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4
Gene co-expression network analysis for

family studies based on a meta-analytic
approach

Abstract
For a better understanding of the biological mechanisms involved in complex traits or

diseases, networks are often useful tools in genetic studies: coexpression networks based
on pairwise correlations between genes are commonly used. In case of a family-based
design, it can be problematic when there is a large between-family variation in expres-
sion levels. We propose here a gene coexpression network analysis for family studies.
We build a coexpression network for each family and then combine the results. We ap-
plied our approach to data provided for analysis in the Genetic Analysis Workshop 19
and compared it to 2 naive approaches-ignoring correlations among the expressions and
decorrelating the gene expression by using the residuals of a mixed model and a single-
probe analysis. Our approach seemed to better deal with heterogeneity with regard to
the naive approaches. The naive approaches did not provide any significant results, while

This chapter has been published as: Renaud Tissier, Hae-Won Uh, Erik van den Akker, Brunilda Balliu,
Spiridoula Tsonaka, Jeanine J. Houwing-Dusitermaat (2016). Gene co-expression network analysis for family
studies based on a meta-analytic approach. BMC Proceedings; 10(Suppl 7): 119-123.

53



54 Chapter 4 – Gene co-expression network analysis for family studies

our approach detected genes via indirect effects. It also detected more genes than the
single-probe analysis.

4.1 Background
Weighted gene co-expression network is a widely used method for studying biological

networks based on pairwise correlations. This method provides more insight in the under-
lying biological mechanisms and offers a tool for dimension reduction by summarizing
identified modules (clusters) of genes (Plaisier et al., 2009; de Jong et al., 2012). How
to perform such an analysis for family data is an open question. For family data Kraft
et al. (2003) noted that testing association between expression levels and traits without
taking into account the family structure can lead to spurious results, especially when the
number of families is small and in the presence of large between-family variation. In this
paper, we propose a novel strategy for network analyses in a small set of relatively large
families. For this family-based approach, we first construct family-specific co-expression
networks and test for association between the modules and the traits of interest. Common
set of genes for all families were obtained by using the intersection and the union of fam-
ily specific modules. We compare this family-based approach with two naive approaches:
namely, one using the gene expression of the families directly (ignoring correlation) and
one that first decorrelates the gene expressions and then applies the standard approach.
We also compare our results with single probe analyses.

4.2 Methods

4.2.1 Study sample
The gene-expression dataset is composed of 647 individuals from 17 large families.

These samples are from the dataset described in Almasy and Blangero (1998). Here, we
focus on the largest 5 families: namely family 2, 5, 6, 8 and 10 with 65, 55, 45, 62 and
49 family members, respectively. The total number of individuals is 276. In total gene
expressions of 20634 probes are available. We used the simulated quantitative phenotypes
Systolic Blood Pressure (SBP) and the phenotype Q1 at time point 1 as outcome variables.
The simulation model of SBP comprises 15 genes and that of Q1 does not contain any
of these genes. SBP, Q1 and all probes were corrected for age and sex by regressing out
covariates and using residuals.

In order to decorrelate the gene expressions, we fitted for each probe a linear mixed
model: Xij = + uij + vi + ij , with Xij the value of the probe for the individual
j in family i, uij a normally distributed random genetic effect: uij N(0, S) where S =
2∗K ∗sg withK kinship matrix and sggenetic variance, vi a normally distributed random
effect representing shared environmental effects, and ij a normally distributed residual.
To obtain the residuals X∗ij of this model we used the function lmekin, which fits linear
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mixed models with specific structure of the variance-covariance matrix from the package
coxme (Therneau, 2018) in R.

4.2.2 Single probe analysis
For the single probe analysis the following mixed model was used:

Yij = + uij + vi +Xij + ij

with Yij the value of SBP or Q1 and Xij the value of the probe for individual j of family
i. The random effects uij , vi and ij are the genetic effect, the shared environmental effect
and residuals respectively. The parameter β represents the effect of the probe on the
outcome variable.

