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Two-Field Inflation
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Hoofdstuk 2

Orbital Inflation

The purpose of this chapter is two-fold. First of all, it serves as a short intro-
duction to multi-field inflation. Second, we introduce Orbital Inflation as one
of the simplest way to extend the single field scenario.

We start with a brief recap of the linear perturbation analysis of multi-
field inflation in § 2.2. If we consider more than one field, the comoving
curvature perturbation interacts with isocurvature perturbations (quanta of
the other fields). It turns out that the linear dynamics of multi-field inflation
can be described in terms of a few kinematical and geometrical parameters. In
case of two-field inflation, these are the field radius of curvature, the effective
mass of isocurvature perturbations (entropy mass) and the Hubble slow-roll
parameters. This motivates us to introduce Orbital Inflation: a family of
two-field models of inflation where all these parameters are (approximately)
constant. We discuss their phenomenology in § 2.3. Finally, by means of
the Hamilton-Jacobi formalism we locally reconstruct potentials in § 2.4 that
admit Orbital Inflation. This allows us to numerically test our predictions.

2.1 Introduction

What can we learn about inflation from the density perturbations that we ob-
serve in the sky? In case inflation is driven by a single light degree of freedom,
the observational data can be described in terms of the Hubble slow roll para-
meters, the sound speed of the curvature perturbation, and its self-couplings.
This suggests we should classify inflationary models by the behavior of these
parameters, rather than by their potential. Essentially, this is what the effec-
tive field theory of single field inflation [162] does. If another light degree of
freedom is active during inflation, we additionally may hope to infer its mass,
its coupling to the inflaton and its self-interactions [192].

We eventually hope to come closer to the understanding of what drives
inflation. Therefore, it is important to give the parameters that describe the
data an interpretation in terms of the essential features of the UV embedding
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52 Orbital Inflation

of inflation. For instance, the data coefficients may inform us about the pre-
sence of extra dimensions or interactions with other fields with a certain spin,
see e.g. [193–195] For that reason, it is important to understand how various
classes of inflationary theories affect the low energy dynamics of the curvature
perturbation, possibly coupled to other light degrees of freedom.

In the context of multi-field inflation, the observational parameters are un-
derstood to be of kinematical and geometrical origin. In particular, in two-field
inflation the dynamics of the inflaton coupled to the isocurvature perturba-
tions are, to linear order, described in terms of the radius of curvature of
the inflationary trajectory, the mass of the isocurvature perturbation (entropy
mass) and the Hubble slow-roll parameters. This motivates us to introduce
Orbital Inflation: a family of models in which the inflationary trajectory has
a constant radius of curvature. Moreover, we take the entropy mass to be
approximately constant. From the observational point of view, this is the sim-
plest set-up to consider beyond single field.

Orbital Inflation is an attempt to realize ‘spontaneous symmetry probing’
[196] in the context of inflation. Moreover, it provides a realisation of quasi-
single field inflation [100, 101]. We complement these studies in the following
ways:

• We focus on the phenomenology in the regime of small entropy mass and
relatively small radius of curvature. In particular, we allow the coupling
strength to become much larger than typically considered in quasi-single
field inflation (while staying in the perturbative regime.) Two results we
would like to emphasize are:

– The entropy mass dictates how the predictions for ns change. For a
decreasing radius of curvature, the value of r gets reduced. However,
the shift in ns depends on the value of the entropy mass. The
predictions for (ns, r) shift downwards and fan-out. This may help
to distinguish the value of the entropy mass.

– The larger the coupling to the isocurvature perturbations, the more
they become suppressed relative to the curvature perturbations
[138]. We discuss how the ratio of the power spectra at the end
of inflation depends on both the entropy mass and the radius of
curvature.

• We locally reconstruct potentials which provide exactly the kinemati-
cal properties of orbital inflation by means of a generalization of the
Hamilton-Jacobi formalism [74, 75, 77, 78]. This reconstruction method
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allows us to test our analytical predictions numerically. Moreover, this
reconstruction method provides a playground for any quasi-single field
model of inflation [100, 101] or spiral inflation [197], for which, to our
knowlegde, no exact models are known. Higher order couplings can be
tuned as well. Interestingly, a vanishing entropy mass is reflected by a
shift symmetry in the Hubble parameter rather than the resulting po-
tential.

