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Hoofdstuk 4

Universality of multi-field α-attractors

In this chapter we investigate two-field cosmological α-attractors, which are
characterized by a hyperbolic field metric. The important property of the sin-
gle field realization of α-attractors is that, in the limit of small α < O(10),
their predictions converge to ns − 1 ' − 2

N and r ' 12α
N2 , irrespective of the

potential. In the two-field case, we find that the inflationary predictions show
universal behavior too, insensitive to significant modifications of the potential.

In the simplest supergravity embedding of α-attractors, the potential de-
pends on the complex scalar Z = ρ eiθ, living on a disk with ρ < 1. Moreover,
the fields span a hyperbolic field space with Ricci curvature R = − 2

3α . In the
single field scenario, in which the angular field is stabilized, the universality of
the predictions can be ultimately traced back to the radial stretching introdu-
ced by the hyperbolic geometry as we approach the boundary ρ ∼ 1.

If both ρ and θ are light during inflation, the angular velocity θ̇ is expo-
nentially suppressed, due to the hyperbolic geometry, and inflation proceeds
(almost) in the radial direction. The angular field will not roll down to its
minimum, but instead it is "rolling on the ridge". This is illustrated in Fi-
gures 4.3 and 4.4. Nevertheless, the trajectory is curved and the inflationary
dynamics is truly multi-field. The multi-field effects conspire in such a way
that the predictions remain unchanged with respect to the single field scenario.

This chapter is organized as follows. In Section 4.2 we present a new super-
gravity embedding of the α = 1/3 two-field model. We study its inflationary
dynamics, and elaborate on the “rolling on the ridge” behaviour in Section 4.3.
Next, we work out the universal predictions for primordial perturbations in
Section 4.4, and leave the details of the full multi-field analysis for Appendix
4.B. We extend this result to general values of α and work out the constraints
on the potential to ensure the universality of the predictions in Section 4.5 and
Appendix 4.A. Section 4.6 is for summary and conclusions.

This chapter is based on [139]:
Universality of multi-field α-attractors, A. Achúcarro, R. Kallosh, A. Linde,
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D-G. Wang and Y. Welling, JCAP 1804 (2018) 07, 028, (arXiv:1711.09478
[hep-th]).

4.1 Introduction

UV embeddings of inflation typically contain multiple scalar fields beside the
inflaton. If the additional fields are stabilized, we can integrate them out
to find effectively single field inflation. On the other hand, if the additional
fields remain light during inflation, we should take into account the full multi-
field dynamics. Planck [115, 118] puts tight constraints on these inflationary
models, therefore we should understand which model-building ingredients are
important to ensure compatibility with the data. In particular, both the ge-
ometry of field space and the curvature of the inflationary trajectory play a
very important role in determining the observables. In this paper we focus on
the special role played by hyperbolic geometry.

A notable example are the α-attractor models, a relatively simple class
of inflationary models that have a single scalar field driving inflation. In the
simplest supergravity embedding of these models, the potential depends on
the complex scalar Z = ρ eiθ, where Z belongs to the Poincaré disk with
|Z| = ρ < 1 and the kinetic terms read1

3α
∂µZ̄∂

µZ

(1− ZZ̄)2
+ ... (4.1)

In many versions of these models, the field θ is heavy and stabilized at θ = 0,
so that the inflationary trajectory corresponds to the evolution of the single
field ρ. An important property of these models is that their cosmological
predictions are stable with respect to considerable deformations of the choice
of the potential of the field ρ: ns ≈ 1− 2

N , r ≈ 12α
N2 [225–233]. These predictions

are consistent with the latest observational data for α < O(10).
In the single-field realizations, the universality of these predictions can be

ultimately traced back to the radial stretching introduced by the geometry
(4.1) as we approach the boundary ρ ∼ 1. On the other hand it is clear
that, in the two-field embedding in terms of Z, the stretching also affects the
“angular"θ-direction and this begs the question whether perhaps there is a
regime where the predictions for the inflationary observables are also fairly
insensitive to the details of the angular dependence of the potential. In this
paper we answer this question in the affirmative for sufficiently small α . O(1).

1Alternatively, 3α ∂T∂T̄
(T+T̄ )2

, where T = 1+Z
1−Z .
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A particularly interesting case is α = 1/3, where a class of supergravity
embeddings are known to possess an additional symmetry, which makes both
ρ and θ light [230]. This means we cannot integrate out the angular field
and we have to take into account the full multi-field dynamics. We will show
that, in contrast with the naive expectation, the cosmological predictions of
the simplest class of such models are very stable not only with respect to
modifications of the potential of the field ρ, but also with respect to strong
modifications of the potential of the field θ. Importantly, we have to account
for the full multi-field dynamics [198–203,234,235] in order to obtain the right
results2. The predictions coincide with the predictions of the single-field α-
attractors for α = 1/3: ns ≈ 1− 2

N , r ≈ 4
N2 . It was emphasized in [230] that

for 3α = 1, the geometric kinetic term

dZdZ̄

(1− ZZ̄)2
(4.2)

has a fundamental origin from maximal N = 4 superconformal symmetry and
from maximal N = 8 supergravity. Also the single unit size disk, 3α = 1,
leads to the lowest B-mode target which can be associated with the maximal
supersymmetry models, M-theory, string theory and N=8 supergravity, see
[231,232] and [233].

More generally, we will also show that, for sufficiently small values of
α < O(1), the class of potentials exhibiting universal behaviour becomes very
broad, and in particular it includes potentials with 1

ρVθ ∼ Vρ ∼ V .
Our results lend support to the tantalizing idea, recently explored in some

detail in [138] and building on earlier works in [215,237–240], that multi-field
inflation on a hyperbolic manifold may be compatible with current observatio-
nal constraints without the need to stabilize all other fields besides the inflaton.
Since axion-dilaton moduli systems with the geometry (4.1) are ubiquitous in
string compactifications, this observation could have important implications
for inflationary model building.

Although at first sight the universality found here resembles a similar result
obtained in the theory of multi-field conformal attractors [241] for α = 1, the
reason for our new result is entirely different. In the model studied in [241],
the light field θ evolved faster than the inflaton field, so it rapidly rolled down
to the minimum of the potential with respect to the field θ, and the subsequent
evolution became the single-field evolution driven by the inflaton field. The
observable e-folds are in the latter, single-field regime. On the other hand,
in the class of models to be discussed in our paper, the angular velocity θ̇
is exponentially suppressed, due to the hyperbolic geometry, and inflation

2See [236] for a recent review and references there.
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proceeds (almost) in the radial direction. The angular field will not roll down
to its minimum, but instead it is "rolling on the ridge". This is illustrated in
Figures 4.3 and 4.4. Nevertheless, the trajectory is curved and the inflationary
dynamics is truly multi-field.

