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5
Improving stability of prediction models
based on correlated omics data by using

network approaches

Abstract
Building prediction models based on complex omics datasets such as transcriptomics,

proteomics, metabolomics remains a challenge in bioinformatics and biostatistics. Reg-
ularized regression techniques are typically used to deal with the high dimensionality of
these datasets. However, due to the presence of correlation in the datasets, it is difficult to
select the best model and application of these methods yields unstable results. We propose
a novel strategy for model selection where the obtained models also perform well in terms
of overall predictability. Several three step approaches are considered, where the steps
are 1) network construction, 2) clustering to empirically derive modules or pathways,
and 3) building a prediction model incorporating the information on the modules. For
the first step, we use weighted correlation networks and Gaussian graphical modelling.
Identification of groups of features is performed by hierarchical clustering. The grouping

This chapter has been published as: Renaud Tissier, Jeanine J. Houwing-Duistermaat, Mar Rodríguez-
Girondo (2018). Improving stability of prediction models based on correlated omics data by using network
approaches. PLoS One 13(2):e0192853.
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62 Chapter 5 – Improving stability of prediction models based on correlated omics

information is included in the prediction model by using group-based variable selection
or group-specific penalization. We compare the performance of our new approaches with
standard regularized regression via simulations. Based on these results we provide recom-
mendations for selecting a strategy for building a prediction model given the specific goal
of the analysis and the sizes of the datasets. Finally we illustrate the advantages of our
approach by application of the methodology to two problems, namely prediction of body
mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic
syndrome study (DILGOM) and prediction of response of each breast cancer cell line to
treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.

5.1 Introduction
The advent of the omic era in biomedical research has led to the availability of an in-

creasing number of omics measurements representing various biological levels. Omics
datasets (e.g. genomics, methylomics, proteomics, metabolomics, and glycomics) are
measured to provide insight in biological mechanisms. In addition, new predictions mod-
els can be built based on omics predictors. Omic data are typically high-dimensional
(i.e. n < p, n sample size and p the number of variables) and they present unknown
dependence structures reflecting various biological pathways, co-regulation, biological
similarity or coordinated functions of groups of features. Since traditional regression
methods have been developed for low-dimensional settings only, they are too restrictive
and hence unable to deal with omic datasets and to determine the actual role of their var-
ious components. As a result, an important methodological challenge in omic research
is how to incorporate these complex datasets in prediction models for health outcomes
of interest. This paper is motivated by the previous work of Rodríguez-Girondo et al.
(2018) in which we showed that metabolomics were predictive of future Body Mass in-
dex (BMI) using data from the DIetary, Lifestyle, and Genetic determinants of Obesity
and Metabolic syndrome study (DILGOM)(Inouye et al., 2010). However, when we tried
to identify the important metabolites, using lasso regression for variable selection in a
cross-validation framework, we obtained inconsistent effect sizes and variable selection
frequencies. Specifically, metabolites with largest effects were not always selected and
highly correlated variables presented different selection frequencies. These results in-
spired us to develop more stable prediction models by using network methods.

To obtain a good balance between stability and predictive ability, we propose to in-
corporate information on the structure between features from an omics dataset into pre-
dictions models for health outcomes. The incorporation of such a structure in prediction
models is a relatively new and expanding strategy in prediction models. For classification
problems methods have been developed, such as the partial correlation coefficient ma-
trix (PPCM) method (Rao and Lakshminarayanan, 2007), network-based support vector
machines (Zhu et al., 2009), or the selection protein-protein interactions discriminative
subnetworks (Chuang et al., 2007). In this paper we focus on the prediction on contin-
uous outcomes. Also several methods have been developed for this type of outcomes.
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Zhang and Horvath (2005), and Reis (2013) have proposed to identify clusters of related
variables inside the network and to include a summary measure of these clusters, namely
principal components and partial least squares. While these approaches provide good re-
sults in terms of prediction accuracy, one of their major drawbacks is the chosen summary
measures which are hard to interpret and replicate. An alternative approach is network
penalization as proposed by Li and Li (2008), using the laplacian matrix of the network
matrix to build a lasso-type penalization in order to force the effect sizes of variables re-
lated to each other in the network to be similar. However, it is relatively heavy in terms
of computations and therefore not able to handle too large datasets. Winter et al. (2012)
proposed to first rank variables based on their univariate association with the outcome
and their relationships between each other and then use the top ranked variables in a pre-
diction model. While this approach can provide good predictions in some settings, it de-
pends on various tuning parameters and therefore reproducibility is a challenge. Recently,
network-based boosting methods (Shim et al., 2017) and combination of network-based
boosting and kernel approaches (Friedrichs et al., 2017) have been proposed to improve
prediction models for GWAs and gene expression studies. These methods include known
relationships between genetic markers and phenotypes of interest in order to detect new
genetic-phenotypes relationship and therefore improve prediction models. However, for
some omic type of data, such as metabolomics and transcriptomics, our lack of knowledge
limits the application of these methods only to certain omic sources such as genomics.

In this paper, we propose a flexible approach allowing investigators to apply sev-
eral types of network analysis approaches to estimate the structure of the data as well
as several possible group-penalizations methods. Namely, our approach consists of three
steps (Fig5.1): network analysis (to empirically derive relations within an omic dataset),
clustering (to empirically establish groups of omic related features) and predictive mod-
eling using the aforementioned grouping structure (via group-based variable reduction or
group-penalization). This strategy allows a lot of flexibility in terms of both network anal-
ysis and prediction models, as different type of omics data have different properties and
might need different network analysis strategies or prediction models to obtain proper and
biologically relevant results. Finally, to avoid overoptimism in absence of an external val-
idation set, a common situation in omic research, cross-validation of the whole three-step
procedure is used.

The rest of the paper is organized as follows: we present the various methods in-
volved in our three-step approach. An intensive simulation study is then presented to
empirically evaluate the performance of the various studied methods in terms of pre-
dictive ability and variable selection properties. Standard regularized regression meth-
ods such as lasso, ridge and elastic net are also considered. The methods are applied
to two sets of omic sources (metabolomics and transcriptomics) measured at baseline
for the prediction of BMI after seven years of follow-up using DILGOM and on gene
expression to predict treatment response from the publicly available breast cancer cell
line pharmacogenomics dataset (https://genomeinterpretation.org/content/breast-cancer-
cell-line-pharmacogenomics-dataset). In the last section, the results are discussed and
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Figure 5.1: Method summary. Step 1: Networks of features are derived from the data. Step 2: Using hierarchical
clustering, modules of features are identified. Step 3: Prediction models are derived using grouping information
from Step 2.

concluding remarks are provided.

5.2 Methods
A common approach to build prediction models in high-dimensional settings or in

presence of strong correlation between features is regularized regression (Hastie et al.,
2009), which has shown to have good properties in terms of predictive ability in vari-
ous omic settings (Ghosh and Chinnaiyan, 2005; Zemmour et al., 2015; Shahabi et al.,
2006; Pena et al., 2016). The choice of the shrinkage type imposes certain constrains
in the estimated parameters which can lead to unstability or to models which are diffi-
cult to interpret. The lasso approach (Tibshirani, 1996) introduces a l1-norm constrain
of the vector β of regression coefficients and shrinks some of the regression coefficients
towards zero, introducing sparsity by only selecting ‘the most important variables’ in the
model. In the presence of (groups of) correlated features, lasso penalization appears not
to perform well in terms of stability since it tends to randomly choose among the strongly
correlated features and can select at most n variables before saturation. Alternatively,
ridge regression (Hoerl and Kennard, 1970) considers a l2-norm constrain of the regres-
sion coefficients, which does not allow for explicit variable selection but typically handles
well strong correlations. Still, these ridge models are difficult to interpret since sparsity
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is not obtained. Alternative penalizations as elastic net (Zou and Hastie, 2005) have been
proposed to overcome limitations of lasso and ridge regression, producing sparse models
but also allowing to select more than n correlated variables.

