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2
Secondary Phenotype Analysis in

Ascertained Family Designs: Application
to the Leiden Longevity Study

Abstract
The case-control design is often used to test associations between the case-control

status and genetic variants. In addition to this primary phenotype a number of additional
traits, known as secondary phenotypes, are routinely recorded and typically associations
between genetic factors and these secondary traits are studied too. Analysing secondary
phenotypes in case-control studies may lead to biased genetic effect estimates, especially
when the marker tested is associated with the primary phenotype and when the primary
and secondary phenotypes tested are correlated. Several methods have been proposed in
the literature to overcome the problem but they are limited to case-control studies and not
directly applicable to more complex designs, such as the multiple-cases family studies.
A proper secondary phenotype analysis, in this case, is complicated by the within fami-
lies correlations on top of the biased sampling design. We propose a novel approach to

This chapter has been published as: Renaud Tissier, Roula Tsonaka, Simon P. Mooijart, P. Eline Slag-
boom, Jeanine J. Houwing-Duistermaat (2017). Secondary Phenotype Analysis in Ascertained Family Designs:
Application to the Leiden Longevity Study. Statistics in Medicine 36(14), 2288-2301.
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16 Chapter 2 – Secondary phenotype analysis in ascertained family designs

accommodate the ascertainment process while explicitly modelling the familial relation-
ships. Our approach pairs existing methods for mixed-effects models with the retrospec-
tive likelihood framework and uses a multivariate probit model to capture the association
between the mixed type primary and secondary phenotypes. To examine the efficiency
and bias of the estimates we performed simulations under several scenarios for the asso-
ciation between the primary phenotype, secondary phenotype, and genetic markers. We
will illustrate the method by analysing the association between triglyceride levels and
glucose (secondary phenotypes) and genetic markers from the Leiden Longevity study, a
multiple-cases family study that investigates longevity.

2.1 Introduction
In order to understand biological mechanisms underlying disease and health, epidemi-

ological studies measure genetic markers, classical variables, and novel omics datasets
and model the relationship between these variables and the phenotype of interest. Here
we consider outcome dependent sampling designs with binary outcome variables. In ad-
dition to studying these binary (primary) phenotypes, the classical or omics variables are
typically also analysed as outcome variables (secondary phenotypes). For example mod-
elling of associations between these traits and genetic factors, such as single-nucleotide
polymorphisms (SNPs) or polygenic risk scores (sumscores based on SNPs)(Dubdbridge,
2003). However, an important complication which is often ignored is that a proper anal-
ysis of the secondary traits should correct for the sampling mechanism on the primary
phenotype (Figure 2.1). Note that we assume that the secondary phenotype has an effect
on the primary phenotype. The reverse situation will not be treated due to reverse causal-
ity challenges (Monsees et al., 2009). In our motivating case study, the Leiden Longevity
study (LLS, Houwing-Duistermaat et al. (2009)) families with at least two long-lived sib-
lings are recruited. Obviously, these families do not represent a random sample from the
population and inferences cannot be generalized to the whole population, unless the sam-
pling mechanism is properly modelled. Several datasets are measured in the offspring of
the long-lived siblings, namely lipidomics, glycomics, metabolomics, and imaging. These
offspring share a part of their genetic variation with the long-lived parent and therefore
are expected to represent a healthy subpopulation while the partners represent the popu-
lation. As data example we will model the effect of genetic factors on the secondary traits
glucose and triglyceride levels in the offspring (cases) and their partners (controls). To
be able to extrapolate results to the general population, we need to account for the over
sampling of long-lived subjects in the families of the LLS. There are several multiple-
case family studies. For human longevity, GEHA (Genetics of Healthy aging, Skytthe
et al. (2011)) used the same study design as the LLS. Other examples are Genetics in
Familial Thrombosis (GIFT with at least two cases with thrombosis) (de Visser et al.,
2013; Tsonaka et al., 2013) and the ongoing study from Leiden Family Lab (famlab:
https://www.leidenfamilylab.nl) which recruits families with at least two cases with so-
cial anxiety disorder. The novel methods presented in this paper will also be essential for
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modelling secondary phenotypes in these studies.
In the context of case-control studies Monsees et al. (2009) showed that bias can occur

when estimating the SNP effect on secondary phenotypes if the primary and secondary
phenotypes are associated. This is often the case because both outcomes are measured
on the same subjects and secondary phenotypes are typically chosen for their potential
associations with the primary phenotype. They also showed that the amount of bias is
dependent on the prevalence of the primary phenotype, the strength of the association
between the primary and secondary phenotypes, and the association between the tested
marker and the primary trait (see Figure 2.1).