In this chapter we briefly review the kinematical analysis of multi-field
inflation in § 2.2. This allows us to describe the phenomenology of Orbital
Inflation in § 2.3. Finally, we show how to contruct exact models of Orbital
Inflation in § 2.4.

Throughout this chapter we work in Planck units ~ = c = 1 and the redu-
ced Planck mass is given by Mp = (8πG)−1/2.

2.2 Kinematical analysis of multi-field inflation

In § 1.2 we have seen that the observable predictions of the simplest models
of inflation1 are, besides an overall energy scale, fully characterized by the
kinematical Hubble slow-roll parameters

ε ≡ − Ḣ

H2
, εn+1 ≡

ε̇n
Hεn

for n ≥ 2. (2.1)

Here it is understood that ε = ε1 and moreover, we will denote η = ε2 and
ξ = ε3. To second order in perturbation theory we can characterize the data by
means of power spectra and bispectra of the scalar and tensor perturbations.
Canonical single field inflation predicts

r = 16ε, ns = 1− 2ε− 2η, nt = −2ε, f sq, obsNL = 0 . (2.2)

Here r is the tensor-to-scalar ratio, ns and nt are the spectral indices of the sca-
lar and tensor power spectrum respectively and f sq, obsNL is the observable [109]
amplitude of the bispectrum in the squeezed limit. For conciseness we don’t
show other predictions, such as the amplitude of scalar perturbations and
the amplitude of the bispectrum in other configurations. Importantly, if we

1With the simplest models of inflation we mean canonical single-field slow-roll inflationary
models minimally coupled to gravity, and with Bunch Davies initial conditions.
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were to detect a violation of the single field consistency relation [81, 105, 109]
f sq, obsNL = 0, this would signal the presence of additional degrees of freedom.

To understand how the inflationary predictions Eq. 2.2 are affected if more
degrees of freedom are active during inflation, we turn to the kinematical
analysis of multi-field inflation, following the formalism developed in [198–201]
(see also [202–204] and [205] for a comparative study). We identify the relevant
kinematical parameters that characterise the dynamics of perturbations. For
simplicity we restrict ourselves to linear perturbation theory. We start by
assuming some general structure, namely minimal coupling to Einstein gravity,
a field space, and as scalar field potential. In other words, we study models of
multi-field inflation of the general form

S =
1

2

∫
d4x
√
−g
[
M2
pR−Gab∂µφa∂µφb − 2V (φa)

]
. (2.3)

Here Gab is the field metric characterizing the kinetic terms. Moreover, R is
the Ricci scalar of spacetime and V (φa) the potential energy density of the
scalar fields. Our aim is to eventually arrive at the perturbation equations in
terms of kinematical quantities only. Furthermore, one also expects the appe-
arance of geometrical parameters that characterise the field space.

2.2.1 Background dynamics

The background dynamics of the scalar fields follows from assuming a homo-
geneous, isotropic and flat Friedmann Lemaitre Robertson Walker spacetime
ds2 = −dt2 +a2(t)dx2. The field equations and Friedmann equations are given
by [198]

D2
t φ

a + 3HDtφ
a + V a = 0,

3H2M2
p =

1

2
Gabφ̇

aφ̇b + V (φa),

ḢM2
p =

1

2
Gabφ̇

aφ̇b,

(2.4a)

(2.4b)

(2.4c)

respectively, where Dt ≡ φ̇a∇a, with ∇a the covariant field derivative with
respect to the field metric. Moreover, the latin field indices are raised and
lowered with the field metric. The last equation is not independent from the
first two, but nevertheless useful later, when we construct exact models of
Orbital Inflation in § 3.3.
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Kinematical basis in field space

The inflationary background trajectory determines a natural basis of unit vec-
tors in field space [199,201,206], which are defined iteratively2:

T a =
φ̇a

ϕ̇
,

DtT
a = −ΩNa,

DtN
a
j = ΩjN

a
j−1 − Ωj+1N

a
j+1 for j ≥ 1 with Na

i (Ni)a = 1 ∀ i .

