). (5.106)

Since I is convex we have∫
[0,1]2

dxdy I(h(x, y)) ≥
∫

[0,1]

dx I(M(x)), h ∈W, (5.107)

with equality if and only if h(x, y) is the same for almost all y. Since h is a symmetric
function, we get that equality holds if and only if h is constant. For the constant
function h ≡ (Tj)

1/j ∈ W ∗ := {h ∈ W : Tj(h) = Tj}, (5.107) is an equality. Hence,
for any minimiser of I on W̃ ∗ the inequality must be an equality, and thus any
minimiser must be constant. This shows that s∞ = 0.

§A Appendix

In this appendix we elaborate on the assumption made in (5.33), i.e., the multiplier
~θ∗n converges to a limit ~θ∗∞ as n→∞. In order to get a meaningful limit, we consider
constraints ~T ∗n such that

lim
n→∞

~T ∗n = ~T ∗∞. (5.108)

It is straightforward to deduce from Corollary 5.2.9 and (5.26)–(5.30) that if {~T ∗n}
is bounded away from 0 and 1 component-wise, then (~θ∗n)n∈N is bounded away from
−∞ and +∞ component-wise. Such a sequence contains a converging subsequence,
say, (~θ∗nk)k∈N, which in general need not be unique. Thus, as long as the constraint
is component-wise bounded away from 0 and 1, the asymptotic expressions derived
in this paper exist, but their values may depend on the subsequence we choose. The
value of s∞ depends on the chosen subsequence, but whether it is positive or zero
(i.e., whether there is equivalence) does not. A deeper investigation of the behaviour
of {~θ∗n}n∈N is interesting, but is beyond the scope of this paper.

We first extend Theorem 5.3.4 for the case when the tuning parameter ~θ∗ depends
on n.

A.1 Lemma. Consider the microcanonical ensemble defined in (5.2) with constraint
~T = ~T ∗n defined as in (5.27), and the canonical ensemble defined in (5.28)–(5.29) with
parameter ~θ = ~θ∗n such that (5.30) holds. If the conditions in Remark 5.3.1 hold, then
(5.39) holds too.
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Proof. The proof of Theorem 5.3.4 carries over to the setting in which the parameter
~θ∗ depends on n, i.e., ~θ∗ = ~θ∗n. The only non-trivial step is to show that

lim
n→∞

ψn(~θ∗n) = ψ∞(~θ∗∞). (5.109)

In the proof of Theorem 5.3.4 we have shown the pointwise convergence

lim
n→∞

ψn(~θ) = ψ∞(~θ), (5.110)

for every ~θ ∈ Rm, independently of n. A straightforward computation shows that
∇ψn(~θ) = (〈T1〉, . . . , 〈Tm〉), recall (5.30) . Observe that for the specific choice of
the parameter ~θ = ~θ∗n = ~θ∗, we have that ∇ψn(~θ∗n) = (T ∗1 , . . . , T

∗
m), which yields

‖∇ψn(~θ)‖ ≤ m for all n ∈ N and ~θ ∈ Rm. We prove (5.109) under the assumptions
made in Remark 5.3.1,

|ψn(~θ∗n)− ψ∞(~θ∗∞)| ≤ |ψn(~θ∗n)− ψn(~θ∗∞)|+ |ψn(~θ∗∞)− ψ∞(~θ∗∞)| (5.111)

≤ ‖∇ψn(~η)‖ ‖~θ∗n − ~θ∗∞‖+ |ψn(~θ∗∞)− ψ∞(~θ∗∞)|

≤ m ‖~θ∗n − ~θ∗∞‖+ |ψn(~θ∗∞)− ψ∞(~θ∗∞)| → 0, n→∞,

where the second inequality follows from the mean-value theorem for some ~η = c ~θ∗n+

(1− c) ~θ∗∞, c ∈ (0, 1). The rest of the proof of Theorem 5.3.4 carries over intact.

In the following lemma we extend the result of Lemma 5.5.4 for the case the
operator ~T is the triangle density T2 . This extension is needed in the proof of
Theorem 5.4.1 (I).

A.2 Lemma. Consider the operator T2 : W̃ → R which is bounded and continuous
with respect to the δ�-norm as defined in (5.13). For n ∈ N, consider the tuning
parameter θ∗n according to (5.30), i.e.,∑

G∈Gn

T2(G)Pcan(G) = T ∗2 . (5.112)

Suppose that T ∗2 ≥ 1
8 and that the limits T ∗∞, θ∗∞ in (5.33) exists. Then

lim
n→∞

∑
G∈Gn

T2(G)Pcan(G) = lim
n→∞

∑
G∈Gn T2(G) en

2θ∗nT2(G)∑
G∈Gn en

2θ∗nT2(G)
= u∗(θ∗∞), (5.113)

where
u∗(θ) = arg sup

0≤u≤1
[θu3 − I(u)]. (5.114)

Proof. From Lemma 5.5.2, since T ∗2 ≥ 1
8 we have that θ∗n ≥ 0 for all n. Consequently,

θ∗ ≥ 0. Define, for θ ≥ 0, the function

fn(θ) :=
∑
G∈Gn

T2(G)Pcan(G | ~θ) =

∑
G∈Gn T2(G) en

2θT2(G)∑
G∈Gn en2θT2(G)

(5.115)
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and consider the variational problem in (5.61). From Chatterjee and Diaconis [29] we
have that, for θ ≥ 0,

ψ∞(θ) := sup
h̃∈W̃

[
θT (h̃)− I(h̃)

]
= sup

0≤u≤1

[
θu3 − I(u)

]
. (5.116)

From Radin and Sadun [86, Theorem 2.1] we have that the function θ → u∗(θ) is
differentiable on [0,∞). We also observe that

u∗(0) = 1
2 , lim

θ→∞
u∗(θ) = 1. (5.117)

Moreover, for very n, θ 7→ fn(θ) is continuous on [0,∞). Hence, combining Lemma 5.5.4,
the continuity of fn for every n, the analyticity of the limiting function θ 7→ u∗(θ)

and (5.117), we obtain that if the limit θ∞ in (5.33) exists, then

lim
n→∞

fn(θ∗n) = u∗(θ∗∞) = T ∗∞, (5.118)

which proves the claim.
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CHAPTER 6
Breaking of Ensemble Equivalence

for Perturbed Erdős-Rényi Random
Graphs

This chapter is based on:
F. den Hollander, M. Mandjes, A. Roccaverde, and N. Starreveld. Breaking of en-
semble equivalence for perturbed erdős-rényi random graphs. arXiv:1807.07750

Abstract

In a previous paper we analysed a simple undirected random graph subject to con-
straints on the total number of edges and the total number of triangles. We considered
the dense regime in which the number of edges per vertex is proportional to the num-
ber of vertices. We showed that, as soon as the constraints are frustrated, i.e., do not
lie on the Erdős-Rényi line, there is breaking of ensemble equivalence, in the sense that
the specific relative entropy per edge of the microcanonical ensemble with respect to
the canonical ensemble is strictly positive in the limit as the number of vertices tends
to infinity. In the present paper we analyse what happens near the Erdős-Rényi line.
It turns out that the way in which the specific relative entropy tends to zero depends
on whether the total number of triangles is slightly larger or slightly smaller than
typical. We identify what the constrained random graph looks like asymptotically in
the microcanonical ensemble.
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§6.1 Introduction

In this paper we analyse random graphs that are subject to constraints. Statistical
physics prescribes what probability distribution on the set of graphs we should choose
when we want to model a given type of constraint [53]. Two important choices are:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied
by each individual graph).

(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble
averages, while individual graphs may violate the constraints).

For random graphs that are large but finite, the two ensembles are obviously different
and, in fact, represent different empirical situations. Each ensemble represents the
unique probability distribution with maximal entropy respecting the constraints. In
the limit as the size of the graph diverges, the two ensembles are traditionally assumed
to become equivalent as a result of the expected vanishing of the fluctuations of the
soft constraints, i.e., the soft constraints are expected to behave asymptotically like
hard constraints. This assumption of ensemble equivalence is one of the corner stones
of statistical physics, but it does not hold in general (see [97] for more background).

In a series of papers the question of possible breaking of ensemble equivalence was
investigated for various choices of the constraints, including the degree sequence and
the total number of edges, wedges and triangles. Both the sparse regime (where the
number of edges per vertex remains bounded) and the dense regime (where the number
of edges per vertex is of the order of the number of vertices) have been considered. The
effect of community structure on ensemble equivalence has been investigated as well.
Relevant references are [48], [50], [37], [93] and [92]. In [37] we considered a random
graph subject to constraints on the total number of edges and the total number of
triangles, in the dense regime. With the help of large deviation theory for graphons,
see [31], we derived a variational formula for s∞ = limn→∞ n−2sn, where n is the
number of vertices and sn is the relative entropy of the microcanonical ensemble with
respect to the canonical ensemble. We found that s∞ > 0 when the constraints are
frustrated. In the present paper we analyse the behaviour of s∞ when the constraints
are close to but different from those of the Erdős-Rényi random graph, and we identify
what the constrained random graph looks like asymptotically in the microcanonical
ensemble. It turns out that the behaviour changes when the total number of triangles
is larger, respectively, smaller than that of the Erdős-Rényi random graph with a
given total number of edges.