Multi-field models of slow-roll inflation based on axion-dilaton systems
have been studied for some time [242, 243]. However, it is only fairly recently
that the very important role played by the hyperbolic geometry for multi-
field inflation is being recognized (see, e.g. [138, 230, 238, 244–248]). Unlike in
previous works, here we choose to be agnostic about the potential, and derive
the conditions that will guarantee universality of the inflationary predictions
for the two-field system.

4.2 α-attractors and their supergravity implementations

There are several different formulations of α-attractors in supergravity. One
of the first formulations [227] was based on the theory of a chiral superfield Z
with the K potential corresponding to the Poincaré disk of size 3α,

K = −3α ln(1− ZZ̄ − SS̄) , (4.3)

and superpotential
W = S f(Z)(1− Z2)

3α−1
2 , (4.4)

where f(Z) is a real holomorphic function. It is possible to make the field S
vanish during inflation, either by stabilizing it, or by making it nilpotent [249].
Either way, the kinetic term for Z is

3α
dZdZ̄

(1− ZZ̄)2
. (4.5)

The field Z can be represented as ei θ tanh ϕ√
6α

, where ϕ is a canonically nor-
malized inflaton field. In the simplest models of this class, the mass of the
field θ in the vicinity of θ = 0 during inflation is given by

m2
θ = 2V

(
1− 1

3α

)
, (4.6)

up to small corrections proportional to slow roll parameters. In particular, for
the simplest models with α > 1/3 one finds m2

θ > 0, which means that the
field θ is stabilized at θ = 0. Meanwhile for α > 2/5 one has m2

θ = V/3 ≥ H2

where H is the Hubble constant. This means that the field θ for α ≥ 2/5 is
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Figuur 4.1: The θ-independent 3α = 1 T-model potential V (ϕ) = m2 tanh2 ϕ√
2

.

strongly stabilized, and the only dynamical field during inflation is the inflaton
field ϕ with the potential

V =
∣∣f(tanh

ϕ√
6α

)
∣∣2. (4.7)

Meanwhile for 3α ≈ 1 one finds that during inflation |m2
θ| � H2. As an

example, the potential V for f(Z) = mZ does not depend on θ at all:

V = m2 tanh2 ϕ√
6α

, (4.8)

see Figure 4.1.
Later on, it was found [250] that one can strongly stabilize the field θ for

all α and reduce investigation of the cosmological evolution to the study of the
single inflaton field in the models with a somewhat different K potential,

K = −3α ln
1− ZZ̄
|1− Z2|

+ SS̄ , (4.9)

and superpotential
W = S f(Z) , (4.10)

which yields the same inflaton potential (4.7) for θ = 0.
This considerably simplifies investigation of inflationary models. An ad-

vantage of this K potential is its manifest shift symmetry: it vanishes along
the direction Z = Z̄, corresponding to θ = 0.

The next step was the construction of the anti-D3 brane induced geometric
inflationary models with arbitrary α with a stabilized field θ [233] (see also
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[251]). The K function is

G = ln |W0|2 − 3α ln
1− ZZ̄
|1− Z2|

+ S + S̄ +GSS̄(Z, Z̄)SS̄ , (4.11)

where the field S is nilpotent, with the metric

GSS̄(Z, Z̄) =
|W0|2

V(Z, Z̄) + 3|W0|2
. (4.12)

The bosonic part of the supergravity action is

g−1L = 3α
dZdZ̄

(1− ZZ̄)2
−V(Z, Z̄) . (4.13)

Note that the Z-part of the K potential has the inflaton shift symmetry at
Z = Z̄, as was shown in [250]. The potential is

V(Z, Z̄) = V (Z, Z̄) + |FS |2 − 3|W0|2 = V (Z, Z̄) + Λ . (4.14)

Here, as in all models in [233], V (Z, Z̄) is a function of Z and Z̄ which is regular
at the boundary ZZ̄ = 1 and which vanishes at the minimum at Z = 0, so
that

V(Z, Z̄)
∣∣∣
Z=0

= |FS |2 − 3|W0|2 ≡ Λ . (4.15)

The scale of supersymmetry breaking due to the nilpotent field S is

eGGSGSS̄GS̄
∣∣
Z=0

= |FS |2 , (4.16)

and the gravitino mass is m2
3/2

∣∣∣
Z=0

= |W0|2 . The angular field in these models

is heavy, by construction, inflation takes place at Z = Z̄.
This formulation is valid for any α. However, subsequent investigations

have revived interest in the specific models with 3α = 1 corresponding to
the unit size disk [230], and in the possibility to describe models originating
from merger of several unit size disks, which may lead to α-attractors with
3α = 1, 2, 3, ..., 7 [231–233]. It has been argued that these models provide some
of the better motivated targets for the future B-mode searches. Therefore
it would be interesting to revisit all versions of these models, including the
original versions with light, non-stabilized fields θ [230], since such models
may exhibit a greater degree of symmetry, as shown in Figure 4.1. It would
be particularly interesting to find the corresponding generalization of the anti-
D3 brane induced geometric inflationary models described above, applicable
specifically to models with 3α = 1.
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We find this new formulation by returning to the original K frame with
the axion shift symmetry, K = − ln(1 − ZZ̄), instead of K = − ln 1−ZZ̄

|1−Z2| . In
this way the mass of the θ-field will become light and we will have a two-field
evolution on the disk of unit size 3α = 1. The K function which provides the
action

g−1L =
dZdZ̄

(1− ZZ̄)2
− V (Z, Z̄)− Λ (4.17)

will be taken in the following form:

G = ln |W0|2 − ln(1− ZZ̄) + S + S̄ +GSS̄(Z, Z̄)SS̄ . (4.18)

Here the metric of the nilpotent superfield is

GSS̄(Z, Z̄) =
|W0|2

(1− ZZ̄)
(
|FS |2 + V (Z, Z̄)

)
+ 2|W0|2ZZ̄

. (4.19)

It is different from the simpler version of GSS̄ in Equation (4.12), but the K
potential − ln(1 − ZZ̄) as a function of Z, Z̄ is simpler here. Moreover, the
Z-part of the K potential has an axion shift symmetry, it is θ-independent.