4.2.3 Network constructions
Co-expression networks were built on the dataset without correction for family struc-

ture based on Xij (naive approach), the dataset adjusted for family structure based on
Xij

∗ (naive decorrelated approach), and on the datasets from the five families separately.
We used signed co-expression networks. The adjacency matrix A = [alk] of each

network was computed as follows: alk = |0.5 + 0.5cor(xl, xk)|γ , with cor(xl, xk) the
correlation between xl the values vector of probe l and xk the values vector of probe k.
The parameter γ is acting as a soft threshold in the adjacency matrix, when we increase
the value γ the coefficient of the adjacency matrix will tend to 0 except for values really
close to 1. We used the biweight midcorrelation based on the median, which is more ro-
bust than the Pearson correlation. The co-expression networks were constructed with the
R package WGCNA (Langfelder and Horvath, 2008). For each obtained module, the first
principal component (eigengene) was computed.

4.2.4 Phenotype analysis
From all modules and all families, the following models were fitted:

Yj = + uj + βeigengenekj + j ,

where Yj is the outcome, uj the random genetic effect and eigengenekj the value of
the eigengene of module k of family member j. Let EMF2 to EMF10 be the most signifi-
cant eigenvalues of the family specific networks (NF 2 to NF 10) and let EMF be the most
significant eigenvalue of these five eigenvalues and MM

F be the corresponding module.
Identify the modules of the family-specific networks, which have the highest overlap with
MM
F (denoted as MO

F2 to MO
F10). Next, two common sets of genes for all families were

obtained by taking the intersection (MF = MO
F2 ∩MO

F5 ∩MO
F6 ∩MO

F8 ∩MO
F10) and the

union (MF = MO
F2 ∪MO

F5 ∪MO
F6 ∪MO

F8 ∪MO
F10) of the family specific modules. The
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first principal components of the two common sets were computed. The principal com-
ponent that explained most of the variance of the corresponding set of genes was used as
the eigengene EF of the family based approach.

The eigengenes of the naive approach (EN), the naive approach after decorelation
(END) and the family-based approach (EF) are tested for association with the two pheno-
types SBP and Q1. Here, the following mixed model was used:

Yij = + uij + vi + βeigengenekij + ij

with Yij the phenotype value for individual j of family i and eigengenekij the value of
eigengene of module k of individual j of family i. And uij , vi and ij are the genetic effect,
the shared environmental effect and residuals respectively. The parameter β represents the
effect of the eigengene k on the outcome variable.

Finally since spurious associations are especially expected in the presence of large
between family heterogeneity (Kraft et al., 2003) we also performed a network analysis
using the subset of 25% most heritable probes when performing the network analysis
(n=4911 probes with heritability between 0.33 and 0.88).

To test for significance we used a nominal alpha level of 0.05 and the Bonferroni
correction was applied to take into account multiple testing.

4.3 Results

4.3.1 Results obtained with all probes
For per family analysis, the module that showed the highest correlation with the SBP

was the magenta module obtained in family 8 (MM
F8) (β=2.52, p=0.0011). MM

F8 com-
prises 710 genes. For each family, the number of genes of the module with the highest
overlap is given in Table 4.1. The intersection and the union of these five family modules,
comprises 62 and 1746 probes respectively. The first principal component (eigengene)
of the probes in the intersection set explained more than 50% of the variance for each
family, while for the union set the eigengene explained only between 23% and 31% of
the variance of the expression levels. Therefore the eigengene of the intersection set was
used as summary for the family approach (EF ). In Table 4.2, for each family the effect
of EFi on SBP (β of model (2)) is given. For families 2 and 8, the eigengenes (EF2 and
EF8) were significantly associated with SBP.