Figure 2.1: Directed acyclic graph representing the case where bias is expected when estimating the association
between the genetic marker and the secondary phenotype. Arrows represent existing association between each
node of the graph. A secondary phenotype analysis investigates whether there is an association between the
genetic factor and the secondary phenotype

To deal with the bias problem, investigators first used ad hoc methods i.e. using con-
trols only, cases only, combined data of cases and controls or joint analysis of cases and
controls adjusting for the case-control status. However, several authors showed that these
simple approaches can lead to false positive results (Monsees et al., 2009; Lee et al., 1997;
Lin and Zeng, 2009). This is due to the sampling design, namely, the secondary phenotype
data are not sampled according to the case-control design as the primary phenotype. Sev-
eral sophisticated methodologies have been developed to correct for the sampling mecha-
nisms and provide unbiased genetic effect estimates: (i) inverse-probability-of-sampling-
weighting approaches (Monsees et al., 2009; Richardson et al., 2007; Schifano et al.,
2013) which correct for the sampling mechanism by weighting appropriately individuals
in case-control studies, (ii) retrospective likelihood-based approaches which indirectly ad-
just for ascertainment (Lin and Zeng, 2009; He et al., 2011), and (iii) a weighted combina-
tion of two estimates obtained with the retrospective likelihood approach in the presence
or not of an interaction between SNPs and primary phenotypes (Li and H., 2012).

Even though these approaches can successfully correct for the biased design used to
collect the data, they are not directly applicable to more complex designs such as the LLS
which motivates this work. In particular, inverse probability weighting approaches require
knowledge of the sampling weights for each family. These weights are not available for
the LLS because it is unknown what the prevalence of families with at least two nona-
genarians is in the population. In addition, the correlations between the family members



18 Chapter 2 – Secondary phenotype analysis in ascertained family designs

cannot be ignored and therefore it is evident that statistical methodology for proper sec-
ondary phenotypes analysis in this context is needed. To this end, under the retrospective
likelihood framework, we develop a multivariate probit regression model inspired by the
work of Najita et al. (2009) to model jointly the distribution of the primary and secondary
phenotype. This approach allows us to deal with the ascertainment issue while taking into
account the individual relatedness and the genetic and environmental variations.

The paper is organised as follows: in Section 2, we present the retrospective likeli-
hood approach to correct for the over sampling of long-lived subjects and the multivariate
probit regression model for the joint modelling of the mixed type primary and secondary
phenotypes. In Section 3, we evaluate empirically the performance of the method in terms
of bias and efficiency and contrast it with the naive approach which ignores the sampling
mechanism. Finally, in Section 4 we illustrate the potential of our proposed method in the
analysis of triglyceride levels and glucose in the LLS.

2.2 Methods

2.2.1 Retrospective likelihood approach
Let N be the total number of families in the study. For the family i (i = 1 . . . N ) of

size ni, let Yi, Xi and Gi be the ni × 1 vectors for the case-control status, the secondary
phenotype and the genotype, respectively. Motivated by the LLS, we will work under the
retrospective likelihood approach to correct for the ascertainment of the families. Such
an approach is attractive when modelling the ascertainment mechanism is not straightfor-
ward, as in the LLS where sampling depends on the previous generation (an example of
a pedigree in LLS is shown in Figure 2.2). In fact the retrospective likelihood approach
implicitly corrects for the ascertainment mechanism, under the assumption that the ascer-
tainment depends only on the primary phenotype Y . In particular, for the ith family it
holds:

P (Xi, Gi | Yi, Asc) =
P (Asc | Yi, Gi, Xi)P (Gi, Xi | Yi)

P (Asc | Yi)
= P (Xi, Gi | Yi) , (2.1)

with Asc the ascertainment process. By applying Bayes rule we obtain:

P (Xi, Gi | Yi) =
P (Xi, Yi | Gi)P (Gi)

P (Yi)
=
P (Xi, Yi | Gi)P (Gi)∑
g∈G P (Yi | g)P (g)

. (2.2)

To fully specify (2.2) we need to model properly: the conditional joint distribution
of the primary and the secondary phenotypes given the genotype P(Xi, Yi | Gi), the
marginal probability of the primary phenotype P(Yi | Gi), and the genotype probability
of the ith family P(Gi). Each one of these elements are described in Sections 2.2.2 and
2.2.3.
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Figure 2.2: Example of a family pedigree from the LLS. Squares and circles represent men and women respec-
tively, crossed symbols represent deceased individuals. In black are the long-lived individuals on whom the
ascertainment is based, in grey are the cases of the study (offsprings of long-lived siblings) and in white are the
controls.

2.2.2 Mixed-effects models for the analysis of family data
To model the correlation of the phenotypes Y and X within families, a common

choice is to use random effects. For the binary primary phenotype we propose to use
a multivariate probit model with random effects. The advantage of this model is that it
involves only the integrals of the multivariate normal cumulative distribution function for
which efficient algorithms have been developed. In contrast, for the more commonly used
logistic regression model, the integrals have to be approximated for example by using
Gauss-Hermite quadrature which might be computationally intensive for large pedigrees.
Let bYi =

(
bYi1, . . . , b

Y
ini

)T
be a set of family specific random effects designed to handle

familial genetic correlation andGi = (gi1, . . . , gini
)
T be the vector of genotypes for fam-

ily i. For the probit model, the observed response Y is viewed as a censored observation
from an underlying continuous latent variable Y ∗ with:

Yij = yij ⇔ γyij < Y ∗ij < γyij+1, Yij ∈ {0, 1}, j = 1, 2, ..., ni

where −∞ =γ0 < γ1 < γ2 = +∞ are suitable threshold parameters. For the under-
lying latent variable Y ∗ we assume the mixed-effects regression model

Y ∗i = α0 + α1Gi + σGY
bYi + σεYi ,

where εYi ∼ Nni(0, Ini) is independent of bYi . Here α = (α0, α1) denotes the re-
gression coefficient vector with α0 the intercept and α1 the parameter representing the
effect of the genotype on Y . At the family level we assume bYi ∼ Nni

(0,Ri), with Ri

the coefficient of relationships matrix with elements rlm = 2−dlm with dlm denoting the
genetic distance between subjects l and m in the family. The parameter σGY

represents
the residual additive genetic variation not explained by gij . Note that σGY

models the
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polygenic inheritance in a family.
For identifiability reasons restrictions are required on both the scale and location of

Y ∗, namely we set σ2 = 1 and γ1 = 0. Thus, in the mixed-effects probit regression
the disease risk πij = P (Yij = 1 | bYij , gij) conditional on the random-effects bYij and
genotypic information gij is modelled as follows

P
(
Yij = 1 | gij , bYij

)
= Φ

(
α0 + α1gij + σGY

bYij
)
, (2.3)

with Φ (z) the cumulative distribution function of the standard normal distribution. The
marginal density under the probit model takes the form:

f(yij | gij ;α, σb) =

∫
bYi

∫ γyij+1

γyij

f(y∗ij | gij , bYi ;α, σb)f(bYi )dy∗ijdb
Y
i .

To model the secondary phenotype Xi we use a linear mixed model:

Xi = β0 + β1Gi + σGX
bXi + σεε

X
i , (2.4)

where β = (β0, β1) denotes the regression coefficient vector with β0 the intercept and
β1 the parameter representing the effect of the genotype on X , bXi ∼ Nni(0,Ri) is the
random parameter used to model the genetic correlation structure within each family for
the secondary trait, and σε is the residual standard deviation.

To model jointly X and Y using the model specifications (2.3 and 2.4), we introduce
a shared random effect uij ∼ N(0, 1) and propose the following model:

Y ∗i = α0 + α1Gi + σGY
bYi + σuui + εYi ,

Xi = β0 + β1Gi + σGX
bXi + δσuui + σεε

X
i ,

(2.5)

where ui is assumed to be independent of bYi , b
X
i , ε

Y
i , and εXi . We introduce a coef-

ficient δ in order to have different phenotypic variances for the random effect ui. In case
of small datasets or small family sizes, it can be better to constrain δ to be equal to 1 for
a simpler model. Let ΣXi

and ΣY ∗i denote the corresponding variance-covariance matri-
ces of the marginal distributions ofXi and Y ∗i and let ΣXY ∗i be their covariance. The joint

distribution of Y ∗ andX is then (Y ∗i , Xi) v N2ni

([
α0 + α1Gi
β0 + β1Gi

]
,

[
ΣY ∗i ΣXY ∗i

ΣXY ∗i ΣXi

])
.

In the special case for ni = 2, the variance-covariance matrix becomes:

Σi =


σ2
GY

+ σ2
u + 1 σ2

GY
2−d(1,2) σGX

σGY
+ δσ2

u σGX
σGY

2−d(1,2)

σ2
GY

2−d(1,2) σGY
+ σ2

u + 1 σGX
σGY

2−d(1,2) σGX
σGY

+ δσ2
u

σGX
σGY

+ δσ2
u σGX

σGY
2−d(1,2) σ2

GX
+ δ2σ2

u + σ2
ε σ2

GX
2−d(1,2)

σGX
σGY

2−d(1,2) σGX
σGY

+ δσ2
u σ2

GX
2−d(1,2) σ2

GX
+ δ2σ2

u + σ2
ε

 .

(2.6)
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Using the properties of the multivariate normal distribution, the joint distribution for
the observed primary and secondary phenotypes takes the form:

P (Yi, Xi | Gi) =

∫
P (Y ∗i , Xi | Gi) dy∗i

=

∫
P (Y ∗i | Xi, Gi)P (Xi | Gi) dy∗i

= P (Xi | Gi)
∫
P (Y ∗i | Xi, Gi) dy

∗
i .

Thus by using the probit regression model for the primary trait we have developed an
efficient approach to model the correlation between the primary and secondary trait.

From model (2.5) and the variance-covariance matrix (2.6), several marginal correla-
tions between and within family members can be deduced:

cor (Xij , Xij′) =
σ2
GX

2−d(j,j
′)(

σ2
GX

+ δ2σ2
u + σ2

ε

) = ρX

cor
(
Y ∗ij , Y

∗
ij′
)

=
2−d(j,j

′)σ2
GY(

σ2
GY

+ σ2
u + 1

) = ρY

cor
(
Xij , Y

∗
ij

)
=

σGX
σGY

+ δσ2
u√(

σ2
GX

+ δ2σ2
u + σ2

ε

) (
σ2
GY

+ σ2
u + 1

) = ρXY

cor
(
Xij , Y

∗
ij′
)

=
2−d(j,j

′)σGX
σGY√(

σ2
GX

+ δ2σ2
u + σ2

ε

) (
σ2
GY

+ σ2
u + 1

) = ρ′XY ,

where ρXY represents the association between the primary and secondary phenotype.
We can also derive the closed form for the heritability estimates of the secondary pheno-
type which quantifies the percentage of genetic variation in the total variance:

H2 =
σ2
GX(

σ2
GX

+ δσ2
u + σ2

ε

) . (2.7)

Note that when genetic factors are included in the model formula (3.2) gives the resid-
ual heritability.