In the rest of this paper, let the observed data be given by (y,X), where y = (y1, . . . , yn)T

is the continuous outcome measured in n independent individuals and X is a matrix of
dimension n × p, representing an omic predictor source with p features. We propose a
three-step approach (Fig 5.1) to get an interpretable prediction model for y based on X,
where X is high-dimensional (p > n). In the first step, we estimate the intensity matrix
(network) of X, which contains the degree of relation among the features of X. We in-
vestigate three different techniques for network estimation: weighted gene co-expression
network analysis (WGCNA, Zhang and Horvath (2005)), where the relationship is based
on Pearson correlation, and two proposals based on gaussian graphical modeling (Lau-
ritzen, 1996), where the relationship is given by the precision matrix. Here two differ-
ent penalization methods are considered. Namely, ridge (Ha and Sun, 2014) and lasso
(Friedman et al., 2007). In the second step, we identify modules (groups) of features by
applying hierarchical clustering to the dissimilarity matrix obtained from the estimated
network of Step 1. The grouping information is incorporated in the prediction model.
Here we consider two strategies: group-based variable reduction and group-penalization.
In the variable reduction approach, ‘hubs’ in each group are identified, i.e. variables with
the strongest connectivity within a module, and then included in a standard regression.
Group penalization, such as adaptive group ridge (van de Wiel et al., 2014), group lasso
(Yuan and Lin, 2006), and sparse group lasso (Simon et al., 2013), penalizes the features
from the same module jointly. Finally, double cross-validation (Rodríguez-Girondo et al.,
2018; Mertens et al., 2006, 2011) was applied, over all steps, to obtain proper tuning
parameters and summary performance measures in absence of an external validation set.

5.2.1 Step 1: Network construction
A network is, by definition, an adjacency matrix A = [aij ], where aij is either an

indicator of presence of connection (edge) between two features (nodes) xi and xj or a
value between 0 and 1 which represents how close the two nodes are. We focus on the
latter case because of its continuous nature, and we refer to the resulting networks as
weighted networks.

WGCNA

Co-expression networks based on pairwise correlations have been proposed in the
context of analyzing gene expression data Zhang and Horvath (2005). Due to the presence
of many correlated gene expression data, a parameter β (soft threshold) is introduced in
order to shrink "low" pairwise correlation values towards zero. The parameter β might
be chosen in such a way that the free-scale topology criterion holds, i.e, the fraction of
nodes with k edges should follow the power law P (k) ≈ k−γ , with P (k) the fraction of
nodes in the network with k edges and γ a constant with a value comprised between 2 and
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3. The rationale behind the free scale topology criterion relies on maximizing the within
cluster connectivity while minimizing the between cluster connectivity.

Co-expression networks have been successfully used in the context of transcriptomics
(Oldham et al., 2006, 2008; Stuart et al., 2003). A drawback of the approach is that the soft
thresholding does not provide a sparse network as none of the correlation coefficients is set
to zero. In some omic settings, such as metabolomics and glycomics where correlations
are high the network might be too dense to interpret. This limitation has motivated the use
of alternative approaches such as Gaussian graphical models based on partial correlations
which are, by definition, more sparse.

Gaussian Graphical Modeling

Partial correlation coefficients represent the pairwise correlation between two vari-
ables conditional on all other variables. Thus the linear effects of all other variables are
removed and association is based on the remaining signals. The use of partial correlations
appears to provide sparser and more biologically relevant networks compared to networks
based on Pearson correlation (Krumsiek et al., 2011; Schäfer and Strimmer, 2005).

In the low-dimensional setting (p < n) the partial correlation matrix is straightforward
estimated as P = −scale(S−1) = −diag (S)

− 1
2 Sdiag (S)

− 1
2 , where S is the sample

variance-covariance matrix.
However, note that the calculation of partial correlations relies on the inversion of the

sample variance-covariance matrix, which is challenging (or impossible) in case of strong
collinearity between variables or in high-dimensional (p > n) situations. To overcome
this difficulty, several authors have considered penalizing the covariance matrix in order
to invert it. In this work, we focus on two methods namely a ridge-type (Ha and Sun,
2014) and a lasso-type penalty (Friedman et al., 2007).

Ridge-penalty approach Ha and Sun (2014) proposed a method to obtain a sparse
partial correlation matrix, based on a ridge-type penalty to invert the variance-covariance
matrix. Specifically, let S be the empirical variance-covariance matrix. To deal with
singularity of S due to collinearity or high-dimension a positive constant to the diagonal
elements of S is added, S′ = S + λIp. For any λ > 0, S′ has full rank. The partial
correlation matrix R is estimated as follows:

R̂ = −scale
(
S′−1

)
When the penalty parameter λ goes to infinity, the partial correlation matrix is shrunk

towards the identity matrix. To obtain a sparse matrix, it is tested whether each coefficient
rij is significantly different from zero by applying a Fisher’s z-transformation (Fisher,
1924) on the partial correlation estimates and assuming that these transformations follow
a mixture of null and alternative hypotheses. Efron’s central matching method (Efron,
2004) allows to estimate the null distribution of this test statistic by approximating the
mixture distribution using polynomial Poisson regression.Thus, p-values can be computed
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for each estimated partial correlation rij , and a sparse network (if rij not significant, rij
is set to zero) is obtained.

Lasso approach An alternative penalization method is to apply a lasso-type penalty
when estimating the inverse of the estimated variance-covariance matrix (Friedman et al.,
2007). Assume that we have n multivariate normal observations of dimension p, with
mean vector µ and variance-covariance matrix Σ. To estimate S the following penalized
log-likelihood has to be maximized:

L (Θ) = log (det (Θ))− trace (SΘ)− λ||Θ||1

with Θ = Σ−1. The optimal tuning parameter λ is determined by minimizing the AIC
(AIC = n × tr (SΘ) − log (det (Θ)) + 2E) with E the number of non-zero elements
in Θ. Note that, especially for small values of the penalty parameter, the resulting partial
correlation matrix is not exactly symmetric. Symmetry can be imposed by duplicating
one of the estimated triangular matrices (upper or lower).

5.2.2 Step 2: Hierarchical clustering
Hierarchical clustering is used to detect groups of related features from the estimated

network which was obtained with the methods introduced in the previous section.
Specifically, we have used the dynamic tree cut algorithm based on the dendogram

obtained by hierarchical clustering (Langfelder et al., 2008). This is an adaptive and it-
erative process of cluster decomposition and combination until the number of clusters
becomes stable. This approach, in contrast to a constant height cut-off method, is capable
of identifying nested clusters and is implemented in the R package WGCNA. The mea-
sure used for the hierarchical clustering aproach was the topological overlap dissimilarity
measure. The topological overlap of two nodes quantifies their similarity in terms of the
commonality of the nodes they connect (Yip and Horvath, 2007) and is given by:

TOMij =

∑
u aiuauj + aij

min (ki, kj) + 1− aij

with aij the weight between i and j in the adjacency matrix, and ki =
∑
u aiu. The

topological overlap dissimilarity measure is now defined as : dissTOMij = 1−TOMij .