(2.5a)

(2.5b)
(2.5c)

Please see Figure 2.1 for an illustration. The first vector T a is the tangent
pointing along the inflationary trajectory. The other ones are the normal vec-
tors, which are all normalized to unity. This uniquely determines the values of
the turn rates Ωi up to a sign. Furthermore, it is understood that Na

0 = T a,

Na = Na
1 and Ω = Ω1. Finally, ϕ̇ ≡

√
Gabφ̇aφ̇b is the proper field velocity.

In § 2.3 and § 2.4 we will work with the field radius of curvature of the
inflationary trajectory

κ ≡ ϕ̇ (NaDtT
a)−1 . (2.6)

Notice that this is related to the turn rate as κ = −
√

2εMpH
Ω .

Geodesics and turns

Using the tangent vector instead of φ̇a, the field equations of motion can be
written as

DtT
a +

V a − VTT a

ϕ̇
= 0 . (2.7)

This shows explicitly that the field trajectory is a geodesic only if V a = VTT
a,

because in that case the tangent vector T a is parallel transported, i.e. DtT
a ∼

T b∇bT a = 0. Moreover, the deviation of a geodesic is parameterized by the
turn rate Ω defined above. If we consider only two fields, we may choose Na

to have a fixed orientation with respect to the tangent vector, namely Na =
εabTb. Then Ω will flip sign each time the inflationary trajectory changes from
turning clockwise to anti-clockwise or vice versa. In the multi-field scenario it
is perhaps more convenient to assign a definite sign to all Ωi.

2This procedure becomes ill-defined as soon as a turn rate Ωi becomes zero. In that case
we can choose the remaining normal vectors Na

n , for n ≥ i, as any orthogonal normal set of
vectors (and Ωn = 0).
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Figuur 2.1: Illustration of an inflationary trajectory in a three-dimensional field
space and the corresponding tangent (red), normal (cyan) and binormal (green) vec-
tor. In this example the inflationary trajectory is along a helix, and both turn rates
Ω1 and Ω2 are non-zero.

Tangent and normal projections of the field equations

Projecting the equations of motion along the kinematical basis vectors we find

ϕ̈+ 3Hϕ̇+ VT = 0,

VN = Ωϕ̇,

VNi = 0 for i > 1.

(2.8a)
(2.8b)
(2.8c)

This is an alternative way of writing the field equations Eq. 2.4a. The first
equation is the same as in single field inflation, and it suggests we should iden-
tify ϕ with the inflaton field. The remaining projections express a condition
on the gradient of the potential to sustain centrifugal motion.
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Kinematical expression for the gradient of the potential

The background equations allow us to write the gradient of the potential in
terms of the slow roll parameters and the first turn rate. The Hubble slow
roll parameters are defined in Eq. 2.1. Using Eq. 2.4, the first three slow-roll
parameters can be written as

ε ≡ − Ḣ

H2
=

ϕ̇2

2H2M2
p

,

η ≡ ε̇

εH
=

2ϕ̈

ϕ̇H
+ 2ε,

ξ ≡ η̇

ηH
.

(2.9a)

(2.9b)

(2.9c)

The projections of the background equations Eq. 2.8 therefore imply the
following kinematical expression for the potential gradient

Va = −ϕ̇H(3− ε+ 1
2η)Ta + Ωϕ̇Na . (2.10)

2.2.2 Linear perturbations

Perturbing around the homogeneous background, the linearized equations of
motion of field perturbations are given by [201,207–210]

D2

dN2
Qa + (3− ε) D

dN
Qa +

k2

a2H2
Qa + CabQ

b = 0,

with Cab ≡
∇bV a

H2
− 2εM2

pR
a
cdbT

cT d + 2ε(3− ε)T aTb

+
2ε

ϕ′H2
(T aVb + TbV

a) .

