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1
Introduction

1.1 Introduction
In the last decades, technical developments in biomolecular research have made it

possible to collect various omics measurements such as, gene expression, transcriptomics,
proteomics, metabolomics, and glycomics. All these measurements, have improved our
knowledge of the biological functions in the human body and the mechanisms which get
activated in complex diseases. Prediction of disease phenotypes using such omics data in
addition to classical environmental factors has also been made possible, opening thereby
new research directions for personalized medicine.

Despite the broad availability of omics measurements, the statistical analysis does not
always match the complexity of the data generating process. In particular, data collected
in complex study designs such as family studies are often analysed without properly tak-
ing into account the sampling mechanism and the relatedness of family members. More-
over, incorporating biological or empirically derived information is not always exploited
minimizing thereby the potential of state-of-the-art prediction approaches. Furthermore,
prediction models are typically based on a unique omic source, thereby, neglecting the
potential gain by combining multiple sources of omic predictors. This fact limits the ac-
curacy of personalized prediction and work has to be done on the integration of multiple
omic sources in prediction models as there is, actually, no state-of-the-art approach for
this type of prediction problem. The development of advanced statistical methods to ad-
dress the aforementioned complexities is the topic of this thesis. In particular, we present:
(i) methods for modelling associations between phenotypes and omics data while cor-

1



2 Chapter 1 – Introduction

Figure 1.1: Diagram of the super meta-analysis combining several datasets as well as integrating multiple omic
sources available in the MIMomics consortiums.

recting for the sampling mechanism in family studies, (ii) methods to build networks of
omic features which are collected in family data, (iii) methods to improve prediction by
adding information of the correlation structures in group penalization models using only
one omic source, and (iv) the extension to several omic sources prediction models.

The research conducted in this thesis was part of the European collaborative project:
Methods for Integrated analysis of Multiple Omics datasets (MIMOmics). The goals
of the project were: (1) the development of a statistical framework of methods for all
analysis steps needed for identifying and interpreting omics-based biomarkers, and (2)
to integrate such data derived from multiple omics platforms within studies and across
studies and populations. The second goal of the project, namely the development of a
super meta-analysis framework, is visualized in Figure 1.1. To establish this super meta-
analysis framework the development of robust statistical methodologies which are able to
take into account the dependence between omic features, relatedness of individuals in the
studies, high dimensionality of datasets and the sampling process were needed.

The methods developed in this thesis can be applied on the (a) and (b) axis of Figure
1.1. In particular, the methods that will be presented in the next chapters focus on the
proper analysis of separate omics data under complex study designs and the integration
of the various omics in predicting disease outcomes. The proper analysis of omics data
under complex study designs allows the integration of the results via meta-analyses (axis
(b)) and the analysis of multiple phenotypes simultaneously (axis(a)), while integrating
various omics sources in a single prediction model grants the possibility to combine sev-
eral measurements from one study (axis (a)). The development of such methods was
necessary to achieve super meta-analyses.

The rest of this introductory chapter is organized as follows. We will first discuss
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the key ingredient linking all thesis’ chapters, namely the dependence between random
variables and present the measures used in the coming chapters to quantify it. Next, we
will present the modelling of this dependence in three settings: (i) between individuals
i.e. when analysing data from family studies, (ii) between omic features, i.e. when build-
ing networks and prediction models and (iii) between outcomes measured on the same
subjects. Finally, we will close with a short presentation of the chapters included in this
thesis.

1.2 Measure of dependence: Pearson correlation coeffi-
cients

One of the most common measures of dependence is the correlation which captures
a particular type of dependence, namely linear dependence. Let X and Y two random
variables with finite variances σ2

x and σ2
y , the correlation of X and Y which is denoted by

ρxy is given by:
ρxy =

σxy
σ2
xσ

2
y

, (1.1)

where σxy is the covariance between X and Y .
In the case where multiple random variables are recorded, e.g. multiple omic features

available in a dataset M, the correlation coefficient ρxy can be applied on all possible pairs
of features leading thereby to the correlation matrix RM. Modelling such linear associa-
tions between omic features in the context of multivariate regression models or network
methods is our main concern in Chapters 2-6.

In particular, in Chapters 2 and 3 the correlation matrix of the error terms of mul-
tivariate regression models is used to model the dependencies between multiple features
measured on the same members of the same family. In Chapters 4-6 the correlation matrix
is the input to construct weighted networks. Weighted networks, in general are defined as
an adjacency matrix A = [aij ], where each coefficient aij represent how close features i
and j are. Each non zero coefficient in the matrix A represent an existing edge between
two nodes in the network. One straightforward approach to compute a network of features
is to compute their correlation matrix. More sophisticated methods have been developed
to obtain more relevant or more interpretable networks. Specifically, in this thesis, we use
the weighted gene coexpression network analysis (WGCNA , Zhang and Horvath (2005))
which uses a soft thresholding approach to make the adjacency sparser. The threshold-
ing used in WGCNA is designed to produce network following a free scale topological
criteria. This criteria, explained in Chapters 4-6, allows network to follow a hub model.
Hubs models are believed to be representative of certain biological mechanisms, and are
especially relevant in gene expression (Zhang and Horvath, 2005), helping investigators
to identify groups of related features with a meaningful biological interpretation of these
groups.

A limitation of the correlation coefficient (Eq 1.1) is that it cannot distinguish direct
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from indirect linear dependencies. For instance, letX , Y and Z three random variables of
interest. Figure 1.2 illustrates one example of possible relationships between them, where
the presence of a link between the nodes implies the presence of a direct linear depen-
dence. In this case, the fact that X and Y are both linearly related to Z will lead to ρxy
different from 0 indicating the existence of correlation between them. This dependence
is indirect. Making the distinction between direct and indirect dependencies is necessary
when trying to identify groups of biologically related features. In this case, the use of
partial correlation (Fisher, 1924) is preferred to avoid confounding effects.

Figure 1.2

The partial correlation, is the correlation between X and Y given other variables,
i.e. the conditional dependence between them. In particular, for the triplet of random
variables (X , Y , Z) the partial correlation ρ∗xy of X , Y given Z is written as:

ρxy =
ρxy − ρxzρyz√

1− ρ2xz
√

1− ρ2yz

In the case of a high number of omics features in a dataset M, the partial correla-
tion for all pairs of variables can be derived in terms of the correlation matrix RM by
R∗M = scale(R−1M ), where for a matrix A, scale(A) = diag(A)−1/2Adiag(A)−1/2,
with diag(A) the vector of the diagonal elements of A. Note that when the number of
variables exceeds the number of samples in the dataset, the correlation matrix is not in-
vertible. To compute the partial correlation matrix in this case and to make it sparser
regularized regression methods can be used, as described in Chapter 5. In particular,
penalty functions are introduced to shrink correlation coefficients either separately or as a
group in order to allow for inversion of the covariance matrix while retaining only relevant
coefficients, forcing other partial correlation coefficients to be equal to 0. Furthermore,
the use of group penalization grants the possibility to include a priori knowledge on ex-
isting relationships between variables. The partial correlation matrix is a key ingredient
of the Gaussian graphical models (Lauritzen, 1996). These models are used in Chapter 5
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and can be applied in Chapter 6. Graphical models are used to provide a representation
of the existing direct interdependence between several variables allowing investigators to
identify groups of features. Compared to WGCNA this approach does not force the net-
work to follow a hub structure. The groups of identified features with graphical models
are often smaller since they only contain features having direct interdependences.

Apart from the linear dependence between omic features, another potential source of
correlation in genomic data is the relationships between members of the same family.
Methods for modelling such dependence is the topic of the next section.

1.3 Family studies
Family studies are often used in genetic research to understand the role of genetics

and shared environment in the etiology of disease. In the last years, in addition to genetic
markers, several omic measurements are being collected for existing family studies in
order to further improve our understanding of human diseases. In family studies, a com-
monly used design oversamples families enriched with the disease under study, i.e. we
only recruit families with at least a certain number of cases. This is the so called multiple-
cases family study design. Statistical inference under such a design is known to be robust
to population stratification and efficient for detecting rare genetic variants as they tend to
aggregate within families. Despite the strengths of family studies, we should acknowl-
edge that recruiting disease-enriched families is harder than the sampling in case-control
studies. Moreover, the statistical analysis of family data requires sophisticated approaches
(de Andrade and Amos, 2000; Kraft and Thomas, 2000) which explicitly model the fa-
milial relationships and deal with the biased sampling design.

1.3.1 Modelling between subject correlation in family studies
Regarding the within families correlations, mixed-effects models are typically used.

Let Yi be a quantitative phenotype for family i = 1, . . . , n and Xi the ni × (p + 1)
design matrix of p omic features. The linear mixed effects model to study the association
between Xi and Yi in a family i is written as:

Yi = βXi + σGgi + σEei + σεεi (1.2)

with β the fixed effects parameter vector, gi the ni × 1 random effects vector which
models the familial genetic correlation, ei the shared environment ni × 1 random effects
vector and εi ∼ N(0;σ2

ε Ii) the ni × 1 residual error terms vector. The genetic and
environmental variances are σ2

G and σ2
E , respectively. The random variables, gi, ei and

εi are assumed to be independent and to follow the multivariate normal distribution with
gi ∼ Nni(0;Ki) and ei ∼ Nni(0;Ei), where Ei is the environmental correlation matrix
often defined as a unit matrix, as all family members share the same environment. Ki

is the relationship matrix representing the genetic relatedness between family members.
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Let a and b be two members of family i, then the coefficient of the relationsgip matrix
between a and b is kiab = 2−d(a,b), where d(a, b) is the genetic distance between family
members a and b. The coefficient of relatedness kiab represents the probability that a
random allele is shared identical by descent (IBD, Thompson (2008)) by a and b, i.e.
the probability that the allele is inherited from a common ancestor. From equation 1.2 it
follows Yi ∼ (βXi, σ

2
GKi +σ2

EEi +σ2
ε Ii). For a sample of randomly selected families,

the parameters β, σG, σ2, and σε can be estimated by maximizing the likelihood function
L:

L =
∏
i

P (Yi|Xi)

For binary phenotypes Yi, generalized linear mixed model such as probit mixed mod-
els or logistic models are used. Such models are used in chapters 2-3 of this thesis.

1.3.2 Modelling ascertainment in family studies
The analysis of family studies is complicated by the oversampling of disease enriched

families also known as ascertainment. To derive unbiased estimates of the omics effects
on disease phenotypes and heritability related parameters in this case, we need to correct
for the chosen sampling scheme. In the literature several approaches have been proposed
to address this issue. Namely, the prospective, retrospective and joint likelihood approach
(Kraft and Thomas, 2000). LetE be an exposure (catagorical variable), Y the case-control
status (binary variable), and S the ascertainment process.

Under the prospective likelihood approach, we condition on the sampling process as
shown in equation below:

P (Y | E,S) =
P (E,Y,S)

P (E,S)
=
P (S | Y,E)P (Y | E)

P (S | E)
,

which can be further simplified by assuming complete ascertainment, i.e. for all individ-
uals included in the sample P (S | Y ) = 1. We obtain:

P (Y | E,S) =
P (Y | E)

P (S | E)

For multiple-cases family studies the denominator P (S | E) can be easily modelled.
However, for more complex sampling design, modelling the ascertainment process can
be challenging. In such cases, the retrospective likelihood is preferred as this approach
corrects implicity for the ascertainment if the ascertainment process depends only on the
case-control status.

The retrospective likelihood is based on modelling the distribution of covariates con-
ditional on the outcome and the ascertainment and can be expressed as follows:

P (E | Y,S) =
P (S | Y,E)P (E | Y)

P (S | Y)
= P (E | Y) (1.3)



1.3 Family studies 7

By application of Bayes’rule, in equation 1.3, The probability of Y given E becomes:

P (E | Y) =
P (Y | E)

P (Y)
=

P (Y | E)∑
E P (Y | E)P (E)

As previously stated, the main advantage of the retrospective likelihood is the fact that the
ascertainment does not need to be modelled. However, this approach does need to model
the distribution of the exposure E within families. Therefore, specific assumptions have
to be made which provide biased parameter estimates in case of model misspecification.
Another drawback of this approach is the loss efficiency by possibly over-conditioning on
the phenotype Y of interest and the ascertainment event (Kraft and Thomas, 2000).

The last approach, the joint likelihood, is based on modelling the joint distribution of
the exposure and phenotype given the sampling process and is given as follows:

P (Y,E | S) =
P (E,Y,S)

P (S)
=
P (S | Y,E)P (Y | E)P (E)∑

E P (S | E)P (E)

This approach combines both disadvantages of the prospective and retrospective likeli-
hood as both ascertainment process and the distribution of the exposure within the family
have to be modelled, but is the most efficient as it needs the weakest conditioning (Kraft
and Thomas, 2000). Indeed, this approach relies only on the conditioning on the ascer-
tainment process. In the specific case of a family study following a multiple cases design
and the exposure of interest is a single nucleotide polymorphism (SNP), both the ascer-
tainment and distribution of the SNP within the family can be modelled.

1.3.3 Examples of family studies
In this thesis data from two family studies are analysed. The Leiden Longevity Study

(LLS, Schoenmaker et al. (2006); Houwing-Duistermaat et al. (2009)) is a family-based
study set up to identify mechanisms that contribute to healthy ageing and longevity. The
inclusion criteria of the study are sibships with at least two alive nonagenarian siblings.
Several secondary phenotypes and GWAS data were measured for the offspring of these
siblings and their partners. Since the offspring have at least one nonagenarian parent, they
are also likely to become long-lived. Therefore, the set of offspring and their partners
corresponds to a multiple cases design with related subjects where the offspring are con-
sidered as cases and their partners as controls. 421 families with 1671 offspring (cases)
and 744 partners (controls) have been included in the study. In Chapter 2, we study the
relationships between SNPs and metabolites measured in LLS. Namely, triglyceride lev-
els and glucose levels.

The Leiden Family Lab study on Social Anxiety Disorder (LFLSAD, Bas-Hoogendam
et al. (2018)) is a two generation multiplex family study aiming to identify endopheno-
types linked to the social anxiety disorder (SAD). Families were considered eligible for
inclusion when they contained at least one adult with a primary diagnosis of SAD and
whom had at least one child living at home with the proband, showing SAD symptoms.



8 Chapter 1 – Introduction

In addition to these probands other family members were included in the study leading to
9 families with a total number of samples of 132. In Chapter 3, we aim to identify en-
dophenotypes, i.e. heritable phenotypes associated with a primary phenotype of interest,
using electroencephalography (EEG) measurements.

1.4 Secondary phenotypes
In genetic studies, apart from the genetic variants and primary disease phenotype e.g.

case-control status, a number of omic and non-omic phenotypes are collected as well.
These additional phenotypes are known as secondary phenotypes. For instance, in the
LLS in addition to case-control status and GWAS, metabolites, classical environmental
factors, etc., are measured. Similarly, in the Leiden Family Lab Study omics and fMRI
data are available.

In these studies, one of the main research questions is to identify genetic variants as-
sociated with these additional secondary phenotypes. In the context of LLS this would
help us investigate the presence of pleiotropy, namely the existence of genes associated
with multiple phenotypes. The study of pleiotropic effects is important to understand the
underlying biological mechanisms of complex diseases. Identifying pleiotropic effects
can improve personalized medicine as well. Since specific genetic variants may show
strong associations with multiple traits but in opposite directions (Solovieff et al., 2013),
identifying pleiotropic effects will help to better prevent and identify possible side effects
after gene therapy or genome editing treatments (Solovieff et al., 2013; Gratten and Viss-
cher, 2016). In the LFLSAD, one of the primary objectives is to identify endophenotypes
for social anxiety disorder and the genetic variants associated with them. A trait is de-
clared as endophenotype of a specific disease if it is associated with the disease status, if it
manifests whether illness is active or in remission (state-independent), and when the trait
and the disease status co-segregate within a family. The search for endophenotypes is im-
portant as psychologic diseases are complex to diagnose and diagnosis can be subjective.
Therefore, identification of genetic variants or biomarkers associated with the disease is
difficult. Studying instead the association between genetic variants and highly heritable
disease-related phenotypes is needed to understand the relationship between psychologi-
cal disorders and the genome.

In both studies testing for genetic variants associated with secondary phenotypes is
complicated by the sampling mechanism. In both designs, as explained in Section 1.3.2,
there is over-representation of cases and we may obtain biased estimates of the association
between secondary phenotypes and genetic variants or biomarkers if this is ignored. In
the literature several ad-hoc solutions have been initially proposed: testing for association
only on cases, testing for association only on controls, or simply adjusting for the case-
control status in the regression model used. However, none of these methods properly
corrects the sampling mechanism and the relationships between the primary phenotype,
the secondary phenotype, and the genetic variants. Figure 1.3 illustrates 6 scenaria for the
possible relationships between a SNP (G), a secondary phenotype (X), the case-control
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status (Y ) and the sampling process (S) (Monsees et al., 2009) .

Figure 1.3: Directed acyclic graphs representing the different relationship between a SNP G, a secondary phe-
notype X , a primary phenotype Y and the sampling process S. Here we assume that the sampling process
depends only on the primary phenotype. A: There is no association between G, X , and Y , B: G influences Y ,
C:X influences Y , D: Y influencesX , E:G andX influences Y , F:G influences Y and Y influencesX . Bias
will occur when estimating the effect ofG onX in scenarios B to F. Scenarios D and F induce reverse causality
problems and are not considered in this thesis.

In general, the primary and secondary phenotypes are expected to be correlated as
they are collected on the same individual. In this case and for the multiple cases studies
we consider in this thesis, the sampling distribution of the secondary phenotypes in the
study sample is not representative of its distribution in the general population. A naive
analysis which ignores this feature will lead to biased estimates of the effect of genetic
variants on the secondary phenotype.

In case-control studies, inverse-probability-weighting approaches (Richardson et al.,
2007; Monsees et al., 2009) have been proposed to deal with the sampling mechanism
on the primary phenotype. Inverse-probability-weighting is an alternative to regression-
based adjustment of the outcomes. This approach focus on the idea that individuals have
unequal probabilities to be sampled. To correct for bias induced by the sampling mech-
anisms and obtain proper estimates in the population of interest individuals are weighted
by their inverse probability to be included in the study. Therefore, giving a larger weight
to individuals having a small probability to be included in the study. This approach
is very efficient and simple but can create imbalance if weights are not properly com-
puted. Therefore, proper modelling of the probability of being included in the study is
needed. For family studies, the use of inverse-probability-weighting methods is challeng-
ing (Rodríguez-Girondo et al., 2018) because we need to compute the probability that a
family is recruited in the study which is not available for our studies. Alternatively, the
retrospective likelihood approach can be used. The retrospective likelihood, as explained
in Section corrects 1.3.2, implicitly for the ascertainment as follows:

P (X,G | Y,S) =
P (S | Y,G,X)P (G,X | Y)

P (S | Y)
= P (X,G | Y)
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Thus under the assumption that the ascertainment depends only on the case-control
status, we require modelling: P (X,G | Y) which using the Bayes rule is further re-
written as:

P (X,G | Y) =
P (X,Y | G)P (G)

P (Y)

To study the effect of a genetic variant on secondary phenotype we need to explicitly
model the correlation between X and Y . In the case where X and Y are both continuous
then we can assume multivariate normal.

In our case, we have a mix of outcomes and thus we build the joint distributions using
latent variables. This model is presented in detail in Chapter 2.

1.5 Correlated predictors
An important complication in the discovery of biomarkers associated with a pheno-

type and in the prediction of disease phenotypes is the complex correlation structure of
features and the fact that most phenotypes are associated with a combination of biomark-
ers from various omic sources. As a matter of fact, only few diseases are single gene
disorders and most of the disease are due to a complex combination of biological and
environmental factors.

In this case, separate analysis of omic features using univariate regression models is
not advisable. The non-independence of the separate statistical tests and the strong mul-
tiple testing correction penalty, due to the high number of omic features, limit the ability
of univariate models to discover new associations. A simple solution is then to include all
variables of interest as covariates in a multiple regression model. Let Y be the quantita-
tive phenotype of interest and X = (X1; . . . ;XK) a set of biomarkers. The linear model
is written as:

Y = α+

K∑
k=1

βkXk + ε

with α the intercept of the model, βk the effect size of the kth biomarker, and ε the vector
of residuals. Even though this method is rather simple, due to the high dimensionality
and presence of collinearity in omic features, this model, often, cannot include the whole
set of predictors. This is only possible in combination with regularized regression such as
the ridge regression (Hoerl and Kennard, 1970) or lasso regularization (Tibshirani, 1996)
or variable selection techniques. The lasso regularization is widely used as this approach
also forces numerous effect sizes, depending on the size of the penalty, to be equal to
zero leading to simpler models. However this approach is also sensitive to the correla-
tion structure between omic features. It will randomly select one variable from a set of
strongly correlated features leading to models hard to reproduce and to understand the
underlying biological mechanisms. Ridge is appropriate for correlated features, but does
not shrink coefficients in the model towards zero leading to complex models which are
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hard to interpret. Finally, the presence of strong correlations increases the possibility of
confounder effects and therefore the quantity of false positive associations.

A solution to overcome these issues is to incorporate the correlation structure in the
model. In particular, a two-step procedure may be followed. In the first step, the goal is
to identify groups of closely related variables. In the second step, this grouping informa-
tion is used in the statistical analysis. For the first step, there are two possibilities: either
use a Biology- or a data-driven approach. In the biology-driven approach the idea is to
incorporate the knowledge about pathways, i.e. groups of single omic features working
on a specific cellular function. However, this approach has some limitations: first, the
relationship between the variables from the same pathways are not always linear and thus
these variables might not be correlated, and second, our knowledge about pathways is
still incomplete and therefore we incorporate only a partial picture of the data structure in
the model. For the data-driven approach the idea is to empirically derive the correlation
structure of the data and to apply clustering algorithms in order to identify clusters of
strongly correlated variables. Network construction methods are discussed in Chapters 5
and 6.

Once the groups of omic features have been identified, we can proceed with the statis-
tical analysis of step 2. As far as testing is concerned, one approach is to use the grouping
information for dimension reduction and then test for association between omics and phe-
notypes. In particular, this can be done either by selecting the most "important" variable of
the cluster based on a specific criterion or by using a summary measures such as the mean
or the first principal component (Pearson, 1901). Association between phenotypes and
the summary measures can then be tested in order to detect the group of variables related
to these phenotypes. Advantages of such an approach are that it is straightforward to sum-
marize clusters of features in one variable and that we considerably reduce the number of
tests to be performed. A downside of this approach is that the use of summary measures
makes it hard to reproduce the original results. In prediction models, the grouping in-
formation can be incorporated in the statistical analysis, via group penalization methods
(Yuan and Lin, 2006; Jacob et al., 2009; Simon et al., 2013; van de Wiel et al., 2014).
Thereby, only the most important groups needed for the prediction will be selected lead-
ing to more stable and easier to interpret prediction models. Note that recently methods
have been developed which allow features to be in different clusters allowing the data to
mimic more closely the reality as many biomarkers are part of several pathways. These
methods are presented and discussed further in detail in Chapters 5 and 6.

The approaches discussed above have been investigated and applied for a single omic
source. Extensions to the simultaneous analysis of multiple omic sources are not straight-
forward. The integration of multiple omic sources is challenging due to the existing het-
erogeneity between the different omic sources, in terms of dimensionality, scale, and
possible differences in noise structure. These complications make the identification of re-
lationships between them difficult and no state-of-the-art method for integrating different
omic sources is available. In Chapter 6 we discuss possible approaches to incorporate
several omic sources in prediction models.
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1.6 Outline of the thesis
The rest of this thesis contains 5 chapters. As explained in the previous sections,

the analysis of omics data can be complicated by several sources of correlation. Table
1.1 shows the correlation structures handled in the different chapters. All chapters may
be read in any preferred order, as they have been published or submitted independently.
However, we feel that the order in which this thesis has been organized enhances the
understanding of the links between the topics of the different chapters. In particular,
even though Chapters 2 and 3 both focus on the ascertainment correction for secondary
phenotypes in family study designs, we feel that Chapter 3 should be read after 2 as the
methodology applied in Chapter 3 is developed in Chapter 2. Chapter 4 may be regarded
as the link between the first part (Chapters 2 and 3) and the second part of the thesis
(Chapters 5 and 6). In Chapter 4, we still consider family study designs but we use an
alternative approach to test for associations between omics data and disease phenotypes,
namely correlation networks. Correlation networks are the key ingredient in Chapters
5 and 6, where novel network-based approaches are presented to perform prediction of
outcomes in population-based studies with one and multiple omic sources, respectively.

Dependencies Individuals Outcomes Features

Chapter 2 X X

Chapter 3 X X

Chapter 4 X X

Chapter 5 X

Chapter 6 X

Table 1.1: Overview of the between units dependencies modelled in the different chapters of this thesis.

In Chapter 2, we present a novel approach for the analysis of secondary phenotypes
in multiple-cases family studies, i.e. families selected for having at least a certain number
of cases. In particular, we work under the retrospective likelihood approach and explic-
itly model the dependence of the secondary phenotypes and the case-control status using
a latent variable approach. A shared random effect is assumed to model the association
between the primary and secondary outcome. For the analysis of the primary and sec-
ondary phenotypes properly chosen mixed-effects models are used to address the familial
relationships. The performance of this approach is empirically evaluated in terms of bias,
type I error and robustness to model misspecification. We use the LLS to illustrate the
methods.

Chapter 3 explores the performance of the approach developed in Chapter 2 in another
very common design for family studies, the proband design. In this design, families are
selected based on the phenotype of specific family members. For the analysis of primary
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phenotypes in this case, the conditioning on proband approach is typically considered.
This approach has been recently applied for the analysis of secondary phenotypes (Green-
wood et al., 2007; Turetsky et al., 2015) collected under the proband design. However, the
dependency between the primary and secondary phenotypes is not modelled. Therefore,
in the context of proband designs we compared our method presented in Chapter 2 with
the conditioning on proband approach. Both methods are compared in terms of bias in
the estimates of genetic effect on secondary phenotypes and heritability in an extensive
simulation study. The relative performance of the two methods has been illustrated on
electroencephalography (EEG) data from the LFLSAD.

Chapter 4 presents weighted gene coexpression analysis (WGCNA) with family data
using a meta-analysis approach. To take into account between family variation, we pro-
posed to perform the WGCNA on each family separately and to combine the obtained
results using a meta-analysis approach. This approach was compared with two ad-hoc ap-
plications of WGCNA: (1) ignoring the family structure and (2) decorrelation of the gene
expression via use of mixed models. To compare their performance, each method was ap-
plied on the simulated dataset provided by the Genetic Analysis Workshop 19 (GAW19).

Chapters 5 and 6 present network-based approaches for the prediction of health out-
comes using omic sources. In particular, Chapter 5 investigates the combination of net-
work analysis to identify clusters of correlated variables and the incorporation of this
information in group penalization in order to improve stability and prediction ability of
prediction model using a single omic source. We have considered several combinations of
network analysis methods and group regularization approaches. Specifically, as network
construction approaches we have used WGCNA and gaussian graphical modelling and as
group regularization approaches we have considered: the group lasso, sparse group lasso,
and adaptive group ridge. These combinations are compared with common regularization
approaches such as lasso, ridge, and elastic net in terms of prediction ability and vari-
able selection via double cross-validation. All methods have been applied to two different
datasets: (1) the Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic
syndrome (DILGOM) study where gene expression and metabolomics at baseline were
used to predict BMI after 7 years follow-up, and (2) the publicly available breast cancer
cell line pharmacogenomics dataset in which we predict the response to treatment of cell
lines using gene expression.

Chapter 6 extends Chapter 5 by allowing for the integration of several omic sources
in the prediction model. To combine both datasets in the prediction model several ap-
proaches have been investigated. The first approach is to perform the network analysis
separately on each omic source and combine them in the group regularization approach
to predict the outcome. Even though this approach is robust to heterogeneity between
omic sources, it is not able to capture interactions between omic sources. The second ap-
proach we considered is to apply the approach of Chapter 5 on the stacked omic sources.
Even though this approach, potentially, can identify groups of related features coming
from various omic sources, it is highly sensitive to difference in scale and heterogeneity
between sources. The last approach, is relatively close to the first approach with one ad-
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ditional step consisting of building a new network of summary measures of the clusters
obtained in the first step. Clusters containing related summary measures from differ-
ent omic sources are obtained, and clusters containing features from both omics sources
can then be derived from them. Finally, the group penalization is performed using an
overlapping group lasso approach allowing the variables to be in different groups. The
performance of these approaches has been assessed using metabolomics and gene expres-
sion data from the DILGOM study and CNV and gene expression from the breast cancer
cell line pharmacogenomics dataset to predict the same outcomes as in Chapter 5.

