
Spectroscopy of two-field Inflation
Welling, Y.M.

Citation
Welling, Y. M. (2018, November 27). Spectroscopy of two-field Inflation. Casimir PhD Series.
Retrieved from https://hdl.handle.net/1887/67091
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/67091
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/67091


 
Cover Page 

 
 

 
 
 

 
 
 

The handle  http://hdl.handle.net/1887/67091 holds various files of this Leiden University 
dissertation. 
 
Author: Welling, Y.M. 
Title: Spectroscopy of two-field Inflation 
Issue Date: 2018-11-27 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/67091
https://openaccess.leidenuniv.nl/handle/1887/1�


Deel II

Large Scale Structure

129





Hoofdstuk 6

Lifting primordial non-Gaussianity above the noise

In this chapter we present a Fisher analysis to understand whether the ’Effec-
tive Theory of Large Scale Structure’ can help us to improve the constraints
on primordial non-Gaussianities in near future large scale structure surveys,
such as Euclid. As a first step we focus exclusively on the matter bispectrum.
Already in this simplified set-up we find that it is unlikely to reach the theo-
retical benchmarks quoted in Eq. 1.2.4. On the other hand, the EFT reduces
the size of the error bars by a factor of 3 compared to standard perturbation
theory in this set-up.

This chapter is organized as follows. In section 6.2, we review the results
for the matter bispectrum in the Effective Theory of Large Scale Structure
accounting for primordial non-Gaussianities. In section 6.3, we discuss the
details of the Fisher forecast with particular emphasis on a consistent treat-
ment of theoretical uncertainties. Section 6.4 is devoted to a discussion of
the results of the Fisher forecast on primordial non-Gaussianities constraints
from large scale structure surveys. We conclude in section 6.5. Several ap-
pendices contain more technical results. In Appendix 6.A, we summarize all
relevant formulae to compute the bispectrum in the Effective Theory of Large
Scale Structure. In Appendix 6.B, we present a detailed discussion of how to
consistently account for theoretical errors. Appendix 6.C discusses the issue
of binning the data for the Fisher forecast and finally, for the convenience of
the reader, we collected all symbols used in this paper and their meaning in
Appendix 6.D.

This chapter is based on [141]:
Lifting Primordial Non- Gaussianity Above the Noise, Y. Welling, D. van der
Woude, and E. Pajer, JCAP 1608 (2016) 08, 044, (arXiv:1605.06426 [astro-
ph.CO]).
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132 Lifting primordial non-Gaussianity above the noise

6.1 Introduction and summary

Primordial deviations from Gaussianity are key to understand inflation and
will soon be tested via a number of ambitious Large Scale Structure (LSS)
surveys. It is therefore imperative to understand how late-time LSS obser-
vations can be related to the parameters that characterize primordial non-
Gaussianity (PNG). This relation is complicated and non-linear. The degree
to which we will be able to collect further primordial information from LSS
survey will eventually be determined by our ability to model this non-linear
relation. In this work, we focus on specific source of non-linearities, namely
perturbative matter non-linearities. These are generated by the sub-horizon
gravitational evolution of small initial matter inhomogeneities into larger ones,
until the perturbations compete locally with the homogeneous background ex-
pansion. For concreteness, we study local, equilateral and quasi-single field
non-Gaussianity, since these are well-motivated theoretically and represent
signals that are complementary from the point of view of observations. Ad-
ditional sources of non-linearity are also important, such as for example bias
and redshift space distortion. In case of equilateral and quasi single field PNG,
these are expected to further worsen our ability to constraint primordial pa-
rameters. In this sense, our results can be interpreted as lower bounds on the
precision of future constraints. For local PNG, it is possible that non-linearities
encapsulated in the biasing of tracers, if very well understood, might eventu-
ally help us improve on the bounds we find here (see [129] and e.g. [130, 287]
for a recent estimate). We will discuss this possibility in subsection 6.4.1.

In our analysis, we will use the Effective Field Theory of Large Scale
Structures (EFT of LSS) [159], which builds on Standard Perturbation The-
ory (SPT) [149], and provides a consistent perturbative approach to describe
the evolution of matter distribution. We focus exclusively on the matter bis-
pectrum, since it is a primary probe of PNG that is affected by matter non-
linearities. Recent work on PNG and the bispectrum includes [130, 288–293].
Within the EFT approach, the bispectrum generated by the late-time gravita-
tional evolution from otherwise Gaussian initial conditions has been studied
in [181, 182]). This contribution plays the role of background noise in PNG
searches. The signal, namely the primordial bispectrum, is also affected by
gravitational non-linearities. This has been recently studied in [183]. Here, we
use these two results and present a Fisher forecast for constraints on PNG. A
key element of our forecast is the inclusion of theoretical error, employing and
further developing the recent proposal of [294].

For the convenience of the reader, we collect here our major findings with
references to where they are discussed in the rest paper.

• When using the EFT of LSS, the perturbative approach to model matter
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non-linearities will not prevent upcoming LSS surveys to improve upon
the current bounds from CMB anisotropies [118] (see Table 6.1).

• Our limited perturbative understanding of matter non-linearities limits
the achievable bounds on equilateral non-Gaussianity from planned ga-
laxy surveys to σ(feqNL) & 10 (see Table 6.1), far from the theoretically
interesting benchmark σ(feqNL) ∼ 1 (see e.g. [103, 104] and references
therein). We estimate that this remains true even if one included the
full two-loop corrections (see Table 6.2). Local non-Gaussianity is more
promising, and we find e.g. for Euclid σ(f locNL) & 1.

• The consistent treatment of short-scale effects within the EFT appro-
ach allows one to improve PNG constraints by a factor of about 3 (see
Table 6.3). This relies on two facts. First, the EFT parameters pro-
vide a better description of the late-time gravitational non-linearities
(the “background” discussed in [181]). Second, for the specification of
most upcoming experiments, the EFT parameters are only weakly cor-
related with PNG, and so marginalizing over them hardly degrades the
constraints (see subsection 6.4.2).

• Both the SPT loops and the EFT corrections to primordial non-Gaussianity
(the “signal” discussed in [183]) are small and their inclusion does not
improve the PNG constraints appreciably (see first and second line of
Table 6.3).

• We discuss several aspects of the method proposed in [294] to model the
theoretical error inherent to the perturbative approach. We show that a
wrong shape for the theoretical error can lead to a biased estimate for
fNL . This happens when it partly underestimates the error. Conversely,
a conservatively large theoretical error leads to correct unbiased results.
We thoroughly analyze the dependence of the Fisher forecast on the
correlation length used in [294], and explain our results with a toy model.

Conventions Redshift z and conformal spatial coordinates x are used as
measures of time and position. We use the following convention for the Fourier
transform

F (x) =

∫
k
F̃ (k)eik·x, where we use the shorthand

∫
k
≡
∫

d3k

(2π)3
. (6.1)

In particular, this implies that we have the following relation between any
N -point equal-time correlation function and its spectrum

〈δ(k1) . . . δ(kN )〉 = (2π)3δD(k1 + . . .+ kN )S(k1, . . . ,kN ), (6.2)
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where we suppressed the time dependence.
For the numerical analysis, we compute the linear power spectrum with

CAMB [173], where we assume a standard cosmological model with Ω0
Λ =

0.728, Ω0
m = 0.272, h = 0.704, ns = 0.967 and Aζ = 2.46× 10−9.

6.2 Analytical predictions for the bispectrum

In this section, we review the analytical predictions for the late-time matter
bispectrum within the Effective Field Theory of Large Scale Structures (EFT
of LSS), accounting for non-Gaussian initial conditions. In subsection 6.2.1 we
collect the contributions to the bispectrum up to first order in primordial non-
Gaussianity and up to ‘one-loop’ order in perturbation theory. In subsection
6.2.2, we specify the types of primordial non-Gaussianity (PNG) we study in
this paper. In subsection 6.2.3, we discuss the theoretical errors, which are
intrinsic to the perturbative approach.

6.2.1 The bispectrum in the EFT of LSS

Despite being almost collisionless, cold dark matter on large scales behaves
approximately as a fluid. This relies on the fact that the primordial universe
is locally in (thermodynamical) equilibrium and that, during the age of the
universe, dark matter particles move only over a distance that is small com-
pared with the scales of interest. This displacement plays the same role as
the mean free path in the more familiar interacting fluids. As long as we con-
sider scales much larger than this displacement, an effective fluid description
can be applied [159]. Here we follow the Effective Field Theory approach to
Large Scale Structures (EFT of LSS). The dark matter bispectrum induced
by gravity was discussed in [181, 182]. Non-Gaussian initial condition were
subsequently accounted for in [183]. The EFT of LSS allows to perturbatively
compute non-linear correlators of the matter density contrast δ(x, z) [162]
and velocity v(x, z) [178], taking into account the effect of short-scale non-
perturbative physics on the large-scale dynamics. In practice, one can use the
results of Standard Perturbation Theory (SPT) [149], and correct them with
additional effective terms, which will be denoted with the subscript ‘EFT’.
We differentiate between contributions to the bispectrum coming from pri-
mordial non-Gaussianities (superscript “NG”) and those coming from the late-
time gravitational evolution (superscript “G”). Schematically, the perturbative
theoretical prediction for the bispectrum is

Bth = BG
SPT +BG

EFT + fNL
(
BNG
SPT +BNG

EFT
)
. (6.3)
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As we will see in section 6.3, for a Fisher forecast we do not need to specify1

BG
SPT. The leading order counterterms for Gaussian initial conditions have

been computed in [181,182] and read

BG
EFT = ξBG

ξ +

3∑
i=1

εiB
G
εi . (6.4)

For non-Gaussian initial conditions, short modes and long modes are already
correlated at the initial time. This leads to additional contributions to the
matter bispectrum. To leading order, these are given by [183]

BNG
EFT = ξBNG

ξ + γBNG
γ +

2∑
i=1

γiB
NG
γi . (6.5)

For convenience, we have adopted the notation of [183] and collected in appen-
dix 6.A all the explicit expressions for the terms appearing in this subsection.

6.2.2 Primordial non-Gaussianity

To evaluate the non-Gaussian contributions to (6.3), we need to specify the
primordial bispectrum. In this paper, we study the constraints on three types
of primordial non-Gaussianity: local [95], equilateral [97] and quasi-single field
[100]. In terms of the primordial potential φ, the primordial bispectra are
given by the following shapes

Bloc
φ (k1, k2, k3) = 2f locNL (Pφ(k1)Pφ(k2) + perm) , (6.6a)

Beq
φ (k1, k2, k3) = 162f eqNLA

2
φ

1

k1k2k3K3
, (6.6b)

Bqsf
φ (k1, k2, k3) = 18

√
3fqsfNLA

2
φ

1

k1k2k3K3

Nν(8κ)√
κNν(8/27)

. (6.6c)

Here we define K = k1 + k2 + k3, and κ = k1k2k3/K
3. Moreover, Nν is the

Neumann function of order ν and we choose ν = 1
2 . The normalization of the

primordial power spectrum2 is given by Aφ = 1.72 · 10−8. To linearly evolve
these to the late time matter bispectrum3 B111, we use the transfer function
M(k, z), defined by

δ1(k, z) = M(k, z)φ(k), with M2(k, z) ≡ k3P11(k, z)

Aφ

(
k
k?

)ns−1 . (6.7)

1On the other hand, we do need to specify the SPT contributions to the power spectrum
to compute the cosmic variance. Assuming it is dominated by the linearly evolved matter
power spectrum, we do not have to specify additional ‘EFT’ parameters.

2Note that we define Aφ = 2π2 9
25
Aζ .

3See appendix 6.A for relevant notation.
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Here k? = 0.0028 hMpc−1 and ns = 0.967. This means we have

B111(k1, k2, k3, z) = M(k1, z)M(k2, z)M(k3, z)Bφ(k1, k2, k3). (6.8)

We collect all relevant higher order non-Gaussian contributions to the bispec-
trum in appendix 6.A.

6.2.3 Theoretical error

By definition, any results from perturbation theory are approximate - there is
always an intrinsic theoretical error, typically estimated within perturbation
theory itself. The true bispectrum is therefore given by

Btrue = Bth +Ber, (6.9)

where Bth is the perturbative theoretical prediction given in (6.3), and Ber

represents the theoretical error. The strength of a well defined perturbation
theory is of course that the error can be estimated within the perturbation
theory itself.
In our case, there are in principle two perturbative schemes employed. First,
we assume perturbative primordial non-Gaussianity. This means we assume
the primordial potential can be schematically expanded as

ϕp = ϕG
p + fNLϕ

G
p ? ϕ

G
p + . . . . (6.10)

Here ϕGp is a Gaussian field and ? denotes a convolution in Fourier space. This
means we are effectively expanding in fNLϕp ∼ fNL

√
Aφ, which is indeed very

small according to current bounds. Hence we will not worry about corrections
to this approximation for the rest of the paper.
Second, the EFT of LSS relies on the smallness of density perturbations on
large scales, consistently taking into account our ignorance of short scale phy-
sics. Effectively, this comes down to an expansion in k/kNL [159]. As argued
in [181], the most relevant correction to Bth is the two-loop bispectrum. Since
we have not computed the full two-loop bispectrum, we are forced to make an
educated guess about its size and shape. One way to do this was proposed
in [294], and relies on the scaling universe results of [184]. Here we use instead
a different estimate. Unless indicated otherwise, we estimate the two-loop bis-
pectrum by adding up the absolute values of the two two-loop diagrams we can
compute, namely the so-called reducible diagrams, which we indicate by B332.
An explicit expression for B332 is again given in appendix 6.A. We compare
our estimate to the scaling estimate of [294] in appendix 6.B.5.
The importance of keeping track of the theoretical error for forecasts has re-
cently been stressed in [294], and we build on their approach. Qualitatively,
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one expects not to be able to learn much about fNL from bispectrum configu-
rations for which Ber is larger than the non-Gaussian signal. To get an idea of
the configurations for which this is the case, we plot the one-loop expressions
for the three types of non-Gaussianities we consider (with fNL = 1) and B332

as a function of scale for both squeezed and equilateral configurations in Fi-
gure 6.1. For reference we also plotted the one-loop Gaussian contribution to
the bispectrum. As expected, for local PNG we can push to smaller scales in
the squeezed configuration than for equilateral PNG. Note also that the naive
kmax, beyond which we do not expect to gain any more signal, is configuration
dependent. A detailed discussion on how to incorporate this theoretical error
in a Fisher analysis is given in section 6.2.3, which proceeds along the lines
of [294]. In appendix 6.B, we present further investigation of the validity of
this method of treating the theoretical error.
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Figuur 6.1: The SPT contributions to the bispectrum in the squeezed (left) and
equilateral (right) configurations. The blue solid line denotes the Gaussian tree-level
and one-loop contributions. The yellow, orange and green lines denote the one loop
non-Gaussian contribution for fNL = 1 for local, equilateral and quasi-single-field
PNG, respectively. The dashed purple line corresponds to our order-of-magnitude
estimate for the Gaussian two-loop correction B332. In the squeezed configurations
(left), we chose kL = 0.012 hMpc−1.