5.2.3 Step 3: Outcome prediction
Finally, we incorporate the obtained grouping information in the prediction models.

One of the major challenges in prediction using high dimensional data is to avoid overfit-
ting. Overfitting occurs when a model is too complex, i.e when it has too many parame-
ters. We used two of the most standard approaches for parameter reduction which are a
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priori variable reduction based on variable importance and shrinkage methods. Namely,
we consider within-group variable selection and regularized regression models with group
penalization. In general, regularized regression models are characterized by the optimiza-
tion problem minβ∈Rp

(
‖y −

∑
Xβ‖22 +R (β)

)
where R (β) is the regularization or

penalty term. Examples of commonly used penalization functions are: R (β) = λ
∑
j |βj |

(lasso; Tibshirani (1996)), R (β) = λ
∑
j β

2
j (ridge; Hoerl and Kennard (1970)) and

R (β) = α
∑
j β

2
j + (1− α)

∑
j |βj | α ∈ (0, 1) (elastic net; Zou and Hastie (2005)).

Variable importance

The general idea of this simple approach is to retain the most relevant (according to
some pre-defined criterion) variables from each of the estimated groups obtained by hi-
erarchical clustering in step 2. We propose to consider only the most strongly connected
variables within its group (‘hubs’), assuming that strong connectivity is indicative of bi-
ological importance and hence relevance to predict the outcome of interest. Specifically,
for a specific group G:

hubG = max
i

∑
j∈G

Iaij 6=0


with aij the ij element of the adjacency matrix. If multiple nodes have the same

maximum, all these hubs are selected. Ridge regression is used to deal with collinearity
in case of several selected hubs.

Group penalization

An alternative to within-cluster variable selection is to consider cluster-based penalties
in the context of regularized regression.

Group lasso Group lasso (Yuan and Lin, 2006) selects groups of variables since it si-
multaneously shrinks all the coefficients belonging to the same group towards zero. The
group lasso estimator is given by:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+ λ

L∑
l=1

√
pl ‖βl‖2


where l ∈ (1 · · ·L) represents the index of the group of predictors, L is the the total

number of clusters, Xl is the matrix of predictors in the group l and
√
pl is a penalty

to take into account the varying group size. The tuning parameter λ is made by cross-
validation based on minimization of the AIC. The group lasso estimator is asymptotically
consistent even when model complexity increases. Note that if each group contains just
one variable, group lasso is equivalent to the standard lasso (Tibshirani, 1996).
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Sparse group lasso Sparse group lasso (Simon et al., 2013) can be applied when one
also wish to select variables within a group. Shrinkage is carried out at the group level
and at the level of the individual features, resulting in the selection of important groups as
well as members of those groups. The sparse group lasso estimator is given by:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+ (1− α)λ

L∑
l=1

√
pl ‖βl‖2 + αλ ‖β‖1


where l, Xl,

√
pl and are defined as in group lasso. Note that the sparse group lasso

is a combination of group lasso and lasso. The parameter α regulates the weight of each
approach. For α = 1 sparse group lasso equals lasso and for α = 0 group lasso.

Adaptive group-regularized ridge regression Finally, the recently proposed adaptive
group ridge approach van de Wiel et al. (2014) which extends ridge regularized regression
to group penalization is considered. The adaptive group ridge considers group specific
penalties λl for the L groups. The adaptive group ridge estimator is given by:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+

L∑
l=1

λl
∑
q∈Gl

β2
q


where l and Xl are defined as in group lasso, Gl is the lth group of variables and λl is

the penalty term for the group Gl. The penalty terms can be expressed as: λl = λ′lλ with
λ a unique penalty term and λ′l as penalty multipliers for each group.

5.2.4 Software implementation
The proposed three-step approach has been implemented in the R function PredNet

which is available at github (https://github.com/RenTissier/NetPred). The function al-
lows to apply all the possible combinations of the previously presented network analysis
and group penalization methods. The function calls the packages WGCNA (co-expression
based on pairwise correlation), huge (gaussian graphical modeling), GGMridge (ridge-
penalty approach), grpreg (group lasso), SGL (sparse group lasso), and GRridge
(adaptive group-regularized ridge regression).

5.3 Simulation Study

5.3.1 Simulation setup
An intensive simulation study was conducted to study the performance of our pro-

posed prediction methods using estimated grouping information and to compare them
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wit9h existing regularized regression methods (without grouping information), such as
lasso, ridge and elastic net (α = 0.5). We also included the special case of ’known
clustering’, in which we assume that the true underlying grouping structure is known,
mimicking the situation in which information on biological clustering is available from
previous analyses or open source pathway databases. The omic predictor X is simulated
from a zero-mean multivariate normal distribution with correlation matrix Σ. Following
the recent literature on pathway and network analysis of omics data (Zhang and Horvath,
2005), we generated Σ according to a hub observation model with added realistic noise
(Hardin et al., 2013).

The continuous outcome y is generated by y = Xβ + ε, where β is the vector of
regression coefficient of size p, and ε ∼ N (0, 1). The singular value decomposition (svd;
Jolliffe (2008)) of X, X = UDUt allows to generate y in terms of the various latent
modules present in X since they represent different independent subspaces of features
accounting for different proportions of variation in X. In practice, we first generate β∗,
the regression coefficients corresponding to each independent module (given by U), and
we then transform it to the predictor space by using β = Utβ∗.

Within this general framework, we consider three different scenarios: (Scenario a)
β∗j = 0.01, j = 1; β∗j = 0, j 6= 1. y is then associated to a high variance subspace of U,
corresponding to the largest eigenvalue of X. (Scenario b) β∗j = 0.01, j = 4; β∗j = 0,
j 6= 4 . The association with y relies on a low-variance subspace of U. Hence, we expect
lower predictive ability of X compared to Scenario a. (Scenario c) β∗j = 0.01, j = 1, 4;
β∗j = 0, j 6= 1, 4 . The association with y relies on several subspaces of U. As a result,
Scenario c is less sparse than Scenarios a and b.

For each scenario, we considered two sample sizes (n = 50 and n = 100), different
number of features in X, (p = 200 features and p = 4000), and different number of
underlying modules (k = 4 and k = 8). Each module presents various within-correlation
levels and in all the scenarios, we assumed the presence of one module of uncorrelated
variables. Fig 5.2 shows the corresponding heatmaps of Σ for k = 4 (left panel) and
k = 8 (right panel). For each scenario, we generated M = 500 replicates and for each
trial we consider 10-fold partitions in order to obtain cross-validated summary measures.