While breaking of ensemble equivalence is a relatively new concept in the theory of
random graphs, there are many studies on the asymptotic structure of random graphs.
In the pioneering work [31], followed by [70], the large deviation principle for dense
Erdős-Rényi random graphs was proven and the asymptotic structure of constrained
Erdős-Rényi random graphs was described as the solution of a variational problem. In
the past few years significant progress has been made regarding sparse random graphs
as well. We refer the reader to [30], [36], [71] and [105]. Two other random graph
models that have been extensively studied are the exponential random graph model
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and the constrained exponential random graph model. Exponential random graphs,
which are related to the canonical ensemble we consider in this paper, were introduced
rather early in the physics literature, see [80] and the references therein, and rigorously
analysed in detail in [12] and [29]. In [12] the authors investigated the mixing time of
the Glauber dymanics and they showed that, in some cases, graphs drawn from the
exponential random graph model, behave asymptotically like Erdős-Rényi random
graphs with a biased parameter. In [29] the authors verified and generalised this
result using the machinery developed in [31]. Their main result was an asymptotic
expression for the logarithm of the partition function in terms of a variational problem.
Additionally, they showed that, in the edge-triangle model, a phase transition, which
is defined as a discontinuity in the derivative of the logarithm of the partition function,
occurs for specific values of the parameters. The existence of phase transitions in the
exponential random graph model was investigated further in [87] and [101] and for
directed graphs in [4]. An analysis of sparse exponential random graphs was carried
out in [103]. A second random graph model, which is also related to the random graph
models we study in this paper, and has received significant attention in the literature,
is the constrained exponential random graph model, we refer the reader to [3], [63],
[67] and [102] for a detailed description and analysis. A stream of research that is
relevant to our work concerns the asymptotic description of the structure of graphs
drawn from the microcanonical ensemble with a constraint on the edge and triangle
density. In [86] the authors studied the behavior of random graphs with edge and
triangle densities close to the Erdős-Rényi curve. They managed to identify the scaling
behavior close to the curve by proving a bound on the entropy function. In one of the
results in this paper we rigorously prove the results of [86] and we determine the exact
structure of constrained random graphs close to the Erdős-Rényi curve. The same
question was investigated in [75] for a constraint on the edge and triangle density close
to the lower boundary curve of the admissibility region. In [64] the authors managed
to determine, through extensive simulations, curves in the admissibility region where
phase transitions occur in the structure of constrained random graphs.

The remainder of this paper is organised as follows. In Section 6.2 we define the
two ensembles, give the definition of equivalence of ensembles in the dense regime,
some basic facts about graphons and we the variational representation of s∞ derived
in [37] when the constraints are on the total numbers of subgraphs drawn from a finite
collection of subgraphs. We also recall the analysis of s∞ in [37] for the special case
where the subgraphs are the edges and the triangles. In Section 6.3 we state our main
theorems. Proofs are given in Sections 6.4 and 6.5.

§6.2 Definitions and preliminaries

The microcanonical and the canonical ensemble, as well as the relative entropy density
have been defined in Section 1.4.1 and 1.4.2. Graphons and their properties have
been defined in Section 5.2.2 5.2.3 and 5.3 of Chapter 5. In this section we recall the
definition of ensemble equivalence in the dense regime and the main two theorems of
Chapter 5.
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6.2.1 Definition. Following [37] Pmic and Pcan are said to be equivalent in the dense
regime when

s∞ := lim
1

n2
Sn(Pmic | Pcan) = 0. (6.1)

The key result in [37] is the following variational formula for s∞.

6.2.2 Theorem. [37] Subject to (5.30), (5.32) and (5.33),

lim
n→∞

n−2Sn(Pmic | Pcan) =: s∞ (6.2)

with
s∞ = sup

h̃∈W̃

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∗∞ · ~T (h̃)− I(h̃)

]
. (6.3)

Theorem 6.2.2 and the compactness of W̃ ∗ give us a variational characterisation
of ensemble equivalence: s∞ = 0 if and only if at least one of the maximisers of
~θ∗∞ · ~T (h̃)− I(h̃) in W̃ also lies in W̃ ∗ ⊂ W̃ . Equivalently, s∞ = 0 when at least one
the maximisers of ~θ∗∞ · ~T (h̃)− I(h̃) satisfies the hard constraint. Theorem 6.2.2 allows
us to identify cases where ensemble equivalence holds (s∞ = 0) or is broken (s∞ > 0).
In [37] a detailed analysis was given for the special case where the constraint is on the
total number of edges and the total number of triangles. The analysis in [37] relied on
the large deviation principle for dense Erdős-Rényi random graphs established in [31].
The function defined in (5.19) plays a crucial role and is related to the rate function
of the large deviation principle.

6.2.3 Theorem. [37] For the edge-triangle model, s∞ = 0 when

• T ∗2 = T ∗31 ,

• 0 < T ∗1 ≤ 1
2 and T ∗2 = 0,

while s∞ > 0 when

• T ∗2 6= T ∗31 and T ∗2 ≥ 1
8 ,

• T ∗2 6= T ∗31 , 0 < T ∗1 ≤ 1
2 and 0 < T ∗2 < 1

8 ,

• (T ∗1 , T
∗
2 ) lies on the scallopy curve in Figure 6.1.

Here, T ∗1 , T ∗2 are in fact the limits T ∗1,∞, T ∗2,∞ in (5.32), but in order to keep the
notation light we now also suppress the index ∞.
Theorem 6.2.3 is illustrated in Fig. 6.1. The region on and between the blue curves
corresponds to the choices of (T ∗1 , T

∗
2 ) that are graphical, i.e., there exists a graph

with edge density T ∗1 and triangle density T ∗2 . The red curves represent ensemble
equivalence, the blue curves and the grey region represent breaking of ensemble equi-
valence, while in the white region between the red curve and the lower blue curve we
do not know what happens. Breaking of ensemble equivalence arises from frustration
between the values of T ∗1 and T ∗2 .
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Figure 6.1: The admissible edge-triangle density region is the region on and between the blue
curves [86].

The lower blue curve, called the scallopy curve, consist of infinitely many pieces
labelled by ` ∈ N \ {1}. The `-th piece corresponds to T ∗1 ∈ ( `−1

` , `
`+1 ] and a T ∗2 that

is a function of T ∗1 given by

T ∗2 =
(`− 1)

(
`− 2

√
`(`− T ∗1 (`+ 1))

)(
`+

√
`(`− T ∗1 (`+ 1))

)2

`2(`+ 1)2
. (6.4)

We refer the reader to [83], [85], [86] and [88] for more details.

§6.3 Theorems

In this section we present our results which address the following two issues:

◦ In Theorems 6.3.1–6.3.3 we identify the scaling behaviour of s∞ for fixed T ∗1
and T ∗2 ↓ T ∗31 , respectively, T ∗2 ↑ T ∗31 . It turns out that the way in which s∞
tends to zero differs in the two cases.

◦ In Propositions 6.3.5–6.3.7 we characterise some possible asymptotic structures
of random graphs drawn from the microcanonical ensemble when the hard con-
straint is on the edge and triangle density. Our results indicate that the structure
of the graphs differs for T ∗2 ↓ T ∗31 , respectively, T ∗2 ↑ T ∗31 .

In the sequel we make the following two assumptions:

Assumption 1. Fix the edge density T ∗1 ∈ (0, 1) and consider the triangle density
T ∗31 + ε, for some ε either positive or negative. For this pair of constraints we consider
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the Lagrange multipliers ~θ∗∞(ε) := (θ∗1(ε), θ∗2(ε)) as defined in Section 5.3.1. Then, for
ε sufficiently small, we have the representation

sup
h̃∈W̃

[
θ∗1(ε)T1(h̃) + θ∗2(ε)T2(h̃)− I(h̃)

]
= θ1T

∗
1 − I(T ∗1 ) + (γ1T

∗
1 + γ2T

∗3
1 )ε+O(ε2),

(6.5)
where θ1 := θ1(0), γ1 = θ′1(0) and γ2 = θ′2(0).

In Section 6.4.1 we show that Assumption 1 is true when T ∗1 ∈ [ 1
2 , 1). For T ∗1 ∈ (0, 1

2 )

we can prove (6.8) and (6.9) below, but with ≥ replacing the equality. If Assumption
1 is true, then we again obtain (6.8) and (6.9) with equality. If it fails, then we have
strict inequality.

Assumption 2. Fix the edge density T ∗1 ∈ (0, 1) and consider the triangle density
T ∗31 + ε, for some ε either positive or negative. For this pair of constraints we consider
the microcanonical entropy

−J(ε) := sup{−I(h̃) : h̃ ∈ W̃ , T1(h̃) = T ∗1 , T2(h̃) = T ∗31 + ε}. (6.6)

Then for ε sufficiently small the solution of (6.6), denoted by h∗ε , has the following
form

h∗ε = T ∗1 + gε, where gε = g111I×I + g121(I×J)∪(J×I) + g221J×J , (6.7)

with g11, g12, g22 ∈ [−T ∗1 , 1− T ∗1 ] and I, J ⊂ [0, 1].

Assumption 2 is based on the following intuitive argument. Suppose we want to
maximise the microcanonical entropy among all piecewise constant graphons. Then
we expect the entropy to decrease when we add more structure, i.e., more steps, in the
graphon. A piecewise constant graphon with m steps corresponds to a random graph
where the vertices are divided into m groups, and within each group we make an
ER random graph with some probability. We expect that the microcanonical entropy
will decrease as m increases. This statement is also supported by extensive numerical
experiments performed in [65].

The methodology we rely on in order to analyse the variational problem in (6.6)
does not always identify the exact optimal graphon. It identifies a candidate optimal
graphon, which is sufficient, in some cases for the scaling behaviour of the relative
entropy s∞. We call these graphons balance optimal. Roughly speaking, a balance
optimal graphon is obtained when solving the optimisation problem in (6.6) in a
smaller class of graphons than the whole class of graphons that satisfy the hard
constraint. This is the class of graphons satisfying the conditions in Assumption 1
and such that the values g11, g12, g22 all correspond to contributions of the same order.
The precise definition of a balance optimal graphon is given in Section 6.5. We want
to investigate in this chapter whether the global maximizer of (6.6) lies in this smaller
class of graphons. We show that balance optimisers have specific structural properties.
But, for the case of a perturbation upwards, the unique optimal graphon does not lie
in this class, and this happens because λ(I) gets very small as ε ↓ 0 while g11 stays
constant. We refer the reader to [66]. For the case of a perturbation downwards the
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exact structure of the unique optimal graphon is still not known: the only results we
are aware of come from an extensive numerical study, [63]. From this numerical study
it seems that, at least for T ∗1 ∈ (0, T̃ ∗1 ), with T̃ ∗1 ≈ 0.44, the unique global optimiser
is indeed a balance optimal graphon. In this chapter we investigate this question
further by identifying the balance optimal graphons and comparing them with the
results established numerically in [63].