6.3 Fisher analysis

In this section, we outline our method to forecast constraints on primordial
non-Gaussianity. We have in mind a Gedankenexperiment that provides us
with the matter distribution in space and time up to some maximal redshift.
In this highly idealized scenario, we determine to what extent our inability to
analytically describe the non-linear gravitational collapse of matter limits the
information we can extract on primordial perturbations. We proceed along
the lines of [288, 289, 295]. The outcome of the analysis for various surveys is
presented in the next section.
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6.3.1 Assumptions and approximations

For the convenience of the reader, we summarize the assumptions and approxi-
mations we make in the Fisher analysis.

• We assume we are given an idealized survey of the late time dark matter
density field, instead of that of some biased tracer. This allows us to
answer the question of whether further progress is needed in the modeling
of the dark matter distribution to strengthen current bounds on PNG
using upcoming LSS surveys.

• The idealized dark matter survey is characterized by a redshift range and
the fraction of the sky covered. We divide the survey in redshift bins,
to which we assign a fixed time that is equal to the mean redshift of the
bin. Hence, we only need to know zbin to predict the power spectrum
and bispectrum. Observational redshift errors are neglected.

• We assume that each redshift bin can be approximated by a cube. Then
we just need the volume of the bin V (zbin) to account for cosmic variance.

• We compute correlation functions only within each bin. This does not
seem to be a big drawback in the case of equilateral PNG. Instead, for
local PNG, this might cause an unnecessary loss of information. We will
discuss this issue elsewhere.

• We include shotnoise in the analysis to correctly remove weight from
the higher redshift bins. For this, we use the specifications of specific
upcoming surveys. We discuss this in section 6.4.1.

• We assume that the bispectra for different configurations are uncorrela-
ted with each other. This means that we approximate the bispectrum
covariance matrix as diagonal. In [295] it has been checked that this
approximation works fine for the scales k ≤ 0.3hMpc−1 at redshift zero.
We assume it holds up to k ≤ 0.4hMpc−1, since for local PNG we still
gain signal up to this scale, as we see in Figure 6.9. Moreover, we assume
that only the linear power spectrum determines the covariance matrix
(see subsection 6.3.3 for more details). Finally, we neglect covariance
due to observational effects, such as survey geometry and mask.

Importantly, we parameterize the theoretical error by treating the higher loop
corrections to the bispectrum as a source of noise, which we integrate out. This
contributes to the effective covariance matrix. Our estimate of the typical size
of the two-loop corrections is given by B332, defined in Appendix 6.A.
The time-dependence of the counterterms has been chosen to match the one
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loop diagrams they are supposed to renormalize [296] (see also [297] for a rela-
ted discussion). All the time dependence is absorbed in the contributions to the
bispectrum, so that all the theoretical parameters become time-independent
(see appendix 6.A). This means that we are measuring the same theoretical
parameters in each redshift bin.
We need to discretize the bispectrum in order to compute the Fisher matrix.
We will use logarithmic bins instead of linear bins, since we do not fully trust
linear binning. We refer the reader to the appendix 6.C for more details. Fi-
nally, we do not marginalize over the standard cosmological parameters, but
fix their values.

6.3.2 Fisher matrix

In a Fisher forecast, one computes the expected curvature around the maxi-
mum of the likelihood. The likelihood is given by

L(data|Θ, priors) =
1√

(2π)N det(CB)
Pprior(Θ) (6.11)

× exp

−1

2

∑
kp

∆B(k,Θ)C−1
B (k, q,Θ)∆B(p,Θ)

 ,

where Θ denote the set of theoretical parameters and N is the number of
datapoints. We suppressed the time dependence. Here we use the Dutch
calligraphic lower case symbols k as a shortcut for a triplet of wavenumbers
on which the bispectrum depends, i.e. k = (k1, k2, k3). Furthermore, ∆B
corresponds to the difference between estimator and theoretical prediction
∆B(k,Θ) = B̂(k)−B(k,Θ) and CB is the covariance matrix of the bispectrum
CB = 〈∆B∆B〉.

Neglecting the theoretical error for the moment, the theoretical prediction
for the bispectrum is given in equation (6.3). The 8 parameters we include
in the Fisher analysis are therefore {fNL, ξ, ε1, ε2, ε3, γ̃, γ̃1, γ̃2}4. The
parameter ξ also appears in the power spectrum and has been measured to be5

0.98 h−2Mpc2 [296]. Therefore, we can put a sharp prior on this parameter.
The other parameters are unknown, but we expect them to be of the same

4Here we denote γ̃ = fNL · γ and similarly for γi, so that the bispectrum is linear in all
parameters. This is convenient for the Fisher analysis, as this makes the result independent
of the fiducial values of the parameters. On the other hand, we effectively assume that the
one-loop non-Gaussian counterterms have amplitudes independent of fNL. Later in this
paper we will find that these counterterms are negligibly small, therefore, this will not affect
our results.

5Previous measurement gave (1.62±0.03) h−2Mpc2 [298] and (1.5±0.03) h−2Mpc2 [181],
but neglected two-loop corrections.
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order of magnitude (see [181, 183] for naive numerical estimates). Therefore,
we can use a fiducial value of zero and a Gaussian prior with variance of 10.

For simplicity, we assume that all priors are Gaussian with covariance
matrix CΘ. Then the Fisher matrix is given by (see e.g. [299])

Fij ≡ −
〈
∂2 log(L)

∂Θi∂Θj

〉
=

1

2
Tr
[
C−1
B CB,iC

−1
B CB,j

]
+BT

i C
−1
B Bj +

(
C−1

Θ

)
ij
.

(6.12)
As we will see in a moment, our approximation for the covariance matrix does
not depend on the theoretical parameters. Writing out the time dependence
explicitly, the Fisher matrix simplifies to

Fij(z) =
∑
k,k′

BT
i (k, z)C−1

B (k, k′, z)Bj(k
′, z) +

(
C−1

Θ

)
ij

(z) (6.13)

for each redshift bin. Since the bispectrum is linear in all parameters - taking
into account that ξ has been measured - the Fisher matrix is independent of
the fiducial value of the theoretical parameters6, which is very convenient for
the analysis. To combine the results from the different redshift bins, we use
that the parameters are the same in each bin, since we have fixed their time
dependence. This time dependence is chosen to match the time dependence of
the divergences they are supposed to cancel, motivated by [296]. The explicit
expression can be found in Appendix 6.A. Therefore, we can compute the
constraints on fNL by summing the Fisher matrices and then marginalizing
over the EFT parameters i.e.,

σ(fNL) =

√√√√(∑
z

Fij(z)

)−1

11

, (6.14)

where we assumed that the entry of the Fisher matrix belonging to fNL is the
first. Note that we have not included cross correlations between bins, which
means we might be throwing away valuable information.

6To be more precise, the Fisher matrix is independent of the fiducial values of the para-
meters to good approximation. We choose a fiducial value for ξ of zero and in Section 6.4
we either specify a prior with σ = 1 for ξ or no prior at all. Therefore, the Fisher matrix
has some dependence on the choice of ξ, but it will come exclusively from the non-Gaussian
counterterm proportional to ξ. Again, since the non-Gaussian counterterms turn out to be
extremely small, we expect this not to affect the results. Moreover, we have checked this
explicitly by changing its fiducial value to 1.
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6.3.3 Covariance matrix

To evaluate the Fisher matrix, we need to know the covariance matrix. Let
us shortly review the derivation of the bispectrum covariance matrix. The
estimator of the bispectrum is given by [190]

B̂(k1, k2, k3, z) =
1

V (z)V123

∫
q1

∫
q2

∫
q3

δ(q1, z)δ(q2, z)δ(q3, z)δ
3
D(q1+q2+q3),

(6.15)
with V (z) the volume of the bin. The integration is over logarithmic bins cen-
tered around the given wavenumbers, i.e. ln(|qi|) ∈ [ln(ki)− 1

2∆ ln(k), ln(ki)+
1
2∆ ln(k)]. Moreover, V123 corresponds to the following k-space volume squared

V123 =

∫
q1

∫
q2

∫
q3

δD(k1 + k2 + k3) ≈ 8π2

(2π)9
k2

1k
2
2k

2
3 sinh3(∆ ln k). (6.16)

This approximation becomes exact when we consider ‘internal’ bins, but it fails
on the ‘edge’ bins. In the numerical analysis we compute the exact value of
V123 for each bin, see appendix 6.C for more details. This allows us to compute
the bispectrum covariance matrix, namely

CB(k, k′, z) =
〈(
B̂(k, z)−B(k, z)

)(
B̂(k′, z)−B(k′, z)

)〉
(6.17)

≈ s123

(2π)3V (z)V123
P (k1, z)P (k2, z)P (k3, z)δk,k′ . (6.18)

There is a factor s123 which counts the number of non-vanishing contractions
when computing 〈B̂(k)B̂(k)〉, which depends on the type of triangle that the
triplet k forms. As each contraction comes with a delta function, this counting
factor equals 6, 2 or 1 for equilateral, isosceles and scalene triangles respecti-
vely. If we include shotnoise in the covariance matrix, we replace P (ki, z) with
P (ki, z) + 1

n̄ in equation (6.18), where n̄ is the effective number density for the
density contrast. This will be explained more when we include shotnoise in
Section 6.4.1.

In this expression for the covariance matrix, we completely neglected hig-
her order corrections beyond the power spectrum, making it approximately
diagonal. In [295] it has been checked that this approximation works fine
for the scales we are considering. The off-diagonal terms become important
exactly when the higher order corrections to the power spectrum become im-
portant, since they are of the same order. Therefore, in order to be consistent,
we only take into account the linear contribution P11 to the power spectrum
P (ki, z). In particular, this means that the covariance matrix is independent
of the theoretical parameters.
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6.3.4 Theoretical error as nuisance parameters

To account for the theoretical error inherent to the perturbative expansion, we
parameterize the bispectrum as

B(k) = Bth(k) + n(k)Ber(k) , (6.19)
Bth(k) = BG

SPT(k) +BG
EFT(k) + fNL

[
BNG
SPT(k) +BNG

EFT(k)
]
, (6.20)

where Bth represents the theoretical prediction up to some order in perturba-
tion theory as before, and Ber is the estimate of the theoretical error. Follo-
wing [294], we introduce a series of nuisance parameters n(k), one per bin in
k-space. The reason we implement the theoretical error this way, instead of
proposing some kmax is that, as discussed in subsection 6.2.3, kmax depends
on where the theoretical error and the signal become comparable. This com-
plicates the analysis in two ways. First, kmax is configuration dependent, and
second, it depends on the fiducial value of fNL, which makes finding the error
on fNL a recursive problem. In the approach we take, the set of theoretical
parameters thus becomes Θ = {n(k)}k ∪ {fNL, ξ, ε1, ε2, ε3, γ̃, γ̃1, γ̃2}.
Since the bispectrum remains linear in all parameters, expression (6.13) for
the respective block of the Fisher matrix still applies.

We assume that the true corrections to the bispectrum are of similar size as
Ber(k). Therefore, we put a Gaussian prior on the parameters n(k), with mean
zero and variance one. Moreover, we expect the correction to have a smooth
shape, which varies not too rapidly within the contours defined by Ber(k).
Therefore, the coefficients should have non-negligible cross correlations. Since
we would like to have an increasing correlation for nearby points, we include
cross-correlations with a typical correlation length as follows

Nαβ = exp

(
−
∑

i ln(|kiα/kiβ|)
l

)
. (6.21)

We replaced the label kα of the nuisance parameter of a given bin with the in-
dex α, so that we can reserve latin indices for the other theoretical parameters.
Moreover, in order not to confuse this covariance matrix with the covariance
matrix of the bispectrum CB, we denote it as Nαβ . Note that we choose σα = 1
for all α’s. Here, l denotes the logarithmic correlation length. We could have
also chosen a quadratic correlation length, similar to modeling it as a random
field [300]. The reason we opted for this form is that here the inverse matrix is
very sparse, which is convenient for numerical purposes. Since our final results
are quite insensitive to the correlation length (see 6.B.3), we do not believe
this choice affects the results very much.
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Since we introduced a set of new nuisance parameters, we should write
down the full Fisher matrix Fµν and invert it

F−1
µν =

(
Fαβ Fαj
Fiβ Fij

)−1

=

(
• •
• (Fij − FiγF−1

γδ Fδj)
−1

)
, (6.22)

where we use latin indices for the parameters {fNL, ξ, ε1, ε2, ε3, γ̃, γ̃1, γ̃2}
and greek indices from the early alphabeth for the theoretical error parameters
{n(kα)}α. We did not write out explicitly the other entries, since we are only
interested in the effective Fisher matrix, after marginalizing over the nuisance
parameters coming from the theoretical uncertainty. To compute the effective
Fisher matrix, we need to know Fαβ and Fαi. Since the derivative of the
bispectrum with respect to the nuisance parameters Θα is only non-zero for
the corresponding bin, these contributions to the Fisher matrix are particularly
simple. We have

Fαβ = Ber(kα)C−1
B (kα, kβ)Ber(kβ) +N−1

αβ ≡ Dαβ +N−1
αβ , (6.23)

and similarly

Fiβ =
∑
k

Bi(k)C−1
B (k, kβ)Ber(kβ)

and Fαj =
∑
k

Ber(kα)(kα)C−1
B (kα, k)Bj(k).