2.2.3 Genotype probability
Finally another key component in the formulation of the retrospective likelihood (2.2)

is the computation of the genotype probability for each family i. LetGmj andGpj denote
the genotypes of the mother and father of an individual j if this individual is a nonfounder
member of family i. Under the assumption of random mating and mendelian inheritance,
the genotype probabilities can be written as presented by Thomas (2004):
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P (Gi) =

J∏
j=1

{
P (gij | Gmj , Gpj) if j is a nonfounder
P (gij) if j is a founder

.

The probabilities P (gij | Gpj , Gmj) are the transmission probabilities which can
be modelled using mendelian inheritance. Finally P (Gpi), P (Gmi), and P (gij) can
be modelled by assuming Hardy-Weinberg proportions (1− q)2, 2q (1− q), q2 which
depend on q, the minor allele frequency. Here we propose to use external information for q
or to estimate q from the control sample before maximizing the likelihood. Note that when
genotypes of the parents are missing the probability can be obtained by summing over the
possible parental genotypes. In case of more complex pedigree a recursive algorithm
known as peeling (Elston and Stewart, 2013) can be used . For the LLS where families
are sibships the probability is as follows:

L (θ;Y,X) =
∏
i

{P (Xi | Gi)
∫
P (Y ∗i | Xi, Gi) dy

∗
i }
∑

Gp

∑
Gm

∏
j P (Gij | Gm, Gp)P (Gp)P (Gm)∑

g

∑
Gp

∑
Gm

∫
P
(
Y ∗i | g

)
P (g | Gm, Gp)P (Gp)P (Gm)

,

(2.8)

where θ = (α0, α1, σGY
, β0, β1, σGX

, σε, δ, σu) is the model parameters vector.

2.2.4 Estimation and statistical testing
To estimate the parameters of the joint model we maximize the logarithm of the like-

lihood described in (2.8). This involves a combination of numerical optimization and
integration. For the evaluation of the integral in the multivariate normal distribution, we
use the deterministic algorithm Miwa described in Miwa et al. (2003). For the optimiza-
tion, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm implemented in
the function optim(.) in R. The BFGS algorithm is a quasi-Newton method, which
means that the Hessian matrix does not need to be evaluated directly but is approximated
by using specified gradient evaluations. To test for the presence of an effect of the SNPs
on the secondary phenotype we use the likelihood ratio test. Note that when the interest
of a researcher is solely testing for genetic association a score statistic is an alternative to
the likelihood ratio statistic.

2.2.5 Continuous polygenic score
Our approach can also be applied in the case of modelling the association between

continuous covariates and secondary phenotypes. For example polygenic scores have
been used to summarise genetic effects among an ensemble of SNPs that have been iden-
tified in large GWASes (International Schizophrenia Consortium et al., 2009; (IMSGC)
et al., 2010; Simonson et al., 2011). Polygenic scores are typically linear combinations of
SNPs: G =

∑
k δkSNPk, where δk = 1 or δk is obtained from previous GWASes. For

genetic scores, we need to integrate over the distribution of the polygenic score instead
of summing over the genotypes in the denominator of (2.2). For the distribution of the
polygenic score we use a multivariate normal distribution Gi v Nni

(µg, σgRi), with µg
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the mean value of the genetic score, σg the standard deviation of the genetic score and Ri
the relationship matrix of family i. The likelihood contribution for family i is given by:

P (Yi, Xi | Gi)P (Gi)

P (Yi)
=
P (Yi, Xi | Gi)P (Gi)∫

y∗i
P (y∗i )dy∗i

=
P (Yi, Xi | Gi)P (Gi)∫

y∗

∫
gi
P (y∗i | gi)P (g)dy∗i dgi

.

Computation of the integral
∫
y∗

∫
g
P (y∗ | g)P (g)dy∗dg can be quite intensive and

challenging. In order to gain efficiency we write the marginal model of Y ∗ (2.5) as Y ∗i =
α0 + bY ∗i + ui + εYi , with bY ∗i = σGY

bYi + α1Gi. Now Y ∗i follows the following
multivariate normal distribution: Y ∗i v Nni

(
α0 + α1µg,ΣY ∗i + α2

1σ
2
gRi
)
. Note that

when a polygenic risk score is included in the model for the secondary phenotype, the
parameter σGY

represents the residual polygenic inheritance.