Balance optimal graphons are candidate optimisers of J(ε). In what follows, be-
cause all the graphons we derive are balance optimal graphons, we simply speak of
optimal graphons. When at some point a clear distinction is needed we say so. An-
other important feature is that balance optimal graphons are in general not unique. In
the following sections we construct various balance optimal graphons, exhibiting the
different structures that can emerge. The variational problem J(ε) in (6.6) has been
solved in [66] for the case T ∗2 > T ∗31 , while the case T ∗2 < T ∗31 still remains unsolved.
In this chapter we consider only a small perturbation around the typical values, but
the advantage of our method is that it is simpler and yields more intuition about the
way the constraint is attained. Moreover, it also applies for the case ε < 0, which has
not been rigorously analysed before. In [63] the authors identify the maximizers of
the microcanonical entropy numerically. The optimal graphons obtained numerically
in [63] agree structurally with the balance optimal graphons that we find.

6.3.1 Theorem. For T ∗1 ∈ (0, 1) and T ∗1 6= 1
2 ,

lim
ε↓0

ε−1s∞(T ∗1 , T
∗3
1 + 3T ∗1 ε) =

6

1− 2T ∗1
log

T ∗1
1− T ∗1

∈ (0,∞). (6.8)

6.3.2 Theorem. For T ∗1 ∈ (0, 1
2 ],

lim sup
ε↓0

ε−2/3s∞(T ∗1 , T
∗3
1 − T ∗31 ε) ≤ 1

4

T ∗1
1− T ∗1

∈ (0,∞). (6.9)

6.3.3 Theorem. For T ∗1 ∈ ( 1
2 , 1),

lim sup
ε↓0

ε−2/3s∞(T ∗1 , T
∗3
1 − T ∗31 ε) ≤ f(T ∗1 , T̄

∗
1 ) ∈ (0,∞), (6.10)

where T̄ ∗1 ∈ (−T ∗1 , 0) is the unique point where the function x→ f(T ∗1 , x), defined by

f(T ∗1 , x) := T ∗21

I(T ∗1 + x)− I(T ∗1 )− I ′(T ∗1 )x

x2
, x ∈ (−T ∗1 , 0), (6.11)

attains its global minimum.

We illustrate these results in Figure 6.2. In the left panel we plot the limits in
the right-hand side of (6.9)–(6.10) as a function of T ∗1 . In the right panel we plot
s∞(T ∗1 , T

∗3
1 + ε) as a function of ε, for ε sufficiently small, and for four different values

of T ∗1 .

6.3.4 Remark. We believe, and there is numerical evidence in [63], that the results
in (6.9) and (6.10) hold with equality and that the corresponding limits exist.
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Figure 6.2: Limit of scaled s∞ as a function of ε for ε sufficiently small.

In Proposition 6.3.5–6.3.7 below we identify the structure of balance optimal
graphons corresponding to the perturbed constraints in the microcanonical ensemble
in the limit as n→∞.

6.3.5 Proposition. When the ER-line is approached from above, a balance optimal
graphon is given by

h = T ∗1 +
√
ε g∗ +O(ε) (global perturbation) (6.12)

with g∗ given by

g∗(x, y) =


2, (x, y) ∈ [0, 1

2 ]2,

0, (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−2, (x, y) ∈ ( 1
2 , 1]2.

(6.13)

It is important to mention that the balance optimal graphon determined in (6.13) is
not unique, in the sense that there are multiple graphons that are balance optimal.
From Proposition 6.3.5 we also see that it is possible that the class of balance optim-
isers does not contain the actual unique optimiser of J(ε). For this pair of constraints,
and from [66], we have that the actual unique optimiser, denoted by h∗ε , is given by

h∗ε (x, y) =


h11, (x, y) ∈ [0, λε]2,

1− T ∗1 + h1ε, (x, y) ∈ [0, λε]× (λε, 1] ∪ (λε, 1]× [0, λε],

T ∗1 + h2ε, (x, y) ∈ (λε, 1]2,

(6.14)

where
λ :=

1

(1− 2T ∗1 )2
, h1 :=

1

2
h2, h2 := − 2

1− 2T ∗1
. (6.15)
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The term h11 solves the equation I ′(h11) = 3I ′(1− T ∗1 ) and is constant as ε ↓ 0. For
details on this issue we refer to [66]. As mentioned above, balance optimal graphons
have the structural property that g11, g12, g22 all contribute equally to the constraint.
This is not the case for the graphon in (6.14) because only g12 and g22 contribute to
the constraint to leading order. The exact computations are provided in Section 6.5.

From (6.13) and (6.14) we observe that balance optimal graphons can have struc-
tures very different from the optimal graphons.

6.3.6 Proposition. When the ER-line is approached from below and T ∗1 ∈ (0, 1
2 ], a

balance optimal graphon is given by

h = T ∗1 + ε1/3g∗ +O(ε1/3) (global perturbation) (6.16)

with g∗ given by

g∗(x, y) =


−T ∗1 , (x, y) ∈ [0, 1

2 ]2,

T ∗1 , (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−T ∗1 , (x, y) ∈ ( 1
2 , 1]2.

(6.17)

This g∗ is not unique, in the sense that there are multiple graphons that are balance
optimal.

6.3.7 Proposition. When the ER-line is approached from below and T ∗1 ∈ ( 1
2 , 1),

the unique balance optimal graphon is given by

h = T ∗1 + g∗ε (local perturbation) (6.18)

with g∗ε defined by

g∗ε (x, y) :=



T∗21

T̄∗1
ε2/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]2

T ∗1 ε
1/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]× [1− T∗1

|T̄∗1 |
ε1/3, 1] or

(x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]× [0, 1− T∗1
|T̄∗1 |

ε1/3],

T̄ ∗1 , (x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]2,

(6.19)

with T̄ ∗1 ∈ (−T ∗1 , 0) defined in Theorem 6.3.3.

In conclusion, Theorems 6.3.1–6.3.3 say that at a fixed density of the edges it
is less costly in terms of relative entropy to increase the density of triangles than
to decrease it. The ER-line represents a crossover in the cost (see Figure 6.2, right
panel). Above the ER-line the cost is linear in the distance, below the ER-line the
cost is proportional to the 2

3 -power of the distance. Propositions 6.3.5–6.3.7 show that
the optimal perturbation of the ER-graphon is global above the ER-line and below
the ER-line when the edge density is less than 1

2 and local below the ER-line when
the edge density is larger than 1

2 .
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§6.4 Proofs of Theorems 6.3.1-6.3.3

In this section we prove Theorems 6.3.1–6.3.3. Along the way we use the results given
in Propositions 6.3.5–6.3.7, which we prove in Section 6.5.

§6.4.1 Proof of Theorem 6.3.1
For ease of notation we drop the superscript ∗ from the constraint on the edge density
and write T1 instead of T ∗1 . Let

T1(ε) = T1, T2(ε) = T 3
1 + 3T1ε. (6.20)

The factor 3T1 appearing in front of the ε is put in for convenience. We know that for
every pair of graphical constraints (T1(ε), T2(ε)) there exists a unique pair of Lagrange
multipliers (θ1(ε), θ2(ε)) corresponding to these constraints. For an elaborate discus-
sion on this issue we refer the reader to [37]. By considering the Taylor expansion of
the Lagrange multipliers (θ1(ε), θ2(ε)) around ε = 0, we obtain

θ1(ε) = θ1 + γ1ε+ 1
2Γ1ε

2 +O(ε3), θ2(ε) = γ2ε+ 1
2Γ2ε

2 +O(ε3), (6.21)

where

θ1(0) = θ1 = I ′(T1), γ1 = θ′1(0), Γ1 = θ′′1 (0), θ2(0) = 0, γ2 = θ′2(0), Γ2 = θ′′2 (0).

(6.22)
We denote the two terms in the expression for s∞ in (6.3) by I1, I2, i.e.,

s∞ = sup
h̃∈W̃

[
~θ∞ · ~T (h̃)− I(h̃)

]
− sup
h̃∈W̃∗

[
~θ∞ · ~T (h̃)− I(h̃)

]
= I1 − I2, (6.23)

and we let s∞(ε) denote the relative entropy corresponding to the perturbed con-
straints. We distinguish between the cases T1 ∈ [ 1

2 , 1) and T1 ∈ (0, 1
2 ).

Case I T1 ∈ [ 1
2 , 1): From [37, Section 5], if T1 ∈ [ 1

2 , 1) and T2 ∈ [ 1
8 , 1), then the

corresponding Lagrange multipliers (θ1, θ2) are both non-negative. Hence from [29,
Theorem 4.1] we have that

I1 := sup
h̃∈W̃

[
θ1(ε)T1(h̃) + θ2(ε)T2(h̃)− I(h̃)

]
= sup

0≤u≤1

[
θ1(ε)u+ θ2(ε)u2 − I(u)

]
,

(6.24)
and, consequently,

I1 = sup
0<u<1

[
θ1(ε)u+ θ2(ε)u3 − I(u)

]
= θ1(ε)u∗(ε) + θ2(ε)u∗(ε)3 − I(u∗(ε)). (6.25)

The optimiser u∗(ε) corresponding to the perturbed multipliers θ∗1(ε) and θ∗2(ε) is
analytic in ε, as shown in [87]. Therefore, a Taylor expansion around ε = 0 gives

u∗(ε) = T1 + δε+ 1
2∆ε2 +O(ε3), (6.26)
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where δ = u∗′(0) and ∆ = u∗′′(0). Hence I1 can be written as

I1 = θ1T1 − I(T1) + (γ1T1 + γ2T
3
1 )ε+O(ε2). (6.27)

Moreover,

I2 =
[
θ1 + γ1ε+ 1

2Γ1ε
2 +O(ε3)

]
T1 +

[
γ2ε+ 1

2Γ2ε
2 +O(ε3)

]
(T 3

1 + 3T1ε)− inf
h̃∈W̃∗ε

I(h̃)

= θ1T1 + γ1T1ε+ 1
2Γ1T1ε

2 + T 3
1 γ2ε+ 1

2Γ2T
3
1 ε

2 + 3T1γ2ε
2 − J↓(ε) +O(ε3),

(6.28)
where

J↓(ε) := inf
h̃∈W̃∗ε

I(h̃), W̃ ∗ε := {h̃ ∈ W̃ : T1(h̃) = T1, T2(h̃) = T 3
1 + 3T1ε}. (6.29)

Consequently,
s∞(T ∗1 , T

∗3
1 + 3T ∗1 ε) = J↓(ε)− I(T1) +O(ε2). (6.30)

Denote by h̃(2)
ε one of the, possibly multiple, balance optimisers of the variational

problem J↓(ε). From Proposition 6.3.5 we know that, for ε sufficiently small, any
graphon in the equivalence class h̃(2)

ε , denoted by h
(2)
ε , has the form h

(2)
ε = T1 +√

εg∗ +O(ε), where the graphon g∗ was defined in (6.13). By considering the Taylor
expansion of the function I around ε = 0, we get

I(h(2)
ε ) = I(T1) + I ′(T1)

√
ε

∫
[0,1]2

dxdy g∗(x, y)

+ 1
2I
′′(T1) ε

∫
[0,1]2

dx dy g∗(x, y)2 + o(ε)

= I(T1) + 1
2I
′′(T1) ε

∫
[0,1]2

dxdy g∗(x, y)2 + o(ε)

= I(T1) + I ′′(T1)ε+ o(ε)

= I(T1) +
1

2

1

T1(1− T1)
ε+ o(ε).