R codes of the methods developed in Chapters 2-3, Chapters 4-5, and supplementary
materials of the different chapters can be found at the git repository:
https://github.com/RenTissier



2
Secondary Phenotype Analysis in

Ascertained Family Designs: Application
to the Leiden Longevity Study

Abstract
The case-control design is often used to test associations between the case-control

status and genetic variants. In addition to this primary phenotype a number of additional
traits, known as secondary phenotypes, are routinely recorded and typically associations
between genetic factors and these secondary traits are studied too. Analysing secondary
phenotypes in case-control studies may lead to biased genetic effect estimates, especially
when the marker tested is associated with the primary phenotype and when the primary
and secondary phenotypes tested are correlated. Several methods have been proposed in
the literature to overcome the problem but they are limited to case-control studies and not
directly applicable to more complex designs, such as the multiple-cases family studies.
A proper secondary phenotype analysis, in this case, is complicated by the within fami-
lies correlations on top of the biased sampling design. We propose a novel approach to

This chapter has been published as: Renaud Tissier, Roula Tsonaka, Simon P. Mooijart, P. Eline Slag-
boom, Jeanine J. Houwing-Duistermaat (2017). Secondary Phenotype Analysis in Ascertained Family Designs:
Application to the Leiden Longevity Study. Statistics in Medicine 36(14), 2288-2301.
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accommodate the ascertainment process while explicitly modelling the familial relation-
ships. Our approach pairs existing methods for mixed-effects models with the retrospec-
tive likelihood framework and uses a multivariate probit model to capture the association
between the mixed type primary and secondary phenotypes. To examine the efficiency
and bias of the estimates we performed simulations under several scenarios for the asso-
ciation between the primary phenotype, secondary phenotype, and genetic markers. We
will illustrate the method by analysing the association between triglyceride levels and
glucose (secondary phenotypes) and genetic markers from the Leiden Longevity study, a
multiple-cases family study that investigates longevity.

2.1 Introduction
In order to understand biological mechanisms underlying disease and health, epidemi-

ological studies measure genetic markers, classical variables, and novel omics datasets
and model the relationship between these variables and the phenotype of interest. Here
we consider outcome dependent sampling designs with binary outcome variables. In ad-
dition to studying these binary (primary) phenotypes, the classical or omics variables are
typically also analysed as outcome variables (secondary phenotypes). For example mod-
elling of associations between these traits and genetic factors, such as single-nucleotide
polymorphisms (SNPs) or polygenic risk scores (sumscores based on SNPs)(Dubdbridge,
2003). However, an important complication which is often ignored is that a proper anal-
ysis of the secondary traits should correct for the sampling mechanism on the primary
phenotype (Figure 2.1). Note that we assume that the secondary phenotype has an effect
on the primary phenotype. The reverse situation will not be treated due to reverse causal-
ity challenges (Monsees et al., 2009). In our motivating case study, the Leiden Longevity
study (LLS, Houwing-Duistermaat et al. (2009)) families with at least two long-lived sib-
lings are recruited. Obviously, these families do not represent a random sample from the
population and inferences cannot be generalized to the whole population, unless the sam-
pling mechanism is properly modelled. Several datasets are measured in the offspring of
the long-lived siblings, namely lipidomics, glycomics, metabolomics, and imaging. These
offspring share a part of their genetic variation with the long-lived parent and therefore
are expected to represent a healthy subpopulation while the partners represent the popu-
lation. As data example we will model the effect of genetic factors on the secondary traits
glucose and triglyceride levels in the offspring (cases) and their partners (controls). To
be able to extrapolate results to the general population, we need to account for the over
sampling of long-lived subjects in the families of the LLS. There are several multiple-
case family studies. For human longevity, GEHA (Genetics of Healthy aging, Skytthe
et al. (2011)) used the same study design as the LLS. Other examples are Genetics in
Familial Thrombosis (GIFT with at least two cases with thrombosis) (de Visser et al.,
2013; Tsonaka et al., 2013) and the ongoing study from Leiden Family Lab (famlab:
https://www.leidenfamilylab.nl) which recruits families with at least two cases with so-
cial anxiety disorder. The novel methods presented in this paper will also be essential for
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modelling secondary phenotypes in these studies.
In the context of case-control studies Monsees et al. (2009) showed that bias can occur

when estimating the SNP effect on secondary phenotypes if the primary and secondary
phenotypes are associated. This is often the case because both outcomes are measured
on the same subjects and secondary phenotypes are typically chosen for their potential
associations with the primary phenotype. They also showed that the amount of bias is
dependent on the prevalence of the primary phenotype, the strength of the association
between the primary and secondary phenotypes, and the association between the tested
marker and the primary trait (see Figure 2.1).

Figure 2.1: Directed acyclic graph representing the case where bias is expected when estimating the association
between the genetic marker and the secondary phenotype. Arrows represent existing association between each
node of the graph. A secondary phenotype analysis investigates whether there is an association between the
genetic factor and the secondary phenotype

To deal with the bias problem, investigators first used ad hoc methods i.e. using con-
trols only, cases only, combined data of cases and controls or joint analysis of cases and
controls adjusting for the case-control status. However, several authors showed that these
simple approaches can lead to false positive results (Monsees et al., 2009; Lee et al., 1997;
Lin and Zeng, 2009). This is due to the sampling design, namely, the secondary phenotype
data are not sampled according to the case-control design as the primary phenotype. Sev-
eral sophisticated methodologies have been developed to correct for the sampling mecha-
nisms and provide unbiased genetic effect estimates: (i) inverse-probability-of-sampling-
weighting approaches (Monsees et al., 2009; Richardson et al., 2007; Schifano et al.,
2013) which correct for the sampling mechanism by weighting appropriately individuals
in case-control studies, (ii) retrospective likelihood-based approaches which indirectly ad-
just for ascertainment (Lin and Zeng, 2009; He et al., 2011), and (iii) a weighted combina-
tion of two estimates obtained with the retrospective likelihood approach in the presence
or not of an interaction between SNPs and primary phenotypes (Li and H., 2012).

Even though these approaches can successfully correct for the biased design used to
collect the data, they are not directly applicable to more complex designs such as the LLS
which motivates this work. In particular, inverse probability weighting approaches require
knowledge of the sampling weights for each family. These weights are not available for
the LLS because it is unknown what the prevalence of families with at least two nona-
genarians is in the population. In addition, the correlations between the family members
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cannot be ignored and therefore it is evident that statistical methodology for proper sec-
ondary phenotypes analysis in this context is needed. To this end, under the retrospective
likelihood framework, we develop a multivariate probit regression model inspired by the
work of Najita et al. (2009) to model jointly the distribution of the primary and secondary
phenotype. This approach allows us to deal with the ascertainment issue while taking into
account the individual relatedness and the genetic and environmental variations.

The paper is organised as follows: in Section 2, we present the retrospective likeli-
hood approach to correct for the over sampling of long-lived subjects and the multivariate
probit regression model for the joint modelling of the mixed type primary and secondary
phenotypes. In Section 3, we evaluate empirically the performance of the method in terms
of bias and efficiency and contrast it with the naive approach which ignores the sampling
mechanism. Finally, in Section 4 we illustrate the potential of our proposed method in the
analysis of triglyceride levels and glucose in the LLS.

2.2 Methods

2.2.1 Retrospective likelihood approach
Let N be the total number of families in the study. For the family i (i = 1 . . . N ) of

size ni, let Yi, Xi and Gi be the ni × 1 vectors for the case-control status, the secondary
phenotype and the genotype, respectively. Motivated by the LLS, we will work under the
retrospective likelihood approach to correct for the ascertainment of the families. Such
an approach is attractive when modelling the ascertainment mechanism is not straightfor-
ward, as in the LLS where sampling depends on the previous generation (an example of
a pedigree in LLS is shown in Figure 2.2). In fact the retrospective likelihood approach
implicitly corrects for the ascertainment mechanism, under the assumption that the ascer-
tainment depends only on the primary phenotype Y . In particular, for the ith family it
holds:

P (Xi, Gi | Yi, Asc) =
P (Asc | Yi, Gi, Xi)P (Gi, Xi | Yi)

P (Asc | Yi)
= P (Xi, Gi | Yi) , (2.1)

with Asc the ascertainment process. By applying Bayes rule we obtain:

P (Xi, Gi | Yi) =
P (Xi, Yi | Gi)P (Gi)

P (Yi)
=
P (Xi, Yi | Gi)P (Gi)∑
g∈G P (Yi | g)P (g)

. (2.2)

To fully specify (2.2) we need to model properly: the conditional joint distribution
of the primary and the secondary phenotypes given the genotype P(Xi, Yi | Gi), the
marginal probability of the primary phenotype P(Yi | Gi), and the genotype probability
of the ith family P(Gi). Each one of these elements are described in Sections 2.2.2 and
2.2.3.
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Figure 2.2: Example of a family pedigree from the LLS. Squares and circles represent men and women respec-
tively, crossed symbols represent deceased individuals. In black are the long-lived individuals on whom the
ascertainment is based, in grey are the cases of the study (offsprings of long-lived siblings) and in white are the
controls.

2.2.2 Mixed-effects models for the analysis of family data
To model the correlation of the phenotypes Y and X within families, a common

choice is to use random effects. For the binary primary phenotype we propose to use
a multivariate probit model with random effects. The advantage of this model is that it
involves only the integrals of the multivariate normal cumulative distribution function for
which efficient algorithms have been developed. In contrast, for the more commonly used
logistic regression model, the integrals have to be approximated for example by using
Gauss-Hermite quadrature which might be computationally intensive for large pedigrees.
Let bYi =

(
bYi1, . . . , b

Y
ini

)T
be a set of family specific random effects designed to handle

familial genetic correlation andGi = (gi1, . . . , gini
)
T be the vector of genotypes for fam-

ily i. For the probit model, the observed response Y is viewed as a censored observation
from an underlying continuous latent variable Y ∗ with:

Yij = yij ⇔ γyij < Y ∗ij < γyij+1, Yij ∈ {0, 1}, j = 1, 2, ..., ni

where −∞ =γ0 < γ1 < γ2 = +∞ are suitable threshold parameters. For the under-
lying latent variable Y ∗ we assume the mixed-effects regression model

Y ∗i = α0 + α1Gi + σGY
bYi + σεYi ,

where εYi ∼ Nni(0, Ini) is independent of bYi . Here α = (α0, α1) denotes the re-
gression coefficient vector with α0 the intercept and α1 the parameter representing the
effect of the genotype on Y . At the family level we assume bYi ∼ Nni

(0,Ri), with Ri

the coefficient of relationships matrix with elements rlm = 2−dlm with dlm denoting the
genetic distance between subjects l and m in the family. The parameter σGY

represents
the residual additive genetic variation not explained by gij . Note that σGY

models the
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polygenic inheritance in a family.
For identifiability reasons restrictions are required on both the scale and location of

Y ∗, namely we set σ2 = 1 and γ1 = 0. Thus, in the mixed-effects probit regression
the disease risk πij = P (Yij = 1 | bYij , gij) conditional on the random-effects bYij and
genotypic information gij is modelled as follows

P
(
Yij = 1 | gij , bYij

)
= Φ

(
α0 + α1gij + σGY

bYij
)
, (2.3)

with Φ (z) the cumulative distribution function of the standard normal distribution. The
marginal density under the probit model takes the form:

f(yij | gij ;α, σb) =

∫
bYi

∫ γyij+1

γyij

f(y∗ij | gij , bYi ;α, σb)f(bYi )dy∗ijdb
Y
i .

To model the secondary phenotype Xi we use a linear mixed model:

Xi = β0 + β1Gi + σGX
bXi + σεε

X
i , (2.4)

where β = (β0, β1) denotes the regression coefficient vector with β0 the intercept and
β1 the parameter representing the effect of the genotype on X , bXi ∼ Nni(0,Ri) is the
random parameter used to model the genetic correlation structure within each family for
the secondary trait, and σε is the residual standard deviation.

To model jointly X and Y using the model specifications (2.3 and 2.4), we introduce
a shared random effect uij ∼ N(0, 1) and propose the following model:

Y ∗i = α0 + α1Gi + σGY
bYi + σuui + εYi ,

Xi = β0 + β1Gi + σGX
bXi + δσuui + σεε

X
i ,

(2.5)

where ui is assumed to be independent of bYi , b
X
i , ε

Y
i , and εXi . We introduce a coef-

ficient δ in order to have different phenotypic variances for the random effect ui. In case
of small datasets or small family sizes, it can be better to constrain δ to be equal to 1 for
a simpler model. Let ΣXi

and ΣY ∗i denote the corresponding variance-covariance matri-
ces of the marginal distributions ofXi and Y ∗i and let ΣXY ∗i be their covariance. The joint

distribution of Y ∗ andX is then (Y ∗i , Xi) v N2ni

([
α0 + α1Gi
β0 + β1Gi

]
,

[
ΣY ∗i ΣXY ∗i

ΣXY ∗i ΣXi

])
.

In the special case for ni = 2, the variance-covariance matrix becomes:

Σi =


σ2
GY

+ σ2
u + 1 σ2

GY
2−d(1,2) σGX

σGY
+ δσ2

u σGX
σGY

2−d(1,2)

σ2
GY

2−d(1,2) σGY
+ σ2

u + 1 σGX
σGY

2−d(1,2) σGX
σGY

+ δσ2
u

σGX
σGY

+ δσ2
u σGX

σGY
2−d(1,2) σ2

GX
+ δ2σ2

u + σ2
ε σ2

GX
2−d(1,2)

σGX
σGY

2−d(1,2) σGX
σGY

+ δσ2
u σ2

GX
2−d(1,2) σ2

GX
+ δ2σ2

u + σ2
ε

 .

(2.6)
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Using the properties of the multivariate normal distribution, the joint distribution for
the observed primary and secondary phenotypes takes the form:

P (Yi, Xi | Gi) =

∫
P (Y ∗i , Xi | Gi) dy∗i

=

∫
P (Y ∗i | Xi, Gi)P (Xi | Gi) dy∗i

= P (Xi | Gi)
∫
P (Y ∗i | Xi, Gi) dy

∗
i .

Thus by using the probit regression model for the primary trait we have developed an
efficient approach to model the correlation between the primary and secondary trait.

From model (2.5) and the variance-covariance matrix (2.6), several marginal correla-
tions between and within family members can be deduced:

cor (Xij , Xij′) =
σ2
GX

2−d(j,j
′)(

σ2
GX

+ δ2σ2
u + σ2

ε

) = ρX

cor
(
Y ∗ij , Y

∗
ij′
)

=
2−d(j,j

′)σ2
GY(

σ2
GY

+ σ2
u + 1

) = ρY

cor
(
Xij , Y

∗
ij

)
=

σGX
σGY

+ δσ2
u√(

σ2
GX

+ δ2σ2
u + σ2

ε

) (
σ2
GY

+ σ2
u + 1

) = ρXY

cor
(
Xij , Y

∗
ij′
)

=
2−d(j,j

′)σGX
σGY√(

σ2
GX

+ δ2σ2
u + σ2

ε

) (
σ2
GY

+ σ2
u + 1

) = ρ′XY ,

where ρXY represents the association between the primary and secondary phenotype.
We can also derive the closed form for the heritability estimates of the secondary pheno-
type which quantifies the percentage of genetic variation in the total variance:

H2 =
σ2
GX(

σ2
GX

+ δσ2
u + σ2

ε

) . (2.7)

Note that when genetic factors are included in the model formula (3.2) gives the resid-
ual heritability.

2.2.3 Genotype probability
Finally another key component in the formulation of the retrospective likelihood (2.2)

is the computation of the genotype probability for each family i. LetGmj andGpj denote
the genotypes of the mother and father of an individual j if this individual is a nonfounder
member of family i. Under the assumption of random mating and mendelian inheritance,
the genotype probabilities can be written as presented by Thomas (2004):
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P (Gi) =

J∏
j=1

{
P (gij | Gmj , Gpj) if j is a nonfounder
P (gij) if j is a founder

.

The probabilities P (gij | Gpj , Gmj) are the transmission probabilities which can
be modelled using mendelian inheritance. Finally P (Gpi), P (Gmi), and P (gij) can
be modelled by assuming Hardy-Weinberg proportions (1− q)2, 2q (1− q), q2 which
depend on q, the minor allele frequency. Here we propose to use external information for q
or to estimate q from the control sample before maximizing the likelihood. Note that when
genotypes of the parents are missing the probability can be obtained by summing over the
possible parental genotypes. In case of more complex pedigree a recursive algorithm
known as peeling (Elston and Stewart, 2013) can be used . For the LLS where families
are sibships the probability is as follows:

L (θ;Y,X) =
∏
i

{P (Xi | Gi)
∫
P (Y ∗i | Xi, Gi) dy

∗
i }
∑

Gp

∑
Gm

∏
j P (Gij | Gm, Gp)P (Gp)P (Gm)∑

g

∑
Gp

∑
Gm

∫
P
(
Y ∗i | g

)
P (g | Gm, Gp)P (Gp)P (Gm)

,

(2.8)

where θ = (α0, α1, σGY
, β0, β1, σGX

, σε, δ, σu) is the model parameters vector.

2.2.4 Estimation and statistical testing
To estimate the parameters of the joint model we maximize the logarithm of the like-

lihood described in (2.8). This involves a combination of numerical optimization and
integration. For the evaluation of the integral in the multivariate normal distribution, we
use the deterministic algorithm Miwa described in Miwa et al. (2003). For the optimiza-
tion, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm implemented in
the function optim(.) in R. The BFGS algorithm is a quasi-Newton method, which
means that the Hessian matrix does not need to be evaluated directly but is approximated
by using specified gradient evaluations. To test for the presence of an effect of the SNPs
on the secondary phenotype we use the likelihood ratio test. Note that when the interest
of a researcher is solely testing for genetic association a score statistic is an alternative to
the likelihood ratio statistic.

2.2.5 Continuous polygenic score
Our approach can also be applied in the case of modelling the association between

continuous covariates and secondary phenotypes. For example polygenic scores have
been used to summarise genetic effects among an ensemble of SNPs that have been iden-
tified in large GWASes (International Schizophrenia Consortium et al., 2009; (IMSGC)
et al., 2010; Simonson et al., 2011). Polygenic scores are typically linear combinations of
SNPs: G =

∑
k δkSNPk, where δk = 1 or δk is obtained from previous GWASes. For

genetic scores, we need to integrate over the distribution of the polygenic score instead
of summing over the genotypes in the denominator of (2.2). For the distribution of the
polygenic score we use a multivariate normal distribution Gi v Nni

(µg, σgRi), with µg
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the mean value of the genetic score, σg the standard deviation of the genetic score and Ri
the relationship matrix of family i. The likelihood contribution for family i is given by:

P (Yi, Xi | Gi)P (Gi)

P (Yi)
=
P (Yi, Xi | Gi)P (Gi)∫

y∗i
P (y∗i )dy∗i

=
P (Yi, Xi | Gi)P (Gi)∫

y∗

∫
gi
P (y∗i | gi)P (g)dy∗i dgi

.

Computation of the integral
∫
y∗

∫
g
P (y∗ | g)P (g)dy∗dg can be quite intensive and

challenging. In order to gain efficiency we write the marginal model of Y ∗ (2.5) as Y ∗i =
α0 + bY ∗i + ui + εYi , with bY ∗i = σGY

bYi + α1Gi. Now Y ∗i follows the following
multivariate normal distribution: Y ∗i v Nni

(
α0 + α1µg,ΣY ∗i + α2

1σ
2
gRi
)
. Note that

when a polygenic risk score is included in the model for the secondary phenotype, the
parameter σGY

represents the residual polygenic inheritance.

2.2.6 Inclusion of covariates in the model
Often, researchers want to adjust for covariates such as age, sex, treatment etc in the

model. Let Z be such a covariate. To estimate the effect Z on the secondary phenotype
we propose to maximize the joint likelihood of X and G conditionally on the primary
phenotype Y and Z. Thereby we avoid modeling of the distribution of Z within the
families. Indeed, under the assumption of independence between genotype and Z we
obtain:

P (Xi, Gi | Yi, Zi) =
P (Xi, Yi, Zi, Gi)

P (Yi, Zi)
=
P (Xi, Yi | Gi, Zi)P (Gi)P (Zi)

P (Yi|Zi)P (Zi)
(2.9)

=
P (Xi, Yi | Gi, Zi)P (Gi)

P (Yi|Zi)
.

2.3 Simulation Study
A simulation study was set up to evaluate the performance of our proposed method

for the estimation of the association between a genetic factor and the secondary phe-
notype and the estimation of the heritability of the secondary phenotype. We compare
the proposed method with the naive approach which is typically followed in practice,
namely analysis of the secondary trait without correcting for the sampling mechanism. In
particular, in this case, we fit the standard linear mixed-effects model for the secondary
phenotype and explicitly model the familial relationships as described in (2.4). The two
methods are compared in terms of bias, Root Mean Square Error (RMSE) and 95% cov-
erage probabilities. We consider SNPs (discrete variables) and polygenic scores (contin-
uous variables). Several settings are considered for the disease prevalence, the strength of
the association between the genetic factor and the primary phenotype, the strength of the
ascertainment mechanism and the number of sibships. We simulated sibships of size 5.
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With respect to the familial relationships, we consider only sibships such that our simula-
tion resembles the LLS design. For the prevalence of the primary phenotype we consider
two settings namely a disease prevalence of 1% which corresponds to α0 ≈ −2.32 and
of 5% which corresponds to α0 ≈ −1.64. In addition the variance parameters have been
chosen such that they correspond to a heritability of 50%. Specifically we use σGX

=2,
σGY

=
√

3, σuX
= σuY

=
√

2 and σε =
√

2. This corresponds to a correlation of
0.78 between the primary and the secondary phenotypes. To speed up computations, we
assume that σuX

= σuY
when fitting the models to the simulated datasets. For each

scenario, 500 datasets are simulated using model (2.5).

2.3.1 Simulation results for a SNP
The genotypes of the SNPs are simulated assuming a minor allele frequency of 0.3 in

the population. For the secondary phenotype model the following fixed effects values are
used: β0 = 3.5 and β1 = 0.2, whereas for the primary phenotype model the effect sizes
are α1 = 0.1 or 0.5. Finally, for each of the four scenarios (rare or common disease, and
weak and strong SNP effect on the primary phenotype) we consider two ascertainment
mechanisms, namely the sampled sibships of size five have at least one affected or at least
two affected members.

Figure 3.3 presents the estimates and 95% confidence intervals for the scenario of 400
sibships. Figure 3.3 shows that ignoring the sampling mechanism (naive method) leads
to biased estimates of the SNP effect and the size of this bias increases with the strength
of the ascertainment mechanism and the association between the SNP and the primary
phenotype. Overall we observe that the proposed method gives unbiased estimates of the
SNP effect on the secondary phenotype. The coverage probabilities reach the nominal
level (see section A of supplementary material). Regarding the prevalence of the primary
phenotype, we observe that for the naive method bias increases with lower prevalence,
while the proposed method remains robust to the lower amount of information due to the
rare primary phenotype. In general, the proposed method leads to smaller RMSE than the
naive approach and better coverage probabilities.

In Table 2.1 we present the heritability estimates of the secondary phenotype for a
common disease, under the various ascertainment mechanisms and the two values of α1.
It is obvious that the heritability estimates are influenced by the ascertainment mecha-
nisms when using the naive approach. Indeed the naive method tends to underestimate the
heritability for each mechanism and this underestimation increases as the ascertainment
mechanisms become more stringent. The heritability estimates are 25-27% for sibships
with at least one affected sibling and drop to 13-14% for sibships with at least 2 affected
siblings. On the contrary, the proposed method is robust to the stringency of the ascer-
tainment mechanism.

Next, we study the robustness of our approach to one violation of the model assump-
tions, namely we simulated under a logit link for the primary phenotype and used the
probit link for modelling. Results for the SNP effect and the heritability are presented
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Figure 2.3: Estimates and 95% confidence intervals for the SNP effect on the secondary phenotype for the
retrospective likelihood approach and the naive method. Results are obtained from 500 simulated datasets of
400 families for 2 ascertainment schedules. The top and bottom panel correspond to a rare or common primary
phenotype with a prevalence around 1% and 5% respectively. In black and red are represented results for small
(α1=0.1) and large (α1=0.5) effect sizes of the SNP on the primary phenotype, respectively. The horizontal line
corresponds to the true SNP effect on the secondary phenotype.

in Table 2.2. These results show that even though our approach gives biased estimates
for the primary phenotype model, the parameters estimates for the secondary phenotype
model are not affected. All the results are presented in Section A of the Supplementary
Material.

Although we focus on parameter estimation, model fitting, and heritability estimation
for genetic association with a secondary phenotype, we also investigate the performance
of the likelihood ratio test under the null hypothesis of no genetic association with a sec-
ondary phenotype at two levels of genetic association with the primary phenotype. In
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SNP model Polygenic score model

Ascertainment α1 Retrospective Naive Retrospective Naive

1. 2 cases

0.10 0.48(0.07)(0.22) 0.13(0.07)(0.37) 0.50(0.03)(0.13) 0.14(0.03)(0.36)

0.50 0.48(0.07)(0.22) 0.14(0.07)(0.36) 0.52(0.03)0.12) 0.15(0.03)(0.34)

2. 1 case

0.10 0.50(0.08)(0.17) 0.25(0.08)(0.25) 0.48(0.04)(0.12) 0.25(0.03)(0.24)

0.50 0.50(0.08)(0.17) 0.27(0.08)(0.24) 0.50(0.04)(0.10) 0.26(0.04)(0.23)

Table 2.1: Heritability results of the simulation studies for a SNP and a polygenic score: Estimates with stan-
dard deviations and RMSE (in brackets) for the heritability of the secondary phenotype for a common disease
(prevalence ≈ 5%), when families with at least one and at least two cases are sampled and for two values of α1,
i.e. SNP or polygenic score effect on primary phenotype. Datasets consist of 400 families of size 5. Results are
based on 500 replicates.

Ascertainment α1 β1 heritability

0.True value 0.200 0.500

1.At least 2 cases

0.100 0.199(0.104)(0.104)(0.948) 0.509(0.017)(0.110)

0.500 0.197(0.106)(0.110)(0.945) 0.516(0.014)(0.108)

2.At least 1 case

0.100 0.200(0.104)(0.107)(0.961) 0.510(0.012)(0.096)

0.500 0.199(0.107)(0.111)(0.960) 0.513(0.010)(0.087)

Table 2.2: Robustness: Estimates of the effect size of the SNP on the secondary phenotype (β1) and heritability
of the secondary phenotype are given for a common disease (prevalence ≈ 5%), for the two ascertainment
mechanisms and two values of α1. Into brackets are standard deviations, RMSE and coverage probability (for
the effect size only). Datasets consist of 400 families of size 5. Results are based on 500 replicates.
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nominal level (α) Retrospective likelihood Naive method

At least 2 cases

α1 =0.1

0.05 0.0509 0.0580

0.01 0.0118 0.0152

0.001 0.0017 0.0025

α1 =0.5

0.05 0.0505 0.0878

0.01 0.0113 0.0222

0.001 0.0013 0.0043

At least 1 case

α1 =0.1

0.05 0.0524 0.0514

0.01 0.0102 0.0098

0.001 0.0018 0.0014

α1 =0.5

0.05 0.0522 0.0558

0.01 0.0098 0.0097

0.001 0.0009 0.0016

Table 2.3: Type I errors rates for testing for association between a genetic marker and a secondary phenotype
for four scenarios. Families with at least one and with at least two cases are considered. Two values for the
association between the SNP and the primary phenotype namely α1 = 0.1 and α1 = 0.5 are used. Datasets
consist of 400 families of size 5. Results are based on 10000 replicates.

each of the four considered scenarios, we simulate 10,000 replicates. In Table 3.2 the
emprical type I error rates are given for the rare disease scenario (i.e. prevalence 1%).
We observe that while our approach preserves the type I error rate at a nominal level,
the naive approach has, systematically, an inflated type I error rate. The type I error rate
for the naive method increases with stronger ascertainment and larger SNP effect on the
primary phenotype.

2.3.2 Simulation results for a polygenic score
To study the performance of the proposed method for polygenic score, we simulated

centered and standardized scores. The parameters of the secondary phenotype model were
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chosen as for the SNP simulations: β0 = 3.5 and β1 = 0.2, whereas for the primary phe-
notype model effect sizes of α1 = 0.1 or 0.5 were used. Figure 3.4 presents the estimates
and confidence intervals for datasets with 400 sibships. Our approach provides unbiased
estimates of the effect of the polygenic score on the secondary phenotype. In contrast, the
naive approach provides biased estimates and the bias increases when the ascertainment
process is more stringent or when α1 is larger.
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Figure 2.4: Estimates and 95% confidence intervals for the polygenic score effect on the secondary phenotype
for the retrospective likelihood approach and the naive method. Results are obtained from 500 simulated datasets
of 400 families for 2 ascertainment schedules. The top and bottom panel correspond to a rare or common primary
phenotype with a prevalence around 1% and 5% respectively. In black and red are represented results for small
(α1=0.1) and large (α1=0.5) effect sizes of the polygenic score on the primary phenotype, respectively. The
horizontal line corresponds to the true polygenic score effect on the secondary phenotype.