2.2.6 Inclusion of covariates in the model
Often, researchers want to adjust for covariates such as age, sex, treatment etc in the

model. Let Z be such a covariate. To estimate the effect Z on the secondary phenotype
we propose to maximize the joint likelihood of X and G conditionally on the primary
phenotype Y and Z. Thereby we avoid modeling of the distribution of Z within the
families. Indeed, under the assumption of independence between genotype and Z we
obtain:

P (Xi, Gi | Yi, Zi) =
P (Xi, Yi, Zi, Gi)

P (Yi, Zi)
=
P (Xi, Yi | Gi, Zi)P (Gi)P (Zi)

P (Yi|Zi)P (Zi)
(2.9)

=
P (Xi, Yi | Gi, Zi)P (Gi)

P (Yi|Zi)
.

2.3 Simulation Study
A simulation study was set up to evaluate the performance of our proposed method

for the estimation of the association between a genetic factor and the secondary phe-
notype and the estimation of the heritability of the secondary phenotype. We compare
the proposed method with the naive approach which is typically followed in practice,
namely analysis of the secondary trait without correcting for the sampling mechanism. In
particular, in this case, we fit the standard linear mixed-effects model for the secondary
phenotype and explicitly model the familial relationships as described in (2.4). The two
methods are compared in terms of bias, Root Mean Square Error (RMSE) and 95% cov-
erage probabilities. We consider SNPs (discrete variables) and polygenic scores (contin-
uous variables). Several settings are considered for the disease prevalence, the strength of
the association between the genetic factor and the primary phenotype, the strength of the
ascertainment mechanism and the number of sibships. We simulated sibships of size 5.
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With respect to the familial relationships, we consider only sibships such that our simula-
tion resembles the LLS design. For the prevalence of the primary phenotype we consider
two settings namely a disease prevalence of 1% which corresponds to α0 ≈ −2.32 and
of 5% which corresponds to α0 ≈ −1.64. In addition the variance parameters have been
chosen such that they correspond to a heritability of 50%. Specifically we use σGX

=2,
σGY

=
√

3, σuX
= σuY

=
√

2 and σε =
√

2. This corresponds to a correlation of
0.78 between the primary and the secondary phenotypes. To speed up computations, we
assume that σuX

= σuY
when fitting the models to the simulated datasets. For each

scenario, 500 datasets are simulated using model (2.5).

2.3.1 Simulation results for a SNP
The genotypes of the SNPs are simulated assuming a minor allele frequency of 0.3 in

the population. For the secondary phenotype model the following fixed effects values are
used: β0 = 3.5 and β1 = 0.2, whereas for the primary phenotype model the effect sizes
are α1 = 0.1 or 0.5. Finally, for each of the four scenarios (rare or common disease, and
weak and strong SNP effect on the primary phenotype) we consider two ascertainment
mechanisms, namely the sampled sibships of size five have at least one affected or at least
two affected members.

Figure 3.3 presents the estimates and 95% confidence intervals for the scenario of 400
sibships. Figure 3.3 shows that ignoring the sampling mechanism (naive method) leads
to biased estimates of the SNP effect and the size of this bias increases with the strength
of the ascertainment mechanism and the association between the SNP and the primary
phenotype. Overall we observe that the proposed method gives unbiased estimates of the
SNP effect on the secondary phenotype. The coverage probabilities reach the nominal
level (see section A of supplementary material). Regarding the prevalence of the primary
phenotype, we observe that for the naive method bias increases with lower prevalence,
while the proposed method remains robust to the lower amount of information due to the
rare primary phenotype. In general, the proposed method leads to smaller RMSE than the
naive approach and better coverage probabilities.

In Table 2.1 we present the heritability estimates of the secondary phenotype for a
common disease, under the various ascertainment mechanisms and the two values of α1.
It is obvious that the heritability estimates are influenced by the ascertainment mecha-
nisms when using the naive approach. Indeed the naive method tends to underestimate the
heritability for each mechanism and this underestimation increases as the ascertainment
mechanisms become more stringent. The heritability estimates are 25-27% for sibships
with at least one affected sibling and drop to 13-14% for sibships with at least 2 affected
siblings. On the contrary, the proposed method is robust to the stringency of the ascer-
tainment mechanism.

Next, we study the robustness of our approach to one violation of the model assump-
tions, namely we simulated under a logit link for the primary phenotype and used the
probit link for modelling. Results for the SNP effect and the heritability are presented
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Figure 2.3: Estimates and 95% confidence intervals for the SNP effect on the secondary phenotype for the
retrospective likelihood approach and the naive method. Results are obtained from 500 simulated datasets of
400 families for 2 ascertainment schedules. The top and bottom panel correspond to a rare or common primary
phenotype with a prevalence around 1% and 5% respectively. In black and red are represented results for small
(α1=0.1) and large (α1=0.5) effect sizes of the SNP on the primary phenotype, respectively. The horizontal line
corresponds to the true SNP effect on the secondary phenotype.

in Table 2.2. These results show that even though our approach gives biased estimates
for the primary phenotype model, the parameters estimates for the secondary phenotype
model are not affected. All the results are presented in Section A of the Supplementary
Material.