(6.31)

But, from (6.14), a straightforward computation of the entropy of h∗ε shows that

J↓(ε) = I(T1) +
6

1− 2T ∗1
log

T ∗1
1− T ∗1

ε+ o(ε). (6.32)

Hence we obtain that the global optimiser is not a balance optimiser and that

s∞(T ∗1 , T
∗3
1 + 3T ∗1 ε) =

6

1− 2T ∗1
log

T ∗1
1− T ∗1

ε+ o(ε). (6.33)

Case II T1 ∈ (0, 1
2 ): Consider the term

I1 := sup
h̃∈W̃

[
θ1(ε)T1(h̃) + θ2(ε)T2(h̃)− I(h̃)

]
,
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as above. If Assumption 1 applies, then this case is proved in the same way as Case
I. Otherwise, consider the straightforward lower bound

sup
h̃∈W̃

[
θ1(ε)T1(h̃) + θ2(ε)T2(h̃)− I(h̃)

]
≥ sup

0≤u≤1

[
θ1(ε)u+ θ2(ε)u3 − I(u)

]
. (6.34)

The arguments used in Case I after (6.25) apply, and the result in (6.30) is obtained
with an inequality instead of an equality.

§6.4.2 Proof of Theorem 6.3.2
In this section we omit the computations that are similar to those in the proof of
Theorem 6.3.1. Let

T1(ε) = T1, T2(ε) = T 3
1 − T 3

1 ε. (6.35)

The factor T 3
1 appearing in front of the ε is put in for convenience in the computations.

The perturbed Lagrange multipliers are

θ1(ε) = θ1 + γ1ε+ 1
2Γ1ε

2 +O(ε3), θ2(ε) = γ2ε+ 1
2Γ2ε

2 +O(ε3), (6.36)

where

θ1 = I ′(T1), γ1 = θ′1(0), Γ1 = θ′′1 (0) γ2 = θ′2(0), Γ2 = θ′′2 (0). (6.37)

We denote the two terms in the expression for s∞ in (6.3) by I1, I2, i.e., s∞ =

I1 − I2, and let s∞(ε) denote the perturbed relative entropy. The computations for
I1 are similar as before, because the exact form of the constraint does not affect the
expansions in (6.26) and (6.27). For I2, on the other hand, we have

I2 = θ1T1 + γ1T1ε+ 1
2Γ1T1ε

2 + T 3
1 γ2ε+ 1

2Γ2T
3
1 ε

2 − T 3
1 γ2ε

2 − J↑1 (ε)

= θ1T1 + γ1T1ε+ T 3
1 γ2ε− J↑1 (ε) +O(ε2),

(6.38)

where

J↑1 (ε) := inf
h̃∈W̃∗ε

I(h̃), W̃ ∗ε := {h̃ ∈ W̃ : T1(h̃) = T1, T2(h̃) = T 3
1 − T 3

1 ε}. (6.39)

Consequently,
s∞(T ∗1 , T

∗
1 − T ∗31 ε) = J↑1 (ε)− I(T1) +O(ε2). (6.40)

Denote by h̃∗ε one of the, possibly multiple, optimisers of the variational problem J↑1 (ε).
From Proposition 6.3.6 we know that, for T ∗1 ∈ (0, 1

2 ], a balance optimal graphon in
the equivalence class h̃∗ε , denoted by h∗ε for simplicity in the notation, has the form

h∗ε = T ∗1 + ε1/3g∗ +O(ε1/3) (6.41)

with g∗ given by

g∗(x, y) =


−T ∗1 , (x, y) ∈ [0, 1

2 ]2,

T ∗1 , (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−T ∗1 , (x, y) ∈ ( 1
2 , 1]2.

(6.42)
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Hence
J↑1 (ε) ≤ I(T1) +

1

2
T ∗21 I ′′(T1)ε2/3 ≤ I(T1) +

1

4

T ∗1
1− T ∗1

ε2/3, (6.43)

which gives

s∞(T ∗1 , T
∗
1 − T ∗31 ε) ≤ 1

4

T ∗1
1− T ∗1

ε2/3 + o(ε2/3). (6.44)

§6.4.3 Proof of Theorem 6.3.3
The computations leading to the expression for the relative entropy in the right-hand
side of (6.10) are similar as those in Section 6.4.2, and we omit them. Hence we have

s∞(T ∗1 , T
∗
1 − T ∗31 ε) = J↑2 (ε)− I(T1) +O(ε2), (6.45)

where, for T1 ∈ ( 1
2 , 1),

J↑2 (ε) := inf
h̃∈W̃∗ε

I(h̃), W̃ ∗ε := {h̃ ∈ W̃ : T1(h̃) = T1, T2(h̃) = T 3
1 − T 3

1 ε}. (6.46)

Denote by h̃∗ε one of the, possibly multiple, optimisers of the variational problem J↑2 (ε).
From Proposition 6.3.7 we know that, for T1 ∈ ( 1

2 , 1), a balance optimal graphon, in
the equivalence class h̃∗ε , denoted by h∗ε for simplicity in the notation, has the form

h∗ε = T ∗1 + g∗ε (6.47)

with g∗ε given by

g∗ε (x, y) :=



T∗21

T̄∗1
ε2/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]2

T ∗1 ε
1/3, (x, y) ∈ [0, 1− T∗1

|T̄∗1 |
ε1/3]× [1− T∗1

|T̄∗1 |
ε1/3, 1] or

(x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]× [0, 1− T∗1
|T̄∗1 |

ε1/3],

T̄ ∗1 , (x, y) ∈ [1− T∗1
|T̄∗1 |

ε1/3, 1]2.

(6.48)

The term T̄ ∗1 ∈ (−T ∗1 , 0) is defined in Theorem 6.3.3. Hence we have

s∞(T ∗1 , T
∗
1 − T ∗31 ε) ≤ f(T ∗1 , T̄

∗
1 )ε2/3 + o(ε2/3), (6.49)

where T̄ ∗1 ∈ (−T ∗1 , 0) is the unique point where the global minimum of the function
x→ f(T ∗1 , x) defined by

f(T ∗1 , x) := T ∗21

I(T ∗1 + x)− I(T ∗1 )− I ′(T ∗1 )x

x2
, x ∈ (−T1, 0). (6.50)

We need to show that, for every T ∗1 ∈ (0, 1) and for every x ∈ (−T1, 0), f(T1, x) > 0

or equivalently that
I(T ∗1 + x)− I(T ∗1 )− I ′(T ∗1 )x > 0. (6.51)

From the mean-value theorem we have that there exists ξ ∈ (T ∗1 + x, T ∗1 ) such that
I ′(T ∗1 + x)− I(T ∗1 ) = I ′(ξ)x. Hence we have that

f(T ∗1 , x) = (I ′(ξ)− I ′(T ∗1 ))x > 0, (6.52)

which follows because I ′ is an increasing function, x ∈ (−T1, 0) and ξ ∈ (T ∗1 + x, T ∗1 ).
More detailed arguments are provided in the following section.
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§6.5 Proofs of Propositions 6.3.5–6.3.7

In this section we prove Propositions 6.3.5–6.3.7. In Section 6.5.1 we prove Proposition
6.3.5 and in Section 6.5.2 we prove Propositions 6.3.6 - 6.3.7. The proof of Proposition
6.3.7 is similar to the proof of Proposition 6.3.6, only the computations are different.
In Section 6.4 the following variational problems were encountered:

(1) For T1 ∈ (0, 1),

J↓(ε) = inf
{
I(h̃) : h̃ ∈ W̃ , T1(h̃) = T1, T2(h̃) = T 3

1 + 3T1ε
}
. (6.53)

(2) For T1 ∈ (0, 1
2 ],

J↑1 (ε) = inf
{
I(h̃) : h̃ ∈ W̃ , T1(h̃) = T1, T2(h̃) = T 3

1 − T 3
1 ε
}
. (6.54)

(3) For T1 ∈ ( 1
2 , 1),

J↑2 (ε) = inf
{
I(h̃) : h̃ ∈ W̃ , T1(h̃) = T1, T2(h̃) = T 3

1 − T 3
1 ε
}
. (6.55)

In order to prove Propositions 6.3.5–6.3.7, we need to analyse these three variational
problems, for ε sufficiently small, which is the objective of this section. The vari-
ational formula in (6.53) has been rigorously analysed in [66], and hence we study the
variational formulas in (6.54) and (6.55), under the assumption that the optimiser
lies in the class of balance optimal graphons. We remind the reader that we suppose
Assumption 2 to be true. We analyse the variational formulas with the help of a per-
turbation argument. In particular, we show that the balance optimal perturbations
are those given in (6.12), (6.16) and (6.18), respectively. The results in Propositions
6.3.6–6.3.7 follow directly from the following two lemmas.