We evaluated our methods in terms of obtaining the correct grouping structure, of
prediction performance, and variable selection. Grouping is summarized in two ways.
On the one hand, we compared the estimated number of groups with the underlying pa-
rameter k. On the other hand, for each of the k underlying modules, we calculated the
correct and incorrect classification rates (belonging or not belonging to the underlying
module taken as reference) of each of the p features. Predictive ability is measured by
Q2 =

∑n
i=1(pi−p0i)

2∑n
i=1(yi−pi)2

, the cross-validated version of the fraction of variance explained
by the prediction model, in which the performance of the model-based is compared to
the naive double cross-validated predictions p0 based on the mean value of the outcome
variable y(Rodríguez-Girondo et al., 2018). Variable selection properties are assessed by
comparing the simulated β coefficients with the average estimated regression coefficients.
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Figure 5.2: Simulation study; correlation matrices. Example of simulated correlation matrices obtained with
200 variables for 4 and 8 modules respectively.

5.3.2 Simulation results
Network analysis and clustering Table 5.1 and 5.2 show the performance of the stud-
ied methods for network analysis and hierarchical clustering. WGCNA obtains number of
clusters closer to the truth than graphical lasso and the ridge-penalty approach. WGCNA
estimates, on average, k̂ = 3 and k̂ = 5 for k = 4 and k = 8 underlying modules, re-
spectively. This slight underestimation of k yields a large number of false positives (see
Table 5.2). Focusing on the situation of k = 4, and taking the group with highest sim-
ulated within correlation as reference, Table 5.2 shows a false positive rate of 38.2% for
WGCNA, mainly due to the incorrect assignment of features of the second cluster to the
first one. In contrast, graphical lasso overestimates the number of simulated modules.

The number of estimated modules is not affected by the number of underlying mod-
ules (for example, k̂ = 14 for both k = 4 and k = 8 with n = 50), but it increases with
the number of p simulated features. This is likely due to the reliance of graphical lasso
on partial correlations instead of Pearson correlations. After having a closer look at the
estimated modules, we observe that graphical lasso generates k̂ groups, which are subsets
of the underlying simulated k modules. In other words, graphical lasso does not group
together features belonging to different underlying modules (WGCNA does), and the es-
timated modules can be grouped in such a way that the original k modules are recovered.
This translates in a very small false positive rate when taking any of the k simulated mod-
ules as reference (see Table 5.2). Finally, the ridge-penalty approach is, in most of the
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200 variables

4 modules 8 modules

n=50 n=100 n=50 n=100

WGCNA 3.1(2-5) 3.0(2-5) 5.0(3-8) 5.0(4-7)

Graphical lasso 14.7(9-21) 17.0(12-23) 14.4(9-21) 17.6(13-25)

Ridge penalty 1.0(1-3) 1.3(1-6) 1.5(1-8) 9.8(1-21)

1000 variables

4 modules 8 modules

n=50 n=100 n=50 n=100

WGCNA 3.1(2-5) 3.0(2-5) 5.6(4-18) 5.0(4-11)

Graphical lasso 48.3(40-86) 76.5(57-93) 59.6(39-81) 77.5(63-95)

Ridge penalty 10.2(1-71) 52.6(3-72) 13.1(1-69) 61.5(6-81)

Table 5.1: Simulation study. Average number of clusters obtained accross cross-validation by WGCNA, graphi-
cal lasso, and ridge penalty. The minimum and maximum number of clusters identified are presented in brackets.

50 Individuals 100 Individuals

TPR FNR FPR TPR FNR FPR

module 1 WGCNA .999 .001 .382 .998 .002 .375

Graphical lasso .308 .692 .000 .259 .741 .000

Ridge penalty .999 0.001 .997 .962 .038 .951

module 3 WGCNA .918 .082 .190 .989 .011 .148

Graphical lasso .189 .811 .001 .192 .808 .000

Ridge penalty .999 .000 .997 .960 .040 .951

Table 5.2: Simulation study. Average (across 10 cross-validation folds and 500 replicates) true positive rate
(TPR), false negatives rate (FNR) and false positives rate (FPR) for WGCNA, graphical lasso and ridge penal-
ization. Top part: Scenario a. Reference module: module 1 (corresponding to the first 50 variables in Fig 2 left
panel which present the highest level of correlation). Bottom part: Scenario b. Reference module: module 3
(corresponding to the variables 100-150 in Fig 2 left panel).

cases, not able to lead to the identification of any cluster with small number of features
and subjects (see p = 200 and n = 50 in Table 5.1). For larger number of individuals and
variables, the number of clusters is overestimated for the same reason as graphical lasso.
Namely, the reliance of this method on partial correlations.
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Predictive ability

Table 5.3 and Table 5.4 show the results in terms of the predictive accuracy measure
Q2 for p = 200 and n = 50 and, for p = 1000 and n = 50 respectively. Table A and Ta-
ble B in S1 File, show results for n = 100. Adaptive group ridge and group lasso present
similar performances in most of the studied situations. These two methods outperform
the other considered three-step approaches. Also they are the best performing methods
when the known grouping was used. Further, these approaches may outperform the com-
monly used regularized regression methods lasso, ridge and elastic net regression in terms
of predictive ability. Specifically, group lasso relying on grouping structure coming from
WGCNA and graphical lasso systematically outperforms ridge and lasso and it presents
a similar predictive ability than elastic net when p = 200. For p = 1000 the predictive
ability of the standard ridge, lasso and elastic net is lower while the methods based on
group lasso and adaptive group ridge present similar behavior than for p = 200. There-
fore, the gain of these new approaches appears to be larger when the number of predictors
increases.

Compared to adaptive group ridge, group lasso was less sensitive to the chosen net-
work method. Namely, all scenarios adaptive group ridge presents bad performance when
using the ridge penalty approach Ha and Sun (2014) for network construction. The perfor-
mance of group lasso is robust with respect to the studied network construction methods
in all the studied scenarios, and close to its performance when using the true underly-
ing grouping structure. Sparse group lasso provides proper results in terms of prediction
ability when the clustering is known a priori, with Q2 values only slightly lower than
the corresponding values of adaptive group ridge and group lasso. However, when the
grouping is estimated, its performance drops. The predictive ability appears to drop to a
Q2 < 0.1 for scenario b, which is 8 times lower than the predictive ability obtained with
a combination of graphical lasso and group lasso. The variable selection approach based
on selecting hubs only provides satisfactory results when using the WGCNA method for
network construction in scenario a.
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4 modules 8 modules

Scenario a b c a b c

Sparse group lasso0.5 .79(.01) .51(.06) .65(0.02) .75(.02) .71(.02) .69(0.03)

Sparse group lasso0.9 .79(.01) .48(.06) .59(.03) .74(.02) .69(.04) .65(0.04)

A Priori Sparse group lasso0.1 .79(.01) .53(.06) .66(.02) .75(.02) .72(.02) .70(0.03)

Group lasso .87(.01) .53(.07) .77(.02) .84(.02) .78(.03) .81(0.02)

Group ridge .94(.01) .43(.08) .69(.07) .90(.02) .73(.06) .85(0.03)

Hubs .81(.03) .15(.10) .59(.11) .81(.05) .18(.13) .55(.12)

Sparse group lasso0.5 .72(.12) .15(.12) .57(.15) .41(.21) .28(.19) .36(.20)

WGCNA Sparse group lasso0.9 .73(.13) .13(.22) .53(.13) .41(.22) .26(.12) .35(.19)

Sparse group lasso0.1 .69(.12) .16(.12) .58(.15) .39(.20) .29(.17) .36(.19)

Group Lasso .90(.02) .58(.07) .87(.02) .83(.04) .76(.06) .83(.04)

Group ridge .78(.03) .46(.06) .62(.05) .69(.07) .61(.08) .53(.09)