One can show that the expression for the scalar potential in this theory is
given by

V(Z, Z̄) = V (Z, Z̄) + |FS |2 − 3|W0|2 = V (Z, Z̄) + Λ . (4.20)

This result is very similar to Equation (4.14). However, (4.14) correctly re-
presents the inflaton potential only along the inflaton direction Z = Z̄. The
potential for general values Z 6= Z̄ must be calculated by the standard su-
pergravity methods. This complication usually is not important for us since
during inflation one can stabilize the fields along the inflaton direction Z = Z̄.
Meanwhile in our new approach, equation (4.20) gives the full expression for
V(Z, Z̄), which is valid for any Z and Z̄ on the disk. This is a very special
feature of the new formulation, which is valid for 3α = 1.

During inflation, one can safely ignore the tiny cosmological constant Λ ∼
10−120, so the potential (4.20) is given by an arbitrary real function V (Z, Z̄).
In the simplest cases, where V is a function of ZZ̄, it does not depend on the
angular variable θ, just as the potential in the theory (4.3) (4.4) for 3α = 1
shown in Figure 4.1. For more general potentials, V may depend on θ, and
the potentials can be quite steep with respect to ρ and θ.

The key feature of this class of models, as well as of the models (4.3) (4.4)
for 3α = 1, is that they describe hyperbolic moduli space corresponding to the
K potential K = − ln(1−ZZ̄), with the metric of the type encountered in the
description of an open universe, see Equation (4.24) below. As we will see, the
slow roll regime is possible for these two classes of theories even for very steep
potentials, because of the hyperbolic geometry of the moduli space.
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4.3 Dynamics of multi-field α-attractors

Now we come to study inflation with the above theoretical construction. Our
starting point is

g−1L =
dZdZ̄

(1− ZZ̄)2
− V (Z, Z̄) . (4.21)

The complex variable on the disk can be expressed as

Z = ρ eiθ , (4.22)

where ρ is the radial field and θ is the angular field. In general, the potential
V (ρ, θ) in these variables can be quite complicated and steep. For simplicity,
in the following we assume the potential vanishes at the origin Z = 0 and is
monotonic along the radial direction of the unit disk3, i.e. Vρ ≥ 0. One natural
possibility is Vρ ∼ Vθ/ρ ∼ V , which at first glance cannot yield sufficient
inflation. However, the hyperbolic geometry of the moduli space makes slow
roll inflation possible even if the potential is quite steep.

To see this, and to connect this to a more familiar canonical field ϕ in
3α = 1 attractor models where the tanh argument is ϕ/

√
6α, we can use the

following relation
ρ = tanh

ϕ√
2
. (4.23)

Therefore, our cosmological models with geometric kinetic terms are based on
the following Lagrangian of the axion-dilaton system

g−1L =
1

2
(∂ϕ)2 +

1

4
sinh2(

√
2ϕ)(∂θ)2 − V (ϕ, θ) , (4.24)

where some choice of the potentials V (ϕ, θ) will be made depending on both
moduli fields. In terms of this new field ϕ, the corresponding potential near
the boundary ρ = 1 is exponentially stretched to form a plateau, where ϕ field
becomes light and slow-roll inflation naturally occurs. If we further assume
the potential is a function of the radial field only, then we recover the T-model
as shown in Figure 4.1. Generally speaking, the potential may also depend on
θ, and have ridges and valleys along the radial direction. One simple example
is shown in Figure 4.2. Although the θ field can appear heavy in the unit disk
coordinates, after stretching in the radial direction, the effective mass in the
angular direction is also exponentially suppressed for ϕ� 1.

For a cosmological spacetime, the background dynamics is described by
equations of motion of two scalar fields

ϕ̈+ 3Hϕ̇+ Vϕ −
1

2
√

2
sinh

(
2
√

2ϕ
)
θ̇2 = 0 , (4.25)

3We leave other interesting cases with non-monotonic potential, such as the Mexican hat
potential, for future work [252].
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Figuur 4.2: A stretched potential with angular dependence

θ̈ + 3Hθ̇ +
Vθ

1
2 sinh2(

√
2ϕ)

+
2θ̇ϕ̇

1√
2

tanh(
√

2ϕ)
= 0 , (4.26)

and the Friedmann equation

3H2 =
1

2
(ϕ̇2 +

1

2
sinh2

√
2ϕ θ̇2) + V (ϕ, θ) , (4.27)

where H ≡ ȧ/a is the Hubble parameter. In such a two-field system with
potential as shown in Figure 4.2, one may expect that the inflaton will first
roll down from the ridge to the valley, and then slowly rolls down to the
minimum along the valley. In the following we will demonstrate, due to the
magic of hyperbolic geometry, the dynamics of moduli fields is totally different
from this naive picture.

4.3.1 Rolling on the ridge

In single-field α-attractor models, inflation takes place near the edge of the
Poincaré disk with ρ → 1 (or equivalently ϕ � 1). Here we also focus on the
large-ϕ regime where the potential in the radial direction is stretched to be very
flat. As a consequence, the radial derivative of the potential is exponentially
suppressed

Vϕ ' 2
√

2Vρe
−
√

2ϕ . (4.28)

After a quick relaxation, the fields can reach the slow-roll regime with the
Hubble slow-roll parameters

ε ≡ − Ḣ

H2
=
ϕ̇2 + 1

2 sinh2(
√

2ϕ)θ̇2

2H2
� 1 , η ≡ ε̇

Hε
� 1. (4.29)
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Thus the kinetic energy of fields is much smaller than the potential, and the
θ̇ϕ̇ term in (4.25) is subdominant. Moreover, we assume that the field accele-
rations ϕ̈ and θ̈ can be neglected with respect to the potential gradient. The
equation of motion for θ is then simplified to

θ̇

H
' −8

Vθ
V
e−2
√

2ϕ. (4.30)

This gives us the velocity in the angular direction, which is highly suppressed
in the large-ϕ regime. Substituting the above result in the equation of motion
for ϕ (4.25), we can see that the centrifugal term proportional to θ̇2 is also
suppressed by e−2

√
2ϕ. Thus for ϕ � 1 this term can be neglected compared

to Vϕ. Therefore the equation of motion for ϕ is approximately

3Hϕ̇+ Vϕ ' 0 , (4.31)

which is the same as the single field case with slow-roll conditions. Similarly
we get the field velocity in the radial direction ϕ̇ ∼ e−

√
2ϕ, which is much

larger than the angular velocity θ̇. This is the main reason for the difference
between the slow-roll regime in the present set of models, and in the multi-field
conformal attractors studied in [241]. In the conformal attractors, the field θ
was rapidly rolling down, whereas here instead of rolling down to the valley
first, the scalar fields are rolling on the ridge with almost constant θ.