6.5.1 Lemma. Let T1 ∈ (0, 1
2 ]. For ε > 0 consider the variational formula for J↑1 (ε)

given in (6.54). Then, for ε sufficiently small,

J↑1 (ε) ≤ I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3). (6.56)

6.5.2 Lemma. Let T1 ∈ ( 1
2 , 1). For ε > 0 consider the variational formula for J↑2 (ε)

given in (6.55). Then, for ε sufficiently small,

J↑2 (ε) ≤ I(T1) + f(T1, T̄
∗
1 )ε2/3 + o(ε2/3), (6.57)

where f(T1, x), x ∈ (−T1, 0), and T̄ ∗1 were defined in Theorem 6.3.3.

6.5.3 Remark. As argued in Remark 6.3.4, we believe, and there is numerical evid-
ence in [63], that the results in (6.56) and (6.57) hold with equality.

In what follows we use the notation f(ε) � g(ε), for two functions f, g, when f(ε)
g(ε)

converges to a positive constant, as ε ↓ 0.
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§6.5.1 Proof of Proposition 6.3.5
In this section we prove Proposition 6.3.5 given that Assumption 2 holds. In order to
find the optimal perturbation when the ER-line is approached from above, we need
to solve J↓(ε) in (6.53). The following construction shows intuitively why balance
optimal perturbations have the form given in (6.12). Consider an inhomogeneous
ER-random graph on n vertices. We split the vertices of the graph into two parts
of equal size, i.e., of size n/2. In one part we connect two vertices with probability
T1 +2

√
ε, in the other part we connect two vertices with probability T1−2

√
ε, and we

connect vertices lying in different parts with probability T1. This graph has expected
edge density equal to

1(
n
2

) (T1

(n
2

)2

+ (T1 + 2
√
ε)

(n
2

2

)
+ (T1 − 2

√
ε)

(n
2

2

))
= T1. (6.58)

Similarly, the expexted triangle density is equal to

1(
n
3

) ((n2
3

)
(T1 + 2

√
ε)3 +

n

2

(n
2

2

)
2T 2

1 T1 +

(n
2

3

)
(T1 − 2

√
ε)3

)
= T 3

1 + 3T1
n− 4

n− 1
ε

∼ T 3
1 + 3T1ε,

for n large. Below when we speak of optimal perturbation we mean balance optimal.
In the proof below we will see that the optimal perturbation is indeed given by the
graphon counterpart of the inhomogeneous ER-random graph described above. We
now proceed to the technical details of the proof.

With a slight abuse of notation we write I(·) for both cases of a graphon and a real
number. We consider the variational formula J↓(ε), with ε > 0 given in (6.53). We
denote by h̃∗↓ε one of the, possibly multiple, optimisers of J↓(ε). For simplicity in the
notation, in what follows we work with a representative element, denoted by h∗↓ε , of
the equivalence class h̃∗↓ε . We write the optimiser h∗↓ε in the form h∗↓ε = T1 + ∆Hε for
some bounded symmetric function ∆Hε defined on the unit square [0, 1]2 and taking
values in R. This term will be called the perturbation term. The optimiser h∗↓ε has to
satisfy the conditions on the edge and triangle densities, i.e.,

T1(h∗↓ε ) = T1, T2(h∗↓ε ) = T 3
1 + 3T1ε. (6.59)

Hence the perturbation term ∆Hε needs to satisfy the constraints

(G1) :

∫
[0,1]2

dxdy ∆Hε(x, y) = 0 (6.60)

and

(G2) : 3T1

∫
[0,1]3

dxdy dz ∆Hε(x, y)∆Hε(y, z)

+

∫
[0,1]3

dxdy dz ∆Hε(x, y)∆Hε(y, z)∆Hε(z, x) = 3T1ε.

(6.61)
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In what follows we prove the result stated in Proposition 6.3.5, i.e., the optimal
perturbation is a three-step function and is of order

√
ε.

In Assumption 2 it is stated that it suffices to restrict to graphons that can be
written in the form T1+∆H

(2)
ε , where ∆H

(2)
ε is a bounded symmetric function defined

on [0, 1]2, taking three non-zero values. In what follows, for simplicity in the compu-
tations and without loss of generality, we suppose that the optimal graphon has the
form

∆H(2)
ε = g111I×I + g121(I×J)∪(J×I) + g221J×J . (6.62)

Then (G1) above becomes

λ(I)2g11 + 2λ(I)(1− λ(I))g12 + (1− λ(I))2g22 = 0 (6.63)

and the two integrals in (G2) become∫
[0,1]3

dx dy dz ∆Hε(x, y)∆Hε(y, z) = λ(I)3g2
11 + 2λ(I)2(1− λ(I))g11g12

+ 2λ(I)(1− λ(I))2g12g22 + λ(I)(1− λ(I))g2
12

+ (1− λ(I))2g2
22, (6.64)

and∫
[0,1]3

dx dy dz ∆Hε(x, y)∆Hε(y, z) = λ(I)3g2
11 + 2λ(I)2(1− λ(I))g11g12

+ 2λ(I)(1− λ(I))2g12g22 + λ(I)(1− λ(I))g2
12

+ (1− λ(I))2g2
22, (6.65)

and a similar expression can be computed for the second integral in (G2). We now
give the formal definition of a balance optimal graphon:

6.5.4 Definition. For T1 ∈ (0, 1), a graphon T1 + h̃ε, ε > 0, is called balanced if
it has the structure given in (6.62) and the terms λ(I)2g11, λ(I)(1 − λ(I))g12 and
(1− λ(I))2g22 are all of the same order when ε is sufficiently small.

6.5.5 Definition. For ε > 0 a graphon h̃ε is called balance optimal if it solves the
following optimisation problem:

Jbal(ε) := inf{I(h̃), h̃ ∈ W̃ , h̃ is balanced, T1(h̃) = T1, T2(h̃) = T 3
1 + 3T1ε}. (6.66)

It is straightforward to observe that, for ε > 0,

Jbal(ε) ≥ J(ε). (6.67)

In what follows we essentially determine Jbal(ε) for ε sufficiently small. We distinguish
two cases, first g12 = 0 and then g12 6= 0.
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Case g12 = 0: The values of g+ and g− are such so that T1 + ∆H
(2)
ε satisfies the

conditions in (6.60) and (6.61). We proceed with the condition in (6.61). A standard
computation yields∫

[0,1]3
dxdy dz ∆H(2)

ε (x, y)∆H(2)
ε (y, z) = λ(I)3 g2

+ + λ(J)3 g2
− (6.68)

and ∫
[0,1]3

dx dy dz ∆H(2)
ε (x, y)∆H(2)

ε (y, z)∆H(2)
ε (z, x) = λ(I)3 g3

+ + λ(J)3 g3
−.

(6.69)
From (6.60) we obtain the first order condition

λ(I)2g+ + λ(J)2g− = 0. (6.70)

Using the condition in (6.70), we get that (6.61) equals

g2
− 3T1

λ(J)3

λ(I)
(λ(J) + λ(I))− g3

−
λ(J)3

λ(I)3
(λ(I)3 − λ(J)3) = 3T1ε+ o(ε). (6.71)

There are multiple ways in which the condition in (6.71) can be met. We show that
the lowest possible value of I is attained when g+ �

√
ε , g− � −

√
ε and λ(I), λ(J)

are constant. To that end we distinguish the following cases:

(I)

g2
− 3T1

λ(J)3

λ(I)
(λ(J) + λ(I)) � ε, g3

−
λ(J)3

λ(I)3
(λ(I)3 − λ(J)3) = o(ε), (6.72)

which splits into three sub-cases:

(Ia)

g+ � ε1/2, g− � −ε1/2,
λ(J)

λ(I)
� 1. (6.73)

(Ib)

g+ � ε1/2+δ/3, g− � −ε1/2−δ,
λ(J)3

λ(I)
� ε2δ, δ ∈ (0, 1

2 ). (6.74)

(Ic)

g+ � ε1/2−3δ, g− � −ε1/2+δ,
λ(J)3

λ(I)
� ε−2δ, δ ∈ (0, 1

6 ). (6.75)

(1d)
g+ � ε2/3, g− = ḡ ∈ (−T1, 0), λ(J) � ε1/3. (6.76)

(II)

g2
− 3T1

λ(J)3

λ(I)
(λ(J) + λ(I)) � ε1+δ, −g−

1

λ(I)2
� ε−δ, δ > 0. (6.77)

A simple calculation shows that, in all the cases above, λ(I) + λ(J) � 1 and λ(I)3 −
λ(J)3 � 1, and hence we can omit these two factors from the analysis below. In what
follows we exclude cases (Ib), (Ic) and (II) one by one by comparing them to graphons
of the type given in case (Ia).
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Case (Ib): We show that, for ε > 0 sufficiently small, graphons having the structure
indicated in (Ia) yield smaller values of the function I than graphons with the structure
in (Ib). We consider two graphons, denoted by T1 + g∗ and T1 + ĝ∗, where g∗ is as in
Case (Ia) and ĝ∗ is as in Case (Ib). Before giving the technical details of the proof,
we present a heuristic argument why I(T1 + g∗) < I(T1 + ĝ∗). In what follows we
will denote by B(p) a Bernoulli random variable with parameter p. The function
−I(x), x ∈ [0, 1], defined in (5.19) represents the entropy of a B(x) random variable
with parameter x. On the graphon space the function −I(h), h ∈ W , defined in
(5.20), can be seen as the expectation of the entropy of a Bernoulli random variable
with a random parameter (the expectation is with respect to the random parameter),
i.e., B(h(X,Y )) with (X,Y ) a uniformly distributed random variable on [0, 1]2. For
h ∈W we have

−I(h) =

∫
[0,1]2

dxdy [−I(h(x, y))] = E[−I(h(X,Y ))]. (6.78)

Hence we have the following equivalence

I(T1 + g∗) < I(T1 + ĝ∗)⇔ E[−I(T1 + g∗(X,Y ))] > E[−I(T1 + ĝ∗(X,Y ))], (6.79)

where (X,Y ) is a uniformly distributed random vector on [0, 1]2. Instead of working
with entropy, it is intuitively simpler to work with the relative entropy with respect
to the random variable B( 1

2 ). The relative entropy is defined by

I 1
2

(x) := x log
x
1
2

+ (1− x) log
1− x

1
2

, x ∈ [0, 1]. (6.80)

Note that

E[−I(T1 + g∗(X,Y ))] > E[−I(T1 + ĝ∗(X,Y ))]⇔
E[I 1

2
(T1 + g∗(X,Y ))] < E[I 1

2
(T1 + ĝ∗(X,Y ))]. (6.81)

We first give an intuitive argument and afterwards prove that

E[I 1
2
(T1 + g∗(X,Y ))] < E[I 1

2
(T1 + ĝ∗(X,Y ))]. (6.82)

We distinguish between the cases T1 ∈ (0, 1
2 ] and T1 ∈ ( 1

2 , 1). The case T1 ∈ (0, 1
2 ]

follows by using similar arguments as in case T1 ∈ ( 1
2 , 1). We treat in detail only the

case T1 ∈ ( 1
2 , 1).