The results of the residual heritability estimates after adjustment for polygenic scores
agree with the results obtained when a SNP is included in the model (Table 2.1). The naive
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approach did not perform well: estimates between 25-26% and 14-15% for an ascertain-
ment process of at least one affected sibling and at least two affected siblings respectively
instead of 50%.

2.4 Application: Analysis of the Leiden Longevity Study
In this Section, we will exemplify our proposed method in the analysis of the LLS

briefly introduced in Section 1. The LLS is a family-based study set up to identify mech-
anisms that contribute to healthy ageing and longevity. The inclusion criteria of the study
are sibships with at least two nonagenarian siblings, i.e. the selection takes place at Gener-
ation II (Figure 2.2). Several secondary phenotypes and GWAS data have been measured
for the offspring of these siblings (Generation III in Figure 2.2) and their partners. Since
the offspring have at least one nonagenarian parent, they are also likely to become long-
lived. Therefore, the set of offspring and their partners corresponds to a case-control
design with related subjects where the offspring in Generation III are considered as cases
and their partners as controls. Overall 421 families with 1671 offspring (cases) and 744
partners (controls) have been included in the study. Because the families are relatively
small we use the model which assumes an equal variance for the shared effect for the two
traits.

Here we model the association between genetic factors and the secondary phenotypes
triglyceride and glucose levels. For both traits, there is evidence of an association with
human longevity and both traits are normally distributed. For the sake of comparison in
addition to our proposed method, we will present results using the naive approach i.e.
standard linear mixed model. Analyses using the linear mixed model which conditions
also on the case-control status will not be presented because the parameters do not have
a comparable interpretation between the two approaches. The p-values presented below
are obtained using the likelihood ratio test.

2.4.1 Triglyceride levels analysis
Triglyceride levels have been found to be associated with the primary trait longevity

(p-value = 0.0005 for women and p-value = 0.04 for men) and the size of association is
sex dependent. Therefore a sex-stratified analysis has been considered further. For the
purposes of our illustration, we restricted our analysis to seven genes on chromosome
11 which are known to be associated with Triglyceride levels. These genes are APOA1,
APOA4, APOA5, APOC3, ZNF259, BUD13 and DSCAML1. The selection of the genes
was performed using the NHGRI-EBI GWAS catalog (Welter et al., 2014). For these
genes, we have genotypes of 41 SNPs which have no missing values in our datasets.
Triglyceride levels were standardized and we included age as a covariate in the analysis.

We ran the analysis with the constrained approach, i.e. δ = 1. We observe that none
of the SNPs analysed is significantly associated with Triglyceride levels either in men
or in women, hence for most SNPs the estimates of the effect sizes agree between the
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two approaches. The SNPs showing the largest differences are, in men, SNP 22: βRA1

= 0.047 for our Retrospective Approach (RA) and βNA1 = 0.052 for the Naive Approach
(NA) and SNP 26: βRA1 = 0.088 and βNA1 = 0.092. For women more SNPs give different
estimates between the two approaches, i.e. SNP 1 (βRA1 = 0.024, βNA1 = 0.020), SNP 2
(βRA1 = 7.2e-06 βNA1 =0.006), SNP 13 (βRA1 = -0.013, βNA1 = -0.009) and SNP 19 (βRA1 =
0.011, βNA1 = 0.007) showed the biggest differences. Results for the SNPs are presented
in Section B of the Supplementary Material.

We verified whether the assumption of equal variances for the primary and secondary
phenotype for the shared effects is justified. We fitted also the model with non constrained
δ. We noticed that for some of the SNPs the model parameters are hard to estimate and
the estimates of the variances of the shared and residual random effects in the model for
the second phenotype are swapped. Overall the estimates of the effect of the SNP on
the secondary phenotype are very similar to the model which assumes equal variances.
Results of these analyses are presented in Section B of the Supplementary Material.

2.4.2 Glucose levels analysis
In previous analysis of glucose levels in the offspring and partners of the LSS, Mooi-

jaart et al. (2010) studied the association between glucose and a polygenic score. The ge-
netic score was defined as the total number of risk alleles across 15 SNPs which are known
to be associated with Type II diabetes. The Generalized Estimating Equation method was
applied to take into account the familial relationships. The paper showed that a higher
number of Type II diabetes risk alleles is associated with a higher serum concentration of
glucose (p − value = 0.016). A statistically significant association was found between
glucose level and case-control status (p-value< 0.001). However, the sampling process
was not taken into account in the analysis and thus the results might be biased. We applied
the proposed method to estimate the heritability of glucose levels and to test for the pres-
ence of an association between the glucose levels and the polygenic score. In addition,
we applied the naive approach which did not correct for case-control status. We did not
stratify according to sex in these analyses.

For this analysis the polygenic score was standardized. Using the Retrospective ap-
proach, the association between the genetic score and the glucose level is estimated by
βRA1 = 0.630 with a standard error of stE = 0.023 (p − value = 0.015). The naive
approach also yields a significant association between the genetic score and glucose lev-
els (βNA1 = 0.622, stE = 0.026, p − value = 0.020). By using the Naive Approach
(NA) we obtained for the glucose levels a genetic variance of σ2

GX
= 0.302 and a total

variance of σ2
T = 1.322, which corresponds to a residual heritability of h2NA = 0.228.

Our Retrospective approach (RA) yields a genetic variance of σ2
GX

= 0.384 and a total
variance of σ2

T = 1.457 which corresponds to a residual heritability of h2RA = 0.263.
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2.5 Discussion
In this paper, we developed a new method for the proper analysis of secondary traits

for multiple-cases family designs. A key component in our proposed method is the joint
modelling of the primary and secondary phenotypes. We developed a multivariate probit
model which can also capture the within families dependencies. A retrospective like-
lihood approach has been followed to correct for the ascertainment process. Thereby
unbiased estimates of the association between genetic factors and secondary traits can
be obtained. Simulation results showed that our approach preserves the type I error at
nominal level and provides accurate estimates irrespective of the disease prevalence, the
strength of the association between the genetic variants and the primary phenotype, and
the ascertainment mechanism. Another important empirical finding is that the heritabil-
ity estimates for the secondary traits can be severely underestimated unless the sampling
mechanism is taken into account. With respect to the analysis of the motivating case study,
for the SNPs the differences between the effect sizes obtained by our proposed method
and the naive approach were small. The small differences obtained between the naive and
the retrospective approach are mainly due to the small effect sizes of the genetic markers
selected on the primary phenotype. Indeed, the three main factors influencing the magni-
tude of the bias when using the naive approach are the correlation between the secondary
phenotype and the primary phenotype, the strength of the ascertainment, and the strength
of the association between the genetic marker and the primary phenotype.

Heritability is one of the properties that a trait needs to possess to be declared an en-
dophenotype for a specific disease. The other criteria are: the trait is associated with the
disease status in the population, the trait manifests whether illness is active or in remis-
sion (state-independent), and the trait and the disease status co-segregate within a family
(Gottesman and Gould, 2003). The Leiden Family Lab (https://www.leidenfamilylab.nl)
aims to identify endophenotypes for social anxiety disorder. The study comprises families
with at least two cases with social anxiety. The methods presented in this paper will be
used for the analyses of this study to identify endophenotypes and are relevant for other
family studies, as well.

In this paper, we proposed to include additional covariates in the model by using the
likelihood conditional on these covariates. Alternatively the joint likelihood of the sec-
ondary phenotype, genotype, and covariate conditionally on the primary phenotype can
be used. This alternative approach might be more efficient (Balliu et al., 2015). However
this likelihood requires distributional assumptions for the covariates within families which
can be complex for related individuals. Moreover maximization of the likelihood might
become time consuming. Ghosh et al (Ghosh et al., 2013) propose a pseudo-likelihood
and a profile approach to include covariates in a secondary phenotype analysis for case-
control data. This work needs to be extended to family data. A Monte Carlo approach
might be considered to compute the integrals (Tsonaka et al (Tsonaka et al., 2015)).

Typically there are missing genotypes. In unrelated individuals, genotypes can be im-
puted based on the haplotype structure obtained from a reference panel. For family data,
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the imputation should also take into account the genotypes of other family members. Soft-
ware exists which can perform such analysis, for example the Genotype Imputation Given
Inheritance (GIGI) program (Cheung et al., 2013). However for the computation of the
denominator in equation (2.2) these imputed genotype probabilities have to be taken into
account.

Due to the computational intensity of the proposed method, it is not yet possible to
run full GWAs analyses of secondary phenotypes. However, the proposed method can be
used on a set of pre-selected variants e.g. after an initial screening with the naive approach
to the primary and secondary phenotypes or when investigating pleiotropic effects. To re-
duce computation time of the multivariate integrals in the numerator and the denominator,
a faster algorithm can be used than the one used in this paper. The randomized Quasi-
Monte-Carlo procedure, developed by Genz (1992), is less accurate but faster especially
for large pedigrees. Development of less computational intensive methods is one of the
topics for future research.

With regard to pleiotropic effects, a criticism of probit random-effects models is that
in the presence of high dimensional random effects we cannot move from the subject-
specific interpretation for the fixed effects parameters to the population-level interpre-
tation as in the random-intercepts case. When the outcome is binary and families are
relatively small, estimation of the intercept and variances terms can be difficult, and con-
sequently coverage probabilities can be poor. Tsonaka et al. (2013) showed efficiency
gains by using information on disease prevalence. Their methods need to be adapted to
our setting of the analysis of two phenotypes. When the parameters of the primary pheno-
type model are not of interest and this model is only used to correct for the ascertainment
mechanism which is driven by the primary phenotype, we showed that secondary pheno-
type analyses with the proposed method are robust to using the probit instead of the logit
link function.

Future directions in the LSS and Leiden Family Lab Study will address the pending
availability of multiple omics and fMRI data, respectively, and joint modelling of several
glycans or voxels is of interest. Extending our approach, in this case, is algebraically
straightforward, but practical implementation may be challenging due to computational
intensity especially with a large number of secondary phenotypes. Use of composite like-
lihood approaches might be a solution and is our current research topic.

Finally, an attractive alternative approach to properly analyse secondary traits is to ap-
ply inverse probability weighting. However, it is crucial to correctly specify the weights.
Currently, we do not have sufficient information to be able to estimate these weights for
our studies. However with access to electronic records for research, such as informa-
tion from general practitioners to estimate the weights, it is likely that inverse probability
weighting approaches can be developed.



3
Statistical methods for the analysis of

secondary phenotypes in family proband
designs

Abstract
Numerous epidemiological studies comprise collections of traits in addition to the pri-

mary phenotype. Typically these studies use an outcome dependent design in which sub-
jects with extreme values for the primary phenotype are oversampled. These additional
traits are secondary phenotypes and straightforward analysis which ignores the study de-
sign may yield biased effect estimates. Especially when the covariate of interest is also
associated with the primary phenotype and when the primary and secondary phenotypes
are correlated, the selection based on the primary phenotype needs to be modelled. Fam-
ily studies use various types of ascertainment procedures. The most common ones are the
proband design, i.e. family members of a specific subject (probands) are recruited, and
the multiple cases design, i.e. families with a specific distribution of the primary pheno-
type are recruited. For example the families should have at least two cases. Recently we
proposed an approach for the analysis of secondary phenoytpes in multiple cases family

This chapter is in preparation for publication as: Renaud Tissier, Jeanine J. Houwing-Duistermaat. Statis-
tical methods for the analysis of secondary phenotypes in family proband designs.
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studies. The approach is based on the retrospective likelihood and joint modelling of the
primary and secondary phenotypes. Here, will consider the proband design. We compare
via mathematical formula and simulations the performance of our approach and an often
used approach which is based on the conditional distribution of the trait values given the
trait values of the probands. The last approach is implemented in the SOLAR-eclipse
software. We will illustrate the methods by analyzing data from the Social Anxiety Dis-
order (SAD) family study. We conclude that our approach performes well and yields
unbiased estimates for the heritability and the SNP effects on the secondary phenotype
for a proband design. However, when the information on the probands is missing, there
appears to be a small bias. We showed that conditioning of the trait values of the proband
violates the model assumptions and hence leads to biased estimates.

3.1 Introduction
Family studies are an important tool to understand the relationship between genetic,

lifestyle and shared environmental factors and complex traits. Typically residual corre-
lation between outcomes of family members exists due to unobserved shared genetic,
lifestyle and environmental factors. In addition most of the family studies use outcome
dependent sampling. These two issues make the statistical analysis of data from family
studies challenging. The correlation between the outcomes has to be modelled and correc-
tions for the ascertainment process are required to obtain unbiased parameter estimates
with correct standard errors. Here we consider the two most commonly used selection
schemes (Figure 3.1). For the proband design ascertainment is based on the primary phe-
notypes of probands, i.e., families are selected in the study because one or more specific
family members are known to have a extreme value of a trait of interest. One example
is the Family Violence study where parent-child agreement on child maltreatment was
examined in a multigenerational study (Compier-de Block et al., 2017). A part of the
families was recruited via probands selected from an epidemiological study. Although
the families in this design are recruited via the probands, not always data for the probands
are available. For example, a family can be recruited for having at least two members
who deceased due to cardio-vascular diseases (Irvin et al., 2014). Missingness of data
on probands is another complication in the proband family design. The second ascertain-
ment process is based on recruiting families with at least a certain number of affected
family members. An example is the Leiden Longevity Study where sibships with at least
two nonagenarian siblings are included in the family (Houwing-Duistermaat et al., 2009).
These two types of ascertainment processes need probably different ascertainment correc-
tions. For the proband design the correction comprises using the conditional distributions
of the outcomes on the family members given the outcomes of the probands. For the
muliple case family studies corrections need to be based on the probability for a family to
have a certain number of affected members.

While a lot of work is available on ascertainment corrections when the aim of the anal-
ysis is to model the primary phenotype (de Andrade and Amos, 2000), work on secondary
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Figure 3.1: Example of pedigree representing the two types of ascertainment process for familiy studies for a
family of five siblings. Top, the multiple proband design where the family is selected based on 2 specific family
members being affected. Bottom, the multiple cases family design where family are selected for having at least 2
affected members. Squares and circle represent the two genders. Black filled symbols represent affected family
members.

continuous phenotypes is scarce. Epidemiological studies comprise however often many
secondary phenotypes, for example omics variables, such as metabolomics, proteomics,
and glycomics, and Electroencephalography (EEG) and MRI data. In psychology, iden-
tification of endophenotypes of illnesses is an important research topic. Endophenotypes
are by definition secondary phenotypes. They satisfy four conditions, namely the pheno-
type is associated with the disease, is heritable, manifests whether the disease is active or
in remission (state-independent), and co-segregates with the disease status within fami-
lies. Since in psychology the definition of diseases might be challenging, these endophe-
notypes offer an alternative to detect underlying genetic mechanisms (Gottesman and
Gould, 2003; Glahn et al., 2007; Miller and Rockstroh, 2013; Iacono et al., 2017). How-
ever for proper analysis of endophenotypes (secondary traits) corrections for the sampling
mechanism based on the primary phenotype need to be made. For case-control studies
this was shown by Monsees et al. (2009) and for multiple case families this was shown
by Tissier et al. (2017). Both papers studied the effect of selection on parameter estimates
for different scenarios of relationships between genetic markers (G), the secondary phe-
notypes (X) and the primary phenotype (Y). Four of these scenarios are given as directed
acyclic graphs in Figure 2.1. When the secondary and primary phenotype X and Y are
correlated, the estimate of the parameter modelling the effect of G on X will be biased
under the alternative hypothesis. Since both outcomes are measured on the same sub-
jects and the secondary phenotypes are typically chosen for their potential associations
with the primary phenotype, this is often the case. The scenarios C and D in Figure 2.1
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correspond to these situations. The authors also showed that the amount of bias depends
on the prevalence of the primary phenotype, the strength of the association between the
primary and secondary phenotypes, and the association between the tested marker and
the primary trait. Note that Monsees presented two more scenarios. However since they
involve reverse causality, they were not further considered in Monsees paper and we will
not consider them neither.

Figure 3.2: Directed acyclic graphs representing possible relationships between the ascertainment (S), the pri-
mary phenotype (Y), the secondary phenotype (X) and the genetic marker (G)

Here we will consider is our recently developed method based on a retrospective like-
lihood approach and joint modeling of primary and secondary phenotype (Tissier et al.,
2017) for the proband design. In addition we will consider using the conditional distribu-
tion of the secondary phenotype values of the families given the secondary phenotypes of
the probands. This approach was recently applied in two papers (Greenwood et al., 2007;
Turetsky et al., 2015) for the proband design. They used the method implemented in the
software SOLAR (Almasy and Blangero, 1998). However the method in SOLAR was
developed for the analysis of primary quantitative phenotypes in families with a proband
design. We will show that this approach is not appropriate for secondary phenotypes. An-
other complication is that when data on the probands are not available, conditioning on
the outcome of the probands is not possible. We will compare the performance of these
two approaches to the naive approach.

The rest of the paper is organized as follows, in the next section we present the strate-
gies to correct for the ascertainment. We present a simulation study to assess the strength
of possible bias of parameter estimes as function of the correlation between primary and
secondary phenotype for different scenarios. We finally illustrate the methods by analyz-
ing Electroencephalography (EEG) data from the social anxiety disorder (SAD) family
study from the Leiden Family Lab (famlab: https://www.leidenfamilylab.nl) which re-
cruited families based on having at least two members (one parent and one child) of the
same family affected by SAD (Bas-Hoogendam et al., 2018).
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3.2 Methods
First we introduce some notation. Let N be the total number of families in the study.

For family i (i = 1 . . . N ) of size ni, let Yi, Xi and Gi be the ni × 1 vectors for the
case-control status, the secondary phenotype and the genotype, respectively.

3.2.1 Naive approach: ignoring sampling
If we ignore the ascertainment, estimates of the parameters modelling the effect of ge-

netic markersG on a phenotype of interestX can be obtained by maximizing the prospec-
tive likelihood L:

L = P (X | G) =
∏
i

P (Xi | Gi),

with P (Xi | Gi) the conditional probability of the phenotype X given the covariate G in
family i. This probabilitly might be modeled by a multivariate linear mixed model where
Xi ∼ Nni

(µX ,ΣX) as follows:

Xi = β0 + β1Gi + σGX
bXi + σXε ε

X
i , (3.1)

where β = (β0, β1) denotes the regression coefficient vector with β0 the intercept
and β1 the parameter representing the effect of the genotype on X , bXi ∼ Nni

(0,Ri)
the random effect which models the genetic correlation structure of the secondary pheno-
type within each family, and σε the residual standard deviation. The heritability can be
estimated by the proportion of the genetic variance in the phenotypic variance:

H2 =
σ2
GX

σ2
GX

+ σ2
ε

. (3.2)

3.2.2 Joint modeling under retrospective likelihood
Next we consider to use the retrospective instead of the prosepective likelihood. For

a family i the retrospective likelihood can be written as follows:

P (Xi, Gi | Yi) =
P (Xi, Yi | Gi)P (Gi)

P (Yi)
=
P (Xi, Yi | Gi)P (Gi)∑
g∈G P (Yi | g)P (g)

.

This approach is advantageous because it implictly corrects for the ascertainment pro-
cess, because in the proband design the selection depends only on the primary phenotype.
To estimate the effect of the genetic factorG onX , we need to model the joint conditional
probability P (Xi, Yi | Gi). To deal with the mixture of binary and quantitative outcome
variables, a multivariate mixed probit model is proposed. Let bi = (bi1, . . . , bini)

T be a
set of family specific random effects which model the familial genetic correlation and let
Gi = (gi1, . . . , gini

)
T be the vector of genotypes for family i. For the probit model, the
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observed response Y is modelled as a censored observation from an underlying continu-
ous latent variable Y ∗. For Y ∗ a mixed-effects regression model is used

Y ∗i = α0 + α1Gi + σGY
bYi + σεYi , (3.3)

where εYi ∼ Nni(0, Ini) is independent of bYi . Here α = (α0, α1) denotes the regression
coefficient vector with α0 the intercept and α1 the parameter representing the effect of the
genotype on Y . At the family level we assume bYi ∼ Nni

(0,Ri), with Ri the coefficient
of relationships matrix with elements rlm = 2−dlm with dlm the genetic distance between
subjects l andm in the family. The parameter σGY

represents the residual additive genetic
variatio, i.e. the variation which is not explained by the observed genotype gij . For
identifiability reasons σ is fixed to 1. Now the conditional probability to have the disease
πij = P (Yij = 1 | bij , gij) on gij is modeled as follows:

P
(
Yij = 1 | gij , bYij

)
= Φ

(
α0 + α1gij + σGY

bYij
)
,

with Φ (z) the cumulative distribution function of the standard normal distribution. The
marginal density under the probit model takes the form:

f(yij | gij ;α, σGY
) =

∫
bYi

∫ γyij+1

γyij

f(y∗ij | gij , bYi ;α, σGY
)f(bYi )dy∗ijdb

Y
i .

To model the secondary phenotype Xi we extend Equation 3.1. Now X and Y are
jointly modelled using the model specifications ( Equation 3.1 and Equation 3.3).

Y ∗i = α0 + α1Gi + σGY
bi + εi,

Xi = β0 + β1Gi + σGX
bi + σXε εi,

(3.4)

Note that additional random effects can be included in this model to take into ac-
count unobserved shared environmental factors. In this paper we are focused on the
genetic variability and do not model environmental variation. Let ΣXi and ΣY ∗i de-
note the corresponding variance-covariance matrices of the marginal distributions of Xi

and Y ∗i and let ΣXY ∗i be their covariance. The joint distribution of Y ∗ and X is then

(Y ∗i , Xi) v N2ni

([
α0 + α1Gi
β0 + β1Gi

]
,

[
ΣY ∗i ΣXY ∗i

ΣXY ∗i ΣXi

])
.
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with the marginal correlation between family members j and j′ in family i:

cor (Xij , Xij′) =
σ2
GX

2−d(j,j
′)(

σ2
GX

+ σ2
ε

)
cor
(
Y ∗ij , Y

∗
ij′
)

=
2−d(j,j

′)σ2
GY(

σ2
GY

+ 1
)

cor
(
Xij , Y

∗
ij

)
=

ρσGX
σGY√(

σ2
GX

+ σ2
ε

) (
σ2
GY

+ 1
) = ρXY

cor
(
Xij , Y

∗
ij′
)

=
2−d(j,j

′)ρσGX
σGY√(

σ2
GX

+ σ2
ε

) (
σ2
GY

+ 1
) ,

where ρ represents the genetic correlation between the primary and secondary pheno-
types. The heritability estimates of the secondary phenotype which quantifies the propor-
tion of genetic variation in the total variance is obtained by:

H2 =
σ2
GX(

σ2
GX

+ σ2
ε

) . (3.5)

All the parameters of the models are estimated by maximization of the log likelihood
function.

3.2.3 Conditioning on probands
This approach is developed for analysis of quantitative primary phenotypes in a proband

design and implemented in the SOLAR software and FISHER. The method is described
by Hopper and Mathews (1982), Beaty and Liang (1987) and de Andrade and Amos
(2000). Corrections for ascertainment are made by conditioning the likelihood for each
pedigree on the trait values of the pedigree probands. Let Asc be the ascertainment
process and let Y P and GP be the primary phenotype and the genotype values for the
probands, respectively. The prospective likelihood Li for family i can be written as fol-
lows:

Li = P (Yi | Gi, Asc) =
P (Yi, Gi, Asc)

P (Gi, Asc)
=
P (Asc|Yi, Gi)P (Yi|Gi)

P (Asc | Gi)
,

By assuming that the ascertainment is complete and depends only on Y Pi and not
on the covariates or Y NP , the values for the non-proband family members, we have
P (Asc|Yi, Gi) = 1. Furthermore, P (Asc | Gi) = P (Y Pi | Gi) = P (Y Pi | GPi ).
Hence Li can be written as follows:

Li =
P (Yi|Gi)
P (Y Pi | GPi )

,
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The phenotype Yi is assumed to follow a multivariate normal distribution, Yi ∼
Nni

(µ,ΣY ), with:
Yi = α0 + α1Gi + σGX

bYi + σYε ε,

where β = (β0, β1) denotes the regression coefficient vector with β0 the intercept and
β1 the parameter representing the effect of the genotype on Yi, bYi ∼ Nni(0,Ri) is the
random effect which models the genetic correlation structure within each family for the
secondary trait, and σε is the residual standard deviation. Several studies have used the
same approach for analysis of secondary phenotypes. Specificaly let XP

i be the value of
the secondary phenotype for the proband(s) of family i, then the following likelihood is
used (3.2.3):

Li =
P (Xi|Gi)
P (XP

i | GPi )
,

where Xi follows a multivariate normal distribution Xi ∼ Nni
(µ,ΣX) which is modeled

by the model of the naive approach (Equation 3.1). However, Asc is not based on XP

but on Y P , hence conditioning on XP might not be an appropriate way to correct for the
ascertainment. Therefore this approach might provide biased estimates.

To overcome this issue we propose to model jointly Xi and Yi in order to take into
account the existing correlation between the primary and secondary phenotypes and to
use the conditional distribution given the proband(s) values XP

i and Y Pi . We have:

Li = P (Xi, Yi | XP
i , Gi, Y

P
i ) =

P
(
Yi, Xi, X

P
i , Gi, Y

P
i

)
P (XP

i , Gi, Y
P
i )

=
P (Yi, Xi | Gi)P (Gi)

P (XP
i , Y

P
i | Gi)P (Gi)

=
P (Yi, Xi | Gi)
P (XP

i , Y
P
i | GPi )

,

where the joint distribution ofXi and Yi can be modeled as proposed in Eq 3.4 for the ret-
rospective likelihood approach. Estimates of the parameters are obtained by maximizing
the likelihood function:

L =
∏
i

Li =
∏
i

P (Yi, Xi | Gi)
P (XP

i , Y
P
i | GPi )

.

3.3 Simulation study

3.3.1 Simulation Setup
A simulation study was set up to evaluate the performance of the described meth-

ods. The methods were compared in terms of bias and 95% coverage probabilities of the
estimated parameters using data from proband designs. For simplicity we used continu-
ous primary and secondary phenotypes. Probands had a value for the primary phenotype
above the 90th quantile in the population. We considered families with five siblings.
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Families which were included for analysis had either one or two probands. As genetic
biomarker a single nucleotide polymorphism (SNP) with an additive effect on both out-
comes was simulated.

The following joint distribution of the primary and secondary phenotypes X and Y
for a family was used:

(Yi, Xi | Gi) v N2ni

([
α0 + α1Gi
β0 + β1Gi

]
,

[
ΣYi

ΣXYi

ΣXYi
ΣXi

])
with as covariances between the secondary phenotypes X and the primary phenotypes Y
for family members j and j′:

cov(Xij , Yij) = ρσGX
σGY

cov(Xij , Yij′) = 2−d(j,j
′)ρσGX

σGY
.