To see this counter-intuitive behaviour clearly, we can look at the flow
(ϕ̇, θ̇) in the polar coordinate system. The numerical result of the flow of
the fields is shown in Figure 4.3 for the potential from Figure 4.2. As we see,
although the potential looks chaotic in the angular direction, the fields always
roll to the minimum along the ridge, no matter where they start.

However, it is crucial to emphasize that, although θ̇ is highly suppressed
and θ is nearly constant, the angular motion is still quite important. In the
curved field manifold, since the angular distance is also stretched for large ϕ,
the proper velocity in the angular direction is given by 1√

2
sinh(

√
2ϕ)θ̇. We

are encouraged to define a new parameter γ as the ratio between the physical
angular and radial velocity

γ ≡ sinh(
√

2ϕ) θ̇√
2 ϕ̇

' Vθ
Vρ
, (4.32)

where in the last step we have used large-ϕ and slow-roll approximations.
Since θ hardly evolves and ρ ' 1 for ϕ� 1, γ is nearly constant during most
period of inflation. This parameter captures the deviation from the single field
scenario. For instance, let us look at the potential slow-roll parameter in the
radial direction

εϕ ≡
1

2

(
Vϕ
V

)2

' ϕ̇2

2H2
, (4.33)
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Figuur 4.3: The stream of ϕ and θ fields on the potential with random angular
dependence shown in Figure 4.2. The dashed gray lines show the radial directions,
while the blue arrows correspond to the field flow, starting at ϕi = 10.

which is the same with the single field one. Then in our model the full Hubble
slow-roll parameter (4.29) is approximately given by

ε = (1 + γ2)εϕ . (4.34)

Thus a nonzero γ demonstrates the contribution of the angular motion in the
evolution of the two-field system. Furthermore, depending on the form of the
potential, γ can be O(1) as we shall show in a toy model later. In such cases,
the physical angular motion is comparable to the radial one, and the multi-field
effects is particularly important4.

In summary, for multi-field α-attractors, there are two subtleties caused
by the hyperbolic field space. First of all, the two-field evolution looks like the
single field case without turning behaviour in the field space. On the other
hand, the straight trajectory is an illusion, and the multi-field effect can still
be significant. In Section 4.4, we will show how these surprising behaviours
lead us to the universal predictions for primordial perturbations.

Concluding this subsection, we wish to further explain why “rolling on the
ridge” is a quite general behaviour in multi-field α-attractors. Besides the
aforementioned approximations, importantly we also neglect the centrifugal
term in (4.25). Strictly speaking, this requires Vϕ � 1

2
√

2
sinh

(
2
√

2ϕ
)
θ̇2,

which in the large-ϕ regime is equivalent to the following condition of the
4To see the importance of multi-field behaviour, another way is to look at the nonzero

turning parameter, which we will discuss in Appendix 4.B.
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Figuur 4.4: Rolling on the ridge: the form of the potential is given by the toy model
(4.37) with A = 0.2, n = 4 and initial angle θi = π/8; the orange dots show a typical
background trajectory, while the interval between the neighboring dots corresponds
to one e-folding time.

potential
Vρ
V
� 4

3

(
Vθ
V

)2

e−
√

2ϕ . (4.35)

Now we can see, near the boundary of the disk, unless the angular dependence
of the potential is exponentially stronger than the radial one, the above con-
dition always holds true and the system evolves as we describe above. Finally
let us stress that we have to ensure all our approximations are valid. We col-
lect all conditions on the potential in Appendix 4.A. A natural choice of the
potential with Vρ ∼ Vθ/ρ ∼ V certainly satisfies these conditions.

4.3.2 A toy model

Before moving to the calculation of perturbations, let us work out a toy model
to further confirm the above analysis. Consider the following potential on the
unit disk

V (Z, Z̄) = V0

[
ZZ̄ +A(Zn + Z̄n)

]
. (4.36)

To ensure that it is monotonic in the radial direction of the unit disk we need
A ≤ 1

n . Then the condition (4.35) is certainly satisfied. In terms of ϕ and θ,
the potential is given by

V (ϕ, θ) = V0 tanh2

(
ϕ√
2

)[
1 + 2A cos(nθ) tanhn−2

(
ϕ√
2

)]
. (4.37)

For demonstration, in the following we take n = 4, A = 0.2 and the initial
angle θi = π/8. We solve the background evolution of this two field system
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Numerical result

Analytical approximation
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Figuur 4.5: The evolution of γ and ε in the toy model (4.37) with A = 0.2, n = 4
and initial angle θi = π/8.

numerically. Figure 4.4 shows the field trajectory on the toy model potential.
We can see that the inflaton is rolling on the ridge with nearly constant θ.

Using the full numerical solution, we can check the validity of the large-
ϕ and slow-roll approximations by looking at the evolution of background
parameters. For example, within our analytical treatment, the γ parameter is
given by (4.32) as

γ ' − nA sin(nθ)

1 + nA cos(nθ)
. (4.38)

It is nearly constant, since θ ' θi during inflation. And the above choice of
parameter values gives us γ ' −0.8, which agrees well with the numerical
result as shown in Figure 4.5. Next, let us look at the slow-roll parameter ε.
Solving (4.31) gives us its behaviour in terms of e-folding number as

ε ' 1 + γ2

4N2
, (4.39)

where (4.34) is used. As shown in Figure 4.5, this provides a good approxima-
tion until the last several e-foldings of inflation, where ϕ� 1 is not valid any
more. It is interesting to notice that, during inflation the scalar field mainly
rolls in the large-ϕ region, outside of which inflation would end very quickly.
Therefore, the approximation ϕ� 1 does give a good description for the back-
ground dynamics. In the following section and in Appendix 4.B, we will come
back to this toy model, and use it as an example to demonstrate other aspects
of multi-field α-attractors.
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4.4 Universal predictions of α-attractors

One of the most important properties of single field α-attractor inflation is
the universal prediction for observations. For α . O(1) and a broad class of
potentials, as long as V (ρ) is non-singular and rising near the boundary of the
Poincaré disk, the resulting scalar tilt and tensor-to-scalar ratio converge to

ns = 1− 2

N
and r =

12α

N2
, (4.40)

where N ∼ 50−60 is the number of e-folds for modes we observe in the CMB.
One interesting question is whether the universal predictions are still valid

in the multi-field regime. In multi-field scenarios the curvature perturbation is
sourced by the isocurvature modes on superhorizon scales, thus their evolution
is typically non-trivial and yields totally different results for ns and r. As we
show above, the angular dependence in the α-attractor potentials indeed leads
to multi-field evolution. For the toy model we studied, the behaviour of per-
turbations can be computed using the numerical code mTransport [253]. We
focus on one single k mode for curvature and isocurvature perturbations, and
show their evolution in Figure 4.6. As expected, the curvature perturbation
is enhanced during inflation, while the isocurvature modes decay. Therefore,
naively one expects there would be corrections to the single field α-attractor
predictions due to the multi-field effects.