Hubs .52(.20) .26(.15) .51(.18) .52(.22) .45(.20) .51(.22)

Sparse group lasso0.5 .69(.13) .08(.06) .45(.16) .31(.21) .22(.15) .27(.18)

Graphical lasso Sparse group lasso0.9 .68(.13) .06(.05) .42(.16) .32(.21) .19(.15) .26(.17)

Sparse group lasso0.1 .69(.13) .08(.06) .46(.16) .31(.21) .24(.15) .28(.18)

Group lasso .92(.01) .54(.08) .87(.03) .86(.03) .76(.06) .86(.03)

Group ridge .93(.02) .46(.08) .61(.06) .85(.08) .71(.06) .70(.11)

Hubs .52(.06) .11(.02) .47(.06) .27(.10) .22(.07) .27(.09)

Sparse group lasso0.5 .77(.09) .42(.05) .67(.02) .68(.07) .63(.04) .67(.04)

Ridge penalty Sparse group lasso0.9 .79(.07) .46(.06) .61(.03) .72(.05) .66(.05) .65(.05)

Sparse group lasso0.1 .73(.08) .40(.04) .68(.02) .62(.09) .59(.03) .63(.04)

Group lasso .87(.02) .48(.06) .84(.02) .79(.04) .71(.05) .78(.03)

Group ridge .67(.05) .07(.03) .69(.05) .47(.06) .32(.07) .45(.07)

Lasso .88(.03) .52(.10) .73(.05) .81(.04) .74(0.06) .79(0.05)

Common Ridge .67(.05) .07(.03) .59(.06) .46(.06) .55(0.04) .70(0.03)

Elastic net .96(.04) .74(.26) .79(.20) .87(.02) .81(.04) .89(.02)

Table 5.3: Simulation study. Results obtained in terms of average Q2 (across 500 replicates) for scenarios
a,b,c, p=200 variables, k=4 and k=8 modules, and n=50 individuals. Standard errors are given in brackets. The
first column represents the method used to build the network. A Priori represents the situation were the true
clustering of the predictors is known and no network analysis is performed.
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4 modules 8 modules

Scenario a b c a b c

Sparse group lasso0.5 .80(.002) .64(.02) .63(.03) .77(.016) .69(.036) .69(.030)

Sparse group lasso0.9 .80(.001) .56(.036) .54(.047) .76(.019) .62(.047) .67(.056)

A Priori Sparse group lasso0.1 .80(.002) .66(.026) .66(.032) .77(.016) .70(.033) .72(.025)

Group lasso .89(.003) .76(.021) .71(.046) .87(.011) .81(.022) .84(.016)

Group ridge .97(.011) .65(.076) .55(.083) .95(.018) .87(.033) .78(.065)

Hubs .87(.026) .48(.12) .45(.324) .45(.324) .13(.127) .08(.088)

Sparse group lasso0.5 .74(.143) .61(.098) .57(.153) .43(.244) .36(.206) .32(.221)

WGCNA Sparse group lasso0.9 .74(.147) .54(.090) .53(.138) .44(.252) .35(.193) .29(.223)

Sparse group lasso0.1 .70(.134) .62(.098) .58(.155) .40(.227) .34(.196) .32(.205)

Group lasso .94(.01) .85(.031) .87(.027) .88(.036) .79(.043) .78(.058)

Group ridge .80(.037) .59(.061) .62(.059) .70(.067) .50(.088) .62(.096)

Hubs .52(.054) .55(.054) .21(.039) .42(.059) .46(.063) .43(.050)

Sparse group lasso0.5 .79(.032) .54(.110) .12(.08) .46(.251) .32(.202) .34(.185)

Graphical lasso Sparse group lasso0.9 .79(.030) .49(.122) .09(.075) .46(.249) .30(.191) .30(.195)

Sparse group lasso0.1 .79(.030) .56(.111) .13(.083) .46(.254) .32(.208) .37(.180)

Group lasso .96(.01) .81(.039) .61(.084) .93(.023) .83(.044) .82(.054)

Group ridge .96(.02) .61(.062) .59(.075) .81(.127) .66(.106) .75(.069)

Hubs .02(.052) .07(.064) .01(.028) .04(.069) .05(.075) .05(.060)

Sparse group lasso0.5 .59(.245) .57(.163) .13(.14) .69(.137) .62(.140) .59(.136)

Ridge penalty Sparse group lasso0.9 .70(.186) .49(.148) .13(.149) .72(.132) .59(.136) .60(.147)

Sparse group lasso0.1 .47(.254) .59(.164) .13(.127) .59(.139) .58(.130) .53(.116)

Group lasso .91(.031) .79(.029) .42(.065) .82(.053) .75(.042) .70(.059)

Group ridge .75(.07) .63(.078) .10(.055) .53(.097) .48(.11) .37(.10)

Lasso .91(.016) .59(.060) .51(.080) .87(.035) .68(.065) .70(.074)

Common Ridge .80(.028) .73(.037) .26(.046) .66(.041) .63(.044) .539(.050)

Elastic net .92(.015) .54(.089) .60(.057) .87(.032) .69(.067) .68(.065)

Table 5.4: Simulation study. Results obtained in terms of averageQ2 (across 500 replicates) for scenarios a,b,c,
p=1000 variables, k=4 and k=8 modules, and n=50 individuals. Standard errors are given in brackets. The
first column represents the method used to build the network. A Priori represents the situation were the true
clustering of the predictors is known and no network analysis is performed.
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Variable selection

Finally, we investigated the variable selection properties of the best performing (in
terms of predictive ability) three-step procedures. Figs 5.3 and 5.4 show for scenario a,
k = 4, p = 200 and n = 100 the variable selection properties of adaptive group ridge
and group lasso in combination with WGCNA and graphical lasso, respectively. In both
cases, the performance of lasso and elastic net is also shown. For each method, each
boxplot shows for each of the p variables of X the distribution of the average estimated
regression coefficients over the 10 fold cross-validation folds for each of the M = 500
Monte Carlo trials. The true simulated regression coefficients are also shown (red dots).
Complete results for all scenarios are presented in the S2 File, Figure A to Figure R.

These results show that our three step approaches perform well in terms of specific
regression coefficient estimation and variable selection. The four investigated approaches
given by the combination of WGCNA and graphical lasso with adaptive group ridge and
group lasso clearly separate informative from non-informative variables. In contrast, lasso
regression, especially in scenario a, shows a very poor performance. The mean estimated
coefficients by lasso for all p variables are close to zero, while the variability is very high
for the features with non-zero effects, reflecting that lasso randomly selects a few of the
informative variables and assigns a very large effect to them. To a lesser extent, the same
phenomenon is also observed for elastic net. Even if the mean estimate for informative
variables is larger and variability is lower than for lasso, the overall performance of elastic
net is inferior to our three-step methods based on including grouping information.