(6.24a)

(6.24b)

This allows us to compute F eff
ij by using (6.22). After some algebraic manipu-

lations, we can rewrite it in the simple form

F eff
ij =

∑
k,p

Bi(k)
(
N eff(k, p) + CB(k, p)

)−1
Bj(p) +

(
C−1

Θ

)
ij
, (6.25)

with N eff
αβ = Ber(kα)NαβB

er(kβ). Again, the time dependence has been sup-
pressed. In Appendix 6.B we present two alternative derivations of(6.25) and
provide further detail.

In the next subsection we show the effectiveness of the current treatment of
the theoretical error. However, we believe the interpretation of this method,
and its relation to the actual situation, is a subtle matter. In particular,
in Appendix 6.B.3 we argue by means of a simple toy model that this way of
dealing with the theoretical error is certainly not the right way in the extremes
of zero and maximal correlation among the parameters. Namely, on the one
hand the theoretical error acts as shot noise per bin for zero correlation length,
whereas for maximal correlation it acts as a a single coefficient multiplying a
fixed shape, effectively reducing the uncertainty about its shape to one number.
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Neither of these cases correspond to the way we believe the theoretical error
should act. At the same time, Appendix 6.B.3 shows that the effect of the
correlation length on the results is very mild. This suggests that the main
reason our method works so well is that our ansatz for the error is a much
steeper function of k than the signal, so that the size of the error is much more
important than its shape. Thus, even though our treatment of the theoretical
error seems to work for the current case, we recommend a conservative use of
the method. In this spirit, we use the correlation lenght that gives the most
pessimistic results for the analysis, which we found to be l ∼ 0.5.

6.3.5 Testing the effect of the theoretical error

To test the method of integrating out the theoretical error, we study its effect
on the constraints on fNL in a χ2-analysis. To that end, we compare two
types of analyses, one which includes the theoretical error as outlined above,
and one which does not. We generate a fake dataset with no primordial non-
Gaussianity to test the theory. Our datapoints are given by

D(k) = B112(k) + Eb(k) + cosmic noise, (6.26)

where we add some random noise, with variance equal to the cosmic vari-
ance, to each point. We consider a survey at redshift z = 0 with volume
V = 10 (h−1Gpc)3, and restrict (k1, k2, k3) to be the central values of the
binned range [0.001, 1] hMpc−1, where we take 27 logarithmic sized bins. The
additional contribution to the bispectrum is given by

Eb(k1, k2, k3) = 3B112(k1, k2, k3)

(
k1 + k2 + k3

3kNL

)(3+n)l

, (6.27)

with n = −1.4, kNL = 0.45 and l = 2. This is exactly the ansatz for the two-
loop contribution to the bispectrum used in [294] and it is based on scaling
universes [184]. In appendix 6.B.5, we compare the ansatz for the higher loop
corrections Eb with our ansatz B332. As theoretical model for the bispectrum,
we use

Bth(k) = fNL ·B111(k) +B112(k). (6.28)

We now consider two analyses. In the first analysis, we neglect theoretical
errors and take only cosmic variance into account. In the second analysis, we
use our ansatz for the higher order corrections, namely B332, and we account
for both theoretical error and cosmic variance. In order to find the best fit
value for fNL, we minimize χ2

B, which is given by

χ2
B =

(
D(k)−Bth(k)

) (
CB(k, p) +N eff(k, p)

)−1 (
D(p)−Bth(p)

)
+ const., (6.29)
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see (??) in Appendix 6.B. In the first case, we set N eff to zero. Minimizing
χ2
B yields

Est(fNL) =
B111(k)

(
CB(k, p) +N eff(k, p)

)−1
(D(p)−B112(p))

B111(k) (CB(k, p) +N eff(k, p))
−1
B111(p)

, (6.30)

and taking another derivative with respect to fNL allows us to compute the
standard deviation

σ(fNL) =
(
B111(k)

(
CB(k, p) +N eff(k, p)

)−1
B111(p)

)−1/2
. (6.31)

With the best-fit value of fNL, we can evaluate
(
χ2
B

)
red and the p-value, which

are given by

(
χ2
B

)
red =

χ2
B

N
and p-value = 1− CDFχ2(N,χ2

B), (6.32)

with CDFχ2 the cumulative distribution function of the χ2-distribution, and
N = Nbins−Ndofs− 1 the number of datapoints minus one minus the number
of fitting parameters. The p-value takes values between 0 and 1. It gives
the probability of finding a higher value for χ2

B if it was drawn from a χ2-
distribution. Therefore, it should take values around to 0.5. If the p-value is
very close to zero, then the proposed theory vector is not a good description
of the data. If the p-value is close to one, then either one is overfitting the
data, or the estimate for the noise is too pessimistic.

In Figure 6.2, we plot the estimate for fNL with errorbars,
(
χ2
B

)
red and

the p-value, as given in equations (6.30), (6.31) and (6.32) respectively, for the
two analyses. In the left panel, we show both the results for the analysis in
which the higher order corrections are neglected, and the analysis in which we
use B332 as an ansatz. In the right panel, we use 10× B332 as error estimate
to make sure that our ansatz is always bigger than the true value of the higher
order corrections. One can check that Eb has a different shape than B332.
For instance, in the equilateral configuration, Eb is smaller than B332 on small
scales (more optimistic). On the other hand, on large scales in the equilateral
configuration, and in the squeezed limit, it tends to be larger than B332 (more
pessimistic). Upon multiplying the latter by a factor 10, we find a robust,
conservative estimate (see 6.B.5).

In the left panel of Figure 6.2, we see that if we neglect the theoretical
error (blue lines and contours), we get the wrong value for the best fit value
for fNL, because higher order corrections are mistakingly interpreted as signal.
Fortunately, the p-value singles out where the theoretical description fails.
Taking this into account, we get a reliable estimate for fNL, albeit with larger
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Figuur 6.2: The figure shows the results from the χ-squared analysis for the data
and theory given in equations (6.26) and (6.28). In the left panel, we show the results
for both the analysis in which the higher order corrections are neglected (blue) and
the one in which we use B332 as ansatz (red). In the right panel, we use 10B332

as ansatz (green) instead. In the upper panels, we show the best fit value for fNL
(solid line) as function of kmax and the lighter coloured regions correspond to the 2σ
errorbars. The dashed vertical line corresponds to the largest value for kmax where
the p-value is still between 0.01 and 0.99. The second and third row show

(
χ2
B

)
red

and the p-value as function of kmax.

errorbars, since we have to stop already at a relatively small kmax. From the
analysis that accounts for the theoretical error (red lines and contours), it
seems we can continue the analysis to a higher kmax. However, the result we
get for fNL is biased, i.e. it is more than 5σ away from the actual value. The
problem is that, in certain configurations of the bispectrum, our ansatz takes
smaller values than the actual value in the data. This tends to decrease the
p-value. At the same time, the p-value increases in the configurations where
the theoretical error is overestimated. The interplay of these two effects can
lead to a p-value, which is neither too small or too large, and this gives rise to
a biased estimate. Hence, if one wants to use the p-value as diagnostic for kmax
and avoid biased results, it is important to have a fairly good understanding of
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the form of the theoretical noise. Alternatively, one can work with an ansatz
which is consistently underestimating the theoretical error. In this case, the
p-value should go to zero rapidly, as soon as the theoretical error kicks in. As a
double check, we did the analysis using 0.1Eb as ansatz instead, which indeed
gives unbiased results similarly to the case where we neglect the theoretical
error altogether. In general, when performing a datafit, if one has insufficient
information about the higher order corrections, it is therefore safer not to
integrate out the theoretical error at all. Summarizing, assuming the wrong
shape for the theoretical error might lead to a false detection of primordial
non-Gaussianity.

In the right panel (green lines and contours), we show the same results,
where now the ansatz is always more pessimistic than the actual theoretical
error (10 × B332 > Eb). In this case, the estimate for fNL is equal to the
real value within 2σ. The p-value now is very large and it would naively
tells us to stop at some smaller kmax. However, since we are obviously not
overfitting the data, this reflects the fact that our ansatz for the theoretical
error is too pessimistic. Therefore, we can safely evaluate the estimate for
fNL and the corresponding errorbar at the highest value of kmax, where the
errorbar is frozen to a finite value. As expected, we find better errorbars than
in the case we neglect the theoretical error. This shows that integrating out
the theoretical error helps constraining fNL, as long as one is careful to take
a conservative enough ansatz. In the next section, we take B332 as ansatz for
the theoretical error7.

6.4 Results

In this section, we present the main results of our analysis. First, we give
σ(fNL) for various surveys, comparing our results to [294] and [287]. Next,
we study the correlations among the EFT parameters for relevant surveys.
Furthermore, we address the question of how much better the constraints
would be, if we were able to compute the two-loop bispectrum. Finally, we
show that the EFT of LSS clearly outperforms SPT in the constraints on fNL,
where we assume the EFT contributions to the bispectrum are part of the
theoretical error in SPT.

7We checked that our results for σ(fNL) change with less than a factor of 2, when we use
10B332 instead.
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6.4.1 Constraints as function of zmax

In this subsection, we compute the constraints on fNL as function of maximum
redshift for surveys similar to the ones studied in [294] and [287]. This allows
us to study the effects of shotnoise and to compare our results with theirs.
Furthermore, we show the effect of marginalizing over the EFT parameters for
these surveys.

A large redshift survey (comparison with Baldauf et al. 2016)

First, to compare with [294], we focus on local and equilateral PNG. In the fol-
lowing, we list the specifications of the survey and the particular assumptions
we make (in addition to general assumptions for the Fisher analysis discussed
in subsection 6.3.1).

• We assume a survey with maximum redshift of z = 5. We divide the
survey in redshift bins of equal volume, where the first bin runs from
z = 0 to z = 1. We assume the survey covers 20000 deg2, which means
that, with our choice of cosmological parameters, the volume of each bin
is given by V = 26.5(h−1Gpc)3. We approximate each bin to be a cube,
so that kmin ≈ 0.002 hMpc−1. The maximum redshifts of all the redshift
bins are given by8

{1.00, 1.39, 1.71, 2.02, 2.31, 2.60, 2.89, 3.19, 3.49, 3.80, 4.11, 4.44, 4.78, 5.13}.

• We restrict (k1, k2, k3) to the values in the binned range [0.002, 1] hMpc−1,
where we use 15 logarithmic bins per decade9.

• At high redshift, the late-time non-Gaussian background is particularly
small and so the PNG signal becomes comparatively more pronounced.
One the other hand, at high redshift, there are also much fewer tracers
and this degrades our ability to measure the distribution of matter. To
be able to capture this fact, we introduce a shotnoise that mimics what
happens for example in galaxy surveys. For the purpose of comparison,
we adopt the same convention for shotnoise as in [294], namely

n̄ = b21n0(1 + z)α, (6.33)

8Here, and in the next section, we make a particular choice of redshift bins. Larger
redshift bins imply that we can include more configurations of the bispectrum in the analysis,
in particular more configurations in the squeezed limit. At the same time, we fix the redshift
of the bin to be the mean redshift, therefore, larger redshift bins imply a smaller maximum
redshift. Therefore, the choice of binning might affect the final result.

9This is a little less than 45 bins over the full range, corresponding to O(3000) triangles.
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where we correct for the galaxy bias b1 = 2, since the shotnoise in [294]
applies to galaxies, while here it has been translated to the dark matter
density field. We choose n0 = 10−3h3Mpc−3 and α = −1.

• When we marginalize, we assume for each EFT coefficient a Gaussian
prior with σ = 10, except for the EFT parameter ξ for which we take
σ = 1.

• For Ber we consider both B332 and the ansatz Eb given in [294] (see
(6.27)).

The results for σ(fNL) are shown in Figure 6.3. We show the effects of the
ansatz for Ber, shotnoise, and marginalization over the EFT parameters.

We can compare our results with those found in [294] by looking at the
unmarginalized results, using their ansatz Eb forBer. Thus, we should compare
our dashed green lines with their dotted red lines in the last columns of their
Figure 6 and 7. We indeed find a reasonably good agreement, given the fact
that our analyses are not identical (different sky coverage, redshift bins and
cosmological parameters, and moreover the translation of their shotnoise to
ours is not perfect as we only took into account b1). This check confirms that
our code runs as expected.

Let us now study the effect of the EFT parameters. The solid lines in
Figure 6.3 correspond to marginalization over the EFT parameters, where we
assume a Gaussian prior with σ = 10 for each EFT coefficient, except for the
EFT parameter ξ, for which we take σ = 1. We see that the results for local
PNG are almost unaffected by marginalizing over the EFT parameters. The
constraints on equilateral PNG weaken by a factor of about two, however.