In the following we will show that, surprisingly, the universal predictions
are still valid in the multi-field regime. We use the δN formalism to derive the
inflationary predictions for the multi-field α-attractor models studied in this
paper. A full analysis of the perturbations is left for Appendix 4.B, where the
evolution of the coupled system of curvature and isocurvature modes is solved
via the first principle calculation .

The δN formalism [74,220–223] is an intuitive and simple approach to solve
for the curvature perturbation in multi-field models. At the end of inflation,
regardless of the various field trajectories, the amplitude of curvature pertur-
bations is only determined by the perturbation of the e-folding number N ,
which is caused by the initial field fluctuations. Therefore, without studying
details of the coupled system of curvature and isocurvature modes, as long as
we know how the number of e-foldings N depends on the initial value of the
two fields, the curvature perturbation can be calculated.

Let us therefore consider how the initial ϕ and θ determine N . In this
paper, we define the e-folding number as the one counted backwards from the
end of inflation, thus dN = −Hdt. In terms of N , the slow-roll equation (4.31)
becomes

dϕ

dN
' 2
√

2e−
√

2ϕVρ
V

. (4.41)
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Figuur 4.6: The evolution of curvature power spectrum Pζ and isocurvature power
spectrum PS for perturbation modes which exit the horizon at N = 55. We use the
toy model (4.37) with A = 0.2, n = 4 and initial angle θi = π/8. The analytical
solutions here are based on calculations in Appendix 4.B.

Since in the large ϕ regime ρ → 1 and Vρ/V is nearly constant for a given
trajectory, the equation above yields the e-foldings from the end of inflation
as

N =
1

B
e
√

2ϕ + C(θ) , (4.42)

where B ≡ 4Vρ/V and C(θ) is an O(1) integration constant which can be
fixed by setting N = 0 at the end of inflation. Thus, both two fields affect the
duration of inflation as expected in multi-field models. By this expression, we
can use the δN formalism to find curvature perturbation at the end of inflation

ζ = δN =
∂N

∂ϕ
δϕ+

∂N

∂θ
δθ =

√
2e
√

2ϕ

B
δϕ+

(
Cθ −

Bθ
B2

e
√

2ϕ

)
δθ . (4.43)

As we see here, ∂N
∂ϕ and ∂N

∂θ can be comparable to each other. However, one
should keep in mind that θ field is non-canonical, thus to estimate the field
fluctuation amplitudes at horizon-exit, one should consider the canonically
normalized ones: δϕ and 1√

2
sinh(

√
2ϕ)δθ. Approximately in the large-ϕ region

we have the following relation

δϕ ' e
√

2ϕ

2
√

2
δθ ' H

2π
. (4.44)

From here, we find that the field fluctuation δθ is exponentially suppressed,
compared to the one from δϕ. So we only need to take into account the first
term in equation (4.43). In addition, equation (4.33) yields εϕ = B2e−2

√
2ϕ/4,

which further simplifies the δN formula to ζ ' δϕ/
√

2εϕ. In the end, the
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power spectrum of curvature perturbation can be expressed as

Pζ ≡
k3

2π2
|ζk|2 '

H2

8π2εϕ
. (4.45)

It is interesting to note that this result does not depend on any parameters
related to the multi-field effects (such as γ). Using (4.33) and (4.42), we also
get εϕ ' 1/(4N2), which has the same behaviour with the single-field potential
slow-roll parameter εV . Thus the power spectrum above is coincident with the
single-field one. Then the predictions of scalar tilt and tensor-to-scalar ratio
follow directly

ns − 1 ' − 2

N
and r ' 4

N2
. (4.46)

These results are further confirmed by solving the full evolution of perturba-
tions as shown in Appendix 4.B.

The δN calculation above also demonstrates the counter-intuitive proper-
ties of multi-field α-attractors. As we show in Section 4.3, the stretching effects
of hyperbolic geometry not only flattens the potential in the radial direction,
but also suppresses the angular velocity θ̇. At the level of perturbations, the si-
milar effect occurs to the field fluctuations in the angular direction. While the
canonically normalized angular field fluctuation has the same amplitude with
δϕ, the original field perturbation δθ is exponentially suppressed. Therefore,
only the radial field fluctuation δϕ contributes to the final result.

Furthermore, the above results do not depend on the initial values of θ,
which correspond to different field trajectories as shown in Figure 4.3. Cer-
tainly their respective e-folding number N and εϕ can be different from each
other. However, the N -dependence of εϕ is the same for all the "rolling on the
ridge"trajectories. Thus regardless of various initial values of θ, the multi-field
α-attractors yield the same universal predictions for ns and r.

Typically, another prediction in multi-field inflation is large local non-
Gaussianity, which is disfavoured by the latest data [118]. Therefore it is
also worthwhile to estimate the size of the bispectrum in our model. Here we
expand the δN formula to the second order in field fluctuations

ζ = δN =
∂N

∂ϕ
δϕ+

∂N

∂θ
δθ +

1

2

∂2N

∂ϕ2
δϕ2 +

1

2

∂2N

∂θ2
δθ2 +

∂2N

∂θ∂ϕ
δθδϕ . (4.47)

In principle, there are two contributions here: one captured by the δN expan-
sion, and another one caused by field interactions of δϕ and δθ. However, for
the same reason shown in (4.44), the δθ-related terms in the expansion (4.47)
are highly suppressed. Moreover, since there is no large coupling between field
fluctuations, we expect that the second contribution to the bispectrum will
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also be negligible. As a result, the local non-Gaussianity is approximately
given by δϕ terms in (4.47)

fNL '
5

6

∂2N

∂ϕ2

/(
∂N

∂ϕ

)2

' 5

6N
, (4.48)

which is coincident with the single field consistency relation fNL = − 5
12(ns −

1) [81, 105]. Again, we find the multi-field α-attractor prediction returns to
the single field one, which further demonstrates the scope of universality.

4.5 Universality conditions for more general α

Our investigation was stimulated by the realization that α-attractors have
particularly interesting interpretation in supergravity models with α = 1/3. A
significant deviation from α = 1/3 typically either makes the field θ tachyonic,
or strongly stabilizes it at θ = 0, which results in a single-field inflation driven
by the field ϕ, see e.g. (4.6). One may wonder, however, what happens if
we consider a more general class of two-field α-attractors, which may or may
not have supergravity embedding, and concentrate on their general features
related to the underlying hyperbolic geometry.