Here, d(j, j′) is the degree of kinship between family members j and j′ and ρ is
the correlation between the two phenotypes. For simplification of notation let Zi =
(Yi, Xi | Gi). Then the distribution of Z can be written as follows:

(Zi) =
(
ZNPi , ZPi

)
v N2ni

([
µZNP

i

µZP
i

]
,

[
ΣZNP

i
ΣZNP

i ZP
i

ΣZP
i Z

NP
i

ΣZP
i

])
with P and NP representing the proband and other family members, respectively. Now
we first simulated the phenotypes of the probands ZPi by generating samples from the
multivariate normal distribution and keeping only the extreme values of Y Pi (values larger
than the 90th percentile. Let zPi be the realization of ZPi , then phenotypes for the family
members of the proband(s) were simulated by using the conditional multivariabe distri-
bution of (ZNPi | ZPi ):

µ(ZNP
i |ZP

i ) = µZNP
i

+ ΣZNP
i ZP

i
Σ−1
ZP

i

(zPi − µZP
i

)

Σ(ZNP
i |ZP

i ) = ΣZNP
i
− ΣZNP

i ZP
i

Σ−1
ZP

i

ΣZP
i Z

NP
i

A minor allele frequency of 0.3 was used to simulate the SNP genotypes for the par-
ents and the genotypes for the offspring were simulated under Mendels first Law. For
the secondary phenotype, the following fixed effects values were used: β0 = 2 and
β1 = 0.5, whereas for the primary phenotype model the effect sizes were α0 = 5 and
α1 = 0.5.. The heritability of both phenotypes was fixed to 50%. Specifically, we used
σGX

=σεX =0.5 and σGY
= σεY =1. For the correlation between the phenotypes, we varied

ρ from 0 to 1 with steps of 0.1.
For study designs with ascertainment based on one and on two probands and for each

ρ, 500 replicates were generated. Each replicate was considered twice namely all fam-
ily members were used in the analysis and only the non-proband family members were
analyzed.
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3.3.2 Simulation Results
Figure 3.3 presents the means of the estimates of the SNP effect on the secondary

phenotype (top panel) and of the heritability of the secondary phenotype (bottom panel)
across the replicates. In the left panel the estimates are based on the datasets with one
proband, while the right panel corresponds to datasets with two probands. With regards
to the estimates of the effect of the SNP on the secondary phenotype, the retrospective
likelihood approach provides unbiased estimates for both types of ascertainments. Con-
ditioning on the value of the secondary phenotype of the proband(s) provides only un-
biased estimates when the correlation between the primary and secondary phenotypes is
one. When the correlation decreases the estimated effect size of the SNP decreases from
β1 = 0.5 for a correlation of one to β1 = 0.091 and β1 = 0.079 for a correlation ρ
of zero, and for one and two probands, respectively. Conditioning on the values of both
phenotypes of the proband provides unbiased estimates for ρ equal to zero, β1 = 0.495
and β1 = 0.491 for one and two probands, respectively. However, when ρ increases this
approach underestimates the effect sizes namely β1 = 0.452 and β1 = 0.427 for one and
two probands, respectively and ρ = 1.

Finally, the naive approach provides constant estimates almost independent of the
correlation between X and Y . The estimates are β1 ≈ 0.37 and β1 ≈ 0.27 for selection
schemes based on one or two probands. For all approaches the bias of the estimates in-
creases with the strength of the ascertainment.

With regards to the heritability estimates, just as for the SNP effects the retrospective
likelihood provides unbiased estimates. For the naive approach the bias of the estimates
of the heritability appears to depend on the correlation ρ. For ρ between 0 and 0.6 the
estimates are almost unbiased but after 0.6 they start to decrease to h2 = 0.410 and
h2 = 0.356 for ρ = 1 for families which are selected based on one proband and two
probands, respectively. This suggests an impact of the sampling process on the variance
of X . As the correlation between X and Y increases the variance of the distribution of X
in the families decreases. The same phenomenon is observed for the approaches which
condition on the outcome(s) of the probands, an unbiased estimate of the heritability is
obtained when both phenotypes have a small correlation (between 0 and 0.3) while the
estimate decreases to h2 = 0.309 for a one-proband design and to h2 = 0.236 for a two-
proband design when conditioning on the proband’s secondary phenotypes and ρ = 1.
For conditioning on both phenotypes of the probands the estimates of the SNP effect and
the heritability are unbiased except for values of ρ close to one where both estimators
show a small bias.



3.3
Sim

ulation
study

43

Figure 3.3: SNP effect (top) and Heritability (bottom) estimates for a proband design provided by SOLAR, the retrospective likelihood and the naive approach.
Estimates are provided for various correlation between the primary phenotype and the secondary phenotype and for the two different ascertainments, namely 1
proband (left panel) or 2 probands (right panel). The black line represent the true value of the heritability and the SNP effect
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Figure 3.4 presents the simulations results for the situation where there is no data
available for the probands. Note that for this situation we can only apply the retrospec-
tive likelihood and the naive approach. In terms of SNP effects, both approaches provide
similar results for both ascertainment schedules. For a one-proband ascertainment the ret-
rospective likelihood provides estimates with a small bias which increases with ρ, namely
from β1 = 0.467 to β1 = 0.459 while the naive approach obtains a SNP effect esti-
mation from β1 = 0.459 to β1 = 0.442. For a two-proband design the bias is larger,
the values reduces to β1 = 0.430 and to β1 = 0.405 for the retrospective and naive
approach, respectively. For the heritability, the retrospective likelihood slightly overesti-
mates the heritability with h2 ≈ 0.54 for 2 probands. For the naive approach, we observe
a similar behavior as for the families which includes the phenotypes of the probands: the
approach provides unbiased estimates for a small correlation betweenX and Y , while the
bias increases when the correlation becomes larger: the heritability estimates reduces to
h2 = 0.403 for a one-proband design and to h2 = 0.312 for a two-proband design for
ρ = 1.

The estimate of the SNP effect on the secondary phenotype by the naive approach is
slightly better when the information on the proband is missing. However, the heritabil-
ity estimates provided by the naive approach are worse than for the scenario where the
probands are included in the study. For the retrospective likelihood, the lack of informa-
tion on the probands leads to bias for both SNP effect and heritability. However, the bias
remains relatively small.
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Figure 3.4: SNP effect (top) and heritability (bottom) estimates for a proband design, where probands are not in the study, provided by the retrospective likelihood
and the naive approach. Estimates are provided for various correlation between the primary phenotype and the secondary phenotype and for the two different
ascertainment, namely 1 proband (left panel) or 2 probands (right panel). The black line represent the true value for the heritability and SNP effect.
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As the heritability provides only information about the proportion of genetic variance
in the total variance of a phenotype, we investigated the 95% coverage probabilities for
the genetic variance of X . Table 3.1 summarizes the results. the retrospective likelihood
approach has a stable coverage probability between 90.9% and 96.8% accross all different
scenarios. When conditioning on the secondary phenotype only, the coverage probabil-
ity is ≥ 90% for a correlation ρ between 0.2 and 0.5 for a 1-proband ascertainment and
between 0 and 0.3 for 2-proband ascertainment rule. The coverage probability drastically
shrinks, when ρ increases, to 3.2% and 0% when families are selected based on one or two
probands, respectively. The naive approach provides, overall, better coverage probabili-
ties than conditioning on the phenotypes of the probands. The performance of the naive
approach is strongly impacted by the ascertainment strength. Finally, the conditioning
on the values of the primary and secondary phenotypes provides coverage probabilities
≥ 90% only for ρ ≤ 0.4 and ρ ≤ 0.3 for 1 and 2 probands ascertainment, respectively.
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Study design With Probands Without Probands

Correlation (X ,Y ) Retrospective likelihood Solar Naive Joint Retrospective likelihood Naive

1 proband

0.0 93.1 87.0 86.9 94.3 93.5 90.6

0.1 91.6 88.4 88.4 93.2 91.5 91.2

0.2 95.4 91.4 89.8 95.4 91.0 92.2

0.3 92.8 94.0 91.1 92.4 89.6 93.4

0.4 95.8 95.2 94.8 91.0 89.8 93.8

0.5 95.8 95.0 94.5 88.4 88.9 94.0

0.6 95.7 89.4 94.3 81.0 87.6 93.6

0.7 93.9 73.2 87.3 76.7 88.8 89.2

0.8 95.7 47.2 79.4 70.4 86.9 81.8

0.9 93.9 17.3 62.4 62.9 87.4 67.6

1.0 93.7 3.2 39.6 56.9 87.8 44.4

2 probands

0.0 94.7 94.0 71.9 92.8 95.3 85.6

0.1 90.9 94.0 74.5 91.4 93.1 85.2

0.2 96.8 94.2 80.8 91.6 89.2 87.4

0.3 96.4 93.2 87.9 87.3 85.9 90.6

0.4 95.4 89.0 92.4 79.5 84.1 93.4

0.5 92.5 84.0 96.0 74.0 82.5 94.8

0.6 94.0 67.6 93.2 66.8 80.4 92.0

0.7 95.0 43.6 80.8 61.9 78.4 84.0

0.8 92.5 17.0 59.2 59.1 77.9 66.2

0.9 91.1 2.6 23.8 48.1 78.2 33.8

1.0 96.4 0.0 3.8 41.8 79.4 11.2

Table 3.1: 95% Coverage probabilites of the genetic variance of the secondary phenotype, σ2
GX

, for the various
scenarios.
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3.4 The social anxiety disorder study
Recently we used the retrospective likelihood approach and SOLAR to analyze data

from a proband design where data on probands were missing (Fuady et al., 2018). Here we
focus on the analysis of various secondary phenotypes in a family study with the proband
design where data for the probands are available. The primary phenotype is social anxiety
disorder (SAD), which is a psychiatric disorder which is characterized by extreme anxiety
and avoidance in one or more social situations (Association., 2013). SAD is a common
and debilitating internalizing disorder (Furmark, 2002). The risk for developing SAD is
higher for individuals with a close family member with SAD than for individuals with-
out family members with SAD (Isomura et al., 2015), and estimates of the heritability of
SAD vary from 20 % to 56 % (Distel et al., 2008; Kendler et al., 1992; Isomura et al.,
2015). The goal of the Leiden Family Lab study on Social Anxiety Disorder (LFLSAD,
Bas-Hoogendam et al. (2018)) is to investigate whether behavioral and electrocortical
responses to social evaluation are candidate endophenotypes of SAD. Families were se-
lected based on two probands: one adult with SAD (target participant) and his/her child
with clinical or subclinical SAD. The final version of the dataset included 138 partici-
pants from nine extended families. To measure electroencephalography (EEG) activity
during a stressful social situation, participants had to perform a task without knowing it
beforehand to avoid anticipatory stress. EEG measures were done at four different time
points: before knowing they had to perform the speech (Resting state 1), before doing
the task (Anticipation), maximum three minutes after the task (Recuperation), and after
thirty minutes after completion of the task (Resting state 2). More details about the pro-
cedure can be found in Harrewijn et al. (2016). Here we analyze the EEG measure of
the correlation between the delta and beta wave of the brain. This correlation between
cerebral waves was measured on three 3 different frequency bands, namely 14-20 Hz (cor
delta low beta), 20-30 Hz (cor delta high beta), and 14-30Hz (cor delta beta), leading to
three measures of the correlation between delta waves and beta waves of the brain for four
time points. We applied the retrospectively likelihood approach and the approach which
conditions on the secondary phenotype values of the probands.

In the first columns of Table 3.2 for each secondary phenotype, the correlation be-
tween the secondary and the primary phenotype SAD and the estimates and p-values of
the parameter modelling the association between the various correlations between beta
and delta waves and subclinical SAD are given. The latter estimates were obtained from
the following linear mixed effect model:

Xi = β0 + β1SAD + βZZ + σGX
bXi + σεε

X
i ,

with Z vector of covariates to adjust for sex, age and age2. The random effects bXi ∼
Nni(0,Ri) model the genetic correlation structure within each family. We used the pack-
age coxme in R to fit this model. Only the correlation between the beta and delta waves at
low frequency in the anticipation period, was found to be associated with SAD, with an
effect size of -0.071 for an estimated correlation of 0.394 with SAD.
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Table 3.2 presents, also, the estimates for the heritability obtained using the three
described methods (retrospective likelihood, conditioning on secondary phenoty of the
proband, and conditioning on both phenotypes of the proband). The heritability was com-
puted using equation 3.5, presented in section 3.2. Just as in the simulations, the heritabil-
ity estimates obtained by the retrospective likelihood are always higher than the heritabil-
ity estimates obtained by SOLAR or by conditioning on both phenotypes of the probands.
As expected the differences between heritability estimates across the approaches is re-
lated to the correlation between the primary phenotype SAD and the secondary pheno-
types, the EEG variables. Indeed the largest identified difference in heritability estimates
corresponds to a secondary phenotype highly correlated with SAD ,while the smallest dif-
ference between the heritability estimates coincides with the smallest correlation between
the EEG variables and SAD. With the largest difference in heritability estimates between
the retrospective likelihood and SOLAR is 0.223 (with h2 = 0.580 and h2 = 0.357,
respectively) which corresponds to the only statistically significant associated secondary
phenotype. This phenotype also has the strongest correlation with SAD. As expected
conditioning on both phenotypes of the probands provides for this variable an estimate of
the heritability between the estimates of the retrospective likelihood and SOLAR namelh
h2 = 0.532. Finally, we observe that when the heritability estimates obtained by the ret-
rospective likelihood approach and SOLAR are small, the heritability estimates which is
obtained by conditioning on both proband’s pheonotypes are even smaller.
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EEG variable genetic correlation β1(p-value) h2 SOLAR h2 Retrospective h2 joint

SAD-EEG conditioning

Resting State 1

cor delta beta 0.066 .032(.47) .075 .124 .039

cor delta low beta 0.042 .025(.53) .086 .087 .084

cor delta high beta 0.102 .039(.30) .067 .118 .015

Anticipation

cor delta beta 0.266 -.053(.17) .289 .391 .374

cor delta low beta 0.394 -.071(.01) .357 .580 .532

cor delta high beta 0.161 -.028(.48) .397 .422 .427

Recuperation

cor delta beta 0.009 -.019(.73) .165 .187 .098

cor delta low beta 0.004 -.003(.94) .107 .111 .045

cor delta high beta 0.040 -.027(.60) .301 .330 .040

Resting State 2

cor delta beta 0.114 .061(.21) .303 .356 .305

cor delta low beta 0.186 .057(.19) .200 .336 .216

cor delta high beta 0.085 .041(.38) .169 .215 .200

Table 3.2: Results of the data analysis. Estimates of the association between the secondary phenotypes and subclinical SAD, and estimates of the heritability of
the secondary phenotypes obtained by the three considered approaches
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3.5 Discussion
In this paper, we studied the effect of incorrect ascertainment corrections on estimates

of model parameters for secondary phenotypes as function of the correlation between
primary and secondary phenotypes. We illustrate the methods with data from the social
anxiety disorder study from the Leiden Family Lab.

For a proband design where data for the proband(s) are available and analyzed, simu-
lations results showed that the retrospective likelihood performs well and the estimates of
the effect of the SNP on the secondary phenotype and of the heritability of the secondary
phenotype are both unbiased. In contrast conditioning on the secondary phenotype values
of the probands might yield biased results. This could be expected since the families are
selected based on the primary and not on the secondary phenotype. We observed that
SNP effects are underestimated when the secondary phenotype has a small correlation
with the primary phenotype. When the correlation between the primary and secondary
phenotype is large the bias shrinks and finally disappears when the correlation is equal
to 1. Note that in our simulations we chose the primary and secondary phenotypes to be
continuous, in case of binary primary phenotype it is not possible to achieve a correlation
of 1 with a continuous secondary phenotype. Therefore, estimates will always be biased.
An explanation for the fact that there is no bias for ρ = 1 might be that conditioning
on the values of the secondary phenotypes of the proband is equivalent to conditioning
on the primary phenotype when the correlation between the primary and the secondary
phenotype is large. Furthermore, the bias observed for both estimates is enhanced by the
strength of the ascertainment. It is well known that this approach performs less well when
the number of probands increases (Boehnke and Greenberg, 2018). While conditioning
on the phenotypes of the proband has proved to be an efficient and fast way to study pri-
mary phenotypes in a proband design, it is not recommended to use it for the analysis of
secondary phenotypes in this design.

Conditioning on the primary and secondary phenotypes of the probands appears to
perform better than only conditioning on the secondary phenotype. This approach pro-
vides on average less biased estimates than just conditioning on the secondary phenotype.
If the averaged estimate over the 500 datasets is close from the true value, the coverage
probabilities provided by this approach are small especially when ρ 0.3. Although not
always performing well this approach has two advantages: 1) when the primary pheno-
type is binary, this approach is computationally efficient compared to the retrospective
likelihood, especially for large pedigrees. The reason is that the dimension of the integral
in the denominator is smaller; 2) for quantitative primary phenotypes, the approach is im-
plemented in the SOLAR software as the analysis of multiple continuous phenotypes can
performed. Finally, the naive approach, as expected, was unable to provide proper SNP
effects and heritability estimates. The estimates were only unbiased when the correlation
between primary and secondary phenotypes was small.

In studies where data on the probands are not available, the retrospective likelihood
provided biased results both for the heritability and SNP effect. Although this bias appears
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to be small. Apparently, information on the phenotypes of the probands is essential to cor-
rect for ascertainment via these probands. For this situation the naive approach appears
to perform relatively well and estimates of SNP effects are quite similar to the estimates
obtained from the retrospective likelihood. The estimates of the heritability appear to be
unbiased when the correlation between the phenotypes is not too large. Therefore, the
naive approach might be a good alternative for the retrospective likelihood when pedi-
grees are large and the retrospective approach is computational too demanding.

The results of the estimation of the heritability of EEG phenotypes in families with
social anxiety disorder agreed with the results obtained in the simulations. The variable
which showed a statistically significant association with subclinical social anxiety disor-
der has a larger heritability when the retrospective likelihood approach compared to other
approaches is used. This variable could be an appropriate candidate endophenotype for
the social anxiety disorder. Due to the lack of genetic data in the study, we were unable
to investigate the difference between conditioning on the phenotypes of the probands and
the retrospective likelihood approach for fixed effects.

We are currently running more simulations to obtain a better understanding of the
underestimation of the heritability when the correlation between primary and secondary
phenotypes is high when we are only conditioning on the secondary phenotype. Finally,
the methods will be implemented in a R package for the conditioning on the joint distri-
bution of both primary and secondary phenotypes. This approach can be computationally
less challenging than the retrospective likelihood approach when pedigrees are large while
providing mostly unbiased results.



4
Gene co-expression network analysis for

family studies based on a meta-analytic
approach

Abstract
For a better understanding of the biological mechanisms involved in complex traits or

diseases, networks are often useful tools in genetic studies: coexpression networks based
on pairwise correlations between genes are commonly used. In case of a family-based
design, it can be problematic when there is a large between-family variation in expres-
sion levels. We propose here a gene coexpression network analysis for family studies.
We build a coexpression network for each family and then combine the results. We ap-
plied our approach to data provided for analysis in the Genetic Analysis Workshop 19
and compared it to 2 naive approaches-ignoring correlations among the expressions and
decorrelating the gene expression by using the residuals of a mixed model and a single-
probe analysis. Our approach seemed to better deal with heterogeneity with regard to
the naive approaches. The naive approaches did not provide any significant results, while

This chapter has been published as: Renaud Tissier, Hae-Won Uh, Erik van den Akker, Brunilda Balliu,
Spiridoula Tsonaka, Jeanine J. Houwing-Dusitermaat (2016). Gene co-expression network analysis for family
studies based on a meta-analytic approach. BMC Proceedings; 10(Suppl 7): 119-123.
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our approach detected genes via indirect effects. It also detected more genes than the
single-probe analysis.

4.1 Background
Weighted gene co-expression network is a widely used method for studying biological

networks based on pairwise correlations. This method provides more insight in the under-
lying biological mechanisms and offers a tool for dimension reduction by summarizing
identified modules (clusters) of genes (Plaisier et al., 2009; de Jong et al., 2012). How
to perform such an analysis for family data is an open question. For family data Kraft
et al. (2003) noted that testing association between expression levels and traits without
taking into account the family structure can lead to spurious results, especially when the
number of families is small and in the presence of large between-family variation. In this
paper, we propose a novel strategy for network analyses in a small set of relatively large
families. For this family-based approach, we first construct family-specific co-expression
networks and test for association between the modules and the traits of interest. Common
set of genes for all families were obtained by using the intersection and the union of fam-
ily specific modules. We compare this family-based approach with two naive approaches:
namely, one using the gene expression of the families directly (ignoring correlation) and
one that first decorrelates the gene expressions and then applies the standard approach.
We also compare our results with single probe analyses.

4.2 Methods

4.2.1 Study sample
The gene-expression dataset is composed of 647 individuals from 17 large families.

These samples are from the dataset described in Almasy and Blangero (1998). Here, we
focus on the largest 5 families: namely family 2, 5, 6, 8 and 10 with 65, 55, 45, 62 and
49 family members, respectively. The total number of individuals is 276. In total gene
expressions of 20634 probes are available. We used the simulated quantitative phenotypes
Systolic Blood Pressure (SBP) and the phenotype Q1 at time point 1 as outcome variables.
The simulation model of SBP comprises 15 genes and that of Q1 does not contain any
of these genes. SBP, Q1 and all probes were corrected for age and sex by regressing out
covariates and using residuals.

In order to decorrelate the gene expressions, we fitted for each probe a linear mixed
model: Xij = + uij + vi + ij , with Xij the value of the probe for the individual
j in family i, uij a normally distributed random genetic effect: uij N(0, S) where S =
2∗K ∗sg withK kinship matrix and sggenetic variance, vi a normally distributed random
effect representing shared environmental effects, and ij a normally distributed residual.
To obtain the residuals X∗ij of this model we used the function lmekin, which fits linear
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mixed models with specific structure of the variance-covariance matrix from the package
coxme (Therneau, 2018) in R.

4.2.2 Single probe analysis
For the single probe analysis the following mixed model was used:

Yij = + uij + vi +Xij + ij

with Yij the value of SBP or Q1 and Xij the value of the probe for individual j of family
i. The random effects uij , vi and ij are the genetic effect, the shared environmental effect
and residuals respectively. The parameter β represents the effect of the probe on the
outcome variable.

4.2.3 Network constructions
Co-expression networks were built on the dataset without correction for family struc-

ture based on Xij (naive approach), the dataset adjusted for family structure based on
Xij

∗ (naive decorrelated approach), and on the datasets from the five families separately.
We used signed co-expression networks. The adjacency matrix A = [alk] of each

network was computed as follows: alk = |0.5 + 0.5cor(xl, xk)|γ , with cor(xl, xk) the
correlation between xl the values vector of probe l and xk the values vector of probe k.
The parameter γ is acting as a soft threshold in the adjacency matrix, when we increase
the value γ the coefficient of the adjacency matrix will tend to 0 except for values really
close to 1. We used the biweight midcorrelation based on the median, which is more ro-
bust than the Pearson correlation. The co-expression networks were constructed with the
R package WGCNA (Langfelder and Horvath, 2008). For each obtained module, the first
principal component (eigengene) was computed.

4.2.4 Phenotype analysis
From all modules and all families, the following models were fitted:

Yj = + uj + βeigengenekj + j ,

where Yj is the outcome, uj the random genetic effect and eigengenekj the value of
the eigengene of module k of family member j. Let EMF2 to EMF10 be the most signifi-
cant eigenvalues of the family specific networks (NF 2 to NF 10) and let EMF be the most
significant eigenvalue of these five eigenvalues and MM

F be the corresponding module.
Identify the modules of the family-specific networks, which have the highest overlap with
MM
F (denoted as MO

F2 to MO
F10). Next, two common sets of genes for all families were

obtained by taking the intersection (MF = MO
F2 ∩MO

F5 ∩MO
F6 ∩MO

F8 ∩MO
F10) and the

union (MF = MO
F2 ∪MO

F5 ∪MO
F6 ∪MO

F8 ∪MO
F10) of the family specific modules. The
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first principal components of the two common sets were computed. The principal com-
ponent that explained most of the variance of the corresponding set of genes was used as
the eigengene EF of the family based approach.

The eigengenes of the naive approach (EN), the naive approach after decorelation
(END) and the family-based approach (EF) are tested for association with the two pheno-
types SBP and Q1. Here, the following mixed model was used:

Yij = + uij + vi + βeigengenekij + ij

with Yij the phenotype value for individual j of family i and eigengenekij the value of
eigengene of module k of individual j of family i. And uij , vi and ij are the genetic effect,
the shared environmental effect and residuals respectively. The parameter β represents the
effect of the eigengene k on the outcome variable.

Finally since spurious associations are especially expected in the presence of large
between family heterogeneity (Kraft et al., 2003) we also performed a network analysis
using the subset of 25% most heritable probes when performing the network analysis
(n=4911 probes with heritability between 0.33 and 0.88).

To test for significance we used a nominal alpha level of 0.05 and the Bonferroni
correction was applied to take into account multiple testing.

4.3 Results

4.3.1 Results obtained with all probes
For per family analysis, the module that showed the highest correlation with the SBP

was the magenta module obtained in family 8 (MM
F8) (β=2.52, p=0.0011). MM

F8 com-
prises 710 genes. For each family, the number of genes of the module with the highest
overlap is given in Table 4.1. The intersection and the union of these five family modules,
comprises 62 and 1746 probes respectively. The first principal component (eigengene)
of the probes in the intersection set explained more than 50% of the variance for each
family, while for the union set the eigengene explained only between 23% and 31% of
the variance of the expression levels. Therefore the eigengene of the intersection set was
used as summary for the family approach (EF ). In Table 4.2, for each family the effect
of EFi on SBP (β of model (2)) is given. For families 2 and 8, the eigengenes (EF2 and
EF8) were significantly associated with SBP.

When analysing all families together none of the approaches provided significant re-
sults. The joint analysis of the families using EF as eigengene in model (3) did not provide
a significant association SBP (β=-0.13, p=0.49). For the naive approach, the eigengene
of the module magenta (EN ) had the smallest p-value (β=-3.21, p=0.01). For the naive
approach using the decorrelated dataset, the eigengene of the module grey60 (END) had
the smallest p-value (β=-3.03, p=0.0061). After multiple-testing correction (between 43
and 50 modules in each network) none of the results were significant. Finally the single
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MO
F2 MO

F5 MO
F6 MO

F8 MO
F10

Module size 446 694 499 710 446

Size of the overlap with MM
F 187 308 240 710 372

Table 4.1: Module size of MO
F2 to MO

F10 and overlap size with MM
F in the all-probes analysis

All probes 25% most heritable probes

SBP Q1 SBP Q1

EF2 -0.57(0.2) (0.02)a 9.90(4.3)(0.02) 0.27(0.1)(0.07) -1.62(1.0)(0.11)

EF5 0.34(0.2)( 0.21) 14.0(4.7)(3.3e-3) 0.18(0.2)(0.41) -2.13(1.3)(0.11)

EF6 0.08(0.3)(0.78) 8.90(3.7)(0.02) 0.66(0.3)(0.01)a 2.49(0.9)(9.6e-3)

EF8 -0.62(0.3)( 0.04)a 10.47(4.2)(0.01) 0.07 (0.2)(0.68) 2.47(1.0)(0.02)

EF10 0.14(0.3)( 0.67) 7.55(4.5)(0.09) 0.02(0.2)(0.91) -2.22(1.2)(0.06)

EF -0.13(0.2)(0.49) - 0.21(0.09)(0.02)a -

EN -3.21(1.3)(0.01) 2.75(0.7)(5.6e-4)a 1.93(0.8)(0.01) -0.96(0.5)(0.06)

END -3.03(1.1)(6.1e-3) -1.41(0.4)(9.4e-4)a 1.94(0.7)(5e-3)a -0.41(0.2)(0.06)

Table 4.2: Parameter estimates of the association between eigengenes and Q1 and SBP. In parentheses are
standard errors and p values, respectively. For EF2 to EF10 model (2) was used; for EF , EN and END

model (3) was used. For Q1 the association results for EM
F2 to EM

F10 are presented. a Denotes significant test
after multiple testing corrections.

probe analysis preformed in the five families by using model (1) provided one signifi-
cantly associated probe with SBP (CRIP2; β= -13.68, p= 1.7e-06).

The intersection module of the family based approach did not contain any of the
15 genes used for the simulation. Also the identified gene of the single probe analy-
sis is not among these 15 genes. We hypothesized that correlation might exist between
EF2, EF8, and the gene expression of CRIP2 on one hand and the set of 15 genes on
the other hand. Indeed EF2 showed significant correlation with PSMD5 (p=0.004) and
GTF2IRD1 (p=0.007) and EF8 showed significant correlation with ZNF443 (p=5e-05),
PSMD5 (p=3e-05) and ABTB1 (p=6e-05). When the presence of these 15 genes in the
modules was investigated, it appeared that they were in different modules (see Table 4.3).
The gene CRIP2 which was significant in the single probe analysis showed significant
correlation with the gene KRTAP11-1 (p= 3.1e-03).

4.3.2 Analysis of Q1
The results of the analysis of Q1 are also given in Table 4.2. For the family approach,

none of the modules obtained in family-specific network analysis was significantly asso-
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NN NND NF2 NF5 NF6 NF8 NF10

MAP4 - - - - - 7 -

NRF1 - - - 1 - - -

TNN 11 - 19 5 14 - -

LEPR - 1 19 - - - -

FLT3 5 - - 8 4 - 1

GTF2IRD1 - 4 13 3 - - -

FLNB 9 - 16 21 13 - 2

ZNF443 8 - 5 1 23 6 1

GSN 2 15 3 - - 1 -

CABP2 11 - - 5 14 2 16

LRP8 - - 6 - - 12 -

PSMD5 3 1 18 10 28 17 -

GAB2 20 15 1 3 22 - 5

ABTB1 3 - 4 4 1 2 2

KRTAP11-1 4 19 2 1 18 4 1

Table 4.3: List of the top genes involved in the simulation model and their module number in each network. -,
Denotes the grey module in which all nonclustered genes are combined. The different colours represent genes
in the same module for a specific network

ciated with Q1 and no common set could be defined. In table 4.2 the estimates of strongest
associated modules EMF for each family are given. For the naive approach, the module
red (β=2.75, p=0.00056) was significant and for the naive approach using the decorrelated
data the module green (β=-1.41, p=0.00094) was significantly associated with Q1.

