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Hoofdstuk 3

Orbital Inflation with ultra-light fields

In this chapter we present a class of inflationary models with two light fields
that have predictions similar to those of single field inflation. Inflation pro-
ceeds along an ‘angular’ isometry direction in field space at arbitrary ‘radius’
and is a special case of Orbital Inflation discussed in Chapter 2. More precisely,
we study the Orbital Inflation in the limit of vanishing entropy mass1. We dub
this ‘ultra-light Orbital Inflation’, because it realizes the shift symmetry de-
scribed in [138]. If the field radius of curvature of the inflationary trajectory is
sufficiently small, the amplitude of isocurvature perturbations and primordial
non-Gaussianities are highly suppressed. Ultra-light Orbital Inflation mimics
single field inflation, because only one degree of freedom is responsible for the
observed perturbations.

We study a toy model of ultra-light Orbital Inflation in § 3.2. This allows
us to intuitively understand its interesting properties. In the successive sec-
tions we make our intuitive arguments more precise. In § 3.3 we derive the
family of two-field models which allow for ultra-light Orbital Inflation and give
the corresponding exact solutions. We prove neutral stability of ultra-light Or-
bital Inflation in § 3.4. Then, in § 3.5 we recap the definition of mass and the
consequences of having massless isocurvature perturbations. Finally, we study
the phenomenology of ultra-light Orbital Inflation in § 3.6.

The results in this chapter are based on joint work with Ana Achúcarro, Ed-
mund Copeland, Oksana Iargyina, Gonzalo Palma and Dong-Gang Wang.

1 The entropy mass is the effective mass of isocurvature perturbations. The definition of
mass is non-trivial in a time-dependent inflationary background. By computing the normal
modes of the coupled system of perturbations, we find a dispersion relation of the isocurva-
ture perurbations corresponding to modes of mass µ as defined in Eq. 3.18. Therefore it is
µ that we identify as the entropy mass. For more details, see § 2.2.3.
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74 Orbital Inflation with ultra-light fields

3.1 Introduction

The Planck data [115] reveal that inflationary perturbations are Gaussian and
adiabatic to a high level of accuracy. A possible explanation for the observed
simplicity is that the perturbations are generated by a single degree of freedom
with small self-interactions. Do the observations therefore imply that, besi-
des the inflaton, no other light fields are active during inflation? The answer
is no. As pointed out in [138], in the limit that the other fields are massless,
but coupled to the inflaton, the predictions mimic those of single field inflation.

Inflation with massless isocurvature modes behaves like single field infla-
tion, because only one degree of freedom is relevant for the observed pertur-
bations. The single field behavior is of dynamical origin. The key feature
is that the isocurvature perturbations freeze out on superhorizon scales and
constantly feed the curvature perturbations. Therefore, the isocurvature per-
turbations generate the temperature fluctuations we observe in the sky.

In this work we provide a realization of a family of two-field inflationary
models in which the isocurvature perturbations become exactly massless (see
footnote 1). We dub this ultra-light Orbital Inflation. We use the two-field
generalization of the Hamilton-Jacobi formalism [74, 75, 77, 78] presented in
Chapter 2 to derive the form of the potential. The key characteristic of ultra-
light Orbital Inflation is that inflation proceeds along an isometry direction of
the field metric at arbitrary radius. The resulting scalar field potential and
kinetic term are given by

V = 3H2M2
p − 2M4

p

H2
θ

f(ρ)
, 2K = f(ρ)∂θ2 + ∂ρ2 , (3.1)

where the fields are denoted by θ and ρ. Moreover, the Hubble parameter H
is a function of θ only and f(ρ) > 0.

In this chapter we point out several interesting properties of ultra-light
Orbital Inflation:

• Each attractor is an exact solution to the highly non-linear system of
field equations and Friedmann equation. This is ensured by using the
Hamilton-Jacobi formalism.

• This system is neutrally stable. A small perturbation orthogonal to a
given attractor solution will bring us to one of the neighboring attractors.

• Because isocurvature (= normal) perturbations move us freely between
attractors, this implies that they are exactly massless. Thanks to the
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Hubble friction their velocity decays and therefore their amplitude freezes
out.