For general α, the canonically normalized field in the radial direction is
defined by ρ = tanh(ϕ/

√
6α), which leads to the following kinetic term

1

2
(∂ϕ)2 +

3α

4
sinh2

(√
2

3α
ϕ

)
(∂θ)2 . (4.49)

The equations of motion (4.25) and (4.26) also change accordingly, see (4.57)
and (4.58). Similarly as in Section 4.4, in the slow-roll and large-ϕ approxi-
mations these equations reduce to

θ̇

H
' − 8

3α

Vθ
V
e
−2

√
2

3α
ϕ
, 3Hϕ̇ ' − 2

√
2√

3α
Vρe
−
√

2
3α
ϕ
. (4.50)

As we see, the angular motion is also exponentially suppressed, compared to
the radial one. So the rolling on the ridge behaviour is not unique for α = 1/3,
but quite general for any α . O(1). Similarly to (4.35), we get the following
condition to ensure its validity

Vρ
V
� 4

9α

(
Vθ
V

)2

e
−
√

2
3α
ϕ
, (4.51)
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which can be satisfied easily by many choices of potential, generalizing the
bound (4.35) to other values of α. Therefore, the results follow directly just
like we find in Section 4.3. For example, the ratio of proper velocities

γ =

√
3α
2 sinh

(√
2

3αϕ
)
θ̇

ϕ̇
(4.52)

is still nearly constant, while εϕ evolves as

εϕ '
3α

4N2
. (4.53)

Repeating the same δN calculation for perturbations, we getN ' 3αe
√

2/3αϕ/B
and

ζ = δN ' 1√
2εϕ

δϕ, (4.54)

which lead to the universal predictions (4.40) for generic α. Therefore in a
broader class of α-attractors without supersymmetry, adding angular depen-
dence to the potential will not modify the universal predictions either. Im-
portantly, in order to validate the various assumptions we make to obtain the
universal predictions, we need the potential to satisfy certain conditions. The
most non-trivial condition is already given in (4.51). The additional constraints
on the potential come from assuming the slow-roll, ‘slow-turn’ and large ϕ ap-
proximation. We give more detail about these approximations and collect the
constraints on the potential in Appendix 4.A. Some of the conditions should
also be satisfied for single field α-attractors. The smaller α becomes, the more
pronounced the stretching of the hyperbolic field metric gets and it will be
more likely to be within the large ϕ regime ϕ &

√
3α
2 and the slow-roll regime

at the same time. Finally, there are some additional constraints on the poten-
tial because of the multi-field nature of our class of models. In particular, if
we want to have suppressed field accelerations, we need to satisfy the slow-roll
and the slow-turn conditions given in (4.59d) - (4.59f). A natural choice of the
potential with Vθ

ρV ∼
Vρ
V ∼

Vθθ
ρ2V
∼ Vθρ

ρV ∼
Vρρ
V ∼ 1, evaluated at the boundary

ρ ∼ 1 amply satisfies all conditions for α . O(1).
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4.6 Summary and Conclusions

In this paper we have studied the inflationary dynamics and predictions of a
class of α-attractor models where both the radial and the angular component
of the complex scalar field Z = ρ eiθ are light during inflation. We concentrated
on the special case α = 1/3, where the model has a supergravity embedding
with a high degree of symmetry from N = 4 superconformal or N = 8 su-
pergravity. However, our results may have more general validity under the
conditions specified in Appendix A. Under the weak assumptions that the po-
tential is monotonic in the radial coordinate, and the angular gradient is not
exponentially larger than the radial gradient (4.35), we find exactly the same
predictions as in the theory of the single field α-attractors:

ns − 1 ' − 2

N
and r ' 12α

N2
. (4.55)

Universality of these predictions may make it difficult to distinguish between
different versions of α-attractors by measuring ns. However, from our per-
spective this universality is not a problem but an advantage of α-attractors,
resembling universality of several other general predictions of inflationary cos-
mology, such as the flatness, homogeneity and isotropy of the universe, and
the flatness, adiabaticity and gaussianity of inflationary perturbations in single
field inflationary models.

The hyperbolic field metric plays a key role in finding these universal re-
sults. Let us summarize how we arrived at our new result and stress how the
hyperbolic geometry dictates the analysis.

• First, the hyperbolic geometry effectively stretches and flattens the po-
tential in the radial direction to a shape independent of the original
radial potential. Independent - as long as the potential obeys the con-
dition (4.35). The amplitude of this shape, however, varies along the
angular direction.

• Next, the angular velocity θ̇ is exponentially suppressed, due to the hy-
perbolic geometry, and inflation proceeds (almost) in the radial direc-
tion. The inflaton is “rolling on the ridge” in the (ϕ, θ) plane. This is
illustrated in Figures 4.3 and 4.4.

• The straight radial trajectory is an illusion, since the physical velocity in
the axion θ direction is typically of the same order as the radial velocity.
The angle between the inflationary trajectory and the radial direction
is nonzero and practically constant in this regime. Moreover, although
the field is following the gradient flow, the trajectory is curved in the
hyperbolic geometry. Therefore, the perturbations are coupled and the
multi-field effects have to be taken into account.
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• Then, we use the δN formalism to compute the power spectrum of curva-
ture perturbations (confirmed by a fully multi-field analysis in Appendix
4.B). The typical initial θ perturbations are very small and have a ne-
gligible effect on the number of efolds. However, the initial value of θ
of a given trajectory determines how much a perturbation in the radial
direction affects the number of efolds, since the trajectory is curved. At
the same time the initial value of θ determines the renormalization of
the slow-roll parameter ε. These two effects cancel exactly, leaving us
with the same predictions as the single field α-attractors. Also the non-
Gaussianity calculation recovers the single field result fNL ' − 5

12(ns−1).

• Finally, in Section 4.5 and Appendix 4.A, we relax the condition α = 1/3
and simply assume the hyperbolic geometry (4.1) with smooth poten-
tials. We identify the conditions on the potential in order to exhi-
bit the universal behaviour discussed in our paper, see (4.59). For
α . O(1) these conditions are amply satisfied by a broad class of po-
tentials V (ρ, θ), including natural ones without a hierarchy of scales:
Vθ
ρV ∼

Vρ
V ∼

Vθθ
ρ2V
∼ Vθρ

ρV ∼
Vρρ
V ∼ 1, evaluated at the boundary ρ ∼ 1.