4.3.3 Results obtained with the 25% most heritable probes
For the naive and the family approaches, the results of the network based analyses

using only the gene expressions of the 25% most heritable probes (n=4911 probes with
heritability between 0.33 and 0.88) are also given in Table 4.2. None of the 15 genes used
in the simulation model for SBP was among this set of most heritable probes. For Family
6 the EF6 was significantly associated with SBP (p=0.01). The association of EF in
the five families with SBP was also significant (p=0.02). For Q1 none of the approaches
provided significant results. With regard to the single probe analysis, no other probes than
CRIP2 was significantly associated.
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4.4 Discussion
In this paper, we have proposed a novel strategy to perform a co-expression network

analysis with family data: building a network for each of the large pedigrees, and defining
a common module by taking the intersection of family specific modules. We compared
our family-based approach with two naive network approaches and a single probe anal-
ysis. All analyses were performed in a small set of five relatively large families. None
of the 15 genes in the simulation model was identified in this small dataset. However the
family-based approach identified significant associations between the eigengene and SBP
in two families. This eigengene was significantly correlated with 4 of the 15 genes. When
analyzing all families jointly the family eigengene was not significant. Also the naive
network approaches did not provide any significant result. The single probe analysis pro-
vided one significant gene which was correlated with one of the 15 genes. To study the
performance of the methods with regard to false positive findings, we also analyzed the
trait Q1 for which no gene expressions were included in the simulation model. The family
approach did not provide a significant finding, while both naive approaches identified a
significant module for Q1. The result in the naive approach based on gene expression
(Xij) is in line with the findings of Kraft et al. (2003). We did not expect to have a false
positive finding when using the decorrelated data (X∗ij) as input for our network analysis.
Possible explanations for this finding are the fact that the correlation based on the kinship
coefficient might not be appropriate for gene expressions, and randomness. In addition to
the set of all probes, also networks were built using only the 25% most heritable probes.
Especially for these variables that show large between-family variation spurious associ-
ations might occur when the family structure is not taken into account. This was not
confirmed in our analysis. More research is needed to study the sensitivity of the methods
for between-family variation.

We did not know the answers when we developed the family-based approach and an-
alyzed the data. The simulation model used to create the datasets may not be well suited
to pick up the 15 genes directly by network analysis. The 15 genes present in the model
were in different pathways: they were not correlated. Moreover our approach was able
to identify indirect effects: i.e. the eigengenes were correlated with the 15 genes. Thus
the significant association of the family based network approach represented the largest
number of genes from the simulation model. We expect that especially in the presence of
large between-family variation our approach would perform best. A thorough simulation
study is required to investigate the performance of our method further.

Network analysis provides a tool to reduce the number of tests by first summarizing
the data in sets of genes with correlated gene expressions and summarizing the gene set
by the first principle component. Another obvious reduction step is to only consider the
heritable probes for the analysis. It appeared that by using the heritable probes the re-
sults across the families were less heterogeneous. The family approach as well as the
naive approach using decorrelated data provided significant results for SBP. In this pa-
per we combined the family-specific modules by taking the intersection of the modules
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which showed most overlap. This approach worked well for the relatively small set of
five families. When we applied our method to the six largest families, similar results
were obtained (data not shown). However intersection might not be the most appropriate
approach to combine modules across families, because the intersection set becomes too
small. Alternative approaches have to be developed. For example lasso type of methods
can be used to select probes from the union sets. Development of a method for con-
structing a common set from the family specific modules is a topic for future research.
Finally more research is needed to evaluate the performance of our method with regard to
false positive and false negative findings in relationship to heterogeneity, family size, the
number of families and the heritability of gene expressions.



5
Improving stability of prediction models
based on correlated omics data by using

network approaches

Abstract
Building prediction models based on complex omics datasets such as transcriptomics,

proteomics, metabolomics remains a challenge in bioinformatics and biostatistics. Reg-
ularized regression techniques are typically used to deal with the high dimensionality of
these datasets. However, due to the presence of correlation in the datasets, it is difficult to
select the best model and application of these methods yields unstable results. We propose
a novel strategy for model selection where the obtained models also perform well in terms
of overall predictability. Several three step approaches are considered, where the steps
are 1) network construction, 2) clustering to empirically derive modules or pathways,
and 3) building a prediction model incorporating the information on the modules. For
the first step, we use weighted correlation networks and Gaussian graphical modelling.
Identification of groups of features is performed by hierarchical clustering. The grouping

This chapter has been published as: Renaud Tissier, Jeanine J. Houwing-Duistermaat, Mar Rodríguez-
Girondo (2018). Improving stability of prediction models based on correlated omics data by using network
approaches. PLoS One 13(2):e0192853.

61



62 Chapter 5 – Improving stability of prediction models based on correlated omics

information is included in the prediction model by using group-based variable selection
or group-specific penalization. We compare the performance of our new approaches with
standard regularized regression via simulations. Based on these results we provide recom-
mendations for selecting a strategy for building a prediction model given the specific goal
of the analysis and the sizes of the datasets. Finally we illustrate the advantages of our
approach by application of the methodology to two problems, namely prediction of body
mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic
syndrome study (DILGOM) and prediction of response of each breast cancer cell line to
treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.

5.1 Introduction
The advent of the omic era in biomedical research has led to the availability of an in-

creasing number of omics measurements representing various biological levels. Omics
datasets (e.g. genomics, methylomics, proteomics, metabolomics, and glycomics) are
measured to provide insight in biological mechanisms. In addition, new predictions mod-
els can be built based on omics predictors. Omic data are typically high-dimensional
(i.e. n < p, n sample size and p the number of variables) and they present unknown
dependence structures reflecting various biological pathways, co-regulation, biological
similarity or coordinated functions of groups of features. Since traditional regression
methods have been developed for low-dimensional settings only, they are too restrictive
and hence unable to deal with omic datasets and to determine the actual role of their var-
ious components. As a result, an important methodological challenge in omic research
is how to incorporate these complex datasets in prediction models for health outcomes
of interest. This paper is motivated by the previous work of Rodríguez-Girondo et al.
(2018) in which we showed that metabolomics were predictive of future Body Mass in-
dex (BMI) using data from the DIetary, Lifestyle, and Genetic determinants of Obesity
and Metabolic syndrome study (DILGOM)(Inouye et al., 2010). However, when we tried
to identify the important metabolites, using lasso regression for variable selection in a
cross-validation framework, we obtained inconsistent effect sizes and variable selection
frequencies. Specifically, metabolites with largest effects were not always selected and
highly correlated variables presented different selection frequencies. These results in-
spired us to develop more stable prediction models by using network methods.

To obtain a good balance between stability and predictive ability, we propose to in-
corporate information on the structure between features from an omics dataset into pre-
dictions models for health outcomes. The incorporation of such a structure in prediction
models is a relatively new and expanding strategy in prediction models. For classification
problems methods have been developed, such as the partial correlation coefficient ma-
trix (PPCM) method (Rao and Lakshminarayanan, 2007), network-based support vector
machines (Zhu et al., 2009), or the selection protein-protein interactions discriminative
subnetworks (Chuang et al., 2007). In this paper we focus on the prediction on contin-
uous outcomes. Also several methods have been developed for this type of outcomes.
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Zhang and Horvath (2005), and Reis (2013) have proposed to identify clusters of related
variables inside the network and to include a summary measure of these clusters, namely
principal components and partial least squares. While these approaches provide good re-
sults in terms of prediction accuracy, one of their major drawbacks is the chosen summary
measures which are hard to interpret and replicate. An alternative approach is network
penalization as proposed by Li and Li (2008), using the laplacian matrix of the network
matrix to build a lasso-type penalization in order to force the effect sizes of variables re-
lated to each other in the network to be similar. However, it is relatively heavy in terms
of computations and therefore not able to handle too large datasets. Winter et al. (2012)
proposed to first rank variables based on their univariate association with the outcome
and their relationships between each other and then use the top ranked variables in a pre-
diction model. While this approach can provide good predictions in some settings, it de-
pends on various tuning parameters and therefore reproducibility is a challenge. Recently,
network-based boosting methods (Shim et al., 2017) and combination of network-based
boosting and kernel approaches (Friedrichs et al., 2017) have been proposed to improve
prediction models for GWAs and gene expression studies. These methods include known
relationships between genetic markers and phenotypes of interest in order to detect new
genetic-phenotypes relationship and therefore improve prediction models. However, for
some omic type of data, such as metabolomics and transcriptomics, our lack of knowledge
limits the application of these methods only to certain omic sources such as genomics.

In this paper, we propose a flexible approach allowing investigators to apply sev-
eral types of network analysis approaches to estimate the structure of the data as well
as several possible group-penalizations methods. Namely, our approach consists of three
steps (Fig5.1): network analysis (to empirically derive relations within an omic dataset),
clustering (to empirically establish groups of omic related features) and predictive mod-
eling using the aforementioned grouping structure (via group-based variable reduction or
group-penalization). This strategy allows a lot of flexibility in terms of both network anal-
ysis and prediction models, as different type of omics data have different properties and
might need different network analysis strategies or prediction models to obtain proper and
biologically relevant results. Finally, to avoid overoptimism in absence of an external val-
idation set, a common situation in omic research, cross-validation of the whole three-step
procedure is used.

The rest of the paper is organized as follows: we present the various methods in-
volved in our three-step approach. An intensive simulation study is then presented to
empirically evaluate the performance of the various studied methods in terms of pre-
dictive ability and variable selection properties. Standard regularized regression meth-
ods such as lasso, ridge and elastic net are also considered. The methods are applied
to two sets of omic sources (metabolomics and transcriptomics) measured at baseline
for the prediction of BMI after seven years of follow-up using DILGOM and on gene
expression to predict treatment response from the publicly available breast cancer cell
line pharmacogenomics dataset (https://genomeinterpretation.org/content/breast-cancer-
cell-line-pharmacogenomics-dataset). In the last section, the results are discussed and
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Figure 5.1: Method summary. Step 1: Networks of features are derived from the data. Step 2: Using hierarchical
clustering, modules of features are identified. Step 3: Prediction models are derived using grouping information
from Step 2.

concluding remarks are provided.

5.2 Methods
A common approach to build prediction models in high-dimensional settings or in

presence of strong correlation between features is regularized regression (Hastie et al.,
2009), which has shown to have good properties in terms of predictive ability in vari-
ous omic settings (Ghosh and Chinnaiyan, 2005; Zemmour et al., 2015; Shahabi et al.,
2006; Pena et al., 2016). The choice of the shrinkage type imposes certain constrains
in the estimated parameters which can lead to unstability or to models which are diffi-
cult to interpret. The lasso approach (Tibshirani, 1996) introduces a l1-norm constrain
of the vector β of regression coefficients and shrinks some of the regression coefficients
towards zero, introducing sparsity by only selecting ‘the most important variables’ in the
model. In the presence of (groups of) correlated features, lasso penalization appears not
to perform well in terms of stability since it tends to randomly choose among the strongly
correlated features and can select at most n variables before saturation. Alternatively,
ridge regression (Hoerl and Kennard, 1970) considers a l2-norm constrain of the regres-
sion coefficients, which does not allow for explicit variable selection but typically handles
well strong correlations. Still, these ridge models are difficult to interpret since sparsity
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is not obtained. Alternative penalizations as elastic net (Zou and Hastie, 2005) have been
proposed to overcome limitations of lasso and ridge regression, producing sparse models
but also allowing to select more than n correlated variables.

In the rest of this paper, let the observed data be given by (y,X), where y = (y1, . . . , yn)T

is the continuous outcome measured in n independent individuals and X is a matrix of
dimension n × p, representing an omic predictor source with p features. We propose a
three-step approach (Fig 5.1) to get an interpretable prediction model for y based on X,
where X is high-dimensional (p > n). In the first step, we estimate the intensity matrix
(network) of X, which contains the degree of relation among the features of X. We in-
vestigate three different techniques for network estimation: weighted gene co-expression
network analysis (WGCNA, Zhang and Horvath (2005)), where the relationship is based
on Pearson correlation, and two proposals based on gaussian graphical modeling (Lau-
ritzen, 1996), where the relationship is given by the precision matrix. Here two differ-
ent penalization methods are considered. Namely, ridge (Ha and Sun, 2014) and lasso
(Friedman et al., 2007). In the second step, we identify modules (groups) of features by
applying hierarchical clustering to the dissimilarity matrix obtained from the estimated
network of Step 1. The grouping information is incorporated in the prediction model.
Here we consider two strategies: group-based variable reduction and group-penalization.
In the variable reduction approach, ‘hubs’ in each group are identified, i.e. variables with
the strongest connectivity within a module, and then included in a standard regression.
Group penalization, such as adaptive group ridge (van de Wiel et al., 2014), group lasso
(Yuan and Lin, 2006), and sparse group lasso (Simon et al., 2013), penalizes the features
from the same module jointly. Finally, double cross-validation (Rodríguez-Girondo et al.,
2018; Mertens et al., 2006, 2011) was applied, over all steps, to obtain proper tuning
parameters and summary performance measures in absence of an external validation set.

5.2.1 Step 1: Network construction
A network is, by definition, an adjacency matrix A = [aij ], where aij is either an

indicator of presence of connection (edge) between two features (nodes) xi and xj or a
value between 0 and 1 which represents how close the two nodes are. We focus on the
latter case because of its continuous nature, and we refer to the resulting networks as
weighted networks.

WGCNA

Co-expression networks based on pairwise correlations have been proposed in the
context of analyzing gene expression data Zhang and Horvath (2005). Due to the presence
of many correlated gene expression data, a parameter β (soft threshold) is introduced in
order to shrink "low" pairwise correlation values towards zero. The parameter β might
be chosen in such a way that the free-scale topology criterion holds, i.e, the fraction of
nodes with k edges should follow the power law P (k) ≈ k−γ , with P (k) the fraction of
nodes in the network with k edges and γ a constant with a value comprised between 2 and
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3. The rationale behind the free scale topology criterion relies on maximizing the within
cluster connectivity while minimizing the between cluster connectivity.

Co-expression networks have been successfully used in the context of transcriptomics
(Oldham et al., 2006, 2008; Stuart et al., 2003). A drawback of the approach is that the soft
thresholding does not provide a sparse network as none of the correlation coefficients is set
to zero. In some omic settings, such as metabolomics and glycomics where correlations
are high the network might be too dense to interpret. This limitation has motivated the use
of alternative approaches such as Gaussian graphical models based on partial correlations
which are, by definition, more sparse.

Gaussian Graphical Modeling

Partial correlation coefficients represent the pairwise correlation between two vari-
ables conditional on all other variables. Thus the linear effects of all other variables are
removed and association is based on the remaining signals. The use of partial correlations
appears to provide sparser and more biologically relevant networks compared to networks
based on Pearson correlation (Krumsiek et al., 2011; Schäfer and Strimmer, 2005).

In the low-dimensional setting (p < n) the partial correlation matrix is straightforward
estimated as P = −scale(S−1) = −diag (S)

− 1
2 Sdiag (S)

− 1
2 , where S is the sample

variance-covariance matrix.
However, note that the calculation of partial correlations relies on the inversion of the

sample variance-covariance matrix, which is challenging (or impossible) in case of strong
collinearity between variables or in high-dimensional (p > n) situations. To overcome
this difficulty, several authors have considered penalizing the covariance matrix in order
to invert it. In this work, we focus on two methods namely a ridge-type (Ha and Sun,
2014) and a lasso-type penalty (Friedman et al., 2007).

Ridge-penalty approach Ha and Sun (2014) proposed a method to obtain a sparse
partial correlation matrix, based on a ridge-type penalty to invert the variance-covariance
matrix. Specifically, let S be the empirical variance-covariance matrix. To deal with
singularity of S due to collinearity or high-dimension a positive constant to the diagonal
elements of S is added, S′ = S + λIp. For any λ > 0, S′ has full rank. The partial
correlation matrix R is estimated as follows:

R̂ = −scale
(
S′−1

)
When the penalty parameter λ goes to infinity, the partial correlation matrix is shrunk

towards the identity matrix. To obtain a sparse matrix, it is tested whether each coefficient
rij is significantly different from zero by applying a Fisher’s z-transformation (Fisher,
1924) on the partial correlation estimates and assuming that these transformations follow
a mixture of null and alternative hypotheses. Efron’s central matching method (Efron,
2004) allows to estimate the null distribution of this test statistic by approximating the
mixture distribution using polynomial Poisson regression.Thus, p-values can be computed
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for each estimated partial correlation rij , and a sparse network (if rij not significant, rij
is set to zero) is obtained.

Lasso approach An alternative penalization method is to apply a lasso-type penalty
when estimating the inverse of the estimated variance-covariance matrix (Friedman et al.,
2007). Assume that we have n multivariate normal observations of dimension p, with
mean vector µ and variance-covariance matrix Σ. To estimate S the following penalized
log-likelihood has to be maximized:

L (Θ) = log (det (Θ))− trace (SΘ)− λ||Θ||1

with Θ = Σ−1. The optimal tuning parameter λ is determined by minimizing the AIC
(AIC = n × tr (SΘ) − log (det (Θ)) + 2E) with E the number of non-zero elements
in Θ. Note that, especially for small values of the penalty parameter, the resulting partial
correlation matrix is not exactly symmetric. Symmetry can be imposed by duplicating
one of the estimated triangular matrices (upper or lower).

5.2.2 Step 2: Hierarchical clustering
Hierarchical clustering is used to detect groups of related features from the estimated

network which was obtained with the methods introduced in the previous section.
Specifically, we have used the dynamic tree cut algorithm based on the dendogram

obtained by hierarchical clustering (Langfelder et al., 2008). This is an adaptive and it-
erative process of cluster decomposition and combination until the number of clusters
becomes stable. This approach, in contrast to a constant height cut-off method, is capable
of identifying nested clusters and is implemented in the R package WGCNA. The mea-
sure used for the hierarchical clustering aproach was the topological overlap dissimilarity
measure. The topological overlap of two nodes quantifies their similarity in terms of the
commonality of the nodes they connect (Yip and Horvath, 2007) and is given by:

TOMij =

∑
u aiuauj + aij

min (ki, kj) + 1− aij

with aij the weight between i and j in the adjacency matrix, and ki =
∑
u aiu. The

topological overlap dissimilarity measure is now defined as : dissTOMij = 1−TOMij .

5.2.3 Step 3: Outcome prediction
Finally, we incorporate the obtained grouping information in the prediction models.

One of the major challenges in prediction using high dimensional data is to avoid overfit-
ting. Overfitting occurs when a model is too complex, i.e when it has too many parame-
ters. We used two of the most standard approaches for parameter reduction which are a
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priori variable reduction based on variable importance and shrinkage methods. Namely,
we consider within-group variable selection and regularized regression models with group
penalization. In general, regularized regression models are characterized by the optimiza-
tion problem minβ∈Rp

(
‖y −

∑
Xβ‖22 +R (β)

)
where R (β) is the regularization or

penalty term. Examples of commonly used penalization functions are: R (β) = λ
∑
j |βj |

(lasso; Tibshirani (1996)), R (β) = λ
∑
j β

2
j (ridge; Hoerl and Kennard (1970)) and

R (β) = α
∑
j β

2
j + (1− α)

∑
j |βj | α ∈ (0, 1) (elastic net; Zou and Hastie (2005)).

Variable importance

The general idea of this simple approach is to retain the most relevant (according to
some pre-defined criterion) variables from each of the estimated groups obtained by hi-
erarchical clustering in step 2. We propose to consider only the most strongly connected
variables within its group (‘hubs’), assuming that strong connectivity is indicative of bi-
ological importance and hence relevance to predict the outcome of interest. Specifically,
for a specific group G:

hubG = max
i

∑
j∈G

Iaij 6=0


with aij the ij element of the adjacency matrix. If multiple nodes have the same

maximum, all these hubs are selected. Ridge regression is used to deal with collinearity
in case of several selected hubs.

Group penalization

An alternative to within-cluster variable selection is to consider cluster-based penalties
in the context of regularized regression.

Group lasso Group lasso (Yuan and Lin, 2006) selects groups of variables since it si-
multaneously shrinks all the coefficients belonging to the same group towards zero. The
group lasso estimator is given by:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+ λ

L∑
l=1

√
pl ‖βl‖2


where l ∈ (1 · · ·L) represents the index of the group of predictors, L is the the total

number of clusters, Xl is the matrix of predictors in the group l and
√
pl is a penalty

to take into account the varying group size. The tuning parameter λ is made by cross-
validation based on minimization of the AIC. The group lasso estimator is asymptotically
consistent even when model complexity increases. Note that if each group contains just
one variable, group lasso is equivalent to the standard lasso (Tibshirani, 1996).
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Sparse group lasso Sparse group lasso (Simon et al., 2013) can be applied when one
also wish to select variables within a group. Shrinkage is carried out at the group level
and at the level of the individual features, resulting in the selection of important groups as
well as members of those groups. The sparse group lasso estimator is given by:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+ (1− α)λ

L∑
l=1

√
pl ‖βl‖2 + αλ ‖β‖1


where l, Xl,

√
pl and are defined as in group lasso. Note that the sparse group lasso

is a combination of group lasso and lasso. The parameter α regulates the weight of each
approach. For α = 1 sparse group lasso equals lasso and for α = 0 group lasso.

Adaptive group-regularized ridge regression Finally, the recently proposed adaptive
group ridge approach van de Wiel et al. (2014) which extends ridge regularized regression
to group penalization is considered. The adaptive group ridge considers group specific
penalties λl for the L groups. The adaptive group ridge estimator is given by:

min
β∈Rp

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+

L∑
l=1

λl
∑
q∈Gl

β2
q


where l and Xl are defined as in group lasso, Gl is the lth group of variables and λl is

the penalty term for the group Gl. The penalty terms can be expressed as: λl = λ′lλ with
λ a unique penalty term and λ′l as penalty multipliers for each group.

5.2.4 Software implementation
The proposed three-step approach has been implemented in the R function PredNet

which is available at github (https://github.com/RenTissier/NetPred). The function al-
lows to apply all the possible combinations of the previously presented network analysis
and group penalization methods. The function calls the packages WGCNA (co-expression
based on pairwise correlation), huge (gaussian graphical modeling), GGMridge (ridge-
penalty approach), grpreg (group lasso), SGL (sparse group lasso), and GRridge
(adaptive group-regularized ridge regression).

5.3 Simulation Study

5.3.1 Simulation setup
An intensive simulation study was conducted to study the performance of our pro-

posed prediction methods using estimated grouping information and to compare them
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wit9h existing regularized regression methods (without grouping information), such as
lasso, ridge and elastic net (α = 0.5). We also included the special case of ’known
clustering’, in which we assume that the true underlying grouping structure is known,
mimicking the situation in which information on biological clustering is available from
previous analyses or open source pathway databases. The omic predictor X is simulated
from a zero-mean multivariate normal distribution with correlation matrix Σ. Following
the recent literature on pathway and network analysis of omics data (Zhang and Horvath,
2005), we generated Σ according to a hub observation model with added realistic noise
(Hardin et al., 2013).

The continuous outcome y is generated by y = Xβ + ε, where β is the vector of
regression coefficient of size p, and ε ∼ N (0, 1). The singular value decomposition (svd;
Jolliffe (2008)) of X, X = UDUt allows to generate y in terms of the various latent
modules present in X since they represent different independent subspaces of features
accounting for different proportions of variation in X. In practice, we first generate β∗,
the regression coefficients corresponding to each independent module (given by U), and
we then transform it to the predictor space by using β = Utβ∗.

Within this general framework, we consider three different scenarios: (Scenario a)
β∗j = 0.01, j = 1; β∗j = 0, j 6= 1. y is then associated to a high variance subspace of U,
corresponding to the largest eigenvalue of X. (Scenario b) β∗j = 0.01, j = 4; β∗j = 0,
j 6= 4 . The association with y relies on a low-variance subspace of U. Hence, we expect
lower predictive ability of X compared to Scenario a. (Scenario c) β∗j = 0.01, j = 1, 4;
β∗j = 0, j 6= 1, 4 . The association with y relies on several subspaces of U. As a result,
Scenario c is less sparse than Scenarios a and b.

For each scenario, we considered two sample sizes (n = 50 and n = 100), different
number of features in X, (p = 200 features and p = 4000), and different number of
underlying modules (k = 4 and k = 8). Each module presents various within-correlation
levels and in all the scenarios, we assumed the presence of one module of uncorrelated
variables. Fig 5.2 shows the corresponding heatmaps of Σ for k = 4 (left panel) and
k = 8 (right panel). For each scenario, we generated M = 500 replicates and for each
trial we consider 10-fold partitions in order to obtain cross-validated summary measures.

We evaluated our methods in terms of obtaining the correct grouping structure, of
prediction performance, and variable selection. Grouping is summarized in two ways.
On the one hand, we compared the estimated number of groups with the underlying pa-
rameter k. On the other hand, for each of the k underlying modules, we calculated the
correct and incorrect classification rates (belonging or not belonging to the underlying
module taken as reference) of each of the p features. Predictive ability is measured by
Q2 =

∑n
i=1(pi−p0i)

2∑n
i=1(yi−pi)2

, the cross-validated version of the fraction of variance explained
by the prediction model, in which the performance of the model-based is compared to
the naive double cross-validated predictions p0 based on the mean value of the outcome
variable y(Rodríguez-Girondo et al., 2018). Variable selection properties are assessed by
comparing the simulated β coefficients with the average estimated regression coefficients.
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Figure 5.2: Simulation study; correlation matrices. Example of simulated correlation matrices obtained with
200 variables for 4 and 8 modules respectively.

5.3.2 Simulation results
Network analysis and clustering Table 5.1 and 5.2 show the performance of the stud-
ied methods for network analysis and hierarchical clustering. WGCNA obtains number of
clusters closer to the truth than graphical lasso and the ridge-penalty approach. WGCNA
estimates, on average, k̂ = 3 and k̂ = 5 for k = 4 and k = 8 underlying modules, re-
spectively. This slight underestimation of k yields a large number of false positives (see
Table 5.2). Focusing on the situation of k = 4, and taking the group with highest sim-
ulated within correlation as reference, Table 5.2 shows a false positive rate of 38.2% for
WGCNA, mainly due to the incorrect assignment of features of the second cluster to the
first one. In contrast, graphical lasso overestimates the number of simulated modules.

The number of estimated modules is not affected by the number of underlying mod-
ules (for example, k̂ = 14 for both k = 4 and k = 8 with n = 50), but it increases with
the number of p simulated features. This is likely due to the reliance of graphical lasso
on partial correlations instead of Pearson correlations. After having a closer look at the
estimated modules, we observe that graphical lasso generates k̂ groups, which are subsets
of the underlying simulated k modules. In other words, graphical lasso does not group
together features belonging to different underlying modules (WGCNA does), and the es-
timated modules can be grouped in such a way that the original k modules are recovered.
This translates in a very small false positive rate when taking any of the k simulated mod-
ules as reference (see Table 5.2). Finally, the ridge-penalty approach is, in most of the
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200 variables

4 modules 8 modules

n=50 n=100 n=50 n=100

WGCNA 3.1(2-5) 3.0(2-5) 5.0(3-8) 5.0(4-7)

Graphical lasso 14.7(9-21) 17.0(12-23) 14.4(9-21) 17.6(13-25)

Ridge penalty 1.0(1-3) 1.3(1-6) 1.5(1-8) 9.8(1-21)

1000 variables

4 modules 8 modules

n=50 n=100 n=50 n=100

WGCNA 3.1(2-5) 3.0(2-5) 5.6(4-18) 5.0(4-11)

Graphical lasso 48.3(40-86) 76.5(57-93) 59.6(39-81) 77.5(63-95)

Ridge penalty 10.2(1-71) 52.6(3-72) 13.1(1-69) 61.5(6-81)

Table 5.1: Simulation study. Average number of clusters obtained accross cross-validation by WGCNA, graphi-
cal lasso, and ridge penalty. The minimum and maximum number of clusters identified are presented in brackets.