When analysing all families together none of the approaches provided significant re-
sults. The joint analysis of the families using EF as eigengene in model (3) did not provide
a significant association SBP (β=-0.13, p=0.49). For the naive approach, the eigengene
of the module magenta (EN ) had the smallest p-value (β=-3.21, p=0.01). For the naive
approach using the decorrelated dataset, the eigengene of the module grey60 (END) had
the smallest p-value (β=-3.03, p=0.0061). After multiple-testing correction (between 43
and 50 modules in each network) none of the results were significant. Finally the single
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MO
F2 MO

F5 MO
F6 MO

F8 MO
F10

Module size 446 694 499 710 446

Size of the overlap with MM
F 187 308 240 710 372

Table 4.1: Module size of MO
F2 to MO

F10 and overlap size with MM
F in the all-probes analysis

All probes 25% most heritable probes

SBP Q1 SBP Q1

EF2 -0.57(0.2) (0.02)a 9.90(4.3)(0.02) 0.27(0.1)(0.07) -1.62(1.0)(0.11)

EF5 0.34(0.2)( 0.21) 14.0(4.7)(3.3e-3) 0.18(0.2)(0.41) -2.13(1.3)(0.11)

EF6 0.08(0.3)(0.78) 8.90(3.7)(0.02) 0.66(0.3)(0.01)a 2.49(0.9)(9.6e-3)

EF8 -0.62(0.3)( 0.04)a 10.47(4.2)(0.01) 0.07 (0.2)(0.68) 2.47(1.0)(0.02)

EF10 0.14(0.3)( 0.67) 7.55(4.5)(0.09) 0.02(0.2)(0.91) -2.22(1.2)(0.06)

EF -0.13(0.2)(0.49) - 0.21(0.09)(0.02)a -

EN -3.21(1.3)(0.01) 2.75(0.7)(5.6e-4)a 1.93(0.8)(0.01) -0.96(0.5)(0.06)

END -3.03(1.1)(6.1e-3) -1.41(0.4)(9.4e-4)a 1.94(0.7)(5e-3)a -0.41(0.2)(0.06)

Table 4.2: Parameter estimates of the association between eigengenes and Q1 and SBP. In parentheses are
standard errors and p values, respectively. For EF2 to EF10 model (2) was used; for EF , EN and END

model (3) was used. For Q1 the association results for EM
F2 to EM

F10 are presented. a Denotes significant test
after multiple testing corrections.

probe analysis preformed in the five families by using model (1) provided one signifi-
cantly associated probe with SBP (CRIP2; β= -13.68, p= 1.7e-06).

The intersection module of the family based approach did not contain any of the
15 genes used for the simulation. Also the identified gene of the single probe analy-
sis is not among these 15 genes. We hypothesized that correlation might exist between
EF2, EF8, and the gene expression of CRIP2 on one hand and the set of 15 genes on
the other hand. Indeed EF2 showed significant correlation with PSMD5 (p=0.004) and
GTF2IRD1 (p=0.007) and EF8 showed significant correlation with ZNF443 (p=5e-05),
PSMD5 (p=3e-05) and ABTB1 (p=6e-05). When the presence of these 15 genes in the
modules was investigated, it appeared that they were in different modules (see Table 4.3).
The gene CRIP2 which was significant in the single probe analysis showed significant
correlation with the gene KRTAP11-1 (p= 3.1e-03).

4.3.2 Analysis of Q1
The results of the analysis of Q1 are also given in Table 4.2. For the family approach,

none of the modules obtained in family-specific network analysis was significantly asso-
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NN NND NF2 NF5 NF6 NF8 NF10

MAP4 - - - - - 7 -

NRF1 - - - 1 - - -

TNN 11 - 19 5 14 - -

LEPR - 1 19 - - - -

FLT3 5 - - 8 4 - 1

GTF2IRD1 - 4 13 3 - - -

FLNB 9 - 16 21 13 - 2

ZNF443 8 - 5 1 23 6 1

GSN 2 15 3 - - 1 -

CABP2 11 - - 5 14 2 16

LRP8 - - 6 - - 12 -

PSMD5 3 1 18 10 28 17 -

GAB2 20 15 1 3 22 - 5

ABTB1 3 - 4 4 1 2 2

KRTAP11-1 4 19 2 1 18 4 1

Table 4.3: List of the top genes involved in the simulation model and their module number in each network. -,
Denotes the grey module in which all nonclustered genes are combined. The different colours represent genes
in the same module for a specific network

ciated with Q1 and no common set could be defined. In table 4.2 the estimates of strongest
associated modules EMF for each family are given. For the naive approach, the module
red (β=2.75, p=0.00056) was significant and for the naive approach using the decorrelated
data the module green (β=-1.41, p=0.00094) was significantly associated with Q1.