(2.11a)

(2.11b)

The covariant derivatives are with respect to efolds D
dN ≡ HDt. Moreover,

Qa are the gauge invariant field fluctuations.

These equations can be rewritten in terms of the comoving curvature per-
turbation R ≡ HTaQa

ϕ̇ and isocurvature perturbations Si ≡ (Ni)aQ
a

Mp
[202] by

projecting Eq. 2.11 along the kinematical basis vectors Eq. 2.5. Since for the
rest of this chapter we specialize to the two-field scenario, we only quote the
corresponding two field equations(

∂

∂N
+ 3− ε− η

)(
R′ + 2Ω√

2εH
S
)

+
k2

a2H2
R = 0,(

∂

∂N
+ 3− ε

)
S ′ − 2Ωϕ′

H

(
R′ + 2Ω√

2εH
S
)

+

(
µ2

H2
+

k2

a2H2

)
S = 0 .

(2.12a)

(2.12b)
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Here a prime denotes a derivative with respect to efolds and S ≡ S1. The
perturbations are grouped in such a way that we can read off the entropy mass
(the effective mass of the first isocurvature mode) most easily. The entropy
mass is given by

µ2 ≡ VNN + 2εH2M2
pRNTNT + 3Ω2, (2.13)

Here we use the notation VNN ≡ NaN b∇a∇bV andRNTNT ≡ NaT
bN cT dRacdb.

We explain in § 2.2.3 by means of a dispersion relation analysis why this is the
correct interpretation of the mass of isocurvature perturbations.

2.2.3 Dispersion relation analysis

To understand why we interpret µ2 (defined in Eq. 2.13) as the effective mass
of isocurvature perturbations, we study the dispersion relations of the system
of coupled perturbations Eq. 2.12 following [211–213]. We specialize to two
fields and write the equations in terms of cosmic time t instead of efolds

∂t

(
Ṙ+

2Ω√
2ε
S
)

+ (3 + η)H

(
Ṙ+

2Ω√
2ε
S
)

+
k2

a2
R = 0,

S̈ + 3HṠ + µ2S +
k2

a2
S = 2

√
2εΩ

(
Ṙ+

2Ω√
2ε
S
)
.

(2.14a)

(2.14b)

Let’s write the solution as a sum of four normal modes(
R
S

)
=
∑
ω

(
Rω
Sω

)
e−i

∫
dt ω. (2.15)

Assuming the adiabatic condition ω̇/ω2 � 1 , and neglecting both slow roll
corrections and the rate of change of the turn rate Ω̇, we find the following
linear system(
−ω2 − 3Hiω + k2

a2 −iω 2Ω√
2ε

+ 3H 2Ω√
2ε

2iω
√

2εΩ −ω2 − 3Hiω + k2

a2 + µ2 − 4Ω2

)(
Rω
Sω

)
=

(
0
0

)
. (2.16)

We can most easily solve for the normal modes of the system of coupled dam-
ped harmonic oscillators by introducing the variable ω2

0 ≡ ω2 + 3Hiω, the
eigenmodes of the undamped system. The solutions for ω2

0 are given by

ω2
0 =

k2

a2
+

1

2
µ2 ± 1

2

√
µ4 + 16Ω2

k2

a2
. (2.17)

Therefore the four solutions are given by

ω =
−3Hi±

√
−9H2 + 4ω2

0

2
, (2.18)

two normal modes for each solution of ω2
0. Let’s distinguish three cases:
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• µ2 � 9
4H

2. In this case we have heavy isocurvature perturbations which
we can integrate out. Defining c2

s ≡ 1 − 4Ω2

µ2 , we have a few different
regimes that the coupled oscillators will go through as the physical wa-
venumber k

a redshifts during inflation.

– If Ω is non-zero we can go to very small scales 4
(
1− c2

s

)
k2

a2 � µ2

such that

ω2
0 ≈

k2

a2
± 2Ωk

a
(2.19)

The linear term is hardly ever important, because the inequality
implies k2

a2 � Ω2

(1−c2s)
2 .