Although we focus on parameter estimation, model fitting, and heritability estimation
for genetic association with a secondary phenotype, we also investigate the performance
of the likelihood ratio test under the null hypothesis of no genetic association with a sec-
ondary phenotype at two levels of genetic association with the primary phenotype. In
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SNP model Polygenic score model

Ascertainment α1 Retrospective Naive Retrospective Naive

1. 2 cases

0.10 0.48(0.07)(0.22) 0.13(0.07)(0.37) 0.50(0.03)(0.13) 0.14(0.03)(0.36)

0.50 0.48(0.07)(0.22) 0.14(0.07)(0.36) 0.52(0.03)0.12) 0.15(0.03)(0.34)

2. 1 case

0.10 0.50(0.08)(0.17) 0.25(0.08)(0.25) 0.48(0.04)(0.12) 0.25(0.03)(0.24)

0.50 0.50(0.08)(0.17) 0.27(0.08)(0.24) 0.50(0.04)(0.10) 0.26(0.04)(0.23)

Table 2.1: Heritability results of the simulation studies for a SNP and a polygenic score: Estimates with stan-
dard deviations and RMSE (in brackets) for the heritability of the secondary phenotype for a common disease
(prevalence ≈ 5%), when families with at least one and at least two cases are sampled and for two values of α1,
i.e. SNP or polygenic score effect on primary phenotype. Datasets consist of 400 families of size 5. Results are
based on 500 replicates.

Ascertainment α1 β1 heritability

0.True value 0.200 0.500

1.At least 2 cases

0.100 0.199(0.104)(0.104)(0.948) 0.509(0.017)(0.110)

0.500 0.197(0.106)(0.110)(0.945) 0.516(0.014)(0.108)

2.At least 1 case

0.100 0.200(0.104)(0.107)(0.961) 0.510(0.012)(0.096)

0.500 0.199(0.107)(0.111)(0.960) 0.513(0.010)(0.087)

Table 2.2: Robustness: Estimates of the effect size of the SNP on the secondary phenotype (β1) and heritability
of the secondary phenotype are given for a common disease (prevalence ≈ 5%), for the two ascertainment
mechanisms and two values of α1. Into brackets are standard deviations, RMSE and coverage probability (for
the effect size only). Datasets consist of 400 families of size 5. Results are based on 500 replicates.
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nominal level (α) Retrospective likelihood Naive method

At least 2 cases

α1 =0.1

0.05 0.0509 0.0580

0.01 0.0118 0.0152

0.001 0.0017 0.0025

α1 =0.5

0.05 0.0505 0.0878

0.01 0.0113 0.0222

0.001 0.0013 0.0043

At least 1 case

α1 =0.1

0.05 0.0524 0.0514

0.01 0.0102 0.0098

0.001 0.0018 0.0014

α1 =0.5

0.05 0.0522 0.0558

0.01 0.0098 0.0097

0.001 0.0009 0.0016

Table 2.3: Type I errors rates for testing for association between a genetic marker and a secondary phenotype
for four scenarios. Families with at least one and with at least two cases are considered. Two values for the
association between the SNP and the primary phenotype namely α1 = 0.1 and α1 = 0.5 are used. Datasets
consist of 400 families of size 5. Results are based on 10000 replicates.

each of the four considered scenarios, we simulate 10,000 replicates. In Table 3.2 the
emprical type I error rates are given for the rare disease scenario (i.e. prevalence 1%).
We observe that while our approach preserves the type I error rate at a nominal level,
the naive approach has, systematically, an inflated type I error rate. The type I error rate
for the naive method increases with stronger ascertainment and larger SNP effect on the
primary phenotype.

2.3.2 Simulation results for a polygenic score
To study the performance of the proposed method for polygenic score, we simulated

centered and standardized scores. The parameters of the secondary phenotype model were
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chosen as for the SNP simulations: β0 = 3.5 and β1 = 0.2, whereas for the primary phe-
notype model effect sizes of α1 = 0.1 or 0.5 were used. Figure 3.4 presents the estimates
and confidence intervals for datasets with 400 sibships. Our approach provides unbiased
estimates of the effect of the polygenic score on the secondary phenotype. In contrast, the
naive approach provides biased estimates and the bias increases when the ascertainment
process is more stringent or when α1 is larger.
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Figure 2.4: Estimates and 95% confidence intervals for the polygenic score effect on the secondary phenotype
for the retrospective likelihood approach and the naive method. Results are obtained from 500 simulated datasets
of 400 families for 2 ascertainment schedules. The top and bottom panel correspond to a rare or common primary
phenotype with a prevalence around 1% and 5% respectively. In black and red are represented results for small
(α1=0.1) and large (α1=0.5) effect sizes of the polygenic score on the primary phenotype, respectively. The
horizontal line corresponds to the true polygenic score effect on the secondary phenotype.

The results of the residual heritability estimates after adjustment for polygenic scores
agree with the results obtained when a SNP is included in the model (Table 2.1). The naive
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approach did not perform well: estimates between 25-26% and 14-15% for an ascertain-
ment process of at least one affected sibling and at least two affected siblings respectively
instead of 50%.