Using B332 as an ansatz for Ber, we find slightly more optimistic results
for local PNG, and slightly worse results for equilateral PNG, as compared
with [294]. This can be understood from the comparison between B332 and Eb,
shown in appendix 6.B.5. Local PNG peaks in the squeezed limit, and B332 is
more optimistic than Eb in this configuration. On the other hand, equilateral
PNG peaks in the equilateral configuration, and in this configuration Eb is
more optimistic.

If we neglect shotnoise, we find that the differences at low redshifts are
even bigger for the two ansätze. The difference is largest for local PNG, since
B332 is an order of magnitude bigger than Eb in the squeezed configuration,
whereas the difference in the equilateral configuration is only of the order of
a few. However, at higher zmax the differences disappear. This might seem a
bit strange at first. However, we should stress that what we find here is not
the true result in case of zero shotnoise. It turns out that with no shotnoise,
we can always gain information in the ultra squeezed limit, and at higher
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Figuur 6.3: In these plots we show σ(fNL) as function of maximum redshift zmax
for local PNG (left) and equilateral PNG (right). We include shotnoise with the
same specifications as [294] (orange and green lines). For the green lines we used
Eb as ansatz for BG2L whereas for the other lines we used B332. The blue solid line
shows the result without shotnoise. The solid lines show the marginalized results
assuming Gaussian priors for the EFT parameters. The dashed lines correspond to
the unmarginalized result with the same color. Finally, the dotted blue line in the
left panel corresponds to the curve σ(z1)/

√
N with N the number of redshift bins.

redshift we can actually go to higher k than our choice kmax = 1hMpc−1.
Since σ(fNL) does not freeze before we reach kmax, this explains why the red
and blue curves can get close for high zmax. In appendix 6.B.5, we show these
statements explicitly.

For comparison, note that if we were to always gain signal up to the same
kmax in each redshift bin, we would find roughly the same σ(fNL) for each
redshift bin10. Therefore, combining all the redshift bins, we should find a
1/
√
Nbins behavior if we neglect shotnoise. The dotdashed blue line in the

figure corresponds to σ(z1)/
√
Nbins, which indeed resembles the blue solid line

quite well. This provides another indication that we can go up to higher kmax.
Interestingly, we find that we can also go to much smaller scales for equilateral
PNG than suggested by scaling estimates for kmax (see for instance [294]). The
squeezed limit allows us to extract more information, also for equilateral PNG.

If we include shotnoise, it correctly cuts off the signal before we reach kmax,
so these results are reliable. However, one should keep in mind that, for more
optimistic galaxy number densities, we might still extract more information
from the ultra-squeezed limit. For the number densities we consider at the

10To good approximation: the entry of the Fisher matrix, corresponding to fNL, will scale
as F ∼ D(a)6/D(a)6 ∼ 1, if we neglect the loop corrections to BNG. Then, forgetting about
the marginalization over the EFT parameters, we find the same σ(fNL) in each redshift bin,
since we took the bins so that they have the same volume.
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higher redshifts, shotnoise is the dominant source of noise. This is why we do
include shotnoise in our analysis.

Current and upcoming surveys (comparison with Tellarini et al.
2016)

Next, we compare with [287], using the specifications of the surveys Euc-
lid [150], BOSS [301], eBOSS [152] and DESI [151]. We have to consider the
emission line galaxies (ELG), the luminous red galaxies (LRG) and quasars
(QSO) separately, as they are measured at different redshifts, and have diffe-
rent number densities and bias coefficients. The specifications and assumptions
are as follows.

• For the precise number densities and bias coefficients as function of reds-
hift we refer to appendix D of [287]. Moreover, one can find here the
fraction of sky covered by each survey.

• As before, we divide each survey in equal sized redshift bins. The boun-
daries of all the redshift bins are given by

eBOSS (ELG) : {0.6, 0.8, 0.95, 1.09, 1.21} Vbin = 2.8(h−1Gpc)3,

DESI (ELG) : {0.1, 0.6, 0.79, 0.94, 1.07,

1.19, 1.3, 1.4, 1.5, 1.59, 1.69, 1.78} Vbin = 5.4(h−1Gpc)3,

Euclid (ELG) : {0.6, 1., 1.28, 1.53, 1.75, 1.97} Vbin = 14.0(h−1Gpc)3,

eBOSS (LRG) : {0.6, 0.75, 0.87, 0.98} Vbin = 2.0(h−1Gpc)3,

DESI (LRG) : {0.1, 0.6, 0.79, 0.94, 1.07} Vbin = 5.4(h−1Gpc)3,

BOSS (LRG) : {0., 0.4, 0.52, 0.61, 0.68, 0.75, 0.8} Vbin = 1.3(h−1Gpc)3,

eBOSS (QSO) : {0.6, 1., 1.28, 1.53, 1.75, 1.97, 2.17} Vbin = 6.6(h−1Gpc)3,

DESI (QSO) : {0.1, 0.8, 1.08, 1.31, 1.51, 1.7, 1.89} Vbin = 11.0(h−1Gpc)3.

• We use kmin determined by the volume of each bin. Moreover, we choose
the same binning of the k-range as in Section 6.4.1.

• The ansatz for shotnoise is now n̄(z) = b21(z)n(z), where we correct for
galaxy bias, similar as before.

• When we marginalize, we take the same prior as before. We assume for
each EFT coefficient a Gaussian prior with σ = 10, except for the EFT
parameter ξ for which we take σ = 1.

• As ansatz for the higher order corrections we use Ber = B332.
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Figuur 6.4: We show σ(fNL) as function fo zmax for local PNG. We use the spe-
cification from Euclid (blue), BOSS (yellow), eBOSS (orange, purple and red) and
DESI (green/yellow, pink and green). We show both the marginalized (solid lines)
and unmarginalized results (dashed lines).

The results for local PNG are shown in Figure 6.4. We plot σ(fNL) as function
fo zmax for the four surveys. We show both the marginalized and unmargi-
nalized results. After combining the different galaxy catalogs of a survey, we
get σ(fNL) for each survey, as summarized in Table 6.1a for local PNG and in
Tables 6.1b and 6.1c for equilateral and quasi-single field PNG respectively.

We compare our results with [287] by looking at our unmarginalized results
in Table 6.1a and their results in the last column in Table 1 of their paper. We
find much weaker constraints, varying from 4 to 8 times smaller. This can be
explained by the fact that we account for the theoretical error, which freezes
the errorbars. Therefore, including the theoretical error gives rise to more
conservative constraints. Moreover, scale-dependent bias could actually help
us constrain local PNG also in the bispectrum. In fact, redoing the analysis for
Euclid up to kmax(z) = 0.1D(z), as used in [287], with the same specifications,
except that we ignore the theoretical error, gives σ(fNL) equal to 0.57, 0.71
and 1.3 (unmarginalized, including and neglecting priors, respectively). This
is roughly a factor three improvement from the results in Table 6.1a. The
fact that this still does not challenge the results from [287] seems to indicate
that scale-dependent bias helps to improve the constraints on primordial non-
Gaussianity.

From the combined catalogs, we ultimately find σ(f locNL) = 1.8, σ(f eqNL) =

11.4 and σ(fqsfNL) = 8.9, with priors on the EFT parameters, assuming the
surveys are not independent. These results do not change dramatically if we
do not put priors on the EFT parameters. If the surveys are independent, the



σ(f locNL) unmarg. with prior no prior
BOSS 4.67 6.81 17.3
eBOSS 4.91 6.6 14.15
Euclid 1.41 1.77 3.66
DESI 1.66 2.18 4.68

(a) Local PNG
σ(f eqNL) unmarg. with prior no prior
BOSS 16.89 29.86 37.99
eBOSS 17.25 26.88 33.4
Euclid 7.46 11.37 13.66
DESI 7.18 11.4 13.48

(b) Equilateral PNG
σ(fqsfNL) unmarg. with prior no prior
BOSS 12.57 23.65 27.26
eBOSS 13.1 21.43 23.49
Euclid 5.52 8.92 9.74
DESI 5.37 8.98 9.66

(c) Quasi-single-field PNG

Tabel 6.1: The final σ(fNL) for local, equilateral and quasi-single field PNG for
each survey, combining all expected galaxy catalogues. For the marginalized σ(fNL),
we put a Gaussian prior on each EFT coefficient with σ = 10, except for the EFT
parameter ξ, for which we take σ = 1. In the last row, we also show the marginalized
results, without prior on the EFT coefficients.
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constraints improve approximately with a factor 1/
√

2 upon combining Euclid
and DESI.

6.4.2 Correlation coefficients

To gain intuition on how much the EFT parameters affect the constraints on
fNL for local, equilateral and quasi-single field PNG, we compute the correla-
tion coefficients between parameters θi and θj . These are defined as

rij =
F−1
ij√

F−1
ii F

−1
jj

.

The correlation coefficient takes a value between 1 (perfectly correlated) and
−1 (perfectly anti-correlated). In particular, the parameters are perfectly cor-
related with themselves. In Figure 6.5, we plot the absolute value of the
correlation coefficients for each pair of parameters. We make the following
assumptions

• We use the same binning in k-space as in Section 6.4.1.

• We use the redshift binning and shotnoise from Euclid, as given in Section
6.4.1.

• As ansatz for the theoretical error we use Ber = B332.

• We do not marginalize over the EFT parameters. The marginalized
results are quoted in the text below.

We find that the groups of parameters {ξ, ε1, ε2, ε3} and {γ, γ1, γ2} have
strong correlation among themselves. The correlation between fNL and the
other parameters is, however, small.

For local PNG, we find fNL is mainly correlated with γ, γ1 and ε3, with
correlation coefficients 0.44, −0.43 and 0.29 respectively. The other correlation
coefficients are in absolute value smaller than 0.2. If we include a Gaussian
prior on the EFT parameters, with the same variances as before, the correlation
coefficients become 0.12, 0.08 and 0.14.

In case of equilateral PNG, we find fNL has appreciable correlation with
ξ, ε1, ε3 and γ2 ,with correlationcoefficients 0.43, −0.39, −0.47 and −0.27 res-
pectively. Including priors on the EFT parameters, we find they become 0.14,
−0.05, −0.30 and approximately zero. This could motivate further study on
the Gaussian EFT coefficients, see for instance [302]. It is surprising that f eqNL
is not extremely degenerate with ξ, since the latter comes with an additional
k2 scaling, similar to equilateral non-Gaussianity. It turns out, however, that
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the full shapes are sufficiently distinct. This will make it easier to constrain
equilateral PNG from the bispectrum than naively thought. Then, for quasi-
single-field PNG, we find that fNL is mostly correlated with ε3 and γ, with
correlation coefficients −0.26 and 0.31. Including the priors, they reduce to
−0.18 and approximately zero.

Summarizing, although the ignorance about EFT parameters does affect
the final result, for reasonable priors this is only a small effect, especially for
local PNG. This indeed agrees with what is seen in Figures 6.3 and 6.4, and
Table 6.1a.

0

0.2

0.4

0.6

0.8

1.0

Figuur 6.5: In these plots we show the correlation coefficients rij for each pair of
theoretical parameters. We include shotnoise with the same specifications as Euclid
and included all information up to redshift zmax = 2. A value of 1 (black) corresponds
to perfectly correlated or anti-correlated. A value of 0 (white) corresponds to no
correlation.

6.4.3 Higher loop corrections

We can ask ourselves whether it is useful to compute the bispectrum up to two
loops in gravitational non-linearities. Note that our analysis does not depend
on the actual value of the two-loop bispectrum, as there is no theoretical para-
meter in front. This means we can simply assume that we have computed all
diagrams, neglect the counterterms, and assume the theoretical error is given
by the SPT three loop bispectrum BG

3L. Again, we do not know what it is,
so we have to make an ansatz for it. Here we use the ansatz for the higher
loop corrections from [294], given in (6.27), since it is easy to compute11. For

11An alternative - more in line with our two loop ansatz - would be to compute the
reducible diagram of B433 as order of magnitude estimate of BG3L. However, we point out
that using only one diagram is dangerous. For instance, in [183] we considered only one
of the two reducible two loop diagrams in our qualitative analysis, namely BI332. In the
squeezed limit, the two loop contribution turns out to be much larger if we include BII332.
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Figuur 6.6: In this plot, we
show σ(fNL) as function of
zmax for local (blue), equilateral
(orange) and quasi-single field
(green) PNG. We use both B2L

(solid lines) and B3L (dashed li-
nes) as order of magnitude esti-
mation for the theoretical error.
We use the specifications of Eu-
clid in the analysis.
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a rough estimate this should suffice. We estimate BG
3L using scaling univer-

ses [184]. We choose12 Eb with n = −1.5, kNL = 0.5 hMpc−1 and l = 3 (see
(6.27)). Using the specifications from Euclid, we perform the Fisher analysis
with both B332 and B3L as order of magnitude estimates for the noise. We
collect the result in Figure 6.6. This shows that the constraints would improve
if one computed the two-loop corrections to the bispectrum. The precise va-
lues are given in Table 6.2, where we consider all surveys again. The tighest
constraints on local, equilateral and quasi-single field PNG improve with a
factor 1.2, 1.3 and 1.3 respectively with this particular choice for BG

3L. If it
turns out we can get constraints on PNG close to the theoretical benchmarks,
it would then be worth computing the two-loop corrections. It might be time
consuming, but otherwise much cheaper than doubling the survey volume.