• The quadratic action of perturbations has enhanced symmetry. On top
of the usual shift symmetry of curvature perturbations R → R+ const,
the masslessness of the isocurvature perturbation S implies a combined
shift symmetry [138]

S → S + c, Ṙ → Ṙ − λc. (3.2)

We show that we can understand this as a result of the background
dynamics. The symmetry transformation is related to a map of one
background attractor to another, labeled by the continuous parameter c.

• For large enough λ this implies that curvature perturbations are dy-
namically enhanced and the predictions of the power spectra coincide
with those of single field inflation [138]. Moreover, the final curvature
perturbations are completely determined by the initial isocurvature per-
turbations. Therefore, these multi-field inflation scenarios mimic the
predictions of single-field inflation.

We work in Planck units ~ = c = 1 and the reduced Planck mass is given
by Mp = (8πG)−1/2.

3.2 A toy model with neutrally stable orbits

To illustrate the idea, we consider a simple toy model in flat field space in
polar field coordinates φa = (θ, ρ). The kinetic term and potential are given
by

K =
1

2

(
ρ2(∂θ)2 + (∂ρ)2

)
, V =

1

2
m2M2

p

(
θ2 −

2M2
p

3ρ2

)
(3.3)

This potential allows for orbital solutions with a constant angular velocity,
see Figure 3.1. It explicitly breaks the shift symmetry of θ to overcome the
Hubble friction. Moreover the ρ-dependent part of the potential provides a
centripetal force that stabilizes the radial direction. Although the potential
in this toy model is unbounded from below, inflation only takes place in the
physically consistent regime where the potential energy is positive. Moreover,
our analysis is restricted to radii ρ > Mp. Therefore, we only care about
the local form of the potential close to the inflationary trajectory, which we
assume is captured well by this toy potential. The full true potential should
be well-behaved at smaller radii.
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Figuur 3.1: The potential given in Eq. 3.3 together with a typical inflationary
trajectory. The black line corresponds to the full numerical solution.

3.2.1 Exact solution

We start with an analysis of the homogeneous background dynamics of θ(t)
and ρ(t). The field equations of motion and the Friedmann equation read

ρ2θ̈ + 3Hρ2θ̇ + 2ρρ̇θ̇ +m2M2
p θ = 0,

ρ̈+ 3Hρ̇− ρθ̇2 +
2m2M4

p

3ρ3
= 0,

6H2M2
p = ρ2θ̇2 + ρ̇2 +m2M2

p

(
θ2 −

2M2
p

3ρ2

)
.

(3.4a)

(3.4b)

(3.4c)

Typically, it is very hard to find exact solutions to such a system of equations,
because they are highly non-linear. In particular the friction terms in the
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field equations involve the square root of the right-hand side of the Friedmann
equation Eq. 3.4c. In this case, however, the system allows for exact stable
solutions of the form

ρ = ρ0, θ̇ = ±
√

2

3

mM2
p

ρ2
0

, H2 =
m2θ2

6
, ε =

2M2
p

ρ2
0θ

2
, (3.5)

for any ρ0. Here ε ≡ − Ḣ
H2 is the slow roll parameter that measures the devia-

tion from the de Sitter solution. Notice that the negative contribution to the
squared Hubble parameter H2 from the radial part of the potential is preci-
sely cancelled by the angular kinetic energy. We will show neutral stability of
these exact solutions in § 3.4. Therefore, in what follows we can assume the
inflationary trajectory to be one of them.

3.2.2 Symmetry transformation and massless modes

The inflationary trajectory proceeds along an isometry of the field metric,
namely the angular direction. This is clearly not a geodesic in flat field space.
The radius of curvature of the trajectory is constant and given by κ = ρ0.
From Eq. 3.5 we can deduce

(
θ2
)′

= 2θθ̇
H = −4M2

p

ρ2
0
, where the prime denotes a

derivative with respect to efolds (..)′ = d
dN (..). Given some reference attractor,

this implies that we can label each attractor by a continuous parameter c with
the corresponding map

ρc = ρ0 + cMp,
(
θ2
c

)′
=

(
θ2

0

)′
(1 + cMp/κ)2

, (3.6)

This transformation identifies all attractors. Without loss of generality we
take θ′0 to be negative. Let’s figure out what this mapping tells us about the
behavior of quantum fluctuations.