The relative entropy of a random variable with respect to B( 1
2 ) is zero if and

only if that random variable is equal to B( 1
2 ). So, in order to compare the relative

entropies in (6.82), we need to see how close the Bernoulli random variables with
random parameters T1 +g∗(X,Y ) and T1 + ĝ∗(X,Y ) are to B( 1

2 ). We are considering
the case T1 >

1
2 . Hence the random variables B(T1 +g∗(X,Y )) and B(T1 + ĝ∗(X,Y ))

will be close to B( 1
2 ) when the random parameters T1 + g∗(X,Y ) and T1 + ĝ∗(X,Y )

are close to 1
2 . This is the case when g∗(X,Y ) and ĝ∗(X,Y ) are negative. These

events occur with probabilities

P(T1 + g∗(X,Y ) < T1) = P(g∗(X,Y ) < 0) = P(g∗(X,Y ) = g−) = λ(J)2 � 1, (6.83)
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because of the properties of the graphon in Case (Ia). Similarly, we have that

P(T1 + ĝ∗(X,Y ) < T1) = P(ĝ∗(X,Y ) < 0) = P(ĝ∗(X,Y ) = g−) = λ(Ĵ)2 � ε4δ/3,
(6.84)

for some δ ∈ (0, 1
2 ], because of the properties of the graphon in Case (Ib). Hence we

see that the random variable B(T1 + g∗(X,Y )) is closer to the random variable B( 1
2 )

with much higher probability than the random variable B(T1 + ĝ∗(X,Y )). We can
see this by computing the corresponding expectations,

E(g∗(X,Y ) | g∗(X,Y ) = g−)P(g∗(X,Y ) = g−) = g− P(g∗(X,Y ) = g−) � ε1/2,
(6.85)

while

E(ĝ∗(X,Y ) | ĝ∗(X,Y ) = ĝ−)P(ĝ∗(X,Y ) = ĝ−) = ĝ− P(ĝ∗(X,Y ) = ĝ−)

� ε1/2−δε4δ/3 = ε1/2+δ/3.

In what follows we complete this argument by adding the technical details. We
work out the expressions in the left-hand and right-hand sides of (6.82). The expres-
sion in the right-hand side of (6.82) can be written as

E[I 1
2
(T1 + g∗(X,Y ))] = LI 1

2
(T1 + g+) +KI 1

2
(T1 + g−) + (1− L−K)I 1

2
(T1), (6.86)

for some constants L := P(g∗(X,Y ) = g+) and K = P(g∗(X,Y ) = g−) independent
of ε. Similarly,

E[I 1
2
(T1 + ĝ∗(X,Y ))]=λ(Î)2I 1

2
(T1 + ĝ+)+ε4δ/3I 1

2
(T1 + ĝ−)+(1−λ(Î)2−ε4δ/3)I 1

2
(T1),

(6.87)
where λ(Î)2 = P(ĝ∗(X,Y ) = ĝ+) � 1 and P(ĝ∗(X,Y ) = ĝ−) � ε4δ/3. Moreover, we
recall that from the properties of the graphons in Case (Ia) and Case (Ib) we get

g+ �
√
ε, g− � −

√
ε, ĝ+ � ε1/2+δ/3, ĝ− � ε1/2−δ, δ ∈ (0, 1

2 ]. (6.88)

Hence, for T1 ∈ ( 1
2 , 1] and ε sufficiently small, because of (6.88), we obtain the follow-

ing inequalities:

I 1
2
(T1 + g+) > I 1

2
(T1 + ĝ+) > I 1

2
(T1 + g−) > I 1

2
(T1 + ĝ−). (6.89)

Using a Taylor expansion of the function I around T1 and the first order conditions

Lg+ +Kg− = 0 and λ(Î)2ĝ+ + λ(Ĵ)2ĝ− = 0, (6.90)

we observe that (6.86) and (6.87) are read

E[I 1
2
(T1 + g∗(X,Y ))] = I 1

2
(T1) + 1

2I
′′
1
2
(T1)(Lg2

+ +Kg2
−) + o

(
g2

+ + g2
−
)

(6.91)

and

E[I 1
2
(T1 + ĝ∗(X,Y ))] = I 1

2
(T1) + 1

2I
′′
1
2
(T1)(λ(Î2)ĝ2

+ + λ(Ĵ)2ĝ2
−)

+ o
(
λ(Î2)ĝ2

+ + λ(Ĵ)2ĝ2
−

)
. (6.92)
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Using (6.88), we observe that Lg2
+ +Kg2

− � ε and

λ(Î2)ĝ2
+ + λ(Ĵ)2ĝ2

− � ε1+2δ/3 + ε4/3δε1−2δ � ε1−2δ/3. (6.93)

Hence, for ε sufficiently small,

E
[
I 1

2
(T1 + g∗(X,Y ))

]
< E

[
I 1

2
(T1 + ĝ∗(X,Y ))

]
, (6.94)

which proves (6.82).
Similar arguments can be used for the case T1 ∈ (0, 1

2 ) to show that graphons, as
in Case (Ic), yield larger values of I(·) for ε sufficiently small. We omit the details.

Case (1d): In this case we have that the optimal graphon is constant on a subset
of the unit square with a size tending to zero as ε ↓ 0. Such a graphon yields

I(T1 + g∗) = λ(I)2I(T1 + g+) + 2(1− λ(I))(1− λ(J))I(T1) + λ(J)2I(T1 + g−)

= λ(I)2(I(T1) + I ′(T1)g+ + o(ε2/3)) + 2(1− λ(I))(1− λ(J))I(T1)

+ λ(J)2I(T1 + g−)

= I(T1)− λ(J)2I(T1)− λ(J)2ḡI ′(T1) + λ(J)2I(T1 + ḡ)

= I(T1) + ε2/3 (I(T1 + ḡ)− ḡI ′(T1)− I(T1)) + o(ε2/3). (6.95)

The second equality follows by considering a Taylor expansion around ε = 0 in the
terms that go to zero as ε ↓ 0, i.e, g+. In the third equality we use (6.70). What
remains is to show that

I(T1 + ḡ)− I(T1)− ḡI ′(T1) > 0 (6.96)

for ḡ ∈ (−T1, 0). From the mean-value theorem we have that I(T1+ḡ)−I(T1) = I ′(ξ)ḡ

for some ξ ∈ (T1+ḡ, T1). Since ḡ < 0 and I is a convex function, i.e., I ′ is an increasing
function, we have that I ′(ξ) < I ′(T1). This proves the claim above. From (6.95) we
observe that graphons having the form as in Case (1d) yield larger values of I, for ε
sufficiently small, than graphons as in Case (1a).

Case (II): This case is simpler to exclude than the ones above. Indeed, suppose
that (6.77) holds. Then either λ(I) should become small or −g− should become
large. But g− � −ε−δ is not possible because g− should stay bounded in (−T1, 0)

as ε ↓ 0. Hence the only possibility is λ(I) � εη and g− � −εζ for some η, ζ such
that ζ − 2η = −δ, because of the second condition in (6.77). From the first condition
in (6.77) we have that 2ζ − η = 1 + δ. Solving these two equations we obtain that
η = 1

3 +δ and ζ = 2
3 +δ. From (6.70) we then get that g+ � ε−δ, which is not possible

because g+ should stay bounded in (0, 1− T1) as ε ↓ 0.
At this point we summarise our findings. We considered the variational formula

for J↓(ε) given in (6.53) and we assumed that we can restrict ourselves to piece-wise
constant graphons (see Assumption 2) subject to the constraints in (6.60) and (6.61).
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Afterwards, without loss of generality, we restricted ourselves to an even smaller class
of graphons, those of the form

g = g+1I×I + g−1J×J (6.97)

for some g+ > 0, g− < 0 and I, J ⊂ [0, 1] with λ(I)2 + λ(J)2 ≤ 1. At the end of this
section we elaborate on the case g12 6= 0. More specifically, we have shown that the
optimal perturbation satisfies g+ � ε1/2, g− � −ε1/2 and λ(I) � 1, λ(J) � 1. Hence
the solution to J↓(ε) has the form T1 +g∗

√
ε+o(ε), where g∗ = g+1L×L+g−1K×K for

some g+ > 0, g− < 0, L,K ∈ (0, 1) independent of ε, is a symmetric function defined
on [0, 1]2. From the constraints (6.60) and (6.61) we have that g+L

2 = −g−K2 and
L3g2

+ +K3g2
− = 1. A simple calculation shows that

I(T1 + g
√
ε ) = I(T1) + I ′(T1)(L2g+ +K2g−)

√
ε+ 1

2I
′′(T1)(L2g2

+ +K2g2
−)ε+ o(ε)

= I(T1) + 1
2I
′′(T1)(L2g2

+ +K2g2
−)ε+ o(ε).

Hence, in order to find the optimal graphon we need to solve the following optimisation
problem:

min
(
L2g2

+ +K2g2
−
)

(6.98)
such that L+K ≤ 1, g+L

2 + g−K
2 = 0, L3g2

+ +K3g2
− = 1.

This is equivalent to

min
(

1

K
+

1

L
− 2

K + L

)
such that L+K ≤ 1.

(6.99)

From a standard computation we find that the optimal K,L should satisfy K+L = 1.
Hence we need to minimize 1−2L+L2

L(1−L) . This function is convex in L ∈ (0, 1) and attains
a unique minimum at the point L = 1

2 . Having computed L,K we find g+ = −g− = 2,
and so the optimal solution to J↓(ε), for ε sufficiently small, is the graphon

h∗↓ε (x, y) =


T1 + 2

√
ε, if (x, y) ∈ [0, 1

2 ]2,

T1, if (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] or ( 1
2 , 1]× [0, 1

2 ],

T1 − 2
√
ε, if (x, y) ∈ ( 1

2 , 1]2.

(6.100)

A standard computation shows that T1(h∗↓ε ) = T1 and T2(h∗↓ε ) = T 3
1 + 3T1ε.

Case g12 6= 0: By following similar arguments as for the case g12 = 0, we can
show that the optimal values of g11, g12, g22, K and L can be retrieved by solving the
following optimisation problem:

min
(
L2g2

11 +K2g2
22 + 2LKg2

12

)
such that

L+K = 1,

L2g11 +K2g22 + 2LKg12 = 0,

L3g2
11 +K3g2

22 + 2L2Kg12g11 + 2LK2g12g22 + LKg2
12 = 1. (6.101)
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Suppose first that L = K = 1
2 . Then we have the following optimisation problem:

min 1
4

(
g2

11 + g2
22 + 2g2

12

)
such that

g11 + g22 + 2g12 = 0,

g2
11 + g2

22 + 2g12g11 + 2g12g22 + 2g2
12 = 8.

Introducing Lagrange multipliers, we obtain the solution g12 = 0 and g11 = −g22 = 2.
For arbitrary L,K, substituting

g12 = −1

2

(
L

1− L
g11 +

1− L
L

g22

)
into (6.101) and differentiating the Lagrangian with respect to g12, we obtain g12 = 0.
We observe at this point that this argument holds only for the case where g11, g12 and
g22 go to zero as ε ↓ 0. This is not the case for the actual optimal graphon in (6.14).

Case g12 6= 0 and g22 = 0: From (6.96) we observe that g22 = 0 yields an equality.
Hence in this case the microcanonical entropy will of order ε instead of ε2/3. From
the first-order constraint in (6.60) we obtain

g12 = −1

2

λ

(1− λ)
g11, (6.102)

where λ := λ(I). Then the second order constraint reads

g2
11

1

4

λ2

(1− λ)2
λ(1− λ) = ε. (6.103)

Following similar arguments as before, we can show that the case g11 � εδ, λ �
ε1/3−δ/3 g12 � −ε2/3+δ/2 is not optimal. The case where g11 or g12 are constant,
independently of ε, is also not optimal, since if one of them is constant then the
entropy cost will be ε2/3 instead of ε. A standard computation yields

I(T1 + g∗) = I(T1) +
1

2
I ′′(T1)

(
2 + 4

1− λ
λ

)
ε+ o(ε), (6.104)

while for the graphon defined in (6.100) we have

I(h∗↓ε ) = I(T1) + I ′′(T1)ε+ o(ε). (6.105)

Hence we see that I(T1 + g∗) > I(T1 + h∗↓ε ) if and only if 1 − λ is constant and
independent of ε. If 1 − λ � εδ, then further analysis is needed in order to establish
the optimal graphon. In any case, the graphon h∗↓ε is balance optimal, as desired.

§6.5.2 Proof of Lemma 6.5.1 and Lemma 6.5.2
In this section we provide the technical details leading to the optimal perturbation of
the variational formula in (6.54). We denote one of the, possibly multiple, optimizers
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of (6.54) by h̃∗↑ε . In the proof, in order to keep the notation light, we denote a
representative element of this class by h∗↑ε . We start by writing the optimizer in the
form h∗↑ε = T1 + ∆Hε for some perturbation term ∆Hε. The perturbation term has
to be a bounded symmetric function defined on the unit square [0, 1]2 taking values
in R. The optimizer h∗↑ε has to satisfy the constraints

T1(h∗↑ε ) = T1, T2(h∗↑ε ) = T 3
1 − T 3

1 ε, (6.106)

and so the perturbation ∆Hε needs to satisfy the two constraints

(K1) :

∫
[0,1]2

dxdy ∆Hε(x, y) = 0 (6.107)

and

(K2) : 3T1

∫
[0,1]3

dxdy dz ∆Hε(x, y)∆Hε(y, z)

+

∫
[0,1]3

dx dy dz ∆Hε(x, y)∆Hε(y, z)∆Hε(z, x) = −T 3
1 ε.

(6.108)

Again, from Assumption 2, we restrict to graphons having the form T1 + ∆Hε

where
∆Hε = g111I×I + g121(I×J)∪(J×I) + g221J×J , (6.109)

g11, g12, g22 ∈ (−T1, 1− T1) and I ⊂ [0, 1], J = Ic. From (6.107) we get

λ(I)2g11 + 2λ(I)(1− λ(I))g12 + (1− λ(I))2g22 = 0, (6.110)

which yields

g12 = −1

2

(
λ(I)

1− λ(I)
g11 +

1− λ(I)

λ(I)
g22

)
. (6.111)

A standard computation shows that the second order integral in (6.108) is equal to

λ(I)3g2
11 +(1−λ(I))3g2

22 +2λ(I)(1−λ(I))g12(λ(I)g11 +(1−λ(I))g22 +
1

2
g12. (6.112)

By (6.111) this is equal to

1

4
λ(I)(1− λ(I))

(
λ(I)

(1− λ)
g11 −

1− λ(I)

λ(I)
g22

)2

. (6.113)

From (6.108) we observe that, for ε sufficiently small, the first integral will domin-
ate the second integral when g11, g12 and g22 depend on ε. Hence, in order to obtain
the condition in (6.108), it must be that∫

[0,1]3
dxdy dz ∆Hε(x, y)∆Hε(y, z) = 0. (6.114)

Then (6.113) yields

g11 =
(1− λ(I))2

λ(I)2
g22 (6.115)
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and from (6.111) also

g12 = −1− λ(I)

λ(I)
g22. (6.116)

The third order integral in (6.108) then yields

g22
1− λ(I)

λ(I)
= −T1ε

1/3. (6.117)

We distinguish three cases,

(1)

g11 � −ε1/3, g12 � ε1/3 g22 � −ε1/3,
1− λ
λ
� 1, (6.118)

(2)

g11 � −ε2/3−δ , g12 � ε1/3, g22 � −εδ,
1− λ(I)

λ(I)
� ε1/3−δ, δ ∈ (0, 1

3 ), (6.119)

(3)

g11 � −ε2/3 , g12 � ε1/3, g22 = ḡ ∈ (−T1, 0),
1− λ(I)

λ(I)
� ε1/3. (6.120)

For each of the cases above we compute the value of the function I.

Case (1): For graphons as in Case 1, we have

I(T1 + ∆Hε) =λ(I)2I(T1 + g11) + 2λ(I)(1− λ(I))I(T1 + g12)

+ (1− λ(I))2I(T1 + g22)

=I(T1) +
1

2
I ′′(T1)

(
λ(I)2g2

11 + 2λ(I)(1− λ(I))g2
12

+ (1− λ(I))2g2
22

)
ε2/3 + o(ε2/3)

=I(T1) +
1

2
I ′′(T1)

(
(1− λ(I))4

λ(I)2
+ 2

(1− λ(I))3

λ(I)
+ (1− λ(I))2

)
g2

22

+ o(ε2/3)

=I(T1) +
1

2
I ′′(T1)

(1− λ(I))2

λ(I)2
g2

22 + o(ε2/3)

=I(T1) +
1

2
I ′′(T1)T 2

1 ε
2/3 + o(ε2/3)

=I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3).

We observe that there exist multiple graphons that can yield this result. The only
constraint we impose is g22

1−λ(I)
λ(I) = −T1ε

1/3. For example, the graphon T1 + g∗ε1/3
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with

g∗(x, y) =


−T1, (x, y) ∈ [0, 1

2 ]2,

T1, (x, y) ∈ [0, 1
2 ]× ( 1

2 , 1] ∪ ( 1
2 , 1]× [0, 1

2 ],

−T1, (x, y) ∈ ( 1
2 , 1]2,

, (6.121)

as in (6.17) is balance optimal. In Case (2) below we construct more graphons that
are balance optimal.

Case (2): A similar computation as above shows that

I(T1 + ∆Hε) = I(T1) +
1

2
I ′′(T1)T 2

1 ε
2/3 + o(ε2/3)

= I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3). (6.122)

From cases (1) and (2) we observe that various graphons are balance optimal.
Hence we need to investigate the higher-order terms in order to determine the optimal
graphon.