12We choose a larger kNL than for the two loop estimate, since this scale determines
when the three loop correction equals the lower order corrections. Since we are doing a
perturbative expansion, we assume this happens at a smaller scale than when the two loop
correction becomes equal to its lower order corrections. Moreover, each loop will scale as
k/kNL to the power 3 + n, where n will be of order of the scaling of the power spectrum
at the non-linear scale kNL. The power spectrum is steeper on smaller scales, therefore we
take a more negative value for n. Each loop has this scaling, so we have to take l = 3, in
case of three loops.
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σ(f locNL) 2 loop 3 loop
BOSS 8.73 6.05
eBOSS 7.12 6.07
Euclid 2.14 1.75
DESI 2.62 2.09

(a) Local PNG

σ(f eqNL) 2 loop 3 loop
BOSS 27.8 19.14
eBOSS 22.99 18.44
Euclid 10.22 7.83
DESI 10.2 7.81

(b) Equilateral PNG
σ(fqsfNL) 2 loop 3 loop
BOSS 23.66 16.65
eBOSS 19.15 15.59
Euclid 8.52 6.62
DESI 8.46 6.6

(c) Quasi-single-field PNG

Tabel 6.2: The final σ(fNL) for equilateral and quasi-single-field PNG (left and
right), for each survey, combining all expected galaxy catalogues. For the margina-
lized σ(fNL), we put a Gaussian prior on each EFT coefficient with σ = 10, except
for the EFT parameter ξ, for which we take σ = 1. In the last row, we also show the
marginalized results without prior on the EFT coefficients.

6.4.4 EFT of LSS versus SPT

In the EFT of LSS we are forced to include free parameters over which we
have to marginalize. Above, we saw that this marginalization weakens the
constraints on fNL, be it only mildly. One might therefore wonder how much
the improvement actually is over a more conservative approach, in which one
uses only SPT results for Bth and moves all other gravitational contributions
to the theoretical error. In this section we confirm that the EFT approach
always performs sizably better. We consider a couple of options, for different
choices of Bth and Ber, and compute the constraints. We use the specifications
from Euclid as given in the previous section.

Table 6.3 shows our results, which include the usual Gaussian priors for
the EFT parameters whenever they are included in Bth. The second and third
columns give the theoretical description of the bispectrum Bth and what we
consider to be the unknown Ber. For the latter, we sum the absolute values
of all contributions indicated in the table. The EFT contributions, except for
ξ, are multiplied by a factor 10, consistent with the priors we chose when we
included them in Bth. The first row of Table 6.3 corresponds to the results we
find in the ‘with prior’ columns of the ‘Euclid’ rows of Tables 6.1a, 6.1b and
6.1c.

We find that including the non-Gaussian counterterms does not improve
the bounds on fNL. This could have been anticipated from the qualitative
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Approach Bth = BG0 + . . . Ber = B332 + . . . σ(f loc
NL) σ(f

eq
NL

) σ(f
qsf
NL

)

EFT (G+NG) +BNG0 + BGEFT + BNGEFT 1.77 11.37 8.92
EFT G+SPT NG +BNG0 + BGEFT BG2L + BNGEFT 1.78 11.37 8.92
SPT (G+NG) +BNG0 +BNGEFT + BGEFT 6.11 27.61 21.76
SPT (G+NG tree) +BNGtree +BNGEFT + BGEFT + BNG1L 7.17 30.58 24.23

Tabel 6.3: We show the contraints on primordial non-Gaussianity of the local,
equilateral and quasi-single-field type (last three columns). In the first row, we use
the EFToLSS for both the Gaussian and non-Gaussian part of the bispectrum (‘EFT
(G+NG)’). In the second row, we only use the EFT for the Gaussian part of the bis-
pectrum, and include the non-Gaussian counterterms in the higher order corrections
(‘EFT G + SPT NG’). Then, in the third row, we use only the SPT for describing
the bispectrum (‘SPT (G+NG)’). In the last row, we only include the tree level non-
Gaussian contribution to the bispectrum (‘SPT (G+NG tree)’). The second and third
column denote all the contributions to the theoretical description of the bispectrum
Bth, and the higher order corrections Ber respectively.

results in Figure 5 - 7 of [183]. We see that the counterterms are negligible in
many configurations. Apparently, they are negligible in most configurations.
However, using the EFT for the Gaussian part of the bispectrum performs
significantly improves the results compared with just the SPT predictions. We
find that the EFT of LSS improves the constraints on PNG approximately by
a factor 3. Finally, neglecting the one-loop non-Gaussian contribution to the
bispectrum makes only about a 10% difference. This is consistent with the
observation that the non-Gaussian counterterms are not very important, as
the non-Gaussian one loop correction itself is not very relevant.

6.5 Discussion and Outlook

In this work, we have presented how the EFT of LSS helps us improve the con-
straints on primordial non-Gaussianities (PNG), using the matter bispectrum
as observable. We have accounted for intrinsic theoretical uncertainties in
the perturbative description, and studied in details their modeling in a Fisher
forecast.

Our main results are given in Table 6.3. The forecasted values for σ(fNL)
for the local, equilateral and quasi-single field types of PNG are presented.
Moreover, we show that the EFT approach improves the constraints on PNG
by almost a factor 3 with respect to the results from SPT.
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Limitations Let us first discuss the limitations of these results. We would
like to compare the constraints we find with theoretically interesting bench-
marks and constraints coming from the CMB. However, we should be careful
in making a direct comparison, as there are other sources of non-linearities and
noise that we have not accounted for in our analysis. First, we have modeled
the matter bispectrum. To relate it to the observed galaxy bispectrum, we
have to include galaxy bias and redshift space distortions. These introduce
new uncertainties, leading to worse constraints. However, considering the
results found in [130, 287], scale-dependent bias might actually improve the
constraints on (only) local PNG, since it enhances the non-Gaussian signal in
the bispectrum. Second, except for shotnoise, we neglected all observational
sources of noise. Survey geometry and survey mask may increase the errorbars
as well. For instance the authors of [288] found that the errorbars increased
by a factor of 4-5. Errors in determining the redshift of galaxies are another
source of observational noise. Third, we made some simplifications in the Fis-
her analysis itself, such as neglecting the covariance between different points
of the bispectrum. Combining this with the covariance induced by the survey
geometry could further increase the errorbars by a factor of 8 [303].

Improvements On the other hand, there are also ways the constraints could
be improved. First, we have used the specifications of Euclid to get a reaso-
nable estimate for the limitations due to shotnoise. This determined our final
forecasted result for σ(fNL). It might well be possible, in a more futuristic
survey, to optimize the number densities of galaxies and redshift range to be
more suitable for constraining PNG (see for instance [130]). Moreover, we
should perform a joint analysis of all large scale structure surveys. We have
assumed for simplicity that we can do as well as the single best survey, which
turned out to be Euclid for the four surveys we considered. In principle, we
can do better if the surveys are not all precisely overlapping. Similarly, we
should combine the results from different observables. For instance, we should
perform a joint analysis of the power spectrum and bispectrum. This could
improve the results by a factor of 2 for local PNG. Combining the results found
in [287], and using the multitracer technique proposed in [304] instead, which
could improve upon the constraints from the power spectrum by a factor of
about 7. In addition, the trispectrum might turn out to be an important probe
for non-Gaussianity, since linear theory works for a larger range of scales com-
pared to the bispectrum [305]. The one loop corrections to the trispectrum in
the EFT of LSS have recently been computed in [306]. Last, we divided the full
redshift range in smaller redshift bins, and only considered correlations within
each redshift bin. If we also include correlations among galaxies separated by
a larger distance along the line of sight, we might extract more information
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from a given survey. Finally, our focus here was on near future galaxy surveys,
but of course our results will be relevant in the future also for 21 cm survey
(see e.g. [307]).

One of our main results is that the EFT approach helps constraining PNG.
The improvement comes completely from the EFT corrections to the late time
gravitational non-linear evolution of matter. Both the SPT loops and EFT
corrections to the primordial non-Gaussian signal, discussed in [183], do not
help much improving the constraints.

Comparing our results with the theoretically interesting benchmark σ(f eqNL) ∼
1, we see that it does not look promising for equilateral PNG. Even with zero
shotnoise, as we can see in Figure 6.3, we barely touch the theoretical targets.
Our lack of understanding of matter non-linearities is already an important
obstacle to reach σ(f eqNL) ∼ 1. The same applies to quasi-single field PNG. Ad-
ditional sources of non-linearities such as bias and redshift space distortions will
make things worse. On the other hand, for local primordial non-Gaussianity,
things look more promising. Matter non-linearities can be modeled well en-
ough to get close to σ(f locNL) ∼ 1 from large scale structure experiments.

We can ask whether N -body simulations can help reaching better cons-
traints on primordial non-Gaussianity. As pointed out in [294], using end to
end simulations, without any perturbative input, will most likely be insuffi-
cient to reach σ(f eqNL) ∼ 1. The reason is that simulations do not solve the
exact problem but make a series of approximations, such as for example the
particle mesh and tree approaches to solve Poisson equation, finite size effects
and approximate initial conditions. Currently, simulations reach approxima-
tely 1% precision [308, 309]. Heuristically, looking at our Figure 6.1, we see
that the PNG signal we are trying to extract is much smaller than that, so
large improvements in the precision of simulations are needed. Alternatively,
one can use N -body simulations to determine the EFT parameters13. We can
then look directly at the unmarginalized columns in Table 6.1c. We see that,
even in the very optimistic case that all relevant EFT parameters at one loop
are fixed, σ(f eqNL) still remains around 7.

13In fact, in our analysis, we assumed that a one EFT parameter, ξ, was fixed by fitting
the power spectrum to simulations.



Discussion and Outlook 161

Theoretical error Another goal of our paper is to clarify some aspects of the
modeling of theoretical uncertainties in forecasting observational constraints,
and, eventually, in analyzing data (see Section 6.3.5 and Appendix 6.B). We
introduced the concept of correlation length in Section 6.3.4, along the lines
of [294]. In Appendix 6.B, we argued that the choice of correlation length
in integrating out the theoretical error is subtle and no “right” choice can be
established a priori. However, in our particular analysis, we hardly find any
dependence on the correlation length (see Figure 6.7). In future studies, with
different observables and different perturbative approaches, we believe that an
analysis on the choice of correlation length should be always performed.

In Figure 6.2 we have seen that assuming the wrong shape for the theoreti-
cal error can lead to biased results in a χ2-analysis. Therefore, if we want to fit
to data, we need good estimates for the higher order corrections. For instance
by using estimates from N-body simulations, or alternatively, by computing
additional two-loop diagrams.

Outlook Our work can be extended and improved in different ways.

• Instead of dividing the survey volume in redshift bins and only consider
correlations within these bins, it would be interesting to see how much
we gain including all possible cross-correlations across redshift bins.

• It would be interesting to perform a similar Fisher analysis with an
updated study of covariance effects due to geometry, masking and non-
Gaussian gravitational evolution.

• We should join all forces. It would be interesting to do a joint analysis
of multiple observations, such as the CMB, LSS surveys and the 21 cm
observations. Moreover, all the different LSS surveys should be combined
to have maximum constraining power. Furthermore, the results from the
power spectrum, bispectrum and trispectrum should be combined too.
Finally, on the theory side, one should also try to use results from N-
body simulations as soon as our perturbative description starts to break
down, i.e. when the theoretical error becomes dominant.
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6.A Explicit Results for the Bispectrum

The purpose of this appendix is to provide, and to some extent clarify, explicit
expressions for the bispectrum in the presence of primordial non-Gaussianity.
This is essentially a summary of [183], so we refer the reader to that work for
a thorough discussion and explanation of these results. We adopt the same
notation, which we summarize in Appendix 6.D.

6.A.1 Perturbation Theory in the EFT of LSS

In the EFToLSS, the equations of motion for the density contrast δ and the
velocity divergence θ = ∂iv

i on large scales are

δτδ + θ = Sα , (6.34a)

(δτ +H)θ +
3

2
ΩmH2δ = Sβ + τθ . (6.34b)

Here the source terms Sα,β are the standard nonlinear terms in the Euler
equations, which, in Fourier space, are given by the following convolutions,

Sα(k, τ) ≡ −
∫
p
α(p,k− p)θ(p, τ)δ(k− p, τ) , (6.35a)

Sβ(k, τ) ≡ −
∫
p
β(p,k− p)θ(p, τ)θ(k− p, τ) , (6.35b)

with

α(k1,k2) ≡ k1 · (k1 + k2)

k2
1

and β(k1,k2) ≡ (k1 + k2)2

2

k1 · k2

k2
1k

2
2

. (6.36)

Clearly, we neglected large scale vorticity and large scale velocity dispersion in
(6.34). However, the backreaction from unknown short scale physics is taken
into account through the effective stress tensor τθ. A complete description and
motivation of this term in the presence of primordial non-Gaussianity was the
main purpose of [183]. Here we just quote the leading contributions for the
types of non-Gaussianities we consider, to first order in fNL,

τθ = −d24δ − e14(δ2)− e24(s2)− e3∂i(s
ij∂jδ)

− fNL
[
g
(
4Ψ− ∂i(δ∂iΨ)

)
+ g14(Ψδ) + g2∂i∂j(Ψs

ij)
]
, (6.37)

where 4 denotes the Laplacian, and the coefficients in this expression are
functions of time only. The equations are formally solved using a Green’s
function method

δ(k, a) = D1(a)δ1(k) +

∫ a

ain

Gδ(a, a
′) [Sβ + τθ −H∂a(aSα)] . (6.38)
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Here δ1(k) is the growing mode initial condition, andD1(a) is the linear growth
factor

D1(a) =
5

2
H2

0Ω0
m

H
a

∫ a

ain

da′

H3(a′)
, (6.39)

which in Einstein-de Sitter reduces to D1(a) = a/ain, where a is the scale fac-
tor. This equation can be solved perturbatively in terms of the linear solution,
yielding

δ(k, a) =
∞∑
n=1

δSPT(n) (k, a) + δc(n)(k, a), (6.40)

where δSPT(n) are the standard perturbation theory (SPT) terms (see [149]),
sourced solely by Sα,β :

δSPT(n) (k, a) ≈ Dn
1 (a)

∫
k1

. . .