In the flat gauge, the isocurvature perturbations S are associated with
δρ/Mp and the curvature perturbations R with ρ√

2εMp
δθ. Using Eq. 3.5 we

can rewrite this as R =
ρ2

0
4M2

p
δ(θ2), which implies δ(θ2)′ =

4M2
p

ρ2
0
R′ = −

(
θ2

0

)′R.
We aim to find the action of the transformation on the perturbations. For
that purpose we split ρ = ρ0 + SMp and

(
θ2
)′

=
(
θ2

0

)′
(1−R′). We next

determine how a small c changes S and R′. In the long wavelength limit
every transformed set of perturbations (Sc,R′c) should provide a new solution
to the equations of motion. This is because homogeneous perturbations map
background solutions onto each other. Therefore, going back to cosmic time,
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we expect to find the following symmetry for linearized perturbations

S → S + c, Ṙ → Ṙ+
2HMp

κ
c. (3.7)

We will confirm this in § 3.2.3. Furthermore, we expect the isocurvature
perturbations to be massless, as a consequence of the shift symmetry of S.

3.2.3 Power spectrum and single field behavior

To get an intuitive notion of the behavior of perturbations, we employ the δN
formalism [74, 220–223], see also Figure 3.2. First, we integrate the attractor
equation for θ in Eq. 3.5 by changing time t to efolds dN = Hdt:

N =
ρ2

4M2
p

θ2 − 1

2
, (3.8)

with N the number of efolds until the end of inflation (defined by εend = 1). In
the δN formalism, one computes the time evolution of a fluctuation for a given
wavenumber k∗ from horizon crossing k∗ ∼ a∗H∗ until the end of inflation, by
treating it as a homogeneous fluctuation. Therefore, we can simply perturb
equation Eq. 3.8 and the curvature perturbation at the end of inflation is given
by

R(k∗) = δN∗ ≈
1√

2εMp

(ρδθ)∗ +
2N∗ + 1

κ
δρ∗. (3.9)

Remember that the radius of curvature in our toy model is given by κ = ρ0.
The initial perturbations (ρδθ)∗ and δρ∗ are random variables that arise from
quantum fluctuations with typical amplitude H∗

2π at horizon crossing. Neglec-
ting their initial cross-correlation we find the following spectrum of curvature
perturbations

PR(k∗) ≈
H2
∗

4π2M2
p

(
1

2ε∗
+

4N2
∗M

2
p

κ2

)
. (3.10)

We confirm this result in § 3.5 and compare with the Planck data in § 3.6.

In the limit of ‘small’ radius of curvature, i.e.

1 ≤ κ2

M2
p

� 8ε∗N
2
∗ ≈ 4N∗, (3.11)

the second term in Eq. 3.10 dominates and the final power spectrum is de-
termined by the isocurvature perturbations. The lower bound comes from
assuming the validity of our simple computation, see § 2.3. Moreover, since
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Figuur 3.2: Visualization of the growth of curvature perturbations along the infla-
tionary trajectory. The inflationary trajectory corresponds to the solid purple line
and proceeds in the angular direction. In the δN formalism, we consider the effect of
an initial constant perturbation δρ∗ at the time of horizon crossing on the duration
of inflation. The perturbed trajectory proceeds in the angular direction as well, but
has smaller or larger radius of curvature (lower and upper purple dashed segment,
respectively). The corresponding orbital velocity ρθ̇ is larger for the lower curve,
therefore inflation ends earlier compared to the background trajectory. On the other
hand inflation ends later on the upper curve. This results in nonzero fluctuations in
the curvature perturbationsR = δN ∼ ρδθe. The amplitude of curvature fluctuations
keeps growing after horizon crossing until the end of inflation. Moreover, the smaller
the radius of curvature of the trajectory, the larger the final amplitude of curvature
perturbations.

the isocurvature perturbations have a constant amplitude, they will be dyna-
mically suppressed with respect to the curvature perturbations

PS
2εPR

=
1

1 +
4M2

p

κ2 N∗
� 1 . (3.12)

Hence, at the linear level we recover single field predictions. This happens
because the final spectrum is generated by a single degree of freedom, namely
the isocurvature perturbation. Therefore, this two-field model of inflation be-
haves like single-field inflation.

Finally, we estimate the amplitude of the bispectrum using the δN forma-
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lism. In the limit of small radius of curvature Eq. 3.11, we find

f δNNL ≈
5

6

Nρρ

N2
ρ

=
5

6
ε∗ . (3.13)

It is slow roll suppressed. Therefore, the phenomenology is very similar to
that of single field inflation. To understand whether these models obey the
consistency relation fNL = 5

12(1 − ns) in the squeezed limit, we also need to
compute the intrinsic bispectrum. We present the full in-in computation of
the bispectrum in [224]. This will tell us if these models are distinguishable
from single field inflation.