50 Individuals 100 Individuals

TPR FNR FPR TPR FNR FPR

module 1 WGCNA .999 .001 .382 .998 .002 .375

Graphical lasso .308 .692 .000 .259 .741 .000

Ridge penalty .999 0.001 .997 .962 .038 .951

module 3 WGCNA .918 .082 .190 .989 .011 .148

Graphical lasso .189 .811 .001 .192 .808 .000

Ridge penalty .999 .000 .997 .960 .040 .951

Table 5.2: Simulation study. Average (across 10 cross-validation folds and 500 replicates) true positive rate
(TPR), false negatives rate (FNR) and false positives rate (FPR) for WGCNA, graphical lasso and ridge penal-
ization. Top part: Scenario a. Reference module: module 1 (corresponding to the first 50 variables in Fig 2 left
panel which present the highest level of correlation). Bottom part: Scenario b. Reference module: module 3
(corresponding to the variables 100-150 in Fig 2 left panel).

cases, not able to lead to the identification of any cluster with small number of features
and subjects (see p = 200 and n = 50 in Table 5.1). For larger number of individuals and
variables, the number of clusters is overestimated for the same reason as graphical lasso.
Namely, the reliance of this method on partial correlations.
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Predictive ability

Table 5.3 and Table 5.4 show the results in terms of the predictive accuracy measure
Q2 for p = 200 and n = 50 and, for p = 1000 and n = 50 respectively. Table A and Ta-
ble B in S1 File, show results for n = 100. Adaptive group ridge and group lasso present
similar performances in most of the studied situations. These two methods outperform
the other considered three-step approaches. Also they are the best performing methods
when the known grouping was used. Further, these approaches may outperform the com-
monly used regularized regression methods lasso, ridge and elastic net regression in terms
of predictive ability. Specifically, group lasso relying on grouping structure coming from
WGCNA and graphical lasso systematically outperforms ridge and lasso and it presents
a similar predictive ability than elastic net when p = 200. For p = 1000 the predictive
ability of the standard ridge, lasso and elastic net is lower while the methods based on
group lasso and adaptive group ridge present similar behavior than for p = 200. There-
fore, the gain of these new approaches appears to be larger when the number of predictors
increases.

Compared to adaptive group ridge, group lasso was less sensitive to the chosen net-
work method. Namely, all scenarios adaptive group ridge presents bad performance when
using the ridge penalty approach Ha and Sun (2014) for network construction. The perfor-
mance of group lasso is robust with respect to the studied network construction methods
in all the studied scenarios, and close to its performance when using the true underly-
ing grouping structure. Sparse group lasso provides proper results in terms of prediction
ability when the clustering is known a priori, with Q2 values only slightly lower than
the corresponding values of adaptive group ridge and group lasso. However, when the
grouping is estimated, its performance drops. The predictive ability appears to drop to a
Q2 < 0.1 for scenario b, which is 8 times lower than the predictive ability obtained with
a combination of graphical lasso and group lasso. The variable selection approach based
on selecting hubs only provides satisfactory results when using the WGCNA method for
network construction in scenario a.
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4 modules 8 modules

Scenario a b c a b c

Sparse group lasso0.5 .79(.01) .51(.06) .65(0.02) .75(.02) .71(.02) .69(0.03)

Sparse group lasso0.9 .79(.01) .48(.06) .59(.03) .74(.02) .69(.04) .65(0.04)

A Priori Sparse group lasso0.1 .79(.01) .53(.06) .66(.02) .75(.02) .72(.02) .70(0.03)

Group lasso .87(.01) .53(.07) .77(.02) .84(.02) .78(.03) .81(0.02)

Group ridge .94(.01) .43(.08) .69(.07) .90(.02) .73(.06) .85(0.03)

Hubs .81(.03) .15(.10) .59(.11) .81(.05) .18(.13) .55(.12)

Sparse group lasso0.5 .72(.12) .15(.12) .57(.15) .41(.21) .28(.19) .36(.20)

WGCNA Sparse group lasso0.9 .73(.13) .13(.22) .53(.13) .41(.22) .26(.12) .35(.19)

Sparse group lasso0.1 .69(.12) .16(.12) .58(.15) .39(.20) .29(.17) .36(.19)

Group Lasso .90(.02) .58(.07) .87(.02) .83(.04) .76(.06) .83(.04)

Group ridge .78(.03) .46(.06) .62(.05) .69(.07) .61(.08) .53(.09)

Hubs .52(.20) .26(.15) .51(.18) .52(.22) .45(.20) .51(.22)

Sparse group lasso0.5 .69(.13) .08(.06) .45(.16) .31(.21) .22(.15) .27(.18)

Graphical lasso Sparse group lasso0.9 .68(.13) .06(.05) .42(.16) .32(.21) .19(.15) .26(.17)

Sparse group lasso0.1 .69(.13) .08(.06) .46(.16) .31(.21) .24(.15) .28(.18)

Group lasso .92(.01) .54(.08) .87(.03) .86(.03) .76(.06) .86(.03)

Group ridge .93(.02) .46(.08) .61(.06) .85(.08) .71(.06) .70(.11)

Hubs .52(.06) .11(.02) .47(.06) .27(.10) .22(.07) .27(.09)

Sparse group lasso0.5 .77(.09) .42(.05) .67(.02) .68(.07) .63(.04) .67(.04)

Ridge penalty Sparse group lasso0.9 .79(.07) .46(.06) .61(.03) .72(.05) .66(.05) .65(.05)

Sparse group lasso0.1 .73(.08) .40(.04) .68(.02) .62(.09) .59(.03) .63(.04)

Group lasso .87(.02) .48(.06) .84(.02) .79(.04) .71(.05) .78(.03)

Group ridge .67(.05) .07(.03) .69(.05) .47(.06) .32(.07) .45(.07)

Lasso .88(.03) .52(.10) .73(.05) .81(.04) .74(0.06) .79(0.05)

Common Ridge .67(.05) .07(.03) .59(.06) .46(.06) .55(0.04) .70(0.03)

Elastic net .96(.04) .74(.26) .79(.20) .87(.02) .81(.04) .89(.02)

Table 5.3: Simulation study. Results obtained in terms of average Q2 (across 500 replicates) for scenarios
a,b,c, p=200 variables, k=4 and k=8 modules, and n=50 individuals. Standard errors are given in brackets. The
first column represents the method used to build the network. A Priori represents the situation were the true
clustering of the predictors is known and no network analysis is performed.
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4 modules 8 modules

Scenario a b c a b c

Sparse group lasso0.5 .80(.002) .64(.02) .63(.03) .77(.016) .69(.036) .69(.030)

Sparse group lasso0.9 .80(.001) .56(.036) .54(.047) .76(.019) .62(.047) .67(.056)

A Priori Sparse group lasso0.1 .80(.002) .66(.026) .66(.032) .77(.016) .70(.033) .72(.025)

Group lasso .89(.003) .76(.021) .71(.046) .87(.011) .81(.022) .84(.016)

Group ridge .97(.011) .65(.076) .55(.083) .95(.018) .87(.033) .78(.065)

Hubs .87(.026) .48(.12) .45(.324) .45(.324) .13(.127) .08(.088)

Sparse group lasso0.5 .74(.143) .61(.098) .57(.153) .43(.244) .36(.206) .32(.221)

WGCNA Sparse group lasso0.9 .74(.147) .54(.090) .53(.138) .44(.252) .35(.193) .29(.223)

Sparse group lasso0.1 .70(.134) .62(.098) .58(.155) .40(.227) .34(.196) .32(.205)

Group lasso .94(.01) .85(.031) .87(.027) .88(.036) .79(.043) .78(.058)

Group ridge .80(.037) .59(.061) .62(.059) .70(.067) .50(.088) .62(.096)

Hubs .52(.054) .55(.054) .21(.039) .42(.059) .46(.063) .43(.050)

Sparse group lasso0.5 .79(.032) .54(.110) .12(.08) .46(.251) .32(.202) .34(.185)

Graphical lasso Sparse group lasso0.9 .79(.030) .49(.122) .09(.075) .46(.249) .30(.191) .30(.195)

Sparse group lasso0.1 .79(.030) .56(.111) .13(.083) .46(.254) .32(.208) .37(.180)

Group lasso .96(.01) .81(.039) .61(.084) .93(.023) .83(.044) .82(.054)

Group ridge .96(.02) .61(.062) .59(.075) .81(.127) .66(.106) .75(.069)

Hubs .02(.052) .07(.064) .01(.028) .04(.069) .05(.075) .05(.060)

Sparse group lasso0.5 .59(.245) .57(.163) .13(.14) .69(.137) .62(.140) .59(.136)

Ridge penalty Sparse group lasso0.9 .70(.186) .49(.148) .13(.149) .72(.132) .59(.136) .60(.147)

Sparse group lasso0.1 .47(.254) .59(.164) .13(.127) .59(.139) .58(.130) .53(.116)

Group lasso .91(.031) .79(.029) .42(.065) .82(.053) .75(.042) .70(.059)

Group ridge .75(.07) .63(.078) .10(.055) .53(.097) .48(.11) .37(.10)

Lasso .91(.016) .59(.060) .51(.080) .87(.035) .68(.065) .70(.074)

Common Ridge .80(.028) .73(.037) .26(.046) .66(.041) .63(.044) .539(.050)

Elastic net .92(.015) .54(.089) .60(.057) .87(.032) .69(.067) .68(.065)

Table 5.4: Simulation study. Results obtained in terms of averageQ2 (across 500 replicates) for scenarios a,b,c,
p=1000 variables, k=4 and k=8 modules, and n=50 individuals. Standard errors are given in brackets. The
first column represents the method used to build the network. A Priori represents the situation were the true
clustering of the predictors is known and no network analysis is performed.
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Variable selection

Finally, we investigated the variable selection properties of the best performing (in
terms of predictive ability) three-step procedures. Figs 5.3 and 5.4 show for scenario a,
k = 4, p = 200 and n = 100 the variable selection properties of adaptive group ridge
and group lasso in combination with WGCNA and graphical lasso, respectively. In both
cases, the performance of lasso and elastic net is also shown. For each method, each
boxplot shows for each of the p variables of X the distribution of the average estimated
regression coefficients over the 10 fold cross-validation folds for each of the M = 500
Monte Carlo trials. The true simulated regression coefficients are also shown (red dots).
Complete results for all scenarios are presented in the S2 File, Figure A to Figure R.

These results show that our three step approaches perform well in terms of specific
regression coefficient estimation and variable selection. The four investigated approaches
given by the combination of WGCNA and graphical lasso with adaptive group ridge and
group lasso clearly separate informative from non-informative variables. In contrast, lasso
regression, especially in scenario a, shows a very poor performance. The mean estimated
coefficients by lasso for all p variables are close to zero, while the variability is very high
for the features with non-zero effects, reflecting that lasso randomly selects a few of the
informative variables and assigns a very large effect to them. To a lesser extent, the same
phenomenon is also observed for elastic net. Even if the mean estimate for informative
variables is larger and variability is lower than for lasso, the overall performance of elastic
net is inferior to our three-step methods based on including grouping information.

Fig 5.3 top panel shows that the combination of WGCNA and group lasso tends to
overestimate the effect of the variables belonging to the second cluster of variables. This
is due to the underestimation of the number of clusters by WGCNA and the joint penal-
ization of group lasso. Interestingly, adaptive ridge is less affected by this issue. When
using graphical lasso as network analysis method, the first informative group of variables
is clearly separated from the rest, and the estimation is close to the theoretical one (Fig
5.4).
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Figure 5.3: Simulation study: Variable selection results with WGCNA. Variable selection results for scenario
a, k = 4, p = 200, and n = 100. Box-plots of the absolute values of the estimated parameters for the 200
variables over the 500 simulated datasets are plotted. The red points represent the absolute average true values
over the 500 datasets.
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Figure 5.4: Simulation study: Variable selection results with Graphical Lasso. Variable selection results for
scenario a, k = 4, p = 200, and n = 100. Box-plots of the absolute values of the estimated parameters for
the 200 variables over the 500 datasets simulated are plotted. The red points represent the absolute average true
values over the 500 datasets.
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5.4 Real data analysis
We analyzed data from the DILGOM study and from the breast cancer cell line phar-

macogenomics dataset. In both cases, the aim is to obtain biological insights about the
features which drive the prediction of BMI and treatment response.

In the DILGOM study we consider two omics datasets measured at baseline to pre-
dict the body mass index (BMI) after seven years of follow-up. Serum nuclear magnetic
resonance (NMR) spectroscopy metabolites measures and gene expression profiles were
considered. The analysed sample contained n = 258 individuals for which both types of
omic measurements and the outcome of interest (log-transformed BMI) were available.
In the breast cancer cell lines dataset, we were interested in using gene expression for
predicting the response to the Erlotinib drug. Treatment response is measured using the
GI50 index, a quantitative measure which measures the growth inhibitory power of the
test agent. The analysed sample consisted of 45 breast cancer cell lines.

5.4.1 DILGOM: metabolites
The serum metabolomic data consists of quantitative information on 57 metabolic

measure of various types, including lipids, lipoprotein subclasses, amino acids, choles-
terol, glycolysis-related metabolites and fatty acids (see S3 File, Table A). Table 5.5 and
Table 5.6 show the main results for the prediction of BMI after 7 years of follow-up using
serum NMR metabolites as predictors. Table 5.5 shows the performance of each method
in terms of predictive ability measured through Q2. We observe that adaptive group
ridge and group lasso provide the best results and that they perform slightly better than
ridge, lasso and elastic net. Namely, for adaptive group ridge when using graphical lasso
Q2 = 0.244 and for adaptive group ridge in combination with WGCNA Q2 = 0.233,
while for ridge Q2 = 0.227 and for lasso Q2 = 0.222. Also, group lasso combined with
WGCNA outperforms ridge and lasso (Q2 of 0.241). Variable selection based on hubs
presents a notably lower predictive ability (best performance is reached with graphical
lasso, Q2 = 0.176) than methods based on regularization, except for sparse group lasso,
which is not competitive at all (Q2 < 0.002 in all cases). Table 5.6 shows the variable
selection properties of the two top performing methods; the combination of WGCNA
and group lasso and the combination of graphical lasso and adaptive group ridge. The
top 12 variables selected by the combination of WGCNA and group lasso approach are
shown in the left part of Table 5.6, jointly with their average regression coefficient, se-
lection frequency over the 10 cross-validation folds used in the analysis, and their cluster
membership. For each of these top 12 variables, average effect and selection frequencies
over the 10 cross-validation folds are also shown for the combination of graphical lasso
and adaptive group ridge, lasso, and elastic net. These top 12 variables represent two
different families of metabolites. Namely, lipids and fatty acids (XSVLDLL, XLHDLL,
SM, SHDLL, FAW6), and amino-acids and glycolysis-related metabolites (ALB, TYR,
PHE, GLY, GLOL, GLC). This means that the three-step approach based on WGCNA and
group lasso consistently points out these groups of metabolites as those driving the pre-
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diction of BMI. Accordingly, these two families of metabolites are well separated in the
network analysis plus clustering steps (by both WGCNA and graphical lasso methods),
consistently belonging to different clusters (see columns labeled ‘Cluster’ in Table 6).

Interestingly, our three-step approach based on the combination of WGCNA and
group lasso provides similar effect estimates for metabolites XSVLDLL, SM, FAW6 and
SHDLL (.038,.034,.031, and .030, respectively), all of them belonging to the same clus-
ter of lipids and fatty acids. The combination of graphical lasso and adaptive group ridge
provides similar results in terms of effect size. On the contrary, lasso provides more
extreme estimates due to within-group random variable selection, i.e. lasso selects at ran-
dom oen feature over a set of highly correlated variables. Specifically, lasso assigns quite
different effect estimates to the lipids and fatty acids group (XSVLDLL:.036, SM:.018,
FAW6:.017, SHDLL:.003). The effect size of SHDLL is particularly counter-intuitive
since high density lipids are well established risk factors for obesity (Shamai et al., 2011).
Elastic net appears not to solve this issue and provides similar results than lasso.

WGCNA Graphical lasso Ridge penalty

Q2 Q2 Q2

Hubs + ridge 0.153 0.176 0.153

Group lasso 0.241 0.225 0.221

Sparse group lasso α = 0.5 0.013 0.010 0.015

Sparse group lasso α = 0.9 0.003 0.012 0.013

Sparse group lasso α = 0.1 0.013 0.007 0.016

Group ridge 0.233 0.244 0.225

Lasso 0.227 0.227 0.227

Ridge 0.222 0.222 0.222

Elastic net 0.208 0.208 0.208

Number of Clusters 4 7 4-6

Table 5.5: DILGOM metabolomics. Prediction accuracy of the models obtained for the different approaches on
metabolites. In bold are the combinations of network analyses and prediction approaches which perform better
than lasso, ridge, and elastic net.

5.4.2 DILGOM: Transcriptomics
Due to the computational intensity of the graphical lasso approach, we considered two

sets of gene expression probes for analysis. A set of 2980 probes which was only anal-
ysed by WGCNA to perform network analysis and a set of 732 filtered probes (probes
with a variance higher than 1) were WGCNA and graphical lasso were used. The main
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results are presented in Table 5.7 and Table 5.8. Table 5.7 presents the prediction ability
results of the used methods. For the set of filtered probes (left part of Table 5.7), the best
method with regard to predictive performance is the combination of WGCNA and group
lasso (Q2 = 0.258). Adaptive group ridge appears to provide poor results (Q2 = 0.158
in combination with WGCNA and Q2 = 0.188 in combination with graphical lasso)
in the transcriptomics context. In contrast to the observed results regarding the NMR
metabolites, adaptive ridge is clearly outperformed by lasso (Q2 = 0.227) and elastic net
(Q2 = 0.253), but still provide better results than the ridge regression (Q2 = 0.071).
Also, we observe that for transcriptomics elastic net provides better results than lasso
which was not the case for the metabolites. For the larger set of probes (right part of Ta-
ble 5.7), the best prediction accuracy is achieved using the combination of WGCNA with
group lasso Q2 = 0.418 while lasso and elastic net show similar predictive abilities with
Q2 = 0.257 and Q2 = 0.265, respectively. Ridge presented better prediction accuracy
with the large set of probes but its performance is still very low (Q2=0.131). In line with
the simulation study, the benefits of our three-step proposal is larger when the number of
probes increases.

Table 5.8 presents the number of variable selected for the two group lasso approaches
(based on WGCNA and graphical lasso), lasso, and elastic net. The left part of Table 5.8
shows the results for the filtered set of probes and the right part shows the results for the
large set of probes. For the filtered set of probes, it appears that group lasso retains more
variables than lasso and elastic net. WGCNA in combination with group lasso provided
687 variables which were selected at least once during the cross validation process, while
the combination of graphical lasso and group lasso provided 485 variables. Lasso and
elastic net identified only 78 and 123 variables, respectively. Moreover, the models ob-
tained with group lasso are more stable than those obtained with the standard approaches,
lasso and elastic net. Indeed, using WGCNA, 19.9% of the 687 variables are selected
in all the 10 cross-validation folds and for graphical lasso 18.9% of the 485 variables
are selected. In contrast, for lasso and elastic net only 3.8% and 5.6% of the variables
are selected in all the cross-validation folds. For the larger set of probes, the number of
variables always selected increased for lasso and elastic net with respectively 13 and 21
variables, this is not the case for the combination of WGCNA with group lasso with 48
variables always selected for the set of 2928 probes while 137 variables were always se-
lected with the smaller set of probes. From the 48 variables obtained, only 5 were also
included in the previous set of 137 variables.

To investigate the biological relevance of the selected variables in the prediction mod-
els obtained, a gene set enrichment analysis was performed using the Gene Set Enrich-
ment Analysis software (GSEA;Subramaniana et al. (2005); Mootha et al. (2003)) on
the variables always selected by each approach during the cross-valiadation process. A
gene set enrichment analysis consists of comparing the set of gene identified with a priori
known group of genes that have been grouped together by their involvement in the same
biological pathway. Table 5.9 presents the results of the enrichment analysis when using
the large set of transcriptomics. None of the pathways obtained in the enrichment analysis



82 Chapter 5 – Improving stability of prediction models based on correlated omics

by the different methods has been previously identified as related to BMI. The enrichment
analysis based on the 137 and 92 genes obtained from the filtered set of probes was more
insightful. Among the 137 genes selected by the combination WGCNA and group lasso,
33 were associated with cardiovascular disease (p = 0.019) and 6 of these 33 genes were
associated with obesity (p = 0.044). Among the 92 genes obtained with the combination
of graphical lasso and group lasso, 3 of them where included in the glucagon signaling
pathway (p = 0.070) and 3 were in the insulin resistance pathway (p = 0.080). These
results are not surprising since it is known that increased insulin and decreased glucagon
secretion play a role in obesity Schade and Eaton (1974). Due to the small number of
variables of lasso and elastic net, 7 and 3 predictors respectively, the enrichment analysis
did not provide associated pathways.
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WGCNA + Group lasso Graphical lasso + adaptive group ridge

Variable Average beta Frequency Cluster Average beta Rank Cluster

GLOL .064 10 1 .039 5 6

TYR .060 10 1 .070 2 1

ALB -.059 10 1 -.075 1 1

GLY -.041 10 1 -.039 4 1

PHE .038 10 1 .046 3 1

XSVLDLL .038 10 2 .017 16 2

XLHDLL -.038 10 3 -.034 7 5

HIS -.036 10 1 -.030 8 1

SM .034 10 2 .016 17 2

FAW6 .031 10 2 .003 31 3

GLC .031 10 1 .037 6 1

SHDLL .030 10 2 .030 9 5

Lasso Elastic Net

Average beta Frequency Rank Average beta Frequency Rank

GLOL .074 10 4 .063 10 3

TYR .080 10 3 .068 10 2

ALB -.086 10 2 -.069 10 1

GLY -.037 10 6 -.035 10 7

PHE .038 10 5 .042 10 5

XSVLDLL .036 10 7 .038 10 6

XLHDLL -.089 9 1 -.056 10 4

HIS -.024 9 8 -.020 10 11

SM .018 8 10 .011 8 17

FAW6 .017 7 12 .011 8 14

GLC .018 10 11 .022 10 9

SHDLL .003 3 20 .005 7 20

Table 5.6: DILGOM metabolomics. Top 12 metabolites (in terms of average beta) selected by the combination
of WGCNA and group lasso, their selection frequencies and cluster membership. For lasso, graphical lasso +
ridge, and elastic net, the rank of the variables according to the absolute values of the average effect size is
added.
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Filtered set (p=732) Larger set (p=2980)

WGCNA Graphical lasso WGCNA

Q2 Q2 Q2

Group lasso 0.258 0.215 0.418

Group ridge 0.158 0.188

Lasso 0.227 0.227 0.257

Ridge 0.071 0.071 0.131

Elastic net 0.253 0.253 0.265

Number of clusters 16-17 32-36 40-45

Table 5.7: DILGOM transcriptomics. Prediction accuracy of the models obtained by combination of networks
and prediction models as well as lasso, ridge, and elastic net for transcriptomics.

Filtered set (p=732) Larger set (p=2980)

Always At least once Proportion Always At least once Proportion

WGCNA and group lasso 137 687 0.199 48 252 0.190

Graphical lasso and group lasso 92 485 0.189

Lasso 3 78 0.038 13 134 0.097

Elastic net 7 123 0.056 21 176 0.119

Table 5.8: DILGOM transcriptomics. Number of variables selected during the cross-validation process, at least
once, in all croos-validation folds and the proportion of variables selected all in the set of variables selected at
least once.
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method Pathway Number variables FDR
Genes transcriptionally modulated in the

blood of multiple sclerosis patients in re-

sponse to subcutaneous treatment with re-

combinant IFNB1

10 9.68 e-15

WGCNA and group lasso Genes up-regulated in CD34+ hematopoetic

cells by expression of NUP98-HOXA9 fu-

sion off a retroviral vector at 3 days after

transduction

10 3.86 e-12

Genes representing interferon-induced an-

tiviral module in sputum during asthma ex-

acerbations

8 1.27 e-11

Genes exclusively down-regulated in B lym-

phocytes from WM (Waldenstroem’s mac-

roblobulinemia) patients but with a similiar

expression pattern in the normal cells and

in the cells from CLL (chronic lymphocytic

leukemia) patients.

2 5.62 e-3

Lasso Genes down-regulated in erythroid progeni-

tor cells from fetal livers of E13.5 embryos

with KLF1 knockout compared to those

from the wild type embryos

6 5.62 e-3

Genes down-regulated in CD4+ T lympho-

cytes transduced with FOXP3.

3 1.55 e-3

Elastic net Genes up-regulated in MCF7 cells (breast

cancer) after stimulation with NRG1

4 1.55 e-3

Genes down-regulated in normal hematopoi-

etic progenitors by RUNX1-RUNX1T1 fu-

sion

4 1.55 e-3

Table 5.9: DILGOM transcriptomics. Top significant pathways identified by enrichment analysis using the
GSEA software for all predictions model using the variables always selected during the cross-validation process
of the breast cancer cell lines study on the transcriptomics data. For each method, the number of variables
common to the pathway and the set of variables selected at least 5 times and the false discovery rate (FDR) of
the enrichment test are presented.
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5.4.3 Breast cancer cell lines
The main results of the prediction of the treatment response of breast cancer cell lines

to Erlotinib are presented in Table 5.10. The best prediction performance is again the
combination of WGCNA and group lasso with Q2 = 0.654. Ridge with Q2 = 0.610
performs better than lasso and elastic net with Q2 = 0.571 and Q2 = 0.564, respectively.
For this dataset the combination of WGCNA and group lasso is less stable and is not
always able to pick the same variables during the cross-validation process, while lasso
and elastic net are able to always pick 2 probes. With regards to variables selected at least
5 times by WGCNA + group lasso, lasso and elastic net, all 3 methods have a similar
number of selected variables with respectively 22, 18 and 25. The intersection between
3 identified sets of variables is empty. The enrichment analysis identified genes related
to breast cancer for the WGCNA + group lasso and elastic net approaches as presented
table 5.11. This was not the case for lasso.

Q2 Number of Variables

At least 5 times always

WGCNA and group lasso 0.654 22 0

Lasso 0.571 18 2

Ridge 0.610 5376 5376

Elastic net 0.564 25 2

Total number of variables 5376 5376

Table 5.10: Breast Cancer analysis. Prediction accuracy and numbers of variable selected at least 5 times and
always selected in the 10-fold cross-validation process of the different approaches on the whole set of probes
for the Breast cancer cell lines.
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method Pathway Number variables FDR
Candidate genes in genomic amplification

regions in hepatocellular carcinoma (HCC)

samples

6 5.61 e-10

WGCNA and group lasso Genes within amplicon 17q11-q21 identified

in a copy number alterations study of 191

breast tumor samples.

6 6.49 e-8

Genes up-regulated in DLBCL (diffuse large

B-cell lymphoma) cell lines sensitive to

stimulation of CD40 relative to the resistant

ones

5 4.62 e-5

Genes up-regulated in confluent IMR90 cells

(fibroblast) after knockdown of RB1 by

RNAi

7 5.621 e-6

Lasso Genes up-regulated in the neural crest stem

cells (NCS), defined as p75+/HNK1+

5 5.92 e-6

Genes down-regulated in BEC (blood en-

dothelial cells) compared to LEC (lymphatic

endothelial cells)

5 6.66 e-6

Genes down-regulated in TMX2-28 cells

(breast cancer) which do not express ESR1

compared to the parental MCF7 cells which

do

11 5.41 e-10

Elastic net Genes up-regulated in confluent IMR90 cells

(fibroblast) after knockdown of RB1 by

RNAi.

9 2.52 e-8

Genes positively correlated with recurrence

free survival in patients with hepatitis

B-related (HBV) hepatocellular carcinoma

(HCC)

5 4.57 e-6

Table 5.11: Breast Cancer analysis. Top significant pathways identified by enrichment analysis using the GSEA
software for all predictions model using variables selected at least 5 times during the cross-validation process
on the transcriptomics data of the breast cancer cell lines study. For each method, the number of variables
common to the pathway and the set of variables selected at least 5 times and the false discovery rate (FDR) of
the enrichment test are presented.
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5.5 Discussion
In this paper, we presented a new strategy to obtain accurate, stable and interpretable

prediction models. The key components of our proposed approach are to capture the cor-
relation structure of the features within an omic dataset, to derive clustering information,
and to include it in a group penalization model. Our approach seems to provide inter-
pretable models by capturing underlying biological mechanisms impacting the phenotype
of interest.

Our applications showed that the proposed three step approach can outperform the
standard regularized regression approaches in terms of prediction ability, stability and
biological interpretation in high-dimensional settings or when groups of strongly corre-
lated features are present in the data. Our analyses highlighted the weakness of methods
such as lasso and elastic net in terms of stable variable selection in highly correlated
datasets. Indeed, for the metabolites, our WGCNA and group lasso combination selected
a group of highly correlated metabolites (cluster 2 including XSVLDLL, SM, FAW6, and
SHDLL) while lasso selected XSVLDLL all the times in the cross-validation process but
SHDLL only 3 out of 10 times. In addition it appeared that for the large transcriptomics
dataset the prediction accuracy is also larger for our proposed methods than for the stan-
dard regularization methods. The analysis of the breast cancer cell lines study showed
some limitations in terms of stability for our network-based approach when the number
of samples is relatively small. Probably the networks obtained during the cross-validation
steps are less stable for a small number of samples leading to a less stable clustering and
prediction model. Further with regard to transcriptomics, the obtained groups of gene ex-
pression features identified by our strategies were enriched for known pathways linked to
BMI (DILGOM) and breast cancer (breast cancer cell lines). This was only the case when
using the filtered transcriptomics dataset. This was not always the case for lasso, ridge,
and elastic net. For the unfiltered transcriptomic datasets, the gene sets were not enriched
for pathways related to the outcome. Here more research is needed. These results suggest
that our proposed approaches can indeed improve the understanding of prediction models
while keeping a good prediction accuracy.