2.4 Application: Analysis of the Leiden Longevity Study
In this Section, we will exemplify our proposed method in the analysis of the LLS

briefly introduced in Section 1. The LLS is a family-based study set up to identify mech-
anisms that contribute to healthy ageing and longevity. The inclusion criteria of the study
are sibships with at least two nonagenarian siblings, i.e. the selection takes place at Gener-
ation II (Figure 2.2). Several secondary phenotypes and GWAS data have been measured
for the offspring of these siblings (Generation III in Figure 2.2) and their partners. Since
the offspring have at least one nonagenarian parent, they are also likely to become long-
lived. Therefore, the set of offspring and their partners corresponds to a case-control
design with related subjects where the offspring in Generation III are considered as cases
and their partners as controls. Overall 421 families with 1671 offspring (cases) and 744
partners (controls) have been included in the study. Because the families are relatively
small we use the model which assumes an equal variance for the shared effect for the two
traits.

Here we model the association between genetic factors and the secondary phenotypes
triglyceride and glucose levels. For both traits, there is evidence of an association with
human longevity and both traits are normally distributed. For the sake of comparison in
addition to our proposed method, we will present results using the naive approach i.e.
standard linear mixed model. Analyses using the linear mixed model which conditions
also on the case-control status will not be presented because the parameters do not have
a comparable interpretation between the two approaches. The p-values presented below
are obtained using the likelihood ratio test.

2.4.1 Triglyceride levels analysis
Triglyceride levels have been found to be associated with the primary trait longevity

(p-value = 0.0005 for women and p-value = 0.04 for men) and the size of association is
sex dependent. Therefore a sex-stratified analysis has been considered further. For the
purposes of our illustration, we restricted our analysis to seven genes on chromosome
11 which are known to be associated with Triglyceride levels. These genes are APOA1,
APOA4, APOA5, APOC3, ZNF259, BUD13 and DSCAML1. The selection of the genes
was performed using the NHGRI-EBI GWAS catalog (Welter et al., 2014). For these
genes, we have genotypes of 41 SNPs which have no missing values in our datasets.
Triglyceride levels were standardized and we included age as a covariate in the analysis.

We ran the analysis with the constrained approach, i.e. δ = 1. We observe that none
of the SNPs analysed is significantly associated with Triglyceride levels either in men
or in women, hence for most SNPs the estimates of the effect sizes agree between the
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two approaches. The SNPs showing the largest differences are, in men, SNP 22: βRA1

= 0.047 for our Retrospective Approach (RA) and βNA1 = 0.052 for the Naive Approach
(NA) and SNP 26: βRA1 = 0.088 and βNA1 = 0.092. For women more SNPs give different
estimates between the two approaches, i.e. SNP 1 (βRA1 = 0.024, βNA1 = 0.020), SNP 2
(βRA1 = 7.2e-06 βNA1 =0.006), SNP 13 (βRA1 = -0.013, βNA1 = -0.009) and SNP 19 (βRA1 =
0.011, βNA1 = 0.007) showed the biggest differences. Results for the SNPs are presented
in Section B of the Supplementary Material.

We verified whether the assumption of equal variances for the primary and secondary
phenotype for the shared effects is justified. We fitted also the model with non constrained
δ. We noticed that for some of the SNPs the model parameters are hard to estimate and
the estimates of the variances of the shared and residual random effects in the model for
the second phenotype are swapped. Overall the estimates of the effect of the SNP on
the secondary phenotype are very similar to the model which assumes equal variances.
Results of these analyses are presented in Section B of the Supplementary Material.

2.4.2 Glucose levels analysis
In previous analysis of glucose levels in the offspring and partners of the LSS, Mooi-

jaart et al. (2010) studied the association between glucose and a polygenic score. The ge-
netic score was defined as the total number of risk alleles across 15 SNPs which are known
to be associated with Type II diabetes. The Generalized Estimating Equation method was
applied to take into account the familial relationships. The paper showed that a higher
number of Type II diabetes risk alleles is associated with a higher serum concentration of
glucose (p − value = 0.016). A statistically significant association was found between
glucose level and case-control status (p-value< 0.001). However, the sampling process
was not taken into account in the analysis and thus the results might be biased. We applied
the proposed method to estimate the heritability of glucose levels and to test for the pres-
ence of an association between the glucose levels and the polygenic score. In addition,
we applied the naive approach which did not correct for case-control status. We did not
stratify according to sex in these analyses.

For this analysis the polygenic score was standardized. Using the Retrospective ap-
proach, the association between the genetic score and the glucose level is estimated by
βRA1 = 0.630 with a standard error of stE = 0.023 (p − value = 0.015). The naive
approach also yields a significant association between the genetic score and glucose lev-
els (βNA1 = 0.622, stE = 0.026, p − value = 0.020). By using the Naive Approach
(NA) we obtained for the glucose levels a genetic variance of σ2

GX
= 0.302 and a total

variance of σ2
T = 1.322, which corresponds to a residual heritability of h2NA = 0.228.