3.3 Ultra-light Orbital inflation

In this section we derive a general family of two-field models that admit ultra-
light Orbital Inflation. The defining feature of ultra-light Orbital Inflation is
that inflation proceeds along an isometry direction of the field metric at arbi-
trary radius. Therefore, we can follow the same derivation as Orbital Inflation
presented in § 2.4.2 based on the Hamilton-Jacobi formalism [74, 75, 77, 78].
However, the difference is that we have to assume that the Hamilton-Jacobi
equation Eq. 2.44 and constraint equation Eq. 2.46 are satisfied globally, or at
least for a finite range of values of ρ.

The two equations we should solve simultaneously are the Hamilton-Jacobi
equation Eq. 2.44 and constraint equation Eq. 2.46. Using Eq. 2.49 they
simplify to

3H2M2
p = V + 2M4

p

H2
θ

f
, (3.14a)

3HHρ − 2M2
p

HθHρθ

f(ρ)
, (3.14b)

for any value of ρ. The constraint equation implies that H has to be a function
of θ only. Assuming the opposite, namely that Hρ 6= 0 for some value of ρ, we
can rewrite the constraint as

(lnH)θ(lnHρ)θ =
3f

2M2
p

. (3.15)

Since the right hand side is independent of θ, we can only allow for a solution
of the form (lnH)θ ∼ g(θ) and (lnHρ)θ ∼ 1

g(θ) , which is impossible to solve.
We conclude that H does not depend on ρ.
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Therefore, we conclude that a two-field inflationary model of the form

V = 3H2M2
p − 2M4

p

H2
θ

f(ρ)
, Gab =

(
f(ρ) 0

0 1

)
(3.16)

with H = H(θ), admits ultra-light Orbital Inflation. The background dyna-
mics of ultra-light Orbital Inflation is governed by Eq. 2.49:

T a =
1√
f

(−1, 0) and Na = (0, 1) (because ρ̇ = 0),

θ̇ = −2M2
p

Hθ

f
, ε =

2M2
pH

2
θ

fH2
, κ =

2f

∂ρf
, R =

2

κ2
− fρρ

f
.

(3.17a)

(3.17b)

3.3.1 Symmetry argument and massless isocurvature perturbations

As alluded to in the introduction, in ultra-light Orbital Inflation we expect
the isocurvature perturbations to be massless (see footnote 1). Their effective
mass is indeed zero

µ2 = VNN + εH2M2
p

(
R +

6

κ2

)
= 0 . (3.18)

The first term is the standard Hessian term plus geometrical corrections VNN ≡
NaN b (Vab − ΓcabVc). The effective mass µ receives centrifugal and geometrical
corrections, because the inflationary background solution is time-dependent.
For ultra-light Orbital Inflation we have VNN = Vρρ. Using the properties
of the inflationary background solution Eq. 3.17 we find that the three terms
cancel exactly.

The background dynamics hints about the existence of a shift symmetry
for perturbations. Like we argued for the toy model in § 3.2.2, the map Eq. 3.6
that relates all background trajectories is generalized to

ρc = ρ0 + cMp, (G(θc))
′ = (G(θ0))′

f(ρ0)

f(ρ0 + cMp)
. (3.19)

Here G(θ) is the primitive of Gθ = H
Hθ

. Moreover, in the flat gauge we can

write R =
√

f(ρ)
2εM2

p
δθ = f(ρ)

2M2
p
δG. This implies δG′ = −G′0R. We Taylor expand

the transformation of the angular velocity for small cMpfρ
f =

2cMp

κ to linear

order. This yields G′c = G′0

(
1− 2cMp

κ

)
. Therefore, the same arguments as in
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§ 3.2.2 apply and we are led to expect the combined shift symmetry of linear
perturbations

S → S + c, Ṙ → Ṙ+
2HMp

κ
c. (3.20)

We confirm our intuition in § 3.5.

3.4 Stability

Our results rely on the fact that the inflationary trajectory is one of the exact
solutions, which we said was an attractor. We now demonstrate neutral sta-
bility of the exact solutions.