The performance of our approaches compared to the standard approaches was in line
with the results obtained from the simulation study. Indeed the combination of WGCNA
or graphical lasso with group lasso appeared to provide the most stable results, hence
probably better interpretable. The prediction accuracy of these approaches was also good
and for large omics datasets even better than the prediction accuracy of the standard ap-
proaches. Further our simulations showed that several group penalization models (sparse
group lasso and adaptive group ridge) are quite sensitive to the used grouping structure.
In contrast the group lasso approach proved to be quite robust with respect to the network
approach used. Also, we have explored the idea of reducing the omic dataset dimen-
sionality by choosing ‘important’ features by group based on network topology (such as
our ‘hubs’ selection). This attractive approach to reduce the prediction complexity only
performed well when using WGCNA for predictors which are highly associated to the
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phenotype of interest. Its performance was very sensitive to the used network method
and bad in low-signal situations. Overall the combination of graphical lasso for network
construction and group lasso was the best performing method in our simulation study.
However, this approach computationally challenging for a large number of features and,
therefore, cannot deal with large omics datasets. Moreover in the real data analysis bet-
ter results were obtained when WGCNA was combined with group lasso. Therefore, for
large datasets we recommend the combination of WGCNA and group lasso, while for
smaller datasets both network approaches can be applied.

The presented work can be extended in various ways. So far, all our analyses focused
on prediction of a continuous outcome, but all the obtained results apply, in principle, to
other types of response variables, such as binary outcomes (classification problems) and
to time-to-event data. Also, prior knowledge on biological grouping could be included
in our three-step approaches if available, even if it is only partial. Our simulation study
showed good results if the correct underlying clustering is known. Given that such bio-
logical knowledge is only partially known in many omic applications, we have proposed
to use network analysis to infer the correlation structure. Including external prior biolog-
ical in the first step of network construction may lead to an improvement of the clustering
obtained and, therefore, of the proposed methods. Another possible extension is to build
prediction models with two or more sets of omic predictors. It is known (Rodríguez-
Girondo et al., 2018) that using a common penalization (such as lasso or ridge) to the
extended dataset containing both omic sets to be combined can lead to worse predictive
ability than using only one of these omic sets. Therefore, applying our three-step approach
to the stacked dataset of different omic predictors may outperform current methods. Alter-
natively, more advanced network techniques as multi-layer networks Kivelä et al. (2014),
based on obtaining the correlation structure between and within the omic sets may be im-
prove prediction models. These extensions are currently under investigation.

To conclude, we presented a set of methods which provides accurate and stable pre-
dictions possibly leading to better interpretation, as is shown in the real data application.
In the DILGOM study, a much more stable set of metabolomic predictors for BMI was ob-
tained compared to standard approaches. Moreover, better predictions were obtained with
our approach when using a large set of gene expression probes to predict BMI. Regarding
the prediction of breast cancer, identified gene modules with our approach appeared to
be interpretable since enrichment analyses showed that selected features could be linked
with breast cancer tumors. This was not the case when using the standard approaches.
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6
Integration of several omic sources in

prediction models using network-based
approaches

Abstract
In the last decades, biomolecular research developments led to an increasing number

of omics measurements. These measurements have been widely used for prediction of
numerous phenotypes and diseases. The next step is to combine and use various types
of omics data to further improve prediction. However, the combination of heterogeneous
datasets, in terms of scale, noise structure, and normalizations, is challenging and there is
not yet any state-of-the art approach. In this paper, we propose methods based on network
analysis and group penalization to combine several omics sources in one prediction model
while taking into account the possible interaction between them. An extensive simulation
study has been performed in order to compare this new approach with the common regu-
larization methods lasso, ridge and elastic net. Finally we illustrate the advantages of our
approach by application of the methodology to two problems, namely prediction of body

This chapter has been submitted for publication as: Renaud Tissier, Mar Rodríguez-Girondo, Jeanine
J. Houwing-Duistermaat. Integration of several omic sources in prediction models using network-based ap-
proaches.
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mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic
syndrome study (DILGOM) and prediction of response of each breast cancer cell line to
treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.
The results show that prediction models based on multiple omics should carefully ac-
count for within and across-omic correlations. In that case, predictive performance can
be improved and single-omic models can be outperformed.

6.1 Introduction
One of the current main challenges in prediction modeling is the integration of sev-

eral sources of omic predictors in a single model. Recent developments in biomolecular
research, have resulted into the availability of an increasing number of omics measure-
ments such as genomics, methylomics, proteomics, metabolomics, and glycomics for one
subject. For predicting health-related traits, these omic sources have shown promising
results in some settings using single omic source models (Ibrahim-Verbaas et al., 2014;
Bahado-Singh et al., 2014; Lemesle et al., 2015). Indeed, in statistics much work has been
done in developing these single omics prediction models (Hastie et al., 2009; Bühlmann
and van de Geer, 2011). The next challenge is the integration of multiple sources of omic
data which may potentially improve the performance of single-omic prediction models.
However, there is currently no state-of-art method for achieving this goal.

In this paper, we aim to investigate the combined predictive ability of heterogeneous
omic sources. These sources differ with regard to dimensionality of the datasets, nor-
malization procedures used and presumably their error structures. For example, multi-
plicative noise is often encountered in imaging analysis (Liu et al., 2013) and therefore
commonly met in fluorescence based measures as transcriptomics (Sásik et al., 2002)
while others are expected to have an additive noise structure. We encountered this chal-
lenge in two motivating studies. Our first data application refers to a question from the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome (DIL-
GOM) study, namely the prediction of body mass index (BMI) after seven years of follow-
up based on the combination of baseline metabolomics and transcriptomics. Our second
application comprises copy number variants and gene expression for treatment response
prediction using the publicly available Breast cancer cell line pharmacogenomics dataset
(https://genomeinterpretation.org/content/breast-cancer-cell-line-pharmacogenomics
-dataset). In these studies, we have previously shown better predictive ability by including
network information for single-omic analysis. In this paper we extend these methods to
multiple omics datasets.

The literature on prediction based on multiple omic datasets is scarce. A first straight-
forward approach is to apply existing techniques for high-dimensional prediction such as
regularized regression models to the stacked dataset of omic features. It has been shown
that this naive approach can provide poorer predictive ability than using only one of the
available omic sources (Rodríguez-Girondo et al., 2018) due to the heterogeneity across
omics datasets. Hence more sophisticated strategies are needed.
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Another approach is to first perform a dimension reduction to the omics datasets. For
example Acharjee et al. (2016), first performs random forest on each omic source to select
the most relevant features. These features are then combined in a single prediction model.
In order to understand possible interactions between omic sources, these features are then
combined in a network. Potentially, such network could be included in a prediction model
using the methods developped by Tissier et al. (2018). Alternatively, latent structures
within and between datasets can be identified by using O2PLS (Trygg and Wold, 2003;
Bouhaddani et al., 2016). These latent structures can be summarized in a few indepen-
dent components (dimension reduction) which can be included in a prediction model.
This approach is interesting as it has been developed to deal with heterogeneous datasets.
However, disadvantages of first applying dimension reduction step is the loss of possible
relevant information, either by ignoring the joint distribution of two different omics fea-
tures or the relationship between the omics datasets an the outcome.

In this paper, we will not perform a-priori dimension reduction, instead, we propose
group penalization. Therefore, as part of the model building procedure, group inference
is performed using network analysis followed by clustering. To this end we extended
our approach for a single omic source (Tissier et al., 2018) to multiple omic sources.
Specifically, we explore how to include groups containing features from different omic
sources and whether this is beneficial in terms of predictive performance. Under this gen-
eral framework, we will investigate several possible alternatives regarding the inference
of groups and the incorporation of this information in regularized regression. It is indeed
unclear if, due to the heterogeneity between omic sources as for example metabolites and
transcriptomics, combining the datasets before performing the subsequent group infer-
ence might lead to poor results. An alternative is to restrict group inference to each of the
omic sources which, however, might miss possible across-omic relations due to shared
biological pathways.

The rest of the paper is organized as follows: in Section 2, we present the general
methodological framework based on grouped regression and several variants regarding
group inference and grouped lasso regression. Section 3 contains technical details about
the specific method used for group inference. Section 4 focuses on outcome prediction.
An intensive simulation study is presented in Section 5 to empirically evaluate the perfor-
mance of the different studied methods in terms of predictive ability and variable selection
properties. The results of the integrated approach are compared with single omic source
predictive ability. In Section 6 the methods are applied to two different studies. Main
conclusions and a final discussion follow in Section 7

6.2 Network-based group-penalized prediction
Let the observed data be given by (z,Y,X), where z = (z1, . . . , zn)T is the con-

tinuous outcome measured in n independent individuals, and Y and X are matrices of
dimension n × p and n × q respectively, representing two omic predictor sources with p
and q features. Let M be the stacked dataset of Y and X. Our main goal is to build a
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predictive model for z based on Y and X with good predictive performance.
The matrices X and Y might be high-dimensional (n < p, q) and present complex

dependence structures, potentially shared due to existing biological pathways, or coordi-
nated functions of groups of features.

We propose a general framework of grouped regularized regression methods includ-
ing group inference as part of the model building procedure. Group inference relies on
first estimating the existing relations among features using network analysis techniques
and then deriving groups of features using hierarchical clustering. Based on this general
framework, three approaches are proposed, with variable level of complexity in group
inference.

The first algorithm named GLasso0 consists of constructing a separate network for
each omic source and to perform subsequent hierarchical clustering on each of the result-
ing adjacency matrices. Finally, group lasso regression is performed. This approach only
allows for omic-specific groups of features, so correlation across omic sources cannot
be captured. The second proposed method, GLasso, starts by building a unique net-
work from the stacked dataset M. Subsequent hierarchical clustering is performed on
the resulting adjacency matrix and group regression is also based on group lasso. This
approach is a direct application of the method proposed by Tissier et al. (2018) on the
stacked dataset M and it potentially allows for groups including features from different
omic datasets. However, when noise structures of the omic datasets are different stacking
the datasets might be problematic for network construction. Finally, the third proposed
approach, OverlapLasso, is an extension of GLasso0 and allows for overlapping groups
of features. Namely, after obtaining the omic-specific groups of features, an extra network
analysis and hierchical clustering is conducted at the group level to try to incorporate ex-
tra shared information by the two omic sources.

In all three approaches weighted gene co-expression network analysis (WGCNA) and
the dynamic tree cut algorithm for hierarchical clustering were used. Outcome predic-
tion relies on group lasso in the two first procedures (GLasso0 and GLasso) and on
a extension to allow the presence of features on multiple groups in the case of Over-
lapLasso. Specific components used in each step are described in more detail in the next
section. For each approach, double cross-validation (Mertens et al., 2006, 2011) of the
whole process (including group inference) was applied to obtain proper tuning parameters
and summary performance measures in absence of an external validation set. The three
procedures have been implemented in the R function MultiPredNet which is available
at github (https://github.com/RenTissier/MultiPredNet). The function calls the packages
WGCNA (for network construction and hierarchical clustering), grpreg (group lasso) and
grpregOverlap (overlapping group lasso).

The basic structure of the the three procedures is as follows:
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GLasso0 Network-based group-penalized prediction model based on omic-specific
group inference

Step 1 Network construction

Input Y, X

Output AY, AX two adjacency
matrices

Step 2 Hierarchical clustering

Input AY, AX

Output PY, PX omic-specific
clusters

Step 3 Outcome prediction: Group
lasso

Input (M, PY , PX)

Output p+q β regression coef-
ficients

Figure 6.1: GLasso0

GLasso Network-based group-penalized prediction model on stacked datasets
Y and X

Step 1 Network construction

Input M = (Y, X)

Output AM adjacency matrix

Step 2 Hierarchical clustering

Input AM
Output PM clusters

Step 3 Outcome prediction: Group
lasso

Input (M, PM )

Output p+q β regression coef-
ficients

Figure 6.2: GLasso

OverlapLasso Network-based overlapping group-penalized prediction model based
on omic-specific group inference
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Step 1 Network construction

Input Y, X

Output AY , AX two adjacency
matrices

Step 2.a. Hierarchical clustering

Input AY , AX

Output PY , PX omic-specific
clusters

Step 2.b. Principal component analysis

Input PY , PX

Output U = (PCPY , PCPX)
set of two first principal compo-
nents of each cluster in PY and
in PX

Step 2.c. Network construction +hier-
archical clustering on U

Input U

Output PU clusters

Step 2.d. Identification of (Y,X)-
shared clusters in PU

Input Input: PU

Output Output: PUM clusters

i. Identify the m clusters ob-
tained in Step 2.c. which
contain elements from both
PX and PY

ii. For each i = 1, . . . ,m of
the identify clusters in i.
identify the corresponding
variables from X and Y

iii. Denote by PUM the corre-
sponding set ofm new clus-
ters.

Step 3 Outcome prediction: Overlap-
ping group lasso

Input (M, PY , PX , PUM )

Output p + q β regression coeffi-
cients

Figure 6.3: OverlapLasso
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6.3 Group inference

6.3.1 Network construction: WGCNA
The first step of the group inference in all three proposed approaches involves network

analysis. We use weighted networks, in general defined as an adjacency matrix A = [aij ],
where each coefficient aij represents how close features xi and xj are.

In this paper, we have used weighted co-expression networks based on pairwise corre-
lations (Zhang and Horvath, 2005), originally proposed in the context of gene expression
data. Due to the presence of high correlations in omic data, a parameter β (soft thresh-
old) is introduced in order to shrink ‘low’ pairwise correlation values towards zero. The
parameter β might be chosen in such a way that the free-scale topology criterion of the
resulting network holds, i.e, the fraction of nodes with k edges should follow the power
law P (k) ≈ k−γ , with P (k) the fraction of nodes in the network with k edges and γ
a constant with a value comprised between 2 and 3. The rationale behind the free scale
topology criterion is the existence of hubs.

Co-expression networks have been successfully used in the context of transcriptomics
(Stuart et al., 2003; Oldham et al., 2006, 2008). We also have shown good predictive
performance when using WGCNA as part of group inference in the metabolomics setting
(Tissier et al., 2018). We have extensively compared different network analysis methods
for group inference in the context of single-omic prediction and WGCNA has shown a
good balance between clustering accuracy and computational efficiency. Note that our
proposed methods could be easily adapted to include other possible network analysis
techniques.

6.3.2 Hierarchical clustering
Hierarchical clustering is used to detect groups of related features, using the previ-

ously estimated network to derive a metric matrix.
Specifically, we used the topological overlap dissimilarity measure as metric for the

hierarchical clustering. The topological overlap of two nodes quantifies their similarity
in terms of the commonality of the nodes they connect (Yip and Horvath, 2007). The
topological overlap between node i and node j is given by:

TOMij =

∑
u aiuauj + aij

min (ki, kj) + 1− aij

with aij the weight between i and j in the adjacency matrix, and ki =
∑
u aiu. The

topological overlap dissimilarity measure is defined as : dissTOMij = 1− TOMij .
To obtain the groups of features, we applied the dynamic tree cut algorithm (Langfelder

et al., 2008) on the dendogram defined by the dissimilarity measure. This algorithm is an
adaptive and iterative process of cluster decomposition and combination until the number
of clusters becomes stable. In contrast to a constant height cut-off method, this approach
is capable of identifying nested clusters.
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6.4 Outcome prediction
We focus on grouped regularization approaches, which are able to deal with high-

dimensional data and keep group related features together, improving the interpretability
and stability of the resulting models. Here, we consider group and overlapping group
lasso.

Group lasso

GLasso and GLasso are using Group lasso (Yuan and Lin, 2006) to build the pre-
diction model. This approach, simultaneously shrinks all the coefficients belonging to
the same pre-specified group towards zero and hence selects groups of related features.
Assume that L groups were obtained after subsequent hierarchical clustering. The final
prediction model is given by the group lasso estimator:

min
β∈R(p+q)

∥∥∥∥∥z −
L∑
l=1

Mlβl

∥∥∥∥∥
2

2

+ λ

L∑
l=1

√
pl ‖βl‖2


where l ∈ (1 · · ·L) represents the index of the group of predictors. Ml is the matrix

of predictors in the group l and
√
pl is a penalty to take into account the varying group

size. The choice of the tuning parameter λ is made by cross-validation based on mini-
mization of the AIC. The group lasso estimator is asymptotically consistent even when
model complexity increases. Note that if each group contains just one variable, group
lasso is equivalent to the standard lasso (Noah et al., 2013).

Overlaping group lasso

Overlapping group lasso is a group-based regularized regression method which allows
predictors to be part of several clusters. Suppose that the set of p + q features from the
stacked dataset M are assigned to L possibly overlapping groups (PY, PX, PUM obtained
in Step 2.d. of the OverlapLasso procedure). Jacob et al. (Jacob et al., 2009) proposed
the overlapping group lasso estimator:

min
β∈RM

(
‖z −Mβ‖22 + λ

L∑
l=1

√
pl ‖γl‖2

)
(6.1)

where γ1, . . . , γL are L vectors of dimension (p+ q)× 1 called latent coefficient vectors.
The resulting p+ q regression coefficients of interest, βm, m = 1, . . . , p+ q, are obtained
as βm =

∑
l γlm, where γlm = 0 if the variable m is not in the group l. Equation 6.1 can

be rewritten as:

min
γ∈RM

∥∥∥∥∥z −
L∑
l=1

Mγl

∥∥∥∥∥
2

2

+ λ

L∑
l=1

√
pl ‖γl‖2





6.5 Simulations 99

In our case, in the OverlapLasso procedure, after deriving omic-specific and not over-
lapping groups of features (PY and PX) in Step 2.a., the matrix U composed of the two
first principal components scores of each omic-specific group is defined. The rationale
behind this idea is to get a comparable common scale for the two omics sources Y and
X. Network and hierarchical clustering is then applied to U in order to obtain shared
clusters by Y and X (Step 2.c.). Namely, if one detected group at this stage combines
latent scores belonging to different omic sources, we take the corresponding features in
Y and X and combine them in a new group. As a result of these extra steps, features can
belong to several groups, and groups can contain features from both omic sources.

6.5 Simulations

6.5.1 Simulation setup
An extensive simulation study was conducted to investigate the performance of the

three proposed methods and to compare them with the standard strategies of using com-
mon regularized approaches, namely, lasso, ridge, and elastic net regression on stacked
datasets. We simulated two omic predictors Y and X from a zero-mean multivariate
normal distributions with correlation matrices ΣY and ΣX , respectively. Following the
recent literature on pathway and network analysis of omics data (Tissier et al., 2018), we
generated Σ according to a hub model with noise based on realistic situations (Hardin
et al., 2013). Correlation between Y and X was created by calculating the singular de-
composition (svd Jolliffe (2008)) of X, X = UXDXUXt and of Y, Y = UYDYUYt

and replacing the second column of UY by the second column of UX. Next the continu-
ous outcome z was simulated as follows z = XβX + YβY + εz, where βX and βY are
vectors of regression coefficients of length q and p respectively, and εz ∼ N (0, 1). This
procedure enables the generation of outcomes variables z affected by latent modules or
biological pathways present in X and Y.

In practice, we first generate βX∗ and β∗Y , the regression coefficients corresponding
to each independent module (given by UX and UY), and we then transform them to the
predictor space by using βX = UXtβX∗ and βY = UYtβY∗. Next we added noise to
the matrices X and Y. To test the impact of various noise structures on model perfor-
mance, we considered additive and multiplicative noise structures. Noise is added to X
(analogously to Y) as follows:

Xnoise = X + εX for an additive noise,
Xnoise = X× εX for a multiplicative noise, withεX ∼ N(0, I).

We simulated sets of X and Y with 100 and 1000 features organized in four and two
modules of correlated features respectively. The correlations within the four modules of
X range between 0.98 and 0.9 for the first modules, between 0.8 and 0.7 for the second
module, between 0.4 and 0.1 for the third module, and between 0.6 and 0.5 for the fourth
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module. For Y, the correlation within each module is between 0.9 and 0.85, and between
0.6 and 0.4 for the first and second module, respectively.

We considered three scenarios for the relationship between the phenotype z and the
features in X and Y: (Scenario a) The phenotype is simulated using only one independent
principal component of the smaller dataset X with βX∗j = 0.01, j = 3 βX∗j = βY ∗j = 0,
j 6= 3; (Scenario b) The phenotype is simulated using both an independent principal com-
ponent and the joint component of X and Y βX∗j = βY ∗j = 0.01, j = 2; βX∗j = 0.01,
j = 3; βX∗j = 0, j 6= 2, 3, and βY ∗j = 0, j 6= 2; (Scenario c) the phenotype is simulated
using only 5 specific variables of the smaller dataset X, i.e. βXj = 0.1 if j is one of the
selected variables, 0 otherwise.

Finally, to investigate the impact of different noise structure on the proposed ap-
proaches, we considered for each of the three scenarios two situations, namely both
datasets have an additive noise structure and X is subject to additive noise while Y is
subject to multiplicative noise.

The methods are evaluated with regard to prediction performance and variable se-
lection. Predictive ability is measured in terms of the Q2 =

∑n
i=1(pi−p0i)

2∑n
i=1(zi−pi)2

, the cross-
validated version of the fraction of variance explained by the prediction model, in which
the performance of the model-based double cross-validated predictions p is compared to
the naive double cross-validated predictions p0 based on the mean value of the outcome
variable z(Rodríguez-Girondo et al., 2018). Performance with regard to variable selection
is measured by the average number of truly associated features selected in the model.

6.5.2 Simulation study
Table 6.1, 6.2 and 6.3 present the obtained results for scenario a, b and c. Here, the

left panels show results when both omic sources are subject to additive noise and the right
panels shows the results when an additive noise structure for X and a multiplicative noise
structure for Y is used.

Scenario a corresponds to the situation where solely X has an effect on the outcome
z and Y is only indirectly associated with z via its correlation with X. Table 6.1 shows
that stacking the two datasets led to a worse predicting ability than only using the smaller
dataset X. When both datasets have the same noise structure, the largest loss was found
for lasso and elastic net (from Q2=.673 to Q2=.560 and from Q2=.669 to Q2=.559, re-
spectively), while GLasso0 and OverlapLasso have a similar predictive performance as
a single-omic prediction (Q2=.673 for GLasso0 and Q2=.670 for OverlapLasso). This
robustness for adding a non associated dataset was even more evident for the situation
where the datasets have different noise structures. The decrease in predictive ability of
GLasso (from Q2=.677 to Q2=.414), lasso (from Q2=.673 to Q2=.409), elastic net (from
Q2=.669 to Q2=.406) and ridge (from Q2=.494 to Q2=.323) was larger than for the sit-
uation of one noise structure, while GLasso0 and OverlapLasso showed almost similar
results than using only dataset X (Q2=.653 and Q2=.652, respectively).
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Q2

Same noise structures Different noise structures

Datasets X(p = 100) Y(p = 1000) Combined datasets X(p = 100) Y(p = 1000) Combined datasets

GLasso .677(.155) .385(.181) .609(.194) .677(.155) .385(.170) .414(.187)

GLasso0 .673(.154) .653(.181)

OverlapLasso .670(.122) .652(.205)

Lasso .673(.049) .373(.049) .560(.033) .673(.049) .364(.175) .409(.167)

Elastic net .669(.048) .372(.048) .559(.032) .669(.048) .362(.174) .406 (.167)

Ridge .494(.031) .381(.025) .482(.034) .494(.031) .312(.161) .323(.152)

Table 6.1: Predictive ability performance. Results of simulation study for scenario a. Results are based on 500 replicates. Into brackets are the standard errors
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Table 6.2 presents the simulation results for scenario b. Here, the shared principal
component of both datasets influences the outcome variable and the relationships are
stronger. As a consequence, the predictive ability of all methods was improved. When
both datasets have the same noise structure (left panel) the best performing approach
was OverlapLasso with Q2=.971 followed by GLasso0 and ridge with Q2=.942 and
Q2=.918, respectively. For these three approaches, combining datasets led to an im-
proved prediction accuracy compared to when these methods are applied to just one of
the datasets. OverlapLasso outperforms the competing methods, especially when both
datasets have an additive noise, suggesting the benefits of taking the correlation between
the datasets into account when the signal comes from the shared part of X and Y. Per-
forming group inference in the stacked dataset provided relatively worse results. When
X and Y have different noise structures, none of the approaches was able to improve
prediction accuracy compared to solely using the dataset X. The most strongly im-
pacted methods were GLasso with a predictive accuracy reducing from Q2=.854 when
the datasets have the same noise structures to Q2=.542, and ridge with Q2=.918 reducing
to Q2=.319. GLasso0 and OverlapLasso appeared to be more robust. The advantage
of OverlapLasso over Glasso0 disappeared in this setting, suggesting that our proposed
approach to detect correlated groups across datasets using the principal components of
omic-specific groups fails in presence of different noise structures.
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Q2

Same noise structures Different noise structures

Datasets X(p = 100) Y(p = 1000) Combined datasets X(p = 100) Y(p = 1000) Combined datasets

GLasso .883(.185) .809(.136) .854(.144) .883(.185) .391.(190) .542(.182)

GLasso0 .942(.162) .842.(.178)

OverlapLasso .971(.160) .843(.195)

Lasso .900(.033) .761(.049) .838(.049) .900(.033) .376(.180) .763.(.083)

Elastic net .899(.032) .761(.048) .836(.048) .899(.032) .367(.173) .763(.083)

Ridge .841(.034) .806(.031) .918(.025) .841(.034) .305(.146) .319(.061)

Table 6.2: Predictive ability performance. Results of simulation study for scenario b. Results are based on 500 replicates. Into brackets are the standard errors
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Table 6.3 presents the results for scenario c. In this setting, the signal comes from
only a small set of almost independent variables of dataset X. It is, therefore, expected
that lasso and elastic net perform the best. Indeed, lasso and elastic net outperformed
other approaches when using only X (Q2=.711 and Q2=.699, respectively). However,
lasso and elastic net performed less when applied to the stacked datasets (Q2=.577 and
Q2=.566, respectively). Regarding the network-based approaches, GLasso performed
worse for the combined dataset compared to the single-omic prediction based on solely
X with a loss of prediction ability of approximately 4%. In contrast, the predictive ability
remained the same when group inference is omic-specific (Q2=.655 for GLasso0) and
it was slightly improved when taking into account the correlation between the datasets
(Q2=.681 for OverlapLasso compared to Q2 = .654 for GLasso using only X). As in
previous scenarios, naive combinations performed worse when the datasets have different
noise structures compared to the situation when they have a similar error structure. Here,
OverlapLasso also did not outperform GLasso0, suggesting that the correlation structure
between the datasets is not well captured. Hence OverlapLasso was not able to improve
the prediction accuracy of GLasso0.

Finally, Table 6.4 presents the average number of times the truly associated variables
were selected across the 500 simulations. Indeed, the best results were obtained with
GLasso using only dataset X, with 2.83 of the 5 variables correctly selected in average.
This value reduced to 1.62 out of 5 when combining the two datasets with the same noise
structure and to 0.11 when combining datasets with different noise structures. This in-
dicates that the Pearson correlation-based network approach was sensitive to the noise
structure of the datasets and that having a mixture of noise structure yields an incorrect
network structure. Although, GLasso0 and OverlapLasso provided worse results than
GLasso based solely on X, they were the most robust among the studied combination ap-
proaches, with respectively 2.27 and 1.58 variables correctly selected when both datasets
have the same noise structures, and 1.33 and 1.33 when datasets have different noise struc-
tures. Finally, with, in average, less than one correct variable included in the prediction
model, the performance of lasso and elastic net were weak, even when considering only
X. This is probably caused by the fact that these methods tend to randomly select a subset
of correlated variables which might not necessary include the associated features (Tissier
et al., 2018).
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Q2

Same noise structures Different noise structures

Datasets X(p = 100) Y(p = 1000) Combined datasets X(p = 100) Y(p = 1000) Combined datasets

GLasso .654(.167) .474(.180) .611(.164) .654(.167) .389(.179) .578(.180)

GLasso0 .655(.177) .658(.208)

OverlapLasso .681 (.181) .662(.210)

Lasso .711(.234) .439 (.219) .577 (.212) .711(.234) .370(.172) .525(.198)

Elastic net .699(.240) .436 (.218) .566(.214) .699(.240) .369(.172) .521(.196)

Ridge .640 (.267) .428 (.198) .417(.207) .640(.267) .312(.152) .475(.175)

Table 6.3: Predictive ability performance. Results of simulation study for scenario c. Results are based on 500 replicates. Into brackets are the standard errors
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Same noise structures Different noise structures

Only using X Combined datasets Only using X Combined datasets

GLasso 2.83 1.62 2.83 0.11

GLasso0 2.27 1.33

OverlapLasso 1.58 1.33

Lasso 0.89 0.62 0.89 0.80

Elastic net 0.98 0.70 0.98 0.93

Table 6.4: Variable selection. Results from simulation study for scenario c. Average number of true signal
carrying variables selected accross the 10-fold cross-validation and the 500 simulations. The phenotype was
simulated using only 5 variables from dataset X .