4.3.3 Results obtained with the 25% most heritable probes
For the naive and the family approaches, the results of the network based analyses

using only the gene expressions of the 25% most heritable probes (n=4911 probes with
heritability between 0.33 and 0.88) are also given in Table 4.2. None of the 15 genes used
in the simulation model for SBP was among this set of most heritable probes. For Family
6 the EF6 was significantly associated with SBP (p=0.01). The association of EF in
the five families with SBP was also significant (p=0.02). For Q1 none of the approaches
provided significant results. With regard to the single probe analysis, no other probes than
CRIP2 was significantly associated.
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4.4 Discussion
In this paper, we have proposed a novel strategy to perform a co-expression network

analysis with family data: building a network for each of the large pedigrees, and defining
a common module by taking the intersection of family specific modules. We compared
our family-based approach with two naive network approaches and a single probe anal-
ysis. All analyses were performed in a small set of five relatively large families. None
of the 15 genes in the simulation model was identified in this small dataset. However the
family-based approach identified significant associations between the eigengene and SBP
in two families. This eigengene was significantly correlated with 4 of the 15 genes. When
analyzing all families jointly the family eigengene was not significant. Also the naive
network approaches did not provide any significant result. The single probe analysis pro-
vided one significant gene which was correlated with one of the 15 genes. To study the
performance of the methods with regard to false positive findings, we also analyzed the
trait Q1 for which no gene expressions were included in the simulation model. The family
approach did not provide a significant finding, while both naive approaches identified a
significant module for Q1. The result in the naive approach based on gene expression
(Xij) is in line with the findings of Kraft et al. (2003). We did not expect to have a false
positive finding when using the decorrelated data (X∗ij) as input for our network analysis.
Possible explanations for this finding are the fact that the correlation based on the kinship
coefficient might not be appropriate for gene expressions, and randomness. In addition to
the set of all probes, also networks were built using only the 25% most heritable probes.
Especially for these variables that show large between-family variation spurious associ-
ations might occur when the family structure is not taken into account. This was not
confirmed in our analysis. More research is needed to study the sensitivity of the methods
for between-family variation.

We did not know the answers when we developed the family-based approach and an-
alyzed the data. The simulation model used to create the datasets may not be well suited
to pick up the 15 genes directly by network analysis. The 15 genes present in the model
were in different pathways: they were not correlated. Moreover our approach was able
to identify indirect effects: i.e. the eigengenes were correlated with the 15 genes. Thus
the significant association of the family based network approach represented the largest
number of genes from the simulation model. We expect that especially in the presence of
large between-family variation our approach would perform best. A thorough simulation
study is required to investigate the performance of our method further.

Network analysis provides a tool to reduce the number of tests by first summarizing
the data in sets of genes with correlated gene expressions and summarizing the gene set
by the first principle component. Another obvious reduction step is to only consider the
heritable probes for the analysis. It appeared that by using the heritable probes the re-
sults across the families were less heterogeneous. The family approach as well as the
naive approach using decorrelated data provided significant results for SBP. In this pa-
per we combined the family-specific modules by taking the intersection of the modules
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which showed most overlap. This approach worked well for the relatively small set of
five families. When we applied our method to the six largest families, similar results
were obtained (data not shown). However intersection might not be the most appropriate
approach to combine modules across families, because the intersection set becomes too
small. Alternative approaches have to be developed. For example lasso type of methods
can be used to select probes from the union sets. Development of a method for con-
structing a common set from the family specific modules is a topic for future research.
Finally more research is needed to evaluate the performance of our method with regard to
false positive and false negative findings in relationship to heterogeneity, family size, the
number of families and the heritability of gene expressions.