What do we mean exactly with neutral stability in our dynamical system?
We have seen that there is a continuous set of orbital solutions parametrized
by ρ0. Moreover, we said that normal perturbations move us freely between
these ‘attractors’, so the system is clearly not stable in the usual sense. The
property we need to prove is that small perturbations shift us to another in-
flationary solution ρ̇ = 0.

Each attractor solution Eq. 3.17 corresponds to a point in the (ρ̇, θ̇) plane.
Unfortunately, these points are all different and lie on a curve. Moreover, we
prefer to do the stability analysis in efolds rather than time, since we expect
the Hubble friction to play a crucial role. Therefore, we introduce the variables

x(θ, ρ, θ′, ρ′) ≡ fH

M2
pHθ

θ′ − 2
f

fρ

ρ′

M2
p

+ 2,

y(θ, ρ, θ′, ρ′) ≡ fH

M2
pHθ

θ′ + 2 ,

z(θ, ρ) ≡ fH2

M2
pH

2
θ

− 2/3

(3.21a)

(3.21b)

(3.21c)

Here a prime denotes a derivative with respect to efolds (..)′ = d
dN (..). Re-

member that H = H(θ) and f = f(ρ). Our definition of stability now amounts
to the presence of a fixed point at (x, y) = (0, 0).

We choose these specific variables, because it turns out that the stability
of this system is non-trivial to prove analytically. If we simply perturb the
field equations we will find zero eigenvalues associated with the perturbations
that move us between attractors. Moreover, it is not obvious how to find
variables such that the linearized system of perturbations becomes diagonal.
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The definition of x and y above are based on an observation for the models
where the Hubble parameter is linear in θ. For H ∼ θ the potential in Eq. 3.16
satisfies the following scaling relation

θVθ − 2
f

fρ
Vρ = 2V. (3.22)

This ensures that the equations for x and y diagonalize at the linear level.
This we can use to prove linear stability for the models H ∼ θ, which we show
in Eq. 3.4.1. In fact it turns out to apply to any power law H ∼ θn. Moreover,
we argue that neutral stability also applies to more general models.

3.4.1 Linear stability analysis

The first step is to rewrite the field equations and second Friedmann equation
in terms of the x, y, ρ and z variables. The equations of motion read

x′ + (3− ε)x+

(
2

(
f

fρ

)
ρ

− g(θ)

)(
ρ′

Mp

)2

+
2(z + 2/3)

z
g(θ) (ε− ε0) = 0,

y′ + (3− ε)y +
2

z

(
−1

3

(
ρ′

Mp

)2

− 1

2
y2 + 2y

)
− g(θ)

(
ρ′

Mp

)2

+
2(z + 2/3)

z
g(θ) (ε− ε0) = 0,

z′ = 2(y − 2) (1− g(θ)) +

(
Mpfρ
f

)2
y − x

2

(
z +

2

3

)
,

ρ′

Mp
=
Mpfρ
f

y − x
2

,

ε =
1

2

(y − 2)2

z + 2/3
+
M2
pf

2
ρ

f2

(x− y)2

8
,

where ε0 = 2
z+2/3 . All the terms in brackets are combined to be manifestly

zero on the attractor. We introduced the model specific function g(θ) ≡ HHθθ
H2
θ

.
Note that g(θ) is in general a function of z and ρ, but it reduces to a con-
stant in the case when we have a power law H(θ) ∼ θn, and it is zero for n = 1.

In terms of the four variables, ultra-light Orbital Inflation is given by
(x, y, z′, ρ′) = (0, 0,−4(1 − g(θ)), 0), and we would like to prove that this
is the attractor solution. It will be sufficient to show that (y, ρ′) = (0, 0) is a
fixed point. Note that the friction term is very large during inflation. We can
already see that, without the friction, the system would be unstable. Let’s
figure out if the friction is large enough to render the system stable.

To study the stability of the point (y, ρ′) = (0, 0), we linearly perturb the
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equations around the desired attractor with ε = 2
z+2/3 . We get

δx′ +

(
3− 2

z + 2/3

)
δx− 4g(θ)

z
δy = 0,

δy′ +

(
3− 2

z + 2/3
+

4(1− g(θ))

z

)
δy = 0,

δz′ = 2(1− g(θ))δy +

(
Mpfρ
f

)2 δy − δx
2

(
z +

2

3

)
,

δρ′

Mp
=
Mpfρ
f

δy − δx
2

.