∫
kn

(2π)3δD
(
k− k1...n

)
Fn(k1, . . . ,kn) δ1(k1) . . . δ1(kn),

and δc(n) is the ‘counterterm’ contribution, i.e. the terms proportional to one
of the free parameters in (6.37), which we write as

δc(n)(k, a) =

∫
k1

. . .

∫
kn

(2π)3δD
(
k− k1...n

)
F cn(k1, . . . ,kn|a) δ(1)(k1, a) . . . δ(1)(kn, a)

+ fNL

∫
k1

. . .

∫
kn

(2π)3δD
(
k− k1...n

)
Hc
n(k1, . . . ,kn|a)ψ(k1) . . . δ(1)(kn, a) . (6.41)

Note that we have not specified the time dependence of the free parameters
yet, which is why the counterterm kernels are still time dependent. It turns
out that at first order in the perturbations, this is not really an issue, as
the time dependence is just given by an integral of the Green’s function over
some unknown function of time, which yields some other unknown function.
However, in order to get the momentum dependence right at second order, we
have to make an assumption about the first order terms. A convenient ansatz
is

d2(a) = [H(a)f(a)]2[D1(a)]md+1 d̄ 2 , (6.42)

g(a) = [H(a)f(a)]2[D1(a)]mg+1 ḡ , (6.43)

which in Einstein-de Sitter reduces to (d2, g) ∝ amd . Then the expressions for
the counterterm kernels at second order are as follows. We split up the kernels
in the following way

F c2 (k1,k2|a) = F τ2 (k1,k2|a) + Fαβ2 (k1,k2|a) + F δ2 (k1,k2|a), (6.44)
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where the terms coming from the new counterterms at second order are

F τ2 (k1,k2|a) = −
3∑
i=1

εi(a)Ei(k1,k2), with (6.45)

E1(k1,k2) ≡ k2
12, (6.46)

E2(k1,k2) ≡ k2
12

[
(k1 · k2)2

k2
1k

2
2

− 1

3

]
, (6.47)

E3(k1,k2) ≡
[
−1

6
k2

12 +
1

2
k1 · k2

[
k12 · k2

k2
2

+
k12 · k1

k2
1

]]
, and (6.48)

εi(a) ≡ − 1

[D1(a)]2

∫ a

ain

da′ Gδ(a, a′) [D1(a′)]2 ei(a
′) . (6.49)

Furthermore, the terms coming from plugging the lowest order counterterm
back into the equations of motion are

Fαβ2 (k1,k2|a) = −ξ(a)Eαβ(k1,k2), with (6.50)

Eαβ(k1,k2) ≡ 1

2md + 9

[
2β(k1,k2)(k2

1 + k2
2) (6.51)

+
2md + 7

2(md + 2)

(
α(k1,k2)

(
k2

2 + (md + 2)k2
1

)
+ {1↔ 2}

)]
, (6.52)

ξ(a) =
2

(md + 1)(2md + 7)
[D1(a)]md+1 d̄ 2 . (6.53)

Finally, the term from the second order contribution to the density is

F δ2 (k1,k2|a) = −ξ(a)Eδ(k1,k2), with (6.54)

Eδ(k1,k2) =
(md + 1)(2md + 7)

(md + 2)(2md + 9)
k2

12 F2(k1,k2) . (6.55)

Similarly, for the non-Gaussian kernels we have

Hc
2(k1,k2|a) = Hτ

2 (k1,k2|a) +Hαβ
2 (k1,k2|a) +HΨ

2 (k1,k2|a) , (6.56)

where second order counterterm contribution is

Hτ
2 (k1,k2|a) = −

2∑
i=1

γi(a)Gi(k1,k2), with (6.57)

G1(k1,k2) = k2
12, (6.58)

G2(k1,k2) =
(k12 · k2)2

k2
2

− 1

3
k2

12, and (6.59)

γi(a) ≡ − 1

D1(a)

∫ a

ain

da′ Gδ(a, a′)D1(a′)gi(a
′). (6.60)
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Subsequently, the convoluted first order counterterms give

Hαβ
2 (k1,k2|a) = −γ(a)Gαβ(k1,k2), with (6.61)

Gαβ(k1,k2) ≡ 4

2mg + 7
β(k1,k2)k2

1 (6.62)

+
2mg + 5

(mg + 1)(2mg + 7)

[
(mg + 1)α(k1,k2) + α(k2,k1)

]
k2

1, (6.63)

γ(a) =
2

mg(2mg + 5)
[D1(a)]mg+1 ḡ . (6.64)

Lastly, the second order contribution to the lowest order counterterm is given
by

HΨ
2 (k1,k2|a) = −γ(a)GΨ(k1,k2), with (6.65)

GΨ(k1,k2) =
mg(2mg + 5)

(mg + 1)(2mg + 7)

[
k2

12

k1 · k2

k2
2

− k12 · k1

]
. (6.66)

6.A.2 One Loop Bispectrum

Having obtained perturbative solutions for the evolved density contrast in
terms of the initial field, we can compute correlation functions using the sta-
tistical properties of the initial distribution. Along the lines of the discussion
above, we decompose the bispectrum as

Btot = BG
SPT +BG

EFT + fNL
(
BNG
SPT +BG

EFT
)
. (6.67)

The expressions for the Gaussian part of the bispectrum at one loop were given
in [181] and [182], and read

BG
SPT = B112 +

[
B114 +B

(I)
123 +B

(II)
123 +B222

]
, (6.68)

BG
EFT = ξBG

ξ +

3∑
i=1

εiBεi , (6.69)
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where

B112 =2F2(k1,k2)P11(k1)P11(k2) + 2 cycl. perms (6.70a)

B222 =8

∫
p

F2(−p,p + k1)F2(p + k1,−p + k2)F2(k2 +−p,p) (6.70b)

P11(p)P11(|p + k1|)P11(|p− k2|),

B
(I)
321 =6P11(k3)

∫
p

F3(−p,p− k2,−k3)F2(p,k2 − p)P11(p)P11(|p− k2|) + 5 perms,

(6.70c)

B
(II)
321 =6F2(k2,k3)P11(k2)P11(k3)

∫
p

F3(−k3,p,−p)P11(p) + 5 perms, (6.70d)

B411 =12P11(k2)P11(k3)

∫
p

F4(p,−p,−k2,−k3)P11(p) + 2 cycl. perms. (6.70e)

Here P11(k) is the linear power spectrum, whose time dependence is implied.
Furthermore

BG
ξ ≡ −2

[
Eαβ(k1,k2) + Eδ(k1,k2)

]
P11(k1)P11(k2) + 2 perms, (6.71a)

Bεi ≡ −2Ei(k1,k2)P11(k1)P11(k2) + 2 perms. (6.71b)

The non-Gaussian contribution at one loop is

BNG
SPT = B111 +

[
B

(I)
113 +B

(II)
113 +B

(I)
122 +B

(II)
122

]
, (6.72)

BNG
EFT = ξBNG

ξ + γBγ +

2∑
i=1

γiBγi , (6.73)

where

B
(I)
113 = 3P11(k2)

∫
p

F3(k1 + p,−p,k2)B111(k1, p, |k1 + p|) + 5 perms, (6.74a)

B
(II)
113 = 3B111(k1, k2, k3)

∫
p

F3(k1,p,−p)P11(p) + 2 perms, (6.74b)

B
(I)
122 = 4

∫
p

F2(k3 + p,−p)F2(p,k2 − p)B111(k1, |k3 + p|, |k2 − p|)P11(p) + 2 perms,

(6.74c)

B
(II)
122 = 2F2(k1,k2)P11(k2)

∫
p

F2(p,k1 − p)B111(k1, p, |k1 − p|) + 5 perms, (6.74d)

and

BNG
ξ ≡ −(k2

1 + k2
2 + k2

3)B111(k1, k2, k3), (6.75a)

Bγ ≡ −
[
Gαβ(k1,k2) +GΨ(k1,k2)

]
P11(k1)P1ψ(k2) + 5 perms, (6.75b)

Bγi ≡ −Gi(k1,k2)P11(k1)P1ψ(k2) + 5 perms. (6.75c)
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Again, the time dependence of the correlation functions is implied. Finally,
we have to specify the type of non-Gaussianity. In this work we consider the
primordial bispectra given in 6.2.2. The corresponding correlation between
the linear density field and the first order non-Gaussian counterterm ψ (see
(6.41)) is given by

P1ψ(k) ≡ (k/µ)∆

M(k)
P11(k), (6.76)

where µ is some arbitrary momentum scale, introduced for dimensional rea-
sons, which cancels when multiplied with the EFT parameter in the full con-
tribution to the bispectrum. We therefore set it to unity in the numerical
evaluation. In our case the k-dependence is respectively given by ∆ = {0, 1, 2}
for local, quasi-single field and equilateral type non-Gaussianities. The transfer
function was defined in (6.7). For this work we choose the time dependence of
the lowest order counterterms (6.42) to match the divergence it is supposed to
cancel, which corresponds to the choice md = mg = 1. This is was argued for
in [296]. Moreover, our main results do not depend much on this assumption.

6.A.3 Ansatz Two Loop Bispectrum

As an ansatz for the two loop bispectrum we compute the two reducible two
loop diagrams, given by [181],

BI
332 =2F2(k1,k2)

P13(k1)

2

P13(k2)

2
+ 2 cycl. perms (6.77a)

BII
332 =6

P13(k3)

2

∫
p

F3(−p,p− k2,−k3)F2(p,k2 − p)P11(p)P11(|p− k2|) + 5 perms,

(6.77b)

with

P13(k) = 6P11(k)

∫
p
F3(k,p,−p)P11(p). (6.78)

As an estimate for the theoretical error we use

B332 = |BI
332|+ |BII

332|. (6.79)
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6.B Theoretical noise

This appendix contains the details of the implementation of the theoretical
error and further investigates some issues related to it. First, we give the
intermediate steps to derive (6.25) and provide an alternative derivation of
the effective Fisher matrix in the presence of theoretical error. Then, we study
the effect of the correlation length, both by means of a toy model and by
running the analysis for several correlations lengths. Finally, we discuss in
more detail the effect of the two possible ansätze for Ber.

6.B.1 Derivation of (6.25)

Let us first show how to go from equations (6.22), (6.23) and (6.24b) to the
effective Fisher matrix given in (6.25). We will need to use the Woodbury
matrix identity several times, which relates the inverse of sums of matrices to
their individual inverses

(A+B)−1 = A−1 −A−1
(
A−1 +B−1

)−1
A−1. (6.80)

By using this identity, we can rewrite (6.23) as

F−1
αβ = (N−1

αβ +Dαβ)−1 = D−1
αβ −D

−1
αγ

(
N +D−1

)−1

γδ
D−1
δβ . (6.81)

This allows us to compute

FiγF
−1
γδ Fδj =

∑
k,p

Bi(k)C−1(k, kγ)Ber(kγ)
(
D−1 −D−1(N +D−1)−1D−1

)
γδ

×Ber(kδ)C
−1(kδ, p)Bj(p)

=
∑
k,p

Bi(k)δk,kα

(
C−1(kα, kβ)− 1

Ber(kα)
(N +D−1)−1

αβ

1

Ber(kβ)

)
× δkβ ,pBj(p)

=
∑
kα,kβ

Bi(kα)

Ber(kα)

(
D − (N +D−1)−1

)
αβ

Bi(kβ)

Ber(kβ)

=
∑
kα,kβ

Bi(kα)

Bα

(
D(N−1 +D)−1D

)
αβ

Bi(kβ)

Bβ
.
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Here summation over the Greek indices is understood. Upon applying the
Woodbury identity again, the effective Fisher matrix then becomes

F eff
ij =

∑
kα,kβ

Bi(kα)

Bα

(
D −D(N−1 +D)−1D

)
αβ

Bj(kβ)

Bβ
+
(
C−1

Θ

)
ij

=
∑
kα,kβ

Bi(kα)

Bα

(
N +D−1

)−1

αβ

Bj(kβ)

Bβ
+
(
C−1

Θ

)
ij

=
∑
kα,kβ

Bi(kα)
(
N eff + CB

)−1

αβ
Bj(kβ) +

(
C−1

Θ

)
ij
,

(6.82)

with N eff
αβ = Ber(kα)NαβB

er(kβ).

6.B.2 Alternative derivation of the effective Fisher matrix

Next, we present a slightly different derivation of the effective Fisher matrix,
by marginalizing at the level of the likelihood function. Let us first expand
χ2 = −2 log(L) in the nuisance parameters Θα. We would like to expand
about some value Θ̄α to get

χ2(Θi,Θα) = χ2(Θi, Θ̄α) + (Θα − Θ̄α)χ2
α(Θi, Θ̄α)

+
1

2
(Θα − Θ̄α)(Θβ − Θ̄β)χ2

αβ(Θi, Θ̄α), (6.83)

where summation over repeating indices is understood, and the index α on χ2

denotes a derivative with respect to the corresponding nuisance parameter. It
is an equality, since the variables are Gaussian distributed. We can rewrite
this expression in more compact notation as

χ2 = χ2
0 + δΘαXα +

1

2
δΘαδΘβYαβ, (6.84)

where χ2
0 is the chi-squared we would get if we ignored the presence of the

nuisance parameters Θα. By completing the square and adding some prior
information on the nuisance parameters (i.e. a covariance matrix), we can
integrate them out to get an effective chi-squared. In other words, we would
like to evaluate the following integral∫

dNΘα exp

(
−1

2

(
χ2

0 + δΘαXα +
1

2
δΘαδΘβYαβ

))
(6.85)

× exp

(
−1

2
δΘα(N−1)αβδΘ

β

)
. (6.86)
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where Nαβ is the covariance matrix of the theoretical error parameters. The
integration results into√

(2π)N · det(( 1
2Y +N−1)−1) exp

(
−1

2
χ2

0 +
1

4
Xγ

(
Y + 2N−1

)−1

γδ
Xδ

)
, (6.87)

and therefore,

χ2
eff = χ2

0 −
1

2
Xγ

(
Y + 2N−1

)−1

γδ
Xδ + ln

(
det((1

2Y +N−1))
)
. (6.88)

Please note that all these terms do in general depend on Θi. Since the joint
probability distribution of all parameters is a multivariate Gaussian, we know
that Y is independent of Θi and X only depends linearly on Θi. In that case,
we get (

χ2
eff
)
ij

=
(
χ2

0

)
ij
− 1

2
Xiγ

(
Y + 2N−1

)−1

γδ
Xδj . (6.89)

The full Fisher matrix is given by

Fµν =

(1
2Yαβ +N−1

αβ
1
2Xαj

1
2Xiβ Fij

)
(6.90)

where we have to evaluate the matrices at the maximum likelihood value of
the parameters. This means that the effective chi-squared is given by(

χ2
eff
)
ij

=
(
χ2

0

)
ij
− 2FiγF

−1
γδ Fδj , (6.91)

or, in other words, the effective Fisher matrix for the theoretical parameters
is given by

F eff
ij = Fij − FiγF−1

γδ Fδj . (6.92)

This is what we found before in the main text.

Alternatively, starting from (6.89) we can write down immediately the
expression for the effective likelihood

Leff =
1√

det
(

1
2Y +N−1

) exp

[
−1

2

(
χ2

0 −Xγ(1
2Y +N−1)−1

γδ Xδ

)]

=
1√

det (D +N−1)
exp

−1

2

∑
k,p

∆B(k)
(
C−1
B (k, p)− C−1

B (k, kγ)

B2L(kγ)(D +N−1)−1
γδ B

er(kδ)C
−1
B (kδ, p)

)
∆B(p)

]
(6.93)

=
1√

det (D +N−1)
exp

−1

2

∑
kα,kβ

∆B(kα)
(
CB +N eff)−1

αβ
∆B(kβ)

 .
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Here the difference between the data and theory vector ∆B is evaluated at the
fiducial values for the nuisance parameters Θ̄α (i.e. at zero in our case). Taking
now two derivatives with respect to the remaining theoretical parameters Θi,
we find the effective Fisher matrix

F eff
ij =

∑
kα,kβ

Bi(kα)
(
CB +N eff)−1

αβ
Bj(kβ) (6.94)

with N eff
αβ = Ber(kα)NαβB

er(kβ).

6.B.3 Theoretical error - a toy model

In our approach, the theoretical error on the value of the bispectrum is modeled
in the following way. For every bin, we introduce a nuisance parameter that
is drawn from a Gaussian distribution with average zero and variance set by
the estimated size of the theoretical error for that bin. Importantly, we allow
for non-vanishing correlations among these nuisance parameters, i.e. we allow
for a non-diagonal covariance matrix for them. The purpose of this appendix
is to show that both the limit of zero and maximal correlation among the
parameters have a clear interpretation, neither of which resembles the way we
think the theoretical error should act. To be more precise, we prove, by means
of a simple toy model that still captures the essence of the real analysis, the
intuitive statements that:

• for zero correlation length, the theoretical error just acts as shot noise
per bin;

• for maximal correlation length, the theoretical error acts as some free
coefficient multiplying a fixed shape function, which by definition we
think is the wrong function.

Toy model

We consider measuring some observable d a total of N times and collecting
the data di. Our model is di = x+ei, with x a Gaussian random variable with
variance σ2

x, whose average, x̄, we would like to determine as well as possible.
The ei are additional Gaussian variables that represent the systematic error or
theoretical uncertainty in every measurement. Their averages and variances
are ēi and σ2

ei , respectively. One can think of this scenario as determining the
average weight of a group of people, knowing that their weights are Gaussian
distributed with variance σ2

x, where we use a different weighing scale with a
systematic error ēi and some uncertainty in the measurement characterized by
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σ2
mi every time we weigh someone. Since the ei are uncorrelated with x, this

leads to the likelihood

logL = −
N∑
i=1

(di − x̄− ēi)2

2σ2
d

, (6.95)

where σ2
d = σ2

x +σ2
m, assuming for convenience that σmi = σm (the arguments

below do not depend on this assumption). Without any prior information on
the systematic errors, they are completely degenerate with x̄, so we do not
expect to be able to learn anything about x̄ in this case. This can be verified
using a Fisher analysis. We have

Fab =

 N
σ2
d

1
σ2
d

−→
1 T

1
σ2
d

−→
1 1

σ2
d
1N×N

 , (6.96)

where a, b = x̄, ēi. Since we are ignorant about the systematic errors, we
compute the marginalized error on x̄,

σ2
x̄,marg =

(
F−1

)
x̄x̄
, (6.97)

which can be computed using the block matrix inversion formula (see also
(6.22)):

let F =

(
A BT

B D

)
, (6.98)

then

σ2
x̄,marg = (A−BTD−1B)−1 =

(
N

σ2
d

− 1

σ2
d

−→
1 T 1N×N

−→
1

)−1

=
1

0
, (6.99)

as expected. In a realistic situation we do have some prior information about
the systematic errors. Here, and in the paper, we assume they are also Gaus-
sian random variables with some variance σ2

ēi . Moreover, we allow for non-
trivial correlations among the ēi, which for the scales could mean they were
produced by the same machine for instance. This means we obtain the updated
likelihood

logL = −
N∑
i=1

(di − x̄− ēi)2

2σ2
d

− ēi
(
C−1

)
ij
ēj , (6.100)

where

Cij =< ēiēj > . (6.101)

In the following, we investigate the effect of zero and maximal correlation
length on σ2

x̄,marg.
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Zero correlation

Let us first assume zero correlation among the systematic errors, leading to a
diagonal covariance matrix,

Cij = σ2
i δij . (6.102)

In terms of the weighing scales this could mean all scales really come from
different companies with uncorrelated systematic errors. We now show that
in this case the ignorance about the systematic errors acts as shot noise per
bin; it simply updates the variance of the measurements σ2

d → σ2
di
. For any

covariance matrix, the Fisher matrix is

F =

 N
σ2
d

1
σ2
d

−→
1 T

1
σ2
d

−→
1 1

σ2
d
δij + (C−1)ij

 . (6.103)

Then, using the block matrix inversion formula, zero correlation leads to an
error

σ2
x̄,marg =

N

σ2
d

− 1

σ4
d

−→
1 T 1

1
σ2
d

+ 1
σ2
i

δij
−→
1

−1

(6.104)

=

 N∑
i=1

 1

σ2
d

− 1

σ4
d

1
1
σ2
d

+ 1
σ2
i

−1

(6.105)

=

[
N∑
i=1

(
1

σ2
d + σ2

i

)]−1

≡

[
N∑
i=1

1

σ2
di

]−1

, (6.106)

which is the same error one gets from assuming the likelihood function

logL = −
N∑
i=1

(di − x̄)2

2σ2
di

. (6.107)

This shows that indeed for zero correlation the systematic errors acts as shot
noise per bin. In particular, this means the error on x̄ can be made arbitrarily
small by increasing the number of measurements (if the σēi do not grow too
fast for additional measurements). The intuitive reason is of course that in this
model we expect the systematic errors to average out to zero in the long run.
This is clearly not what is expected of the theoretical error in the measurement
of the bispectrum.
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Maximal correlation

Next we assume maximal correlation, which by definition means

Cij =< ēiēj >=
√
< ēi2 >

√
< ēj2 > = σiσj . (6.108)

Since this matrix has rank one (all columns are multiples of the same vector),
it is not invertible in more than one dimension. One way to deal with this is
to introduce a regulator, such as a small matrix εδij , to break the degeneracy.
Using our block matrix inversion formula, this is however not necessary. In
the notation of ((6.98)), we wish to compute D−1. Let us write D = S+C−1,
where S = 1

σ2
d
δij . The Woodbury identity then gives

(S + C−1)−1 = S−1 − S−1(S−1 + C)−1S−1. (6.109)

Hence, we have to compute the inverse of S−1 + C, where S−1 = σ2
dδij , and

C = σiσj . Conveniently, since C is of the form −→σ (−→σ )T , we can use the
Sherman-Morrison formula to compute the inverse

(S−1 + C)−1 = S − S(σiσj)S

1 + σiSijσj
. (6.110)

Plugging this into the previous formula, we find

D−1 = (S + C−1)−1 = S−1 − S−1 +
σiσj

1 +
(
∑
σ2
i )

σ2
d

=
σiσj

1 +
(
∑
σ2
i )

σ2
d

. (6.111)

This finally leads to the error on x̄:

σ2
x̄,marg =

N
σ2
d

−
(
∑
σi)

2

σ2
d

σ2
d +

(∑
σ2
i

)
−1

. (6.112)

In order to interpret this result, let us rewrite this expression as follows

σ2
x̄,marg =

N
σ2
d

−
(∑ σi

σ

)2
σ4
d

1

1
σ2 +

∑
(σiσ )

2

σ2
d


−1

, (6.113)

where we have introduced the dimensionful parameter σ to keep the dimensions
clean. Now observe that we get exactly the same error on x̄ from the following
likelihood function

logL = −
N∑
i=1

(di − x̄− σi
σ ē)

2

2σ2
d

− ē2

2σ2
. (6.114)
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whose Fisher matrix is

F =

 N
σ2
d

1
σ2
d

∑ σi
σ

1
σ2
d

∑ σi
σ

1
σ2 +

∑
(σiσ )

2

σ2
d

 , (6.115)

This means that the maximal correlation case is equivalent to having a single,
unknown parameter multiplying a known ‘shape’ function σi/σ. In terms of
the weighing scales this would mean that we know in advance exactly the
ratios between the systematic errors of the scales. In terms of the bispectrum
this would mean that we claim to know the theoretical error is exactly some
number times the two loop estimate we put in, which it is clearly not. Finally
note that if we choose all σi to be equal, which for convenience we take to be
σ, we find

σ2
x̄ =

N
σ2
d

− N2

σ4
d

1
1
σ2 + N

σ2
d

−1

=
σ2
d

N
+ σ2, (6.116)

meaning the error on x̄ can never get below the uncertainty in the degene-
rate parameter ē. In terms of the weighing problem this makes perfect sense,
as this case is equivalent to simply using one and the same scale for every
measurement. In this case we never expect to beat the unknown systematic
error in the scale. In terms of the bispectrum this shows the importance of
the relation between the shapes of the non-Gaussian signal and the theoretical
error. In fact, in the maximal correlation limit we treat the theoretical error
exactly the same as the EFT terms.

Conclusions

From the above example it is clear that in neither limit the implementation of
the theoretical error is completely satisfactory. Moreover, if the shapes are not
too similar, the estimates from both limits are probably too optimistic. For
this reason we recommend a conservative use of the method. In particular, we
choose to use the correlation length that gives the weakest constraints on fNL,
as we show in the next subsection.
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Figuur 6.7: A test
computation of σ(fNL)
at redshift z = 0 in-
cluding theoretical error
as function of correla-
tion length. We choose
kmin = 0.001 hMpc−1

and kmax = 1 hMpc−1

where we divide the k-
range in 9 (blue), 15
(orange), 27 (green), 45
(red) and 81 (purple)
bins.
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6.B.4 Choice of correlation length

In order to find the most conservative correlation length to work with, we
ran a test computation of σ(fNL). We did this at redshift zero with kmin =
0.001 hMpc−1 and kmax = 1 hMpc−1, where we divide the k-range in 9 (blue),
15 (orange), 27 (green), 45 (red) and 81 (purple) bins. We find that the weakest
constraints are obtained for l ≈ 0.5, see Figure 6.7. This is therefore the value
we take for the analysis in the paper.

Remarkably, the error is actually very insensitive to the correlation length,
despite the very different nature of the effect of small and large correlation
length. We believe the reason for this to be the fact that our ansatz for the
theoretical error is a much steeper function of k than the non-Gaussian signal.
The transition from the k’s for which the error is negligible to the region where
it is completely dominant is therefore very small, and the shape of the error is
therefore not very important in this case.

Another observation is that the error keeps increasing as we increase the
correlation length beyond 10 decades, whereas the k’s we consider only run
over a couple of decades. This makes the nuisance parameters almost maxi-
mally correlated for all these large correlation lengths. At the moment, we
have no good explanation for the fact that the error seems to keep improving,
other than it being a numerical fluke, perhaps related to the inversion of the
correlation matrix.
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6.B.5 Ansätze for higher loop corrections

We compare the ansätze for the higher loop corrections in Figure 6.8. It is a
zoom-in of Figure 6.1, where we now show in addition the ansatz used in [294],
for the two and three loop contribution to the bispectrum. Please note that in
[183], we only showed one of the two reducible two loop diagrams contributing
to B332. Therefore, the plots look different now, in particular in the squeezed
configuration of the bispectrum. We see that in the squeezed configuration,
the ansatz B332 is an order of magnitude smaller than Eb. This explains why
we have to multiply B332 by a factor 10 in section 6.3.5 to get reliable results.
Furthermore, we note that at redshift zero, B332 allows one to go to higher
kmax in the squeezed configuration, whereas Eb allows one to go further in the
equilateral configuration (for fNL bigger than 10). This explains why using
B332 as an ansatz gives more optimistic results for local PNG, whereas Eb
gives more optimistic results for equilateral PNG (see section 6.4.1). Keep in
mind also that the time dependence of the theoretical error terms is different
from the signal, making the signal stronger at higher redshifts.
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Figuur 6.8: Comparison of the ansätze for the higher loop corrections. We plot Eb
from equation (6.27) for two and three loops (yellow and green dashed lines) versus
B332 (green dashed line) defined in equation (6.77). For the two loop ansatz using
Eb we take n = −1.4, kNL = 0.45hMpc−1 and l = 2 and for the three loop ansatz
we use n = −1.5, kNL = 0.50hMpc−1 and l = 3. We compare these ansätze with the
non-Gaussian contribution to the bispectrum up to one loop with fNL = 10 for local,
equilateral and quasi-single-field PNG (red, blue and purple solid lines). In the left
panel we compare the different contributions in the configuration B(kL, k, k) where
we varied k and fixed kL = 0.012hMpc−1. The smaller k the more squeezed the
configuration is. In the right panel we show the equilateral configuration B(k, k, k).

Next, we consider σ(fNL) as function of kmax at various redshifts in Figure
6.9. We do not include shotnoise, but we integrate out the theoretical error.
The result for local PNG is shown in the left panel. We see that at redshift zero,
the signal freezes out at some kmax < 1hMpc−1. Furthermore, in agreement
with what we expect from Figure 6.8, we see that using B332 as ansatz for the
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two loop corrections gives more optimistic results. More specifically, σ(fNL)
is a factor 5 smaller. At higher redshifts, we find that σ(fNL) does not freeze
when we reach kmax = 1hMpc−1. We think this is due to the fact that we
keep gaining information as we go to more and more squeezed configurations.
This is also important for equilateral PNG, shown in the right panel, even
though, σ(fNL) does freeze out in this case. Interestingly, compared to scaling
estimates for kmax for equilateral PNG (see for instance [294]) we find that
we can go to much smaller scales than naively thought. The squeezed limit
allows us to extract more information, also for equilateral PNG. The fact that
kmax = 1hMpc−1 is not large enough to ensure that σ(fNL) is frozen when we
ignore shotnoise explains the results we find in section 6.4.1.
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Figuur 6.9: We show σ(fNL) as function of kmax using B332 and Eb as ansatz for
the two loop corrections (solid and dashed lines). In the left panel we show the results
for local PNG and in the right panel for equilateral PNG. The redshift takes values
between z = 0 and z = 5. We use kmin = 0.001hMpc−1 and V = (2π/kmin)3 at each
redshift.

6.C Choice of binning and volume of the bins

In this appendix, we motivate the decision of section 6.3.3 to use logarithmic
binning and exactly computed values of V123.
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6.C.1 Exact computation of V123

We will now explain how to compute V123 exactly and systematically by divi-
ding all the bins in ‘interior’ and ‘edge’ bins. Moreover, the selection of bins
is now determined by whether it contains at least some valid triangles instead
of the usual selection rule that the central point should be a triangle.
Recall that V123 is defined as

V123 =

∫
q1

∫
q2

∫
q3

δD(k1 + k2 + k3). (6.117)

We choose logarithmic binning, i.e. we have

qi ≡ |q|i ∈
[
kie
−1

2 ∆ ln k, kie
1
2 ∆ ln k

]
. (6.118)

The integrand above only depends on the relative orientations of the vectors
and their lengths. Fixing q1 along the ẑ-direction and q2 to be in the (x, z)-
plane, their relative orientation is given by θ12 = θ2. Now the lengths of these
vectors, together with c12, the cosine of θ12, completely determine q3. The

length of q3 is then restricted to be in
[
k3e
−1

2 ∆ ln k, k3e
1
2 ∆ ln k

]
, which means

c12 ∈ [−1, 1] ∩


(
k3e
− 1

2 ∆ ln k

)2

− q2
1 − q2

2

2q1q2
,

(
k3e

1
2 ∆ ln k

)2

− q2
1 − q2

2

2q1q2

 , (6.119)

where q1 and q2 also take values within their bin. Then, if [−1, 1] contains the
range on the right for all values of q1 and q2, we are dealing with an ‘interior
bin’, and we get ∫

dc12dq1dq2 q
2
1q

2
2 = k2

1k
2
2k

2
3 sinh3(∆ ln k). (6.120)

Finally, accounting for the fact that we fixed θ1, φ1,2 and the factors of (2π)3

we find
V123 =

1

(2π)9
8π2k2

1k
2
2k

2
3 sinh3(∆ ln k). (6.121)

This approximation breaks down when the two ranges are partly overlapping,
in which case we have an ‘edge bin’.
let us evaluate V123 more precisely. We have seen that the integral simplifies
to

V123 =
8π2

(2π)9

∫
q1

∫
q2

∫
c12

q2
1q

2
2 (6.122)
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where the c12 is restricted to be in the range given above. This integral can
therefore be rewritten as

V123 =
8π2

(2π)9

∫
q1

∫
q2

1
2q1q2 max

[
0,
(

min
[
(q1 + q2)2, k2

3e
∆ ln k

]
−max

[
(q1 − q2)2, k2

3e
−∆ ln k

])]
.

In other words we integrate over the overlap[
(q1 − q2)2, (q1 + q2)2

]
∩
[
k2

3e
−∆ ln k, k2

3e
∆ ln k

]
. (6.123)

There are multiple possibilities:

• The overlap is always zero.

This happens whenever |q1 + q2|max ≤ k3e
−1

2 ∆ ln k or |q1 − q2|min ≥
k3e

1
2 ∆ ln k. This means we should exclude the cases k3 ≥ (k1 + k2)e∆ ln k

and k3 < k2. The latter is already excluded since we have k1 ≤ k2 ≤ k3.
The first leads to a constraint to select the bins, namely

k3 < (k1 + k2)e∆ ln k. (6.124)

• The first range always contains the second range.

This happens when |q1−q2|max ≤ k3e
−1

2 ∆ ln k ánd |q1+q2|min ≥ k3e
1
2 ∆ ln k.

So we need both {
k3 ≥ k2e

∆ ln k − k1

k3 ≤ (k1 + k2)e−∆ ln k . (6.125)

In this case the volume takes the simple form

V123 =
8π2

(2π)9
k2

1k
2
2k

2
3 sinh3(∆ ln k). (6.126)

• Any other type of overlap.
For the other cases we have to compute the actual volume of the bin.
We will numerically perform the integral given above. This is when one
of the two options below is satisfied{

k3 < k2e
∆ ln k − k1

k3 > (k1 + k2)e−∆ ln k (6.127)

Not for all these edge bins the central point has to be a triangle, since
there are some cases for which k3 > k1 + k2, considering the second
inequality. Thus, we can either decide to define another point in the bin
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to represent the central triangle or we can merge these bins with one
of their neighbors. In the first case a valid central triangle in the bin
(k1, k2, k3) is given by(

k1e
k3

2(k2+k1) , k2e
k3

2(k2+k1) , k3e
− k3

2(k2+k1)

)
(6.128)

The other option is to merge (i.e. we add the volumes) the bin with
one of its neighbors, which has the advantage that we never have to
change the representing triangle of a given bin. For practical reasons, we
choose this option. We implement this by merging each bin k for which
k3 > k1 + k2 with the bin p which has p1 = k1, p2 = k2 and p3 the
biggest value below or equal to k1 + k2.

6.C.2 Logarithmic versus linear binning

Let us now compare logarithmic binning with linear binning. We will show
two examples of a computation of a Fisher matrix and show that the linear
binning might cause problems.
We assume the following form for the Fisher matrix

F =
∑

k1,k2,k3

f(k1, k2, k3)
V123

s123
, (6.129)

for some function f(k1, k2, k3). We will consider a ‘local’-type function f loc and
an ‘equilateral’-type function f eq. The local function corresponds to assuming
the late time power spectrum scales as P (k) ∼ k−3, where F represents the
(fNL, fNL)-component of the Fisher matrix for local PNG. Forgetting about
the right normalization, this gives

f loc(k1, k2, k3) =

(
k

3/2
1

k
3/2
2 k

3/2
3

+
k

3/2
2

k
3/2
1 k

3/2
3

+
k

3/2
3

k
3/2
2 k

3/2
1

)2

. (6.130)

Similarly, we can define a function that corresponds to equilateral PNG

f eq(k1, k2, k3) =
k1k2k3

(k1 + k2 + k3)6
. (6.131)

We compute F over a range k ∈ [0.003, 0.5] hMpc−1 for both logarithmic and
linear bins and for both the approximate and exact computation of V123. In
Figure 6.10 we plot F as function of number of bins (number of triangles)
considered.
First of all, in Figure 6.10a, restricting ourselves to about 10.000 bins, we see
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that if we use the approximate value for V123 (the usual assumption), the linear
bins seem to converge quickly to the asymptotic value. The logarithmic bins
seem to converge much slower. However, as we keep increasing the number
of triangles, suddenly the graph of the linear bins jumps to the graph of the
logarithmic bins. This shows that if we would have trusted the linear binning
for a smaller number of bins we would have gotten the wrong result. This
is quite unexpected and alarming as it seems we cannot always trust linear
binning! If we now change to the exact V123 we see that both linear and
logarithmic binning converge much faster and both to the same value. In fact,
it turns out that they reach one percent agreement for about 15.000 triangles.
Let us try to understand why this happens. As we are summing over a function
which peaks in the squeezed limit we do in fact get most signal from k-triplets
which satisfy k3 ∼ k2 � k1. In particular the edge bins will contribute an
important part to the final result. We know that precisely for these bins the
approximate value for V123 does not work, which is probably why the results
improve dramatically when using the exact V123. Now one can still wonder
why the linear binning performs so badly in this case. A reason might be that
we are sampling the values for k1 much better in case of logarithmic binning.
However one could argue exactly the opposite, namely that linear binning
samples the values of k2 and k3 much better. We have not found a convincing
argument why linear binning fails, this remains an open question. As we are
also studying the Fisher matrix for local PNG in our paper, we decided to stick
to logarithmic binning. Even with the exact value of V123 the result converges
quite slowly for the local function. In order to be within a couple of percent
of the actual outcome of the Fisher analysis we need quite some triangles. For
the analysis therefore we divide the k-axis over three logarithmic decades in
45 bins. By this we mean that if for instance each ki from the triplet can take
values in the range [0.001, 1] hMpc−1, it can take one of the 45 logarithmically
separated values.
We did the same analysis for the equilateral function. In Figure 6.10b we see
again a jump of the graph corresponding to linear binning. This time we do
not expect to gain most signal from the edge bins. However, when we use the
exact value for V123 everything seems to be fine again. The jump takes place at
a comparable value of Nbins. The graph of the logarithmic binning remains a
bit wiggly, but we find one percent agreement between linear and logarithmic
binning already for 1000 triangles. For equilateral PNG we therefore divide
the k-axis over three logarithmic decades in either 27 or 45 bins.
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Figuur 6.10: Computation of F as function of the number of triangles Nbins for (a)
f loc and (b) f eq as given in equations (6.130) and (6.131). We show the results for
both the approximate (solid) and exact (dashed) expression for V123. Moreover we
denote the results from linear binning with a blue line and logarithmic binning with
a orange line.

6.D Table of parameters

Symbol Relation Meaning
a scale factor
τ adτ = dt conformal time
H ≡ d ln(a)/dτ conformal Hubble parameter
H0 present value of H
x comoving coordinate
k momentum

Ωm matter density in units of the critical den-
sity

ΩΛ dark energy density
h dimensionless Hubble constant
ρ dark matter density
δ ≡ δρ/ρ dark matter density contrast
θ ≡ ∂ivi velocity divergence
δ(n) density contrast in SPT at order n
Fn kernel function in δ(n)

Pmn ≡ 〈δ(m)δ(n)〉′ power spectrum in SPT
Blmn ≡ 〈δ(l)δ(m)δ(n)〉′ bispectrum in SPT
φ Newtonian potential
Φ 4Φ = δ rescaled Newtonian potential
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Symbol Relation Meaning
ϕ φ = T (k)ϕ primordial potential
ϕg Gaussian primordial potential
T (k) transfer function
M(k) transfer function in the Poisson equation
D1 linear growth factor
f ≡ d lnD1/ ln a growth rate
Pϕ primordial power spectrum
Bϕ primordial bispectrum
ns scalar spectral index
ψ correlation in the initial conditions
Ψ Ψ(x) ≡ ψ(q(x)) Eulerian definition of ψ
∆ scaling dimension in KNL

fNL amplitude of the primordial bispectrum
d2 ≡ c2

s+f(c2
vis+ĉ

2
vis) parameter in τv

ei, g,
gi

parameters in τv

ξ parameter in δc(1)

γ parameter in δc(1)

εi parameter in δc(2)

γi parameter in δc(2)

Sα,β SPT quadratic source terms
τθ EFT source in Euler equation
δc(n) viscosity counterterm at order n
F cn kernel function in δc(n)

Hc
n kernel function in δc(n)

Gδ Green’s function for δ
Dδ evolution operator in the fluid equation
P1ψ ≡ 〈δ(1)ψ〉′ correlation of δ(1) and ψ
BG

SPT Gaussian SPT contributions to Bδ
BNG

SPT non-Gaussian SPT contributions to Bδ
BG

EFT sum of Gaussian EFT counterterms
BNG

EFT sum of non-Gaussian EFT counterterms