In conclusion, the main result of our investigation is the stability of predic-
tions of the cosmological α-attractors with respect to significant modifications
of the potential in terms of the original geometric variables Z. Whereas the
stability with respect to the dependence of the potential on the radial compo-
nent of the field Z is well known [227], the stability with respect to the angular
component of the field Z is a novel result which we did not anticipate when
we began this investigation.

Our results could have important implications for constructing UV comple-
tions of inflation. We have confirmed again that multi-field models of inflation
can be perfectly compatible with the current data, in particular when the addi-
tional fields are very light. This lends support to the idea that it is not always
necessary to stabilize all moduli fields in order to have a successful model of
inflation.

Note added: After submission, Ref. [254] appeared, which provides a su-
pergravity embedding for the more general α < 1 models discussed in Section
4.5.
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4.A Constraints on the potential

In this Appendix we collect the conditions the potential has to obey in order
to validate our approximations for any value of α. Let us first recap some
relevant definitions and equation for general α. First of all, our three radial
variables are given by ϕ and

R(ϕ) ≡
√

3α

2
sinh

(√
2

3α
ϕ

)
, ρ ≡ tanh

(
ϕ√
6α

)
. (4.56)

We introduced the radial variable R(ϕ) because it appears naturally in the
physical angular velocity R(ϕ)θ̇. The kinetic term can now be written in three
equivalent ways

1

2

(∂ρ)2 + ρ2(∂θ)2

2(1− ρ2)2
=

1

2
(∂ϕ)

2
+

3α

4
sinh2

(√
2

3α
ϕ

)
(∂θ)

2
=

1

2
(∂ϕ)2 +

1

2
R(ϕ)2(∂θ)2.

The equations of motion are generalized to

ϕ̈+ 3Hϕ̇+ Vϕ −
1

2

√
3α

2
sinh

(
2

√
2

3α
ϕ

)
θ̇2 = 0 , (4.57)

θ̈ + 3Hθ̇ +
Vθ

3α
2 sinh2

(√
2

3αϕ
) +

2θ̇ϕ̇√
3α
2 tanh

(√
2

3αϕ
) = 0 . (4.58)

Now we are ready to collect all constraints on the potential. In our derivation
we assume that we can neglect ϕ̈ and that we can take the large-ϕ approxi-
mation. Moreover, it is important that we can neglect the centrifugal term
proportional to θ̇2 in Equation (4.57). We use the gradient flow to estimate
the size of θ̇, and this leads to the first constraint (4.59a). For consistency, we
have to ensure the validity of: ncy, we have to ensure the validity of:

• The slow-roll approximation, which gives rise to the next four constraints
(4.59b) - (4.59e). This approximation ensures that the field velocities
are small and that we can neglect their acceleration pointing along the
corresponding field direction as well.

• The slow-turn approximation, which allows us to neglect the field ac-
celerations pointing along the other field direction. If we can assume
gradient flow for θ this leads to the condition (4.59f).

• The large-ϕ approximation, which requires us not to go to the extreme
limit of a very shallow radial potential. We want to inflate sufficiently
far from the origin in order to obtain enough efolds of inflation, such
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that we can use the large-ϕ approximation. In our analysis we work for

simplicity with potentials
(
Vρ
V

)2
& α

4 so this is automatically satisfied.

Vρ
V
� 4

9α

(
Vθ
V

)2

e−
√

2/3αϕ,

εϕ ≡
1

2

(
Vϕ
V

)2

=
4

3α

(
Vρ
V

)2

e−2
√

2/3αϕ � 1,

εθ ≡
1

2

(
Vθ
RV

)2

=
4

3α

(
Vθ
V

)2

e−2
√

2/3αϕ � 1,

ηϕ ≡
1

3

Vϕϕ
V

=
8

9α

Vρρ
V
e−2
√

2/3αϕ � 1

ηθ ≡
1

3

Vθθ
R2V

=
8

9α

Vθθ
V
e−2
√

2/3αϕ � 1,

ωφ ≡
Vθϕ
3RV

Vθ
RVϕ

=
Vθρ
V

Vθ
Vρ

8

9α
e−2
√

2/3αϕ � 1.

(4.59a)

(4.59b)

(4.59c)

(4.59d)

(4.59e)

(4.59f)

Please note that all constraints have to be evaluated at ρ ∼ 1, i.e. at ϕ� 6α.
Our conditions are satisfied for simplest potentials, because in the large-ϕ
regime all slow-roll and slow-turn parameters are exponentially suppressed.
For instance, natural potentials which satisfy Vθ

ρV ∼
Vρ
V ∼

Vθθ
ρ2V
∼ Vθρ

ρV ∼
Vρρ
V ∼ 1

at the boundary ρ ∼ 1, amply obey the conditions.

4.B Full analysis of perturbations

In this Appendix, we give a detailed study of turning trajectories in multi-
field α-attractors and work out the full evolution of curvature and isocurvature
perturbations.

4.B.1 Covariant formalism and large-ϕ approximations

For a general multi-field system spanned by coordinate φa with field metric
Gab, the equations of motion in the FRW background can be simply written
as

Dtφ̇
a + 3Hφ̇a + V a = 0 , 3H2 =

1

2
Φ̇2 + V (4.60)

where Dt is the covariant derivative respect to cosmic time and Φ̇2 ≡ Gabφ̇aφ̇b.
To describe the multi-field effects, it is convenient to define the tangent and
orthogonal unit vectors along the trajectory as

T a ≡ φ̇a

Φ̇
, Na ≡

√
detGεabT

b , (4.61)
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where εab is the Levi-Civita symbol with ε12 = 1. The rate of turning for the
background trajectory is defined as

Ω ≡ −NaDtT
a =

VN

Φ̇
, (4.62)

where for the second equality we have used the background equations of motion
and VN = Na∇aV is the gradient of the potential along the normal direction
of the trajectory. This quantity, which vanishes in single field models, is parti-
cularly important for the multi-field behaviour and evolution of perturbations.
A dimensionless turning parameter is introduced as

λ ≡ −2Ω

H
. (4.63)

Another important parameter is the field mass along the orthogonal direction
defined as

VNN ≡ NaN b∇a∇bV . (4.64)

Now let us come back to our model with coordinates φa = (ϕ, θ) and
hyperbolic field metric

Gab =

(
1 0

0 1
2 sinh2(

√
2ϕ)

)
. (4.65)

The Ricci scalar of this manifold is a negative constant R = −2. By the
definitions above, after some algebra, λ and VNN here can be written into the
following form