(3.24a)

(3.24b)

(3.24c)

(3.24d)

Surprisingly, the linearized system of perturbations is very simple for any g(θ).
In particular, for constant g(θ) we can can explicitly prove stability. We show
this in a moment in Eq. 3.4.1. For a more general function we have to express
g(θ) in terms of z and ρ and integrate the equations numerically. However,
inspection by eye suggests that generically we may expect the system to be
stable. If (1 − g(θ)) takes values of order 1 and does not vary too rapidly,
then z will take large values during inflation and behave smoothly as well. In
that case we see from Eq. 3.24a and Eq. 3.24b that δx′ and δy′ are dominated
by the friction terms −3δx and −3δy respectively. Therefore, we expect both
of them to decay like e−3N . Finally Eq. 3.24d then implies that we quickly
converge to the fixed point.

Power law inflation H ∼ θn

In the case of power law inflation with 1 − g(θ) = 1
n we can integrate the δy

equation Eq. 3.24b, using z = z0 − 4
nN . This we can then use to solve for δx

as well. We find the following solution

δy = δy0
z

z0

(
2 + 3z0

2 + 3z

)n/2
e−3N ,

δx = δx0

(
2 + 3z0

2 + 3z

)n/2
e−3N + δy0

4(n− 1)N

n

(
2 + 3z0

2 + 3z

)n/2
e−3N .

(3.25a)

(3.25b)

Plugging these solutions back into Eq. 3.24d we conclude that (y, ρ′) = (0, 0)
is a fixed point. This proves stability for power law inflation.



Inflation with massless isocurvature perturbations 85

3.5 Inflation with massless isocurvature perturbations

In this section we recap the relevant results from the linear perturbations
analysis in two-field inflation. In particular, we focus on the limit that the
isocurvature perturbations are massless [138] (see footnote 1).

3.5.1 Quadratic action of perturbations

The full action of our two-field models of inflation has the general form

S =
1

2

∫
d4x
√
−g
[
M2
pR−Gab∂φa∂φb − 2V (φa)

]
. (3.26)

with the field metric and potential from Eq. 3.16. We study the dynamics
of linearized perturbations around the exact homogeneous inflationary back-
ground solution.

In the flat gauge, the scalar metric perturbation is set to zero. The co-
moving curvature perturbation R is then given by the projection of the field
perturbation along the inflationary trajectory: R = 1√

2εMp
Taδφ

a. The isocur-
vature perturbation S corresponds to the remaining orthogonal field pertur-
bation to the inflationary trajectory: S = Naδφa

Mp
. The quadratic action for

perturbations takes the following form

S(2) =
1

2

∫
d4xa3M2

p

[
2ε

(
Ṙ − 2HMp

κ
S
)2

+ Ṡ2 − µ2S2 + ..

]
(3.27)

The ellipses denote the gradient terms −(∂iS)2−2ε(∂iR)2. The perturbations
are combined in such a way that the entropy mass µ is manifest (see footnote 1).

3.5.2 Massless isocurvature modes and symmetry

In the limit of µ2 = 0, the quadratic action Eq. 3.27 enjoys a combined shift
symmetry [138]

S → S + c, and Ṙ → Ṙ+
2HMp

κ
c. (3.28)

The combined shift symmetry is exactly as we argued from the background
dynamics in § 3.3.1 !
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3.5.3 Power spectrum and effective single field behavior

The power spectra of perturbations in the massless limit can be well estimated
from the coupled evolution of perturbations on superhorizon scales. The full
derivation relies on an in-in computation to account for the coupled evolution
of perturbations on subhorizon scales [138]. This gives the same results up to
subleading corrections.

When µ = 0, the linearized system of coupled perturbations simplify in the
superhorizon limit. The isocurvature perturbation quickly converges to a con-
stant on superhorizon scales where it sources the curvature perturbation. The
final dimensionless power spectrum of curvature perturbations in the massless
limit is given by (see § 2.3)

PR =
H2

8π2ε∗

(
1 + 2ε∗

(∫
dN

2Mp

κ

)2
)
. (3.29)

Note that the power spectrum is completely determined by the isocurvature
perturbations if the radius of curvature κ is sufficiently small:

2ε∗

(∫
dN

2Mp

κ

)2

� 1 (3.30)

Using this condition, the spectrum of isocurvature perturbations will be dy-
namically suppressed as well

PS
2εPR

≈
(

2ε∗

∫
dN

2Mp

κ

)−2

� 1 . (3.31)

We confirm all intuitive results for the toy model in § 3.2.3 .