Fig 5.3 top panel shows that the combination of WGCNA and group lasso tends to
overestimate the effect of the variables belonging to the second cluster of variables. This
is due to the underestimation of the number of clusters by WGCNA and the joint penal-
ization of group lasso. Interestingly, adaptive ridge is less affected by this issue. When
using graphical lasso as network analysis method, the first informative group of variables
is clearly separated from the rest, and the estimation is close to the theoretical one (Fig
5.4).
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Figure 5.3: Simulation study: Variable selection results with WGCNA. Variable selection results for scenario
a, k = 4, p = 200, and n = 100. Box-plots of the absolute values of the estimated parameters for the 200
variables over the 500 simulated datasets are plotted. The red points represent the absolute average true values
over the 500 datasets.
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Figure 5.4: Simulation study: Variable selection results with Graphical Lasso. Variable selection results for
scenario a, k = 4, p = 200, and n = 100. Box-plots of the absolute values of the estimated parameters for
the 200 variables over the 500 datasets simulated are plotted. The red points represent the absolute average true
values over the 500 datasets.
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5.4 Real data analysis
We analyzed data from the DILGOM study and from the breast cancer cell line phar-

macogenomics dataset. In both cases, the aim is to obtain biological insights about the
features which drive the prediction of BMI and treatment response.

In the DILGOM study we consider two omics datasets measured at baseline to pre-
dict the body mass index (BMI) after seven years of follow-up. Serum nuclear magnetic
resonance (NMR) spectroscopy metabolites measures and gene expression profiles were
considered. The analysed sample contained n = 258 individuals for which both types of
omic measurements and the outcome of interest (log-transformed BMI) were available.
In the breast cancer cell lines dataset, we were interested in using gene expression for
predicting the response to the Erlotinib drug. Treatment response is measured using the
GI50 index, a quantitative measure which measures the growth inhibitory power of the
test agent. The analysed sample consisted of 45 breast cancer cell lines.

5.4.1 DILGOM: metabolites
The serum metabolomic data consists of quantitative information on 57 metabolic

measure of various types, including lipids, lipoprotein subclasses, amino acids, choles-
terol, glycolysis-related metabolites and fatty acids (see S3 File, Table A). Table 5.5 and
Table 5.6 show the main results for the prediction of BMI after 7 years of follow-up using
serum NMR metabolites as predictors. Table 5.5 shows the performance of each method
in terms of predictive ability measured through Q2. We observe that adaptive group
ridge and group lasso provide the best results and that they perform slightly better than
ridge, lasso and elastic net. Namely, for adaptive group ridge when using graphical lasso
Q2 = 0.244 and for adaptive group ridge in combination with WGCNA Q2 = 0.233,
while for ridge Q2 = 0.227 and for lasso Q2 = 0.222. Also, group lasso combined with
WGCNA outperforms ridge and lasso (Q2 of 0.241). Variable selection based on hubs
presents a notably lower predictive ability (best performance is reached with graphical
lasso, Q2 = 0.176) than methods based on regularization, except for sparse group lasso,
which is not competitive at all (Q2 < 0.002 in all cases). Table 5.6 shows the variable
selection properties of the two top performing methods; the combination of WGCNA
and group lasso and the combination of graphical lasso and adaptive group ridge. The
top 12 variables selected by the combination of WGCNA and group lasso approach are
shown in the left part of Table 5.6, jointly with their average regression coefficient, se-
lection frequency over the 10 cross-validation folds used in the analysis, and their cluster
membership. For each of these top 12 variables, average effect and selection frequencies
over the 10 cross-validation folds are also shown for the combination of graphical lasso
and adaptive group ridge, lasso, and elastic net. These top 12 variables represent two
different families of metabolites. Namely, lipids and fatty acids (XSVLDLL, XLHDLL,
SM, SHDLL, FAW6), and amino-acids and glycolysis-related metabolites (ALB, TYR,
PHE, GLY, GLOL, GLC). This means that the three-step approach based on WGCNA and
group lasso consistently points out these groups of metabolites as those driving the pre-
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diction of BMI. Accordingly, these two families of metabolites are well separated in the
network analysis plus clustering steps (by both WGCNA and graphical lasso methods),
consistently belonging to different clusters (see columns labeled ‘Cluster’ in Table 6).

Interestingly, our three-step approach based on the combination of WGCNA and
group lasso provides similar effect estimates for metabolites XSVLDLL, SM, FAW6 and
SHDLL (.038,.034,.031, and .030, respectively), all of them belonging to the same clus-
ter of lipids and fatty acids. The combination of graphical lasso and adaptive group ridge
provides similar results in terms of effect size. On the contrary, lasso provides more
extreme estimates due to within-group random variable selection, i.e. lasso selects at ran-
dom oen feature over a set of highly correlated variables. Specifically, lasso assigns quite
different effect estimates to the lipids and fatty acids group (XSVLDLL:.036, SM:.018,
FAW6:.017, SHDLL:.003). The effect size of SHDLL is particularly counter-intuitive
since high density lipids are well established risk factors for obesity (Shamai et al., 2011).
Elastic net appears not to solve this issue and provides similar results than lasso.

WGCNA Graphical lasso Ridge penalty

Q2 Q2 Q2

Hubs + ridge 0.153 0.176 0.153

Group lasso 0.241 0.225 0.221

Sparse group lasso α = 0.5 0.013 0.010 0.015

Sparse group lasso α = 0.9 0.003 0.012 0.013

Sparse group lasso α = 0.1 0.013 0.007 0.016

Group ridge 0.233 0.244 0.225

Lasso 0.227 0.227 0.227

Ridge 0.222 0.222 0.222

Elastic net 0.208 0.208 0.208

Number of Clusters 4 7 4-6

Table 5.5: DILGOM metabolomics. Prediction accuracy of the models obtained for the different approaches on
metabolites. In bold are the combinations of network analyses and prediction approaches which perform better
than lasso, ridge, and elastic net.

5.4.2 DILGOM: Transcriptomics
Due to the computational intensity of the graphical lasso approach, we considered two

sets of gene expression probes for analysis. A set of 2980 probes which was only anal-
ysed by WGCNA to perform network analysis and a set of 732 filtered probes (probes
with a variance higher than 1) were WGCNA and graphical lasso were used. The main



5.4 Real data analysis 81

results are presented in Table 5.7 and Table 5.8. Table 5.7 presents the prediction ability
results of the used methods. For the set of filtered probes (left part of Table 5.7), the best
method with regard to predictive performance is the combination of WGCNA and group
lasso (Q2 = 0.258). Adaptive group ridge appears to provide poor results (Q2 = 0.158
in combination with WGCNA and Q2 = 0.188 in combination with graphical lasso)
in the transcriptomics context. In contrast to the observed results regarding the NMR
metabolites, adaptive ridge is clearly outperformed by lasso (Q2 = 0.227) and elastic net
(Q2 = 0.253), but still provide better results than the ridge regression (Q2 = 0.071).
Also, we observe that for transcriptomics elastic net provides better results than lasso
which was not the case for the metabolites. For the larger set of probes (right part of Ta-
ble 5.7), the best prediction accuracy is achieved using the combination of WGCNA with
group lasso Q2 = 0.418 while lasso and elastic net show similar predictive abilities with
Q2 = 0.257 and Q2 = 0.265, respectively. Ridge presented better prediction accuracy
with the large set of probes but its performance is still very low (Q2=0.131). In line with
the simulation study, the benefits of our three-step proposal is larger when the number of
probes increases.