– Then as soon as 4
(
1− c2

s

)
k2

a2 � µ2 we find

ω2
0 ≈

(
1± 4Ω2

µ2

)
k2

a2
+

1

2
µ2 (1± 1) . (2.20)

We can identify a dispersion relation ω−0 corresponding to a mas-
sless excitation with reduced sound speed (ω−0 )2 = c2sk

2

a2 , and ω+
0 ,

corresponding to an excitation of mass µ. The massive excitation
yields the following two normal modes

ωµ ≈ −
3Hi

2
± ω+

0 , (2.21)

i.e. two decaying and rapidly oscillating solutions of mass µ. More-
over, these solutions have Rω = 0, if we neglect the Hubble friction.
Therefore, this motivates us to interpret µ2 as the effective mass of
the isocurvature mass perturbations. The behavior of the massless
excitation splits in two regimes:

∗ On subhorizon scales c2sk
2

a2 � 9
4H

2 we get

ω ≈ −3Hi

2
± c2

sk
2

a2
. (2.22)

These are two underdamped harmonic oscillators
∗ On superhorizon scales c2sk

2

a2 � 9
4H

2 we find

ω ≈ −3Hi

2
(1± 1)± c2

sk
2

a2

i

3H
, (2.23)

one overdamped harmonic oscillator and one solution that con-
verges to a constant. These are exactly the two solutions we
expect for R. The interaction with the isocurvature pertur-
bations is encoded in an effective reduced speed of sound cs
[201,212,214,215].
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• µ2 � 9
4H

2. Assuming a non-zero value of Ω2 < H2 we find that the
solution for ω2

0 splits in two regimes as before:

– If we are at sufficiently small scales 16Ω2 k2

a2 � µ4 we get

ω2
0 ≈

k2

a2
+

1

2
µ2 ± 2Ωk

a
(2.24)

The linear term is not important if we also ensure k2

a2 � 4Ω2. Since
µ2 � H2 we can be either subhorizon or superhorizon:

∗ Starting at subhorizon scales k2

a2 � 9
4H

2 � µ2 we find the
solutions

ω = −3Hi

2
± ω0, (2.25)

corresponding to underdamped coupled harmonic oscillators of
negligible mass.
∗ On superhorizon scales k2

a2 � 9
4H

2 on the other hand we have

ω = −3Hi

2
(1± 1)± iω2

0

3H
. (2.26)

We find two overdamped oscillators and two slowly decaying/growing
solutions with exponential factor −H

3

(
k2

a2H2 + 1
2
µ2

H2 ± 2Ωk
aH2

)
. It

depends on the values of µ and Ω which term is most important.

– If µ 6= 0, we can consider the regime 16Ω2 k2

a2 � µ4. This leads to

ω2
0 ≈

(
1± 4Ω2

µ2

)
k2

a2
+

1

2
µ2 (1± 1) . (2.27)

On super horizon scales k
2

a2 � 9
4H

2 we find the following eigenmodes

ω = −3Hi

2
(1± 1)± iω2

0

3H
. (2.28)

In other words we find two overdamped oscillators, one slowly de-
caying solution with exponential factor −H

3
µ2

H2 , and one solution
that converges to a constant.

• µ2 ∼ H2. This is the typical quasi-single field regime [100]. Again,
assuming that the turn rate is nonzero but Ω2 < H2, we can distinguish
two regimes.
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– In case we have µ4 � 16Ω2 k2

a2 , we find the same solution for ω0 as
in Eq. 2.27. On super-Hubble scales the four eigenmodes Eq. 2.18
contain a constant and decaying solution (when the ± is a − in
Eq. 2.27). The other solutions corresponding the the isocurvature
mode are both decaying

ω ≈ −3Hi

2
±∆ω (2.29)

where ∆ω is imaginary if µ2 . 9/4H2 and real if µ2 & 9/4H2.
On sub-Hubble scales we find the same form as Eq. 2.29, but now
∆ω = ω0. This solution corