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Summary

This dissertation focuses on the development of new statistical methods designed
to take into account existing structures inside omic datasets. The major challenge in
analysing omic datasets is the strong dependencies which are present. Taking into ac-
count and modelling the different dependency structures can lead to further improvements
of our knowledge of the biological mechanisms. Therefore, improving our ability to pre-
dict diseases.

Chapter 1 provides a general introduction to the existing dependency structures possi-
bly faced when studying omic datasets. First, the most common measure of dependence
is described, i.e. the Pearson correlation coefficient. Next, the different dependency struc-
tures are described. Namely, dependencies between individuals, between outcome mea-
sures and between omic features. For each of these dependency levels the challenges
faced and the commonly used methods are described.

Chapters 2 and 3 present methods for the analysis of secondary phenotypes in ascer-
tained family studies. Chapter 2 presents a new approach to analyse secondary phenotype
for the multiple case family design. Where families are selected when they have at least a
specific number of cases. The proposed method is illustrated by a data example obtained
from the Leiden Longevity Study, which is a multiple-cases family study that investigates
human longevity (primary phenotype). Here the association between, triglyceride lev-
els and glucose (secondary phenotypes), and genetic markers was estimated. Chapter 3
presents methods used in the literature for secondary phenotype analysis for the proband
family design. This design comprises family members of specific probands (often cases
with the primary outcome). These methods are then compared with the method previ-
ously developed in Chapter 2. The real data analysis presented in this chapter is part of
the Social Anxiety Disorder (SAD) family study, and aims to identify possible endophe-
notypes of SAD.

Chapter 2 develops an approach to obtain unbiased association estimates between sec-
ondary phenotypes and biomarkers as well as unbiased heritability estimates of the avail-
able secondary phenotypes. This method accommodates the ascertainment process while
explicitly modelling the familial relationships. To do so, Our approach uses the retrospec-
tive likelihood in order to correct for the ascertainment process with existing methods for
mixed-effects models. The retrospective likelihood approach automatically corrects for
the ascertainment. A multivariate probit model is used to capture the association between
the mixed type primary (binary variable) and secondary phenotypes (continuous variable).
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Estimates are then obtained by maximizing the log-likelihood.
An important empirical finding is that the heritability estimates for the secondary traits

can be severely underestimated unless the sampling mechanism is taken into account. Ex-
tensive simulations show that the presented method preserves the type I error at nominal
level and provides accurate estimates irrespective of the disease prevalence, the strength
of the association between the genetic variants and the primary phenotype, and the ascer-
tainment mechanism. Currently, a key limitation of this approach is the computational
time of multivariate integrals, especially in case of large pedigrees.

Chapter 3 investigates the performances of the previous method, from Chapter 2, for
the analysis of proband family study design. Theses performances are compared with
methods currently used in the litterature. Namely, ignoring the ascertainment process and
modelling the conditional distribution of the secondary phenotype values of the families
given the secondary phenotypes of the probands. Furthermore, we propose an extension
of the latter approach, by modelling the joint conditional distribution of the primary and
secondary phenotype values of the families given the joint distribution of the primary and
secondary phenotypes of the probands.

Extensive simulations show that only the retrospective likelihood approach developed
in Chapter 2 is able to obtain unbiased heritability estimates of the secondary phenotype
as well as association estimates of the secondary phenotypes with genetic markers. Fur-
thermore, conditioning on the secondary phenotype values of the proband can severely
underestimate heritability estimates and therefore limiting the identification of candidate
endophenotypes of primary phenotypes. Only the retrospective likelihood approach could
identify a candidate endophenotypes of SAD in the real data analysis . Another impor-
tant key point of this chapter is that current methods provide biased estimates when the
proband information is missing. Therefore, the use of such study design should not, at
this time, be considered.

Chapter 4 considers the problem of conducting gene co-expression network analysis
for family studies. A large between-family variation in expression levels could severely
bias the network structure obtained if the pedigree structure is not taken into account. To
overcome this issue, we propose a meta-analytic approach. We first build the omic net-
work for each pedigree to identify clusters of correlated microarray probes. The eigengene
(first principal component) of each cluster of each pedigree are then tested for association
with a phenotype of interest. After identification of the most strongly associated cluster,
clusters presenting the largest overlap with this cluster in each family are then combined
with this one. Finally, the eigengene of the combined cluster is then tested for association
with the phenotype. This method was used for analysis of the simulated dataset provided
for the Genetic Analysis Workshop 18. This method was compared with methods such as:
single probe analysis, ignoring the pedigree structure, and build the network on "decorre-
lated" omic variables.

Chapter 5 and Chapter 6 presents new methods to incorporate grouping information
in prediction models in order to obtain more stable and possibly interpretable models. All
the analyses shown in these chapters are using data from the DIetary, Lifestyle, and Ge-
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netic determinants of Obesity and Metabolic syndrome study (DILGOM) and the publicly
available breast cancer cell lines pharmacogenomics dataset for illustration.

In Chapter 5, a new strategy for model selection based on three steps is presented :
Network construction of omic features, empirical derivation of modules of related feature
via clustering, and construction of prediction model incorporating the grouping informa-
tion. This approach aims to overcome issues caused by the presence of strong correlations.
Several methods are considered to performs steps 1 and 3 of the developed approach. We
compare the performance of this strategy with standard regularized regression such as
lasso, ridge regression, and elastic net via simulations.

Simulation and data application results show that this strategy provide more stable
prediction models and can perform, in terms of prediction accuracy, as well as standard
regularized regression. Indeed methods such as lasso or elastic net tend to select randomly
one variable from group of strongly correlated variable leading to unstable models and,
therefore, the results are hard to reproduce. Comparisons in prediction performance of the
various combinations of network approaches and prediction models allows us to provide
guidelines in which combination of methods to use. The combination of graphical lasso
and group lasso is overall the best performing approach. However, in large datasets the
use of WGCNA instead of graphical lasso is preferred due to the intensive computations
needed for graphical lasso.

Chapter 6 studies how to use different omics datasets simultaneously in prediction
models. Combining several omic sources in one prediction model is challenging due the
presence of strong heterogeneity between omic sources. Heterogeneity in terms of di-
mensionality, normalization procedures, and error structures. In this chapter we propose
several strategies to integrate two omic sources in one prediction model. Specifically,
we propose three strategies: 1) stacking both omic sources together and applying the
approach proposed in Chapter 5, 2) performing network construction and clustering on
each omic source separately and build the prediction model, 3) performing network con-
struction and clustering on each omic source separately, identifying correlation between
clusters and between omic sources, and incorporation of this information in the prediction
model. The data examples in this chapters comprise metabolomics and transcriptomics
datasets from Dilgom and, and Copy number variants and gene expression from the breast
cancer cell lines pharmacogenomics dataset.

The key components of our proposed approach are to capture groups of correlated
features within and between omic datasets and to include this information by a group pe-
nalization model. Simulations results showed that naively stacking datasets is usually not
a good strategy as it often perform worse than a model based on a single omic datasets.
Including information about the correlation between the omic datasets might improve the
prediction accuracy. When the noise structures from both omic sources are different, per-
forming the network analysis and clustering on each omic sources separately proved to be
more robust in terms of predictive accuracy than stacking the datasets together.
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