Table 5.8 presents the number of variable selected for the two group lasso approaches
(based on WGCNA and graphical lasso), lasso, and elastic net. The left part of Table 5.8
shows the results for the filtered set of probes and the right part shows the results for the
large set of probes. For the filtered set of probes, it appears that group lasso retains more
variables than lasso and elastic net. WGCNA in combination with group lasso provided
687 variables which were selected at least once during the cross validation process, while
the combination of graphical lasso and group lasso provided 485 variables. Lasso and
elastic net identified only 78 and 123 variables, respectively. Moreover, the models ob-
tained with group lasso are more stable than those obtained with the standard approaches,
lasso and elastic net. Indeed, using WGCNA, 19.9% of the 687 variables are selected
in all the 10 cross-validation folds and for graphical lasso 18.9% of the 485 variables
are selected. In contrast, for lasso and elastic net only 3.8% and 5.6% of the variables
are selected in all the cross-validation folds. For the larger set of probes, the number of
variables always selected increased for lasso and elastic net with respectively 13 and 21
variables, this is not the case for the combination of WGCNA with group lasso with 48
variables always selected for the set of 2928 probes while 137 variables were always se-
lected with the smaller set of probes. From the 48 variables obtained, only 5 were also
included in the previous set of 137 variables.

To investigate the biological relevance of the selected variables in the prediction mod-
els obtained, a gene set enrichment analysis was performed using the Gene Set Enrich-
ment Analysis software (GSEA;Subramaniana et al. (2005); Mootha et al. (2003)) on
the variables always selected by each approach during the cross-valiadation process. A
gene set enrichment analysis consists of comparing the set of gene identified with a priori
known group of genes that have been grouped together by their involvement in the same
biological pathway. Table 5.9 presents the results of the enrichment analysis when using
the large set of transcriptomics. None of the pathways obtained in the enrichment analysis
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by the different methods has been previously identified as related to BMI. The enrichment
analysis based on the 137 and 92 genes obtained from the filtered set of probes was more
insightful. Among the 137 genes selected by the combination WGCNA and group lasso,
33 were associated with cardiovascular disease (p = 0.019) and 6 of these 33 genes were
associated with obesity (p = 0.044). Among the 92 genes obtained with the combination
of graphical lasso and group lasso, 3 of them where included in the glucagon signaling
pathway (p = 0.070) and 3 were in the insulin resistance pathway (p = 0.080). These
results are not surprising since it is known that increased insulin and decreased glucagon
secretion play a role in obesity Schade and Eaton (1974). Due to the small number of
variables of lasso and elastic net, 7 and 3 predictors respectively, the enrichment analysis
did not provide associated pathways.
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WGCNA + Group lasso Graphical lasso + adaptive group ridge

Variable Average beta Frequency Cluster Average beta Rank Cluster

GLOL .064 10 1 .039 5 6

TYR .060 10 1 .070 2 1

ALB -.059 10 1 -.075 1 1

GLY -.041 10 1 -.039 4 1

PHE .038 10 1 .046 3 1

XSVLDLL .038 10 2 .017 16 2

XLHDLL -.038 10 3 -.034 7 5

HIS -.036 10 1 -.030 8 1

SM .034 10 2 .016 17 2

FAW6 .031 10 2 .003 31 3

GLC .031 10 1 .037 6 1

SHDLL .030 10 2 .030 9 5

Lasso Elastic Net

Average beta Frequency Rank Average beta Frequency Rank

GLOL .074 10 4 .063 10 3

TYR .080 10 3 .068 10 2

ALB -.086 10 2 -.069 10 1

GLY -.037 10 6 -.035 10 7

PHE .038 10 5 .042 10 5

XSVLDLL .036 10 7 .038 10 6

XLHDLL -.089 9 1 -.056 10 4

HIS -.024 9 8 -.020 10 11

SM .018 8 10 .011 8 17

FAW6 .017 7 12 .011 8 14

GLC .018 10 11 .022 10 9

SHDLL .003 3 20 .005 7 20

Table 5.6: DILGOM metabolomics. Top 12 metabolites (in terms of average beta) selected by the combination
of WGCNA and group lasso, their selection frequencies and cluster membership. For lasso, graphical lasso +
ridge, and elastic net, the rank of the variables according to the absolute values of the average effect size is
added.
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Filtered set (p=732) Larger set (p=2980)

WGCNA Graphical lasso WGCNA

Q2 Q2 Q2

Group lasso 0.258 0.215 0.418

Group ridge 0.158 0.188

Lasso 0.227 0.227 0.257

Ridge 0.071 0.071 0.131

Elastic net 0.253 0.253 0.265

Number of clusters 16-17 32-36 40-45

Table 5.7: DILGOM transcriptomics. Prediction accuracy of the models obtained by combination of networks
and prediction models as well as lasso, ridge, and elastic net for transcriptomics.

Filtered set (p=732) Larger set (p=2980)

Always At least once Proportion Always At least once Proportion

WGCNA and group lasso 137 687 0.199 48 252 0.190

Graphical lasso and group lasso 92 485 0.189

Lasso 3 78 0.038 13 134 0.097

Elastic net 7 123 0.056 21 176 0.119

Table 5.8: DILGOM transcriptomics. Number of variables selected during the cross-validation process, at least
once, in all croos-validation folds and the proportion of variables selected all in the set of variables selected at
least once.
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method Pathway Number variables FDR
Genes transcriptionally modulated in the

blood of multiple sclerosis patients in re-

sponse to subcutaneous treatment with re-

combinant IFNB1

10 9.68 e-15

WGCNA and group lasso Genes up-regulated in CD34+ hematopoetic

cells by expression of NUP98-HOXA9 fu-

sion off a retroviral vector at 3 days after

transduction

10 3.86 e-12

Genes representing interferon-induced an-

tiviral module in sputum during asthma ex-

acerbations

8 1.27 e-11

Genes exclusively down-regulated in B lym-

phocytes from WM (Waldenstroem’s mac-

roblobulinemia) patients but with a similiar

expression pattern in the normal cells and

in the cells from CLL (chronic lymphocytic

leukemia) patients.

2 5.62 e-3

Lasso Genes down-regulated in erythroid progeni-

tor cells from fetal livers of E13.5 embryos

with KLF1 knockout compared to those

from the wild type embryos

6 5.62 e-3

Genes down-regulated in CD4+ T lympho-

cytes transduced with FOXP3.

3 1.55 e-3

Elastic net Genes up-regulated in MCF7 cells (breast

cancer) after stimulation with NRG1

4 1.55 e-3

Genes down-regulated in normal hematopoi-

etic progenitors by RUNX1-RUNX1T1 fu-

sion

4 1.55 e-3

Table 5.9: DILGOM transcriptomics. Top significant pathways identified by enrichment analysis using the
GSEA software for all predictions model using the variables always selected during the cross-validation process
of the breast cancer cell lines study on the transcriptomics data. For each method, the number of variables
common to the pathway and the set of variables selected at least 5 times and the false discovery rate (FDR) of
the enrichment test are presented.
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5.4.3 Breast cancer cell lines
The main results of the prediction of the treatment response of breast cancer cell lines

to Erlotinib are presented in Table 5.10. The best prediction performance is again the
combination of WGCNA and group lasso with Q2 = 0.654. Ridge with Q2 = 0.610
performs better than lasso and elastic net with Q2 = 0.571 and Q2 = 0.564, respectively.
For this dataset the combination of WGCNA and group lasso is less stable and is not
always able to pick the same variables during the cross-validation process, while lasso
and elastic net are able to always pick 2 probes. With regards to variables selected at least
5 times by WGCNA + group lasso, lasso and elastic net, all 3 methods have a similar
number of selected variables with respectively 22, 18 and 25. The intersection between
3 identified sets of variables is empty. The enrichment analysis identified genes related
to breast cancer for the WGCNA + group lasso and elastic net approaches as presented
table 5.11. This was not the case for lasso.