6.6 Real data analysis
To illustrate and compare the performance of the proposed approaches on real data,

we analyzed data from the DILGOM study and from the breast cancer cell line pharma-
cogenomics dataset, introduced in Section 1. For both cases, we aim to build a single
prediction model based on two omic datasets. In the DILGOM study we consider NMR
metabolites and gene expression profiles, both measured at baseline, to predict BMI af-
ter seven years of follow-up. The analyzed sample contained n =258 individuals. In the
breast cancer cell lines dataset, we were interested in using gene expression and copy
number variants for predicting the treatment response of the Erlotinib drug. Treatment
response is measured through the GI50 index, a quantitative measure which quantifies the
growth inhibitory power of the test agent. The analysed sample consisted of 45 breast
cancer cell lines.

6.6.1 DILGOM
The NMR metabolomic data consists of quantitative information on 57 metabolic

measures, mainly composed of measures on different lipid subclasses, but also amino
acids, and creatine. The set of gene expression profiles consist of 2980 probes. Tables 6.5
and 6.6 present the main results for the prediction of BMI after 7 years of follow-up. Table
6.5 shows the performance of each method in terms of predictive ability measured through
Q2. All network-based approaches, applied to both datasets simultaneously, perform sim-
ilarly (Q2=.414, Q2=.425, and Q2=.422 for Glasso, Glasso0 and OverlapLasso, respec-
tively) and better than lasso, elastic net and ridge ( with Q2 = .295, Q2 = .307, and
Q2 = .104 respectively). Comparing combined with single omic approaches, these three
group based approaches perform similarly or better.

Table 6.6 presents the main results with regards to variable selection properties of
the different approaches. We can see that the network based approaches selected more
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Q2

Datasets Metabolites (p=57) Gene Expression (p=2980) Combined datasets

GLasso .241 .418 .414

GLasso 0 .425

Overlap Lasso .422

Lasso .227 .257 .295

ENet .208 .265 .307

Ridge .222 .131 .104

Table 6.5: Predicitive ability. Results obtained from analyzing the DILGOM datasets. Predictive ability obtained
for each dataset and for the combined dataset for each method.

GLasso GLasso0 Overlap Lasso Lasso Enet Ridge

Variables not selected 2639 2565 2562 2937 2923 0

Variables selected at least once* 343(0.11) 417(0.13) 420(0.14) 45(0.01) 59(0.02) 2982(1.00)

Variables always selected** 71(0.20) 210(0.50) 210(0.50) 14(0.31) 20(0.33) 2982(1.00)

Table 6.6: Variable selection. Results obtained from analyzing the DILGOM datasets. Number of variables
selected selected or not during the cross-validation process. * into brackets are the proportion of variable selected
in the total set of variables available. ** into brackets are the proportion of variable selected in the set of variable
selected at least once

variables than lasso and elastic net with a proportion of variables selected at least once
between 0.11 and 0.14 during the cross-validation process for the network approaches
and between 0.01 and 0.02 for lasso and elastic net, respectively. With regards to stabil-
ity, from the variables selected at least one time a larger proportion was selected all the
time for GLasso0 and OverlapLasso (0.5) compared to elastic net and GLasso (' 0.3).
Finally, we observe that OverlapLasso and GLasso0 had almost the same prediction
ability, moreover, they selected the same variables suggesting that there is almost no cor-
relation between the two omic datasets.

6.6.2 Breast cancer cell lines
The first omic dataset consists of quantitative information on almost 100,000 different

copy number variants. After filtering copy number variants present in all the 45 breast
cancer cell lines and keeping only one variable per gene, we obtained 637 copy number
variants. The second omic set consist of a set of 5375 probes. Tables 6.7 and 6.8 present
the main results for the prediction of the treatment response of the Erlotinib drug. Table
6.7 shows the performance of each method in terms of predictive ability measured by Q2.



108 Chapter 6 – Integration of several omic sources in prediction models

Q2

Datasets CNV Gene Expression Combined datasets

GLasso .476 .651 .504

GLasso 0 .905

Overlap Lasso .933

Lasso .934 .571 .576

ENet .836 .564 .563

Ridge .454 .610 .614

Table 6.7: Predicitive ability. Results obtained from analyzing the Breast cancer cell lines. Predictive ability
obtained for each dataset and for the combined dataset for each method.

GLasso GLasso0 Overlap Lasso Lasso Enet Ridge

Variables not selected 5639 5448 5467 5953 5940 0

Variables selected at least once* 373(0.06) 564(0.09) 545(0.09) 59(0.01) 72(0.01) 6012(1.00)

Variables selected at least 5 times** 22(0.04) 34(0.06) 43(0.11) 2(0.03) 2(0.02) 6012(1.00)

Variables always selected** 0(0.00) 0(0.00) 0(0.00) 2(0.02) 2(0.02) 6012(1.00)

Table 6.8: Data analysis: Breast cancer cell lines. Number of variables selected selected or not during the corss-
validation process. * into brackets are the proportion of variable selected in the total set of variables available.
** into brackets are the proportion of variable selected in the set of variable selected at least once

The performance of OverlapLasso and of GLasso0 was similar to the best performing
method applied to one dataset (CNVs, Lasso with Q2 = .934). Note that OverlapLasso
showed a little better results than GLasso0. This is probably due to the presence of cor-
relation between the datasets. Figure 6.4 present the network of principal components
obtained after clustering the datasets separately, highlighting the presence of existing cor-
relation between groups from different omic sources.

Table 6.8 shows the results with regards to variable selection properties of the differ-
ent approaches. We observe that only lasso and elastic net select variables all the times
during the cross-validation process. These two methods selected the same two variables
all the times. However, when looking at variables selected at least 5 times in the 10-fold
cross-validation process, we observe that the network approaches selected more variables
than lasso and ridge. Namely, GLasso, GLasso0 and OverlapLasso selected 22, 34 and
43 variables half of the time, respectively. Note that OverlapLasso is the most stable
approach when looking at the proportion of variable selected at least 5 times among the
variables selected (0.11).
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Figure 6.4: Data analysis: Breast cancer cell lines. Network of principal components of the modules identified
in each datasets. In red are the principal components of the transcriptomics modules and in green from the
CNVs module. Edges are showing existing correlations between principal components. Colors in the names of
the different nodes represent different modules of omic variables.

6.7 Discussion
In this paper, we proposed a new strategy to integrate two omics datasets in a pre-

diction model. The key components of our proposed approach are to capture groups of
correlated features within and between omic datasets and to include it in a group penal-
ization model. Simulations results showed that naively stacking datasets is usually not
a good strategy as it often perform worse than a model based on a single omic datasets.
This result confirmed previous research of our group (Rodríguez-Girondo et al., 2018).
As seen in the simulations (scenario b), including information about the correlation be-
tween the omic datasets, through the inclusion of overlapping groups (OverlapLasso),
might improve the prediction accuracy. Therefore, when the studied omic datasets have
a similar noise structure, OverlapLasso is the recommended method to build prediction
models. The loss of prediction accuracy of GLasso when the two datasets have different
noise structures, suggests that correlation-based network approaches might be sensitive
to different noise distributions. Building the networks and performing clustering on each
omic sets provided the most robust results especially in the presence of different noise
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structure. In case of different noise structure for the studied datasets, OverlapLasso can
also be the recommended method if both datasets are considered. However in this situa-
tion a model based on only one dataset might still be the best.

The analysis of the datasets of the two applications confirm the simulation results.
Indeed, in the case of the the NMR metabolites and gene expression profiles of DILGOM
we clearly see that using GLasso0 and OverlapLasso provided the best results. In this
particular case, stacking the two sets of omics in a naive way using lasso and elastic net
also improves the predictive accuracy, which was not the case in our simulations. This
might be explained by the fact that the features within each omic set are less correlated
than in our simulations settings and especially lasso performs better in this case. Finally,
the fact that GLasso0 and OverlapLasso provided the same predictive ability, is probably
due to a weak correlation between the two different types of omics. For the breast cancer
cell lines, where the correlation between the omics set is stronger, OverlapLasso pro-
vides a better predictive accuracy than GLasso0 which agrees with the results obtained in
the simulation scenarios. Overall the network based approaches were more stable when
analyzing the two datasets jointly especially for the DILGOM datasets where a large
proportion of variables selected at least once were actually allways selected during the
cross-validation process.

To conclude, we presented a strategy to integrate two different omic sets of features
into a prediction model in order to improve the prediction ability of single-omic based
models. Our approach is highly flexible and several types of group penalization methods
or network analysis approaches can be used. When the noise structure of the two datasets
is similar and the signal comes from the joint component of the two datasets the principal
components approach to build clusters containing features of both datasets showed some
improvement. More research is needed for identifying the best method to detect possible
correlation between groups of omic features from different sources, especially when these
sources are subject to different error structures. Another topic of future work is to formally
assess added predictive value using network and group penalization (Rodríguez-Girondo
et al., 2018).
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Summary

This dissertation focuses on the development of new statistical methods designed
to take into account existing structures inside omic datasets. The major challenge in
analysing omic datasets is the strong dependencies which are present. Taking into ac-
count and modelling the different dependency structures can lead to further improvements
of our knowledge of the biological mechanisms. Therefore, improving our ability to pre-
dict diseases.

Chapter 1 provides a general introduction to the existing dependency structures possi-
bly faced when studying omic datasets. First, the most common measure of dependence
is described, i.e. the Pearson correlation coefficient. Next, the different dependency struc-
tures are described. Namely, dependencies between individuals, between outcome mea-
sures and between omic features. For each of these dependency levels the challenges
faced and the commonly used methods are described.

Chapters 2 and 3 present methods for the analysis of secondary phenotypes in ascer-
tained family studies. Chapter 2 presents a new approach to analyse secondary phenotype
for the multiple case family design. Where families are selected when they have at least a
specific number of cases. The proposed method is illustrated by a data example obtained
from the Leiden Longevity Study, which is a multiple-cases family study that investigates
human longevity (primary phenotype). Here the association between, triglyceride lev-
els and glucose (secondary phenotypes), and genetic markers was estimated. Chapter 3
presents methods used in the literature for secondary phenotype analysis for the proband
family design. This design comprises family members of specific probands (often cases
with the primary outcome). These methods are then compared with the method previ-
ously developed in Chapter 2. The real data analysis presented in this chapter is part of
the Social Anxiety Disorder (SAD) family study, and aims to identify possible endophe-
notypes of SAD.

Chapter 2 develops an approach to obtain unbiased association estimates between sec-
ondary phenotypes and biomarkers as well as unbiased heritability estimates of the avail-
able secondary phenotypes. This method accommodates the ascertainment process while
explicitly modelling the familial relationships. To do so, Our approach uses the retrospec-
tive likelihood in order to correct for the ascertainment process with existing methods for
mixed-effects models. The retrospective likelihood approach automatically corrects for
the ascertainment. A multivariate probit model is used to capture the association between
the mixed type primary (binary variable) and secondary phenotypes (continuous variable).
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Estimates are then obtained by maximizing the log-likelihood.
An important empirical finding is that the heritability estimates for the secondary traits

can be severely underestimated unless the sampling mechanism is taken into account. Ex-
tensive simulations show that the presented method preserves the type I error at nominal
level and provides accurate estimates irrespective of the disease prevalence, the strength
of the association between the genetic variants and the primary phenotype, and the ascer-
tainment mechanism. Currently, a key limitation of this approach is the computational
time of multivariate integrals, especially in case of large pedigrees.

Chapter 3 investigates the performances of the previous method, from Chapter 2, for
the analysis of proband family study design. Theses performances are compared with
methods currently used in the litterature. Namely, ignoring the ascertainment process and
modelling the conditional distribution of the secondary phenotype values of the families
given the secondary phenotypes of the probands. Furthermore, we propose an extension
of the latter approach, by modelling the joint conditional distribution of the primary and
secondary phenotype values of the families given the joint distribution of the primary and
secondary phenotypes of the probands.

Extensive simulations show that only the retrospective likelihood approach developed
in Chapter 2 is able to obtain unbiased heritability estimates of the secondary phenotype
as well as association estimates of the secondary phenotypes with genetic markers. Fur-
thermore, conditioning on the secondary phenotype values of the proband can severely
underestimate heritability estimates and therefore limiting the identification of candidate
endophenotypes of primary phenotypes. Only the retrospective likelihood approach could
identify a candidate endophenotypes of SAD in the real data analysis . Another impor-
tant key point of this chapter is that current methods provide biased estimates when the
proband information is missing. Therefore, the use of such study design should not, at
this time, be considered.

Chapter 4 considers the problem of conducting gene co-expression network analysis
for family studies. A large between-family variation in expression levels could severely
bias the network structure obtained if the pedigree structure is not taken into account. To
overcome this issue, we propose a meta-analytic approach. We first build the omic net-
work for each pedigree to identify clusters of correlated microarray probes. The eigengene
(first principal component) of each cluster of each pedigree are then tested for association
with a phenotype of interest. After identification of the most strongly associated cluster,
clusters presenting the largest overlap with this cluster in each family are then combined
with this one. Finally, the eigengene of the combined cluster is then tested for association
with the phenotype. This method was used for analysis of the simulated dataset provided
for the Genetic Analysis Workshop 18. This method was compared with methods such as:
single probe analysis, ignoring the pedigree structure, and build the network on "decorre-
lated" omic variables.

Chapter 5 and Chapter 6 presents new methods to incorporate grouping information
in prediction models in order to obtain more stable and possibly interpretable models. All
the analyses shown in these chapters are using data from the DIetary, Lifestyle, and Ge-
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netic determinants of Obesity and Metabolic syndrome study (DILGOM) and the publicly
available breast cancer cell lines pharmacogenomics dataset for illustration.

In Chapter 5, a new strategy for model selection based on three steps is presented :
Network construction of omic features, empirical derivation of modules of related feature
via clustering, and construction of prediction model incorporating the grouping informa-
tion. This approach aims to overcome issues caused by the presence of strong correlations.
Several methods are considered to performs steps 1 and 3 of the developed approach. We
compare the performance of this strategy with standard regularized regression such as
lasso, ridge regression, and elastic net via simulations.

Simulation and data application results show that this strategy provide more stable
prediction models and can perform, in terms of prediction accuracy, as well as standard
regularized regression. Indeed methods such as lasso or elastic net tend to select randomly
one variable from group of strongly correlated variable leading to unstable models and,
therefore, the results are hard to reproduce. Comparisons in prediction performance of the
various combinations of network approaches and prediction models allows us to provide
guidelines in which combination of methods to use. The combination of graphical lasso
and group lasso is overall the best performing approach. However, in large datasets the
use of WGCNA instead of graphical lasso is preferred due to the intensive computations
needed for graphical lasso.

Chapter 6 studies how to use different omics datasets simultaneously in prediction
models. Combining several omic sources in one prediction model is challenging due the
presence of strong heterogeneity between omic sources. Heterogeneity in terms of di-
mensionality, normalization procedures, and error structures. In this chapter we propose
several strategies to integrate two omic sources in one prediction model. Specifically,
we propose three strategies: 1) stacking both omic sources together and applying the
approach proposed in Chapter 5, 2) performing network construction and clustering on
each omic source separately and build the prediction model, 3) performing network con-
struction and clustering on each omic source separately, identifying correlation between
clusters and between omic sources, and incorporation of this information in the prediction
model. The data examples in this chapters comprise metabolomics and transcriptomics
datasets from Dilgom and, and Copy number variants and gene expression from the breast
cancer cell lines pharmacogenomics dataset.

The key components of our proposed approach are to capture groups of correlated
features within and between omic datasets and to include this information by a group pe-
nalization model. Simulations results showed that naively stacking datasets is usually not
a good strategy as it often perform worse than a model based on a single omic datasets.
Including information about the correlation between the omic datasets might improve the
prediction accuracy. When the noise structures from both omic sources are different, per-
forming the network analysis and clustering on each omic sources separately proved to be
more robust in terms of predictive accuracy than stacking the datasets together.
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Samenvatting

Deze dissertatie richt zich op de ontwikkeling van nieuwe statistische methodes waar-
bij rekening wordt gehouden met afhankelijkheidsstructuren in omics-datasets en met de
modellering van deze structuren. Statistische modellering van deze structuren kan leiden
tot verdere verbetering van onze kennis van biologische mechanismen. Door rekening te
houden met de structuur zijn wij mogelijk beter in staat om ziekten te voorspellen. In
hoofdstuk 1 wordt de meest gebruikelijke mate van afhankelijkheid beschreven, namelijk
de correlatiecoëfficiënt van Pearson. Verder wordt een algemene inleiding gegeven over
verschillende afhankelijkheidsstructuren waarmee iemand bij het bestuderen van omics-
datasets mogelijk te maken krijgt: afhankelijkheden tussen personen, gemeten resultaten
en omics-eigenschappen. Voor elk van deze afhankelijkheidsniveaus worden de uitdagin-
gen beschreven die iemand kan tegenkomen en de daarvoor meestal gebruikte methodes.

In hoofdstuk 2 en 3 worden methodes beschreven voor de analyse van secundaire
fenotypen in onderzoek naar geverifieerde families. In hoofdstuk 2 wordt ingegaan op
een nieuwe aanpak voor het analyseren van het secundaire fenotype voor een opzet voor
familieonderzoek met meerdere casussen, waarvoor families worden geselecteerd waarin
minimaal een specifiek aantal casussen voorkomt. De voorgestelde methode wordt onder-
bouwd aan de hand van een voorbeeld op basis van gegevens van het onderzoek Leiden
Lang Leven, een familieonderzoek aan de hand van meerdere casussen, waarin de ver-
oudering bij mensen (primair fenotype) wordt onderzocht. Hier werd een inschatting
gemaakt van de parameters die zorgen voor de verbanden tussen triglyceridespiegels en
glucose (secundaire fenotypen) en genetische markers. In hoofdstuk 3 worden methodes
beschreven die binnen de literatuur zijn terug te vinden ten aanzien van secundairefenoty-
peanalyse voor een onderzoeksopzet op basis van de familie van proefpersonen. Bij deze
opzet worden familieleden van specifieke proefpersonen (vaak casussen met de primaire
resultaten) meegenomen in het onderzoek. De prestaties van de beschikbare methodes
worden vergeleken met onze methode, die beschreven staat in hoofdstuk 2. De analyse
van werkelijke gegevens in dit hoofdstuk maakt onderdeel uit van het familieonderzoek
naar socialeangststoornissen (Social Anxiety Disorder, SAD) en richt zich op het vaststel-
len van kandidaat- endofenotypen van SAD.

Hoofdstuk 2 omschrijft een benadering voor het verkrijgen van onvertekende associ-
atieve schattingen tussen secundaire fenotypen en biomarkers en onvertekende erfelijk-
heidsschattingen voor secundaire fenotypen. Deze methode biedt ruimte voor het vast-
stellingsproces en zorgt voor expliciete modellering van de familierelaties. Om dit te be-

127



128 Samenvatting

reiken maken wij bij onze benadering gebruik van retrospectieve waarschijnlijkheid, ten
behoeve van modellen met gemengde effecten. De benadering op basis van retrospectieve
waarschijnlijkheid corrigeert automatisch voor de vaststelling. De willekeurige effecten
zorgen voor modellering van de familierelaties. Om de associatie tussen de primaire fe-
notypen (binaire variabele) van het gemengde type en de secundaire fenotypen (continue
variabele) te kunnen bepalen wordt gebruikgemaakt van een multivariaat probitmodel.
Door maximalisatie van de retrospectieve log-waarschijnlijkheid kunnen er schattingen
worden gedaan.

Een belangrijke empirische bevinding is dat de erfelijkheidsschattingen voor de se-
cundaire trekken sterk kunnen worden onderschat, tenzij rekening wordt gehouden met de
wijze van monstername. Uit uitgebreide simulaties is gebleken dat de hier gepresenteerde
methode de fout van type 1 op een nominaal niveau houdt en zorgt voor nauwkeurige
schattingen, ongeacht de prevalentie van de ziekte, de sterkte van de associatie tussen de
genetische varianten en het primaire fenotype, en ongeacht het vaststellingsmechanisme.
Momenteel is een belangrijke beperking van onze benadering de aanwezigheid van mul-
tivariate integralen, waarvan de berekening veel tijd kost, vooral als er sprake is van een
grote stamboom.

In hoofdstuk 3 wordt onderzoek gedaan naar de prestaties van onze methode voor
de analyse van gegevens van proefpersonenonderzoeken met familiebenadering, zoals
die in hoofdstuk 2 beschreven worden. De prestaties worden vergeleken met methodes
die vandaag de dag binnen de literatuur gangbaar zijn, namelijk methodes die het vast-
stellingsproces negeren of die gezien de secundaire fenotypen van de proefpersonen de
voorwaardelijke spreiding van de waarden van de secundaire fenotypen van de families
modelleren. Verder pleiten wij voor een uitbreiding van deze laatste wijze van aanpak,
waarbij bij de gezamenlijke, voorwaardelijke spreiding van de primaire en secundaire fe-
notypewaarden van de familieleden wordt uitgegaan van de gezamenlijke spreiding van
de primaire en secundaire fenotypen van de proefpersonen.

Uit uitgebreide simulaties is gebleken dat alleen de benadering op basis van retro-
spectieve waarschijnlijkheid die in hoofdstuk 2 werd ontwikkeld ook echt in staat is om
onvertekende erfelijkheidsschattingen te krijgen van het secundaire fenotype, evenals on-
vertekende parameterschattingen voor de associaties tussen de secundaire fenotypen en
genetische markers. Bovendien kan conditionering op de secundaire fenotypewaarden
van de proefpersoon leiden tot een ernstige onderschatting van de erfelijkheid en dat kan
ook de identificatie beperken van kandidaat-endofenotypen van primaire fenotypen. Al-
leen de benadering op basis van retrospectieve waarschijnlijkheid kon binnen de analyse
van werkelijke gegevens een kandidaat-endofenotype van SAD vaststellen. Een ander be-
langrijk punt binnen dit hoofdstuk is dat uit alle methodes vertekende schattingen voort-
komen als de informatie van de proefpersoon ontbreekt. Daarom moet de toepassing van
een dergelijke onderzoeksopzet op dit moment niet worden overwogen.

In hoofdstuk 4 wordt gekeken naar het probleem van het uitvoeren van netwerkana-
lyse voor co-expressie van genen bij familieonderzoeken. Een grote variatie in expres-
sieniveaus tussen families onderling zou een aanzienlijke vertekening vormen voor de
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verkregen netwerkstructuur als geen rekening zou worden gehouden met de stamboom-
structuur. Om dit probleem te voorkomen, stellen wij een meta-analytische benadering
voor. Wij bouwen eerst het omics-netwerk op voor iedere stamboom, om zo clusters van
correlerende microarray-probes vast te kunnen stellen. De eigengenen (eerste hoofdcom-
ponent) van ieder cluster van elke stamboom worden vervolgens getest op associatie met
een belangwekkend fenotype. Na bepaling van het sterkst geassocieerde cluster, wor-
den de clusters die binnen iedere familie hiermee het meest overlappen met dit cluster
gecombineerd. Ten slotte wordt het eigengen van het gecombineerde cluster getest op
associatie met het fenotype. Deze methode werd gebruikt voor de analyse van de gesi-
muleerde dataset die beschikbaar werd gesteld voor de Genetic Analysis Workshop 18
en de prestaties ervan werden vergeleken met die van andere methodes, waaronder: en-
keleprobeanalyse, waarbij de stamboomstructuur wordt genegeerd, en opbouw van het
netwerk op basis van gedecorreleerde omics-variabelen. In hoofdstuk 5 en 6 presenteren
wij nieuwe methodes om groeperingsinformatie in te bouwen in voorspellingsmodellen,
om zo stabielere en waar mogelijk interpreteerbare modellen te kunnen krijgen. Bij alle
analyses in deze hoofdstukken wordt ter illustratie gebruikgemaakt van gegevens uit het
DILGOM-onderzoek (DIetary, Lifestyle, and Genetic determinants of Obesity and Meta-
bolic syndrome) en van de openbaar toegankelijke, farmacogenomische dataset van borst-
kankercellijnen.

In hoofdstuk 5 wordt een nieuwe aanpak gepresenteerd voor modelselectie op basis
van drie stappen: opbouwen van een netwerk van omics-eigenschappen, empirische de-
rivatie van modules met vergelijkbare eigenschappen door middel van clustering en ten
slotte het opbouwen van een voorspellingsmodel, waarin de groeperingsinformatie is in-
gebouwd. Deze aanpak is erop gericht om problemen als gevolg van de aanwezigheid van
sterke correlaties tegen te gaan. Er worden verschillende methodes afgewogen voor het
uitvoeren van stap 1 en 3 van de ontwikkelde benadering. Wij vergelijken de prestaties
van deze strategie door middel van simulaties met de standaard geregulariseerde regres-
sie, zoals LASSO, Ridge-regressie en elastic net.

Uit de resultaten van de simulaties en datatoepassing blijkt dat deze aanpak leidt tot
stabielere voorspellingsmodellen en dat deze wat betreft nauwkeurigheid van de voorspel-
lingen even goed werkt als de standaard geregulariseerde regressie. Bij methodes zoals
LASSO of elastic net wordt meestal een willekeurige variabele geselecteerd uit een groep
sterk correlerende variabelen, wat leidt tot instabiele modellen en daardoor tot problemen
met de reproductie van de resultaten. Door voorspellende prestaties van de diverse com-
binaties van netwerkbenaderingen en voorspellingsmodellen te vergelijken, kunnen we
richtlijnen geven voor de te gebruiken combinatie van methodes. De combinatie van gra-
fische LASSO en groeps-LASSO is de aanpak die over het algeheel gesproken de beste
prestaties geeft. Bij grote datasets heeft echter WGCNA de voorkeur boven grafische
LASSO, aangezien voor grafische LASSO erg intensieve berekeningen nodig zijn.

In hoofdstuk 6 onderzoeken we hoe binnen voorspellingsmodellen verschillende omics-
datasets simultaan kunnen worden gebruikt. Het combineren van verschillende omics-
bronnen binnen een voorspellingsmodel is een hele uitdaging, gezien de sterke onderlinge
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heterogeniteit van omics-bronnen. De gegevenssets variëren in termen van dimensiona-
liteit, normalisatieprocedures en foutstructuren. In dit hoofdstuk stellen wij drie strate-
gieën voor om twee omics-bronnen binnen een voorspellingmodel te integreren. Onze
specifieke voorstellen zijn: 1) stapeling van de beide omics-bronnen en toepassing van
de benadering die is voorgesteld in hoofdstuk 5, 2) netwerkconstructie en clustering van
beide omics-bronnen afzonderlijk en bouwen van het voorspellingsmodel, 3) netwerk-
constructie en clustering van beide omics-bronnen afzonderlijk, bepaling van de corre-
latie tussen de clusters en tussen de omics-bronnen en inbouwen van deze informatie
in het voorspellingsmodel. De voorbeelden van de gegevens in dit hoofdstuk omvatten
datasets bestaande uit metabolomics en transcriptomics uit het DILGOM-onderzoek en
kopienummervarianten en genexpressie van de dataset van farmacogenomische borstkan-
kercellijnen.

De belangrijkste componenten van de door ons voorgestelde benadering zijn het bepa-
len van groepen van intern of onderling correlerende eigenschappen van de omics-datasets
en het integreren van deze informatie door middel van een groepspenalisatiemethode. Uit
simulaties blijkt dat het naïef stapelen van datasets meestal geen goede strategie is, aan-
gezien het model meestal slechter presteert dan een model dat is gebaseerd op een enkele
omics-dataset. Toevoeging van informatie over de onderlinge correlatie van de omics-
datasets kan de voorspellingsnauwkeurigheid mogelijk verbeteren. Als de ruisstructuren
van beide omics-bronnen verschillen, blijkt dat in termen van voorspellingsnauwkeurig-
heid het uitvoeren van de netwerkanalyse en clustering voor iedere omics-bron afzonder-
lijk robuuster is dan de stapeling van datasets.
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