Summarizing, two-field inflation with massless isocurvature perturbations,
together with a trajectory of sufficiently small radius of curvature mimics the
predictions of single field inflation at the level of the power spectra.

3.6 Phenomenology

We now turn to the predictions for the spectral tilt ns and the tensor-to-scalar
ratio r. In this section we use the result from § 3.5 for the power spectrum
in the limit that the isocurvature perturbations are massless and the radius of
curvature of the trajectory is constant:

PR =
H2

8π2ε∗

(
1 + 2ε∗

(
2Mp

κ

)2

N2
∗

)
. (3.32)
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During ultra-light Orbital Inflation we can use this expression, since κ = 2f
∂ρf

is constant on the trajectory.

The spectral tilt and tensor-to-scalar ratio are (to good approximation)
given by

ns =
∂ lnPR
∂N

,

r =
16ε∗(

1 +
8ε∗M2

p

κ2 N2
∗

) ,
(3.33a)

(3.33b)

where we have to be careful to use ∂N∗
∂N = −1, since N∗ counts the number of

efolds backwards. The predictions depend on the function H(θ). Like in sin-
gle field slow roll inflation, this function determines how ε and η scale with N∗.

For concreteness, we consider power law inflation H ∼ θp. Using the exact
solution of ultra-light Orbital Inflation Eq. 3.17, we integrate the equation of
motion for θ and plug it back in the expression for ε to find

ε∗ =
p

2N∗ + p
, η∗ ≡

ε′∗
ε∗

=
2

2N∗ + p
. (3.34)

Note that these are exactly the same slow-roll parameters as the single field
models V ∼ ϕ2p − 2

3 (see § 1.2.3), which also have the exact homogeneous
attractor solution φ̇ = −2pM2

pφ
p−1. Using Eq. 3.33b, the predictions for ns

and r are therefore well approximated by

ns ≈ 1− p+ 1

N∗
− 4p

κ2

M2
p

+ 4pN∗
,

r ≈ 8pκ2

N∗κ2 + 4pM2
pN

2
∗
.

(3.35a)

(3.35b)

We plot these analytical predictions against the Planck 1σ and 2σ con-
tours [115] in Figure 3.3. The radius of curvature κ2/M2

p varies between 1
and 105. Moreover, we take N∗ between 50 and 60. Our toy model from § 3.2
corresponds to the purple contour and resembles the predictions of chaotic in-
flation when κ→∞. Furthermore, we show the predictions of linear inflation
(red contour) and φ2/3 inflation (orange contour).

The first thing to notice is that our results for ns and r only depend on the
value of κ and are therefore insensitive to the details of the field metric. We
might expect that the higher order correlation functions retain this informa-
tion. We estimate the amplitude of the bispectrum in the δN formalism like
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Figuur 3.3: The analytical predictions Eq. 3.35 for (ns, r) compared to the Planck
1σ and 2σ contours [115]. The colors of the contours correspond to different values
of p, which determines the scaling of the Hubble parameter H ∼ θp. The slow roll
parameters are exactly as those of a single field model with potential V ∼ θ2p− 2

3 . We
show the predictions for wavenumbers which cross the horizon 50 − 60 efolds before
the end of inflation. The predictions for (ns, r) depend on the value of the radius of
curvature κ of the inflationary trajectory. We vary κ2/M2

p between 1 and 105, and
indicate the values (10, 102, 103, 105) with thick lines (from bottom to top).

we did in § 3.2.3, which gives

f δNNL ≈
5

6

ε∗
p

(
1− κ2R

2

)
. (3.36)

Here we assumed the limit of ‘small’ radius of curvature κ2 � 2p2

ε M
2
p . We

see that the bispectrum has the potential to distinguish between different field
spaces through its dependence on the Ricci scalar R. We need a full in-in
computation of the bispectrum [224] to verify this result.

Coming back to the predictions for ns and r, we find they are pushed down-
wards and to the left in the (ns, r) plane as the radius of curvature decreases.
Therefore, in the case of power law inflation only for small p the predictions
remain within the Planck contours. However, we saw in Chapter 2 that the
predictions are sensitive to the value of µ2/H2. In particular, if a small mass
is generated, we arrive at a different conclusion.