Case (3): For this case we have

I(T1 + ∆Hε) = λ(I)2
(
I(T1) + I ′(T1)g11

)
+ 2λ(I)(1− λ(I))

(
I(T1) + I ′(T1)g12

)
+ (1− λ(I))2I(T1 + ḡ) + o(ε2/3)

= I(T1) + (1− λ(I))2 (−I ′(T1)ḡ − I(T1) + I(T1 + ḡ)) + o(ε2/3)

= I(T1) + T 2
1

(
I(T1 + ḡ)− I(T1)− I ′(T1)ḡ

ḡ2

)
ε2/3 + o(ε2/3). (6.123)

Therefore, in order to determine the optimal graphon, we need to find, for a given
T1 ∈ (0, 1), the minimum of the function

f(T1, x) := T 2
1

I(T1 + x)− I(T1)− I ′(T1)x

x2
(6.124)

in (−T1, 0). We analyze this function for every T1 ∈ (0, 1) as x varies from −T1 to 0.
For x = −T1 we have

f(T1,−T1) = −I(T1) + T1I
′(T1) = −1

2
log(1− T1), (6.125)

while for x ↑ 0 we have

lim
x↑0

f(T1, x) = T 2
1 lim
x↑0

I ′(T1 + x)− I ′(T1)

2x
=

1

2
T 2

1 I
′′(T1) =

1

4

T1

1− T1
. (6.126)

The first derivative is equal to

f ′(T1, x) = T 2
1

(I ′(T1 + x)− I ′(T1))x2 − 2x (I(T1 + x)− I(T1)− I ′(T1)x)

x4
(6.127)
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and at the boundary points we have

lim
x↓−T1

f ′(T1, x) = −∞, lim
x↑0

f ′(T1, x) =
1

6
I(3)(T1) = − 1

12

1− 2T1

(T1(1− T1))2
. (6.128)

We observe that I(3)(T1) > 0 if and only if T1 >
1
2 . Consider first the two endpoints

h1(T1) = −1

2
log(1− T1), h2(T1) =

1

4

T1

1− T1
(6.129)

and observe that

h′1(0) =
1

2
> h′2(0) =

1

4
, h′1(1− ε) =

1

2ε
< h′2(ε) =

1

4ε2
. (6.130)

Both h1(·) and h2(·) are increasing function on [0, 1]. Hence there is a unique T̄1 such
that h1(T1) > h2(T1) for all T1 ∈ (0, T̄1) and h1(T1) ≤ h2(T1) for all T1 ∈ [T̄1, 1).
Numerically we find T̄1 ≈ 0.715 (see also Figure 6.3). We distinguish three cases:
T1 ∈ (0, 1

2 ], T1 ∈ ( 1
2 , T̄1] and T1 ∈ (T̄1, 1). The results that follow are not rigorously

proven, but are derived by using numerical approximations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1
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2

2.5

Figure 6.3: Plot of the functions h1(·) (blue line) and h2(·) (red line).

Case T1 ∈ (0, 1
2 ]: We have that h1(T1) = f(T1,−T1) > h2(T1) = limx↑0 f(T1, x).

Moreover, I(3)(T1) ≤ 0, with equality at T1 = 1
2 . Hence from (6.128) we have that

f(T1, ·) decreases away from f(T1,−T1) towards limx↑0 f(T1, x). We observe that it
is also a decreasing function on (−T1, 0). Hence we have that

f(T1, x) >
1

4

T1

1− T1
∀x ∈ (−T1, 0). (6.131)

We illustrate this in Figure 6.4 and 6.5, where we plot f(T1, ·) for T1 = 0.1, 0.25, 0.4

and 0.5.
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Figure 6.4: Plot of the function f(T1, ·) for T1 = 0.1 (left panel) and T1 = 0.25 (right panel).
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Figure 6.5: Plot of the function f(T1, ·) for T1 = 0.4 (left panel) and T1 = 0.5 (right panel).
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Case T1 ∈ ( 1
2 , T̄1]: In this case we have that I(3)(T1) > 0, and so f(T1, x) increases

into limx↑0 f(T1, x). A similar argument as above in Case 1 shows that there is at
least one stationary point T̄ ∗1 ∈ (−T1, 0), which is also a local minimum. Uniqueness
of this local minimum is verified numerically, as depicted in Figure 6.6.

Case T1 ∈ (T̄1, 1): Using a similar reasoning as in Cases 1 and 2, we get that there
is a stationary point T̄ ∗1 ∈ (−T1, 0), which is a local minimum. Uniqueness of this
minimum is verified numerically in in Figure 6.7.
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Figure 6.6: Plot of the function f(T1, ·) for T1 = 0.55 (left panel) and T1 = 0.6 (right panel).
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Figure 6.7: Plot of the function f(T1, ·) for T1 = 0.75 (left panel) and T1 = 0.9 (right panel).

From the three cases considered above we observe that if T1 ∈ (0, 1
2 ], then

f(T1, x) >
1

4

T1

1− T1
.

On the other hand, if T1 ∈ ( 1
2 , 1), then the function f(T1, ·) attains a global minimum,

denoted by T̄ ∗1 ∈ (−T1, 0), and

f(T1, T̄
∗
1 ) <

1

4

T1

1− T1
.
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We finally return to (6.123). For T1 ∈ (0, 1
2 ] the optimal graphon yields

I(T1 + ∆Hε) = I(T1) +
1

4

T1

1− T1
ε2/3 + o(ε2/3). (6.132)

For T1 ∈ ( 1
2 , 1) the optimal graphon yields

I(T1 + ∆Hε) = I(T1) + f(T1, T̄
∗
1 )ε2/3 + o(ε2/3), (6.133)

where T̄ ∗1 ∈ (−T1, 0) is the unique minimizer of the function f(T1, ·) defined in
(6.124).
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Samenvatting

Samenvatting

Dit proefschrift presenteert nieuwe resultaten over het breken van ensemble equival-
entie voor complexe netwerken met randcondities. We vergelijken het microkanonieke
ensemble, waarbij de randcondities precies worden afgedwongen, met het kanonieke
ensemble, waarbij de randcondities slechts gemiddeld worden afgedwongen. We geven
voorbeelden van randcondities waarvoor beide ensembles niet equivalent zijn.

We bestuderen klassen van unipartite grafen in hoofdstuk 2 en laten zien dat het
niet-equivalent zijn van de beide ensembles zich manifesteert via een nieuw mech-
anisme. Dit mechanisme is niet gerelateerd aan een faseovergang of niet-lineariteit,
maar aan de aanwezigheid van een groot aantal locale topologische beperkingen.

Door een algemene klasse van random grafen met een variabel aantal randcondities
te gebruiken, laten we zien dat een groot aantal randcondities de ensemble equival-
entie breekt. We beginnen met de karakterisering van het breken van equivalentie in
eenvoudige situaties met unipartite en bipartite grafen, zoals beschreven in [92]. Ver-
volgens beschouwen we een algemene klasse van grafen met een veellagenstructuur,
waarbij de connectiviteit binnen de lagen en tussen de lagen kan worden aangepast.

De stellingen in hoofdstuk 2, die voornamelijk van toepassing zijn op het lagedi-
chtheidsregime, karakteriseren niet alleen het breken equivalentie, maar geven ook
een kwantitatieve formule voor de specifieke relatieve entropie. We onderzoeken be-
langrijke gevolgen van deze stellingen, zowel in de algemene context als in specifieke
gevallen die van empirisch belang zijn. Bovendien geven we een interpretatie van de
specifieke-relatieve-entropie formule in termen van Poissonisatie van de graden.

Het hogedichtheidsregime wordt bestudeerd in hoofdstuk 3, waar een formule voor
de relatieve entropie gebaseerd op de covariantiestructuur van het kanonieke ensemble,
zoals recent voorgesteld door Garlaschelli en Squartini [93], wordt bevestigd. We
bekijken de situatie van een toevallige graaf met een gegeven gradenrij (een configur-
atie model) en laten zien dat de formule correct voorspelt dat de specifieke relatieve
entropie wordt bepaald door de schaling van de determinant van de covariantie matrix
van de randcondities in het zogenaamde δ-tamme hogedichtheidregime, maar dat een
extra correctieterm nodig is in het lagedichtheidregime en het ultrahogedichtheidsreg-
ime.

We laten zien dat het gedrag in de verschillende regimes correspondeert met het
feit dat de graden asymptotisch Gaussisch zijn en asymptotisch Poisson in het lagedi-
chtheidregime, en dat de duale graden asymptotisch Poisson zijn in het ultrahogedich-
theidregime. We laten ook zien dat in het kanonieke ensemble de graden verdeeld zijn
volgens een multivariate versie van de Poisson-Binomiaal verdeling [100], hetgeen een
Gauss verdeling toelaat met de Poisson verdeling als de limiet in de corresponderende
regimes.

169



Samenvatting

We vervolgen onze studie van het configuratiemodel in hoofdstuk 4, waar een
nieuwe vraag wordt beantwoord. Hoewel men kan laten zien dat extensiviteit van het
aantal randcondities in het aantal knopen een cruciale rol speelt in het breken van
ensemble equivalentie, is de vraag hoe het reduceren van het aantal beperkingen dit
verschijnsel precies beïnvloedt nog open. In hoofdstuk 4 beantwoorden we deze vraag
door het effect op de relatieve entropie van het reduceren van het aantal randcondities
te bestuderen. We bekijken wat er gebeurt wanneer we slechts een deel van de knopen
in hun graad beperken en de rest vrij laten.

Intuitief is de verwachting dat wanneer het aantal beperkingen afneemt de relatieve
entropie ook afneemt. Dit is echter niet triviaal, omdat het aantal randcondities
zowel het kanonieke als het microkanieke ensemble beïnvloedt. We bekijken toevallige
grafen met een voorgeschreven partiële gradenrij (gereduceerde randconditie). Het
breken van ensemble equivalentie wordt bestudeerd door te analyseren hoe de relatieve
entropie verandert als een functie van het aantal randcondities. Meer precies laten we
zien dat de relatieve entropie een monotone functie is van het aantal randcondities op
macroscopisch niveau, d.w.z. wanneer een deel van de randcondities wordt weggelaten
dat van de orde n is, met n het aantal knopen. Wanneer slecht m knopen zijn beperkt
en de resterende n−m knopen niet, dan groeit de relatieve entropie als m log n voor
n→∞.

Hoofdstukken 5 en 6 sluiten dit proefschrift af met een studie van dichte grafen
met randcondities op deelgraafstructuren. In hoofdstuk 5 wordt het breken van en-
semble equivalentie geanalyseerd door randcondities op te leggen op het aantal zijden
en het aantal deelgrafen zoals hoeken, driehoeken, etc. Hier gebruiken we een grote
afwijkingen principe voor graphons om te laten zien dat het breken van ensemble
equivalentie ontstaat zodra de randcondities gefrustreerd zijn, d.w.z. met elkaar in
conflict. Hoofdstuk 6 is een vervolg op hoofdstuk 5 voor het geval waar de rand-
condities worden opgelegd op het aantal zijden en driehoeken tegelijkertijd. In het
bijzonder worden de randcondities zo gekozen dat ze de zogenaamde Erdős-Rényi-lijn
benaderen, maar daar niet gelijk aan zijn. Het blijkt dat het gedrag van de relatieve
entropie sterk verschilt tussen de situatie waarbij het totale aantal driehoeken groter
is dan de derde macht van het totaal aantal zijden en de omgekeerde situatie.
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