Our Retrospective approach (RA) yields a genetic variance of σ2
GX

= 0.384 and a total
variance of σ2

T = 1.457 which corresponds to a residual heritability of h2RA = 0.263.
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2.5 Discussion
In this paper, we developed a new method for the proper analysis of secondary traits

for multiple-cases family designs. A key component in our proposed method is the joint
modelling of the primary and secondary phenotypes. We developed a multivariate probit
model which can also capture the within families dependencies. A retrospective like-
lihood approach has been followed to correct for the ascertainment process. Thereby
unbiased estimates of the association between genetic factors and secondary traits can
be obtained. Simulation results showed that our approach preserves the type I error at
nominal level and provides accurate estimates irrespective of the disease prevalence, the
strength of the association between the genetic variants and the primary phenotype, and
the ascertainment mechanism. Another important empirical finding is that the heritabil-
ity estimates for the secondary traits can be severely underestimated unless the sampling
mechanism is taken into account. With respect to the analysis of the motivating case study,
for the SNPs the differences between the effect sizes obtained by our proposed method
and the naive approach were small. The small differences obtained between the naive and
the retrospective approach are mainly due to the small effect sizes of the genetic markers
selected on the primary phenotype. Indeed, the three main factors influencing the magni-
tude of the bias when using the naive approach are the correlation between the secondary
phenotype and the primary phenotype, the strength of the ascertainment, and the strength
of the association between the genetic marker and the primary phenotype.

Heritability is one of the properties that a trait needs to possess to be declared an en-
dophenotype for a specific disease. The other criteria are: the trait is associated with the
disease status in the population, the trait manifests whether illness is active or in remis-
sion (state-independent), and the trait and the disease status co-segregate within a family
(Gottesman and Gould, 2003). The Leiden Family Lab (https://www.leidenfamilylab.nl)
aims to identify endophenotypes for social anxiety disorder. The study comprises families
with at least two cases with social anxiety. The methods presented in this paper will be
used for the analyses of this study to identify endophenotypes and are relevant for other
family studies, as well.

In this paper, we proposed to include additional covariates in the model by using the
likelihood conditional on these covariates. Alternatively the joint likelihood of the sec-
ondary phenotype, genotype, and covariate conditionally on the primary phenotype can
be used. This alternative approach might be more efficient (Balliu et al., 2015). However
this likelihood requires distributional assumptions for the covariates within families which
can be complex for related individuals. Moreover maximization of the likelihood might
become time consuming. Ghosh et al (Ghosh et al., 2013) propose a pseudo-likelihood
and a profile approach to include covariates in a secondary phenotype analysis for case-
control data. This work needs to be extended to family data. A Monte Carlo approach
might be considered to compute the integrals (Tsonaka et al (Tsonaka et al., 2015)).

Typically there are missing genotypes. In unrelated individuals, genotypes can be im-
puted based on the haplotype structure obtained from a reference panel. For family data,
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the imputation should also take into account the genotypes of other family members. Soft-
ware exists which can perform such analysis, for example the Genotype Imputation Given
Inheritance (GIGI) program (Cheung et al., 2013). However for the computation of the
denominator in equation (2.2) these imputed genotype probabilities have to be taken into
account.

Due to the computational intensity of the proposed method, it is not yet possible to
run full GWAs analyses of secondary phenotypes. However, the proposed method can be
used on a set of pre-selected variants e.g. after an initial screening with the naive approach
to the primary and secondary phenotypes or when investigating pleiotropic effects. To re-
duce computation time of the multivariate integrals in the numerator and the denominator,
a faster algorithm can be used than the one used in this paper. The randomized Quasi-
Monte-Carlo procedure, developed by Genz (1992), is less accurate but faster especially
for large pedigrees. Development of less computational intensive methods is one of the
topics for future research.

With regard to pleiotropic effects, a criticism of probit random-effects models is that
in the presence of high dimensional random effects we cannot move from the subject-
specific interpretation for the fixed effects parameters to the population-level interpre-
tation as in the random-intercepts case. When the outcome is binary and families are
relatively small, estimation of the intercept and variances terms can be difficult, and con-
sequently coverage probabilities can be poor. Tsonaka et al. (2013) showed efficiency
gains by using information on disease prevalence. Their methods need to be adapted to
our setting of the analysis of two phenotypes. When the parameters of the primary pheno-
type model are not of interest and this model is only used to correct for the ascertainment
mechanism which is driven by the primary phenotype, we showed that secondary pheno-
type analyses with the proposed method are robust to using the probit instead of the logit
link function.

Future directions in the LSS and Leiden Family Lab Study will address the pending
availability of multiple omics and fMRI data, respectively, and joint modelling of several
glycans or voxels is of interest. Extending our approach, in this case, is algebraically
straightforward, but practical implementation may be challenging due to computational
intensity especially with a large number of secondary phenotypes. Use of composite like-
lihood approaches might be a solution and is our current research topic.

Finally, an attractive alternative approach to properly analyse secondary traits is to ap-
ply inverse probability weighting. However, it is crucial to correctly specify the weights.
Currently, we do not have sufficient information to be able to estimate these weights for
our studies. However with access to electronic records for research, such as informa-
tion from general practitioners to estimate the weights, it is likely that inverse probability
weighting approaches can be developed.