λ =
1

εH3

sinh(
√

2ϕ)√
2

[
ϕ̈θ̇ − θ̈ϕ̇− 2θ̇ϕ̇2

1√
2

tanh(
√

2ϕ)
− 1

2
√

2
sinh

(
2
√

2ϕ
)
θ̇3

]
, (4.66)

VNN =
1

Φ̇2

(
Vθθϕ̇

2 +
√

2
4 sinh(2

√
2ϕ)Vϕϕ̇

2

1
2 sinh2(

√
2ϕ)

+ 2θ̇ϕ̇

[ √
2Vθ

tanh(
√

2ϕ)
− Vθϕ

]

+
1

2
sinh2(

√
2ϕ)Vϕϕθ̇

2

)
. (4.67)

These expressions look very complicated, but in the large-ϕ regime they can
be efficiently simplified. First of all, since γ in (4.32) is nearly constant, we
can use this parameter to replace θ̇ by ϕ̇ in these expressions, for example
Φ̇2 = (1 + γ2)ϕ̇2. Then we can use the relations of background quantities
presented in Section 4.4 to further simplify the result. Finally the turning
parameter λ can be expressed as

λ =
−1

εH3
(1 + γ2)

√
2γϕ̇3

tanh(
√

2ϕ)
' 2

√
2γ

(1 + γ2)1/2
·
√

2ε , (4.68)
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Numerical result

analytical approximation
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Figuur 4.7: The evolution of the dimensionless turning parameter λ√
2ε

and entropy
masses. Here we use the toy model potential (4.37) with n = 4, A = 0.2 and θi = 8/π.

where the large ϕ approximation is used in the last step. Therefore, at ϕ �
1, λ/

√
2ε is nearly constant. Similarly, we can work out the approximated

expression for VNN . Here we use the toy model potential for demonstration,
which yields

VNN ≈ V0Be
−
√

2ϕ. (4.69)

Therefore, VNN is nearly zero at the beginning of inflation, but then grows up
as ϕ rolls to the center. These analytical approximations are checked by using
numerical solution of the toy model. In Figure 4.7 we show the numerical
results versus the analytical ones for n = 4, A = 0.2 and θi = 8/π. Indeed
we see that λ√

2ε
remains constant until the very end of inflation, where the

large-ϕ approximation breaks down.

4.B.2 Primordial Perturbations

With the analytical approximations developed above, now we can move to
study the behaviour of perturbations. In particular, we would like to derive
the analytical expression for the power spectrum of curvature perturbations.
At the linear level, the curvature perturbation ζ and the isocurvature modes
σ are defined as

δφa =
√

2εζT a + σNa (4.70)

And their full equations of motion in terms of e-foldings are given by

d

dN

(
dζ

dN
− λ√

2ε
σ

)
+ (3− ε+ η)

(
dζ

dN
− λ√

2ε
σ

)
+

k2

a2H2
ζ = 0, (4.71)

d2σ

dN2
+ (3− ε) dσ

dN
+
√

2ελ

(
dζ

dN
− λ√

2ε
σ

)
+

k2

a2H2
σ +

µ2

H2
σ = 0 , (4.72)

where µ2 is the entropy mass of the isocurvature perturbations given by

µ2 ≡ VNN + εH2R + 3Ω2 . (4.73)
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Thus besides VNN , the turning effects and the curvature of the field manifold
also contribute to the entropy mass. But in multi-field α-attractors here, as
shown in Figure 4.7, µ2 is mainly controlled by the VNN term. Then by (4.69)
and the solution of ϕ in (4.42), we get

µ2

H2
≈ VNN

H2
≈ 3Be−

√
2ϕ ≈ 3

N
, (4.74)

which provides a good analytical approximation as shown in Figure 4.7.
The exact solutions of the full equations (4.71) and (4.72) can be obtained

only through numerical method, as we have shown in Figure 4.6. But notice
that the leading effect here comes from the coupled evolution of curvature and
isocurvature modes after horizon-exit. Thus for the analytical approximations,
we can focus on super-horizon scales. There the isocurvature equation of
motion reduces to

3
dσ

dN
+
µ2

H2
σ ' 0. (4.75)

If we focus on the mode that exits horizon at N∗ with amplitude σ∗, then we
get the following solution for its evolution

σ(N) ≈ σ∗
N

N∗
. (4.76)

Remember that e-folding number is counted backwards from the end of in-
flation. Thus this solution shows the decay of the isocurvature perturbation
outside of the horizon. The evolution of the normalized isocurvature power
spectrum PS is shown in Figure 4.6, where S = σ/

√
2ε. As we see, the

analytical approximation above successfully captures the super-horizon decay,
compared with the numerical result.

Next, we look at the curvature perturbation, which after horizon-exit is
sourced by the the isocurvature modes in the following way

dζ

dN
=

λ√
2ε
σ. (4.77)

Also for the mode exits horizon at N∗ with amplitude ζ∗, we get the solution

ζ(N) = ζ∗ +

∫ N

N∗

dN ′
λ√
2ε
σ(N ′). (4.78)

As we noticed in (4.68), λ/
√

2ε is nearly constant, thus it can be seen as
unchanged after horizon-exit λ/

√
2ε = λ∗/

√
2ε∗. Meanwhile, notice that since

σ is almost massless in the large-ϕ regime, one has the relation
√

2ε∗ζ∗ ' σ∗ '
H/(2π). Then the evolution of ζ is given by

ζ(N) = ζ∗ +
λ∗
2

N2 −N2
∗

N∗
ζ∗. (4.79)
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These two contributions are uncorrelated with each other, since they come
from the different parts of the quantized fluctuations. Thus finally we can
write down the power spectrum at the end of inflation (N = 0)

Pζ = P
(1)
ζ + P

(2)
ζ =

H2

4π2

1

2ε∗

(
1 +

λ2
∗N

2
∗

4

)
=

H2

8π2ε∗

(
1 + γ2

)
=

H2

8π2εϕ∗
,

(4.80)

where we used the relation (4.34), the expression of λ (4.68), and εϕ ' 1/(4N2).
Therefore, we recover the same result as we got in δN calculation.

It is interesting to note that, although the turning effects play an important
role in the intermediate calculation, they vanish in the final answer. There are
two effects on the curvature perturbation in multi-field α-attractors: first, the
growth on super-horizon scales gives an enhancement factor

(
1 + γ2

)
; secondly,

due to the motion in the θ direction, the slow-roll parameter ε is also enhanced
by the same amount. Thus as a consequence, these two changes cancel each
other, and the final power spectrum of curvature perturbation here becomes
the same as the single field result.