Q2 Number of Variables

At least 5 times always

WGCNA and group lasso 0.654 22 0

Lasso 0.571 18 2

Ridge 0.610 5376 5376

Elastic net 0.564 25 2

Total number of variables 5376 5376

Table 5.10: Breast Cancer analysis. Prediction accuracy and numbers of variable selected at least 5 times and
always selected in the 10-fold cross-validation process of the different approaches on the whole set of probes
for the Breast cancer cell lines.
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method Pathway Number variables FDR
Candidate genes in genomic amplification

regions in hepatocellular carcinoma (HCC)

samples

6 5.61 e-10

WGCNA and group lasso Genes within amplicon 17q11-q21 identified

in a copy number alterations study of 191

breast tumor samples.

6 6.49 e-8

Genes up-regulated in DLBCL (diffuse large

B-cell lymphoma) cell lines sensitive to

stimulation of CD40 relative to the resistant

ones

5 4.62 e-5

Genes up-regulated in confluent IMR90 cells

(fibroblast) after knockdown of RB1 by

RNAi

7 5.621 e-6

Lasso Genes up-regulated in the neural crest stem

cells (NCS), defined as p75+/HNK1+

5 5.92 e-6

Genes down-regulated in BEC (blood en-

dothelial cells) compared to LEC (lymphatic

endothelial cells)

5 6.66 e-6

Genes down-regulated in TMX2-28 cells

(breast cancer) which do not express ESR1

compared to the parental MCF7 cells which

do

11 5.41 e-10

Elastic net Genes up-regulated in confluent IMR90 cells

(fibroblast) after knockdown of RB1 by

RNAi.

9 2.52 e-8

Genes positively correlated with recurrence

free survival in patients with hepatitis

B-related (HBV) hepatocellular carcinoma

(HCC)

5 4.57 e-6

Table 5.11: Breast Cancer analysis. Top significant pathways identified by enrichment analysis using the GSEA
software for all predictions model using variables selected at least 5 times during the cross-validation process
on the transcriptomics data of the breast cancer cell lines study. For each method, the number of variables
common to the pathway and the set of variables selected at least 5 times and the false discovery rate (FDR) of
the enrichment test are presented.
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5.5 Discussion
In this paper, we presented a new strategy to obtain accurate, stable and interpretable

prediction models. The key components of our proposed approach are to capture the cor-
relation structure of the features within an omic dataset, to derive clustering information,
and to include it in a group penalization model. Our approach seems to provide inter-
pretable models by capturing underlying biological mechanisms impacting the phenotype
of interest.

Our applications showed that the proposed three step approach can outperform the
standard regularized regression approaches in terms of prediction ability, stability and
biological interpretation in high-dimensional settings or when groups of strongly corre-
lated features are present in the data. Our analyses highlighted the weakness of methods
such as lasso and elastic net in terms of stable variable selection in highly correlated
datasets. Indeed, for the metabolites, our WGCNA and group lasso combination selected
a group of highly correlated metabolites (cluster 2 including XSVLDLL, SM, FAW6, and
SHDLL) while lasso selected XSVLDLL all the times in the cross-validation process but
SHDLL only 3 out of 10 times. In addition it appeared that for the large transcriptomics
dataset the prediction accuracy is also larger for our proposed methods than for the stan-
dard regularization methods. The analysis of the breast cancer cell lines study showed
some limitations in terms of stability for our network-based approach when the number
of samples is relatively small. Probably the networks obtained during the cross-validation
steps are less stable for a small number of samples leading to a less stable clustering and
prediction model. Further with regard to transcriptomics, the obtained groups of gene ex-
pression features identified by our strategies were enriched for known pathways linked to
BMI (DILGOM) and breast cancer (breast cancer cell lines). This was only the case when
using the filtered transcriptomics dataset. This was not always the case for lasso, ridge,
and elastic net. For the unfiltered transcriptomic datasets, the gene sets were not enriched
for pathways related to the outcome. Here more research is needed. These results suggest
that our proposed approaches can indeed improve the understanding of prediction models
while keeping a good prediction accuracy.

The performance of our approaches compared to the standard approaches was in line
with the results obtained from the simulation study. Indeed the combination of WGCNA
or graphical lasso with group lasso appeared to provide the most stable results, hence
probably better interpretable. The prediction accuracy of these approaches was also good
and for large omics datasets even better than the prediction accuracy of the standard ap-
proaches. Further our simulations showed that several group penalization models (sparse
group lasso and adaptive group ridge) are quite sensitive to the used grouping structure.
In contrast the group lasso approach proved to be quite robust with respect to the network
approach used. Also, we have explored the idea of reducing the omic dataset dimen-
sionality by choosing ‘important’ features by group based on network topology (such as
our ‘hubs’ selection). This attractive approach to reduce the prediction complexity only
performed well when using WGCNA for predictors which are highly associated to the
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phenotype of interest. Its performance was very sensitive to the used network method
and bad in low-signal situations. Overall the combination of graphical lasso for network
construction and group lasso was the best performing method in our simulation study.
However, this approach computationally challenging for a large number of features and,
therefore, cannot deal with large omics datasets. Moreover in the real data analysis bet-
ter results were obtained when WGCNA was combined with group lasso. Therefore, for
large datasets we recommend the combination of WGCNA and group lasso, while for
smaller datasets both network approaches can be applied.

The presented work can be extended in various ways. So far, all our analyses focused
on prediction of a continuous outcome, but all the obtained results apply, in principle, to
other types of response variables, such as binary outcomes (classification problems) and
to time-to-event data. Also, prior knowledge on biological grouping could be included
in our three-step approaches if available, even if it is only partial. Our simulation study
showed good results if the correct underlying clustering is known. Given that such bio-
logical knowledge is only partially known in many omic applications, we have proposed
to use network analysis to infer the correlation structure. Including external prior biolog-
ical in the first step of network construction may lead to an improvement of the clustering
obtained and, therefore, of the proposed methods. Another possible extension is to build
prediction models with two or more sets of omic predictors. It is known (Rodríguez-
Girondo et al., 2018) that using a common penalization (such as lasso or ridge) to the
extended dataset containing both omic sets to be combined can lead to worse predictive
ability than using only one of these omic sets. Therefore, applying our three-step approach
to the stacked dataset of different omic predictors may outperform current methods. Alter-
natively, more advanced network techniques as multi-layer networks Kivelä et al. (2014),
based on obtaining the correlation structure between and within the omic sets may be im-
prove prediction models. These extensions are currently under investigation.

To conclude, we presented a set of methods which provides accurate and stable pre-
dictions possibly leading to better interpretation, as is shown in the real data application.
In the DILGOM study, a much more stable set of metabolomic predictors for BMI was ob-
tained compared to standard approaches. Moreover, better predictions were obtained with
our approach when using a large set of gene expression probes to predict BMI. Regarding
the prediction of breast cancer, identified gene modules with our approach appeared to
be interpretable since enrichment analyses showed that selected features could be linked
with breast cancer tumors. This was not the case when using the standard approaches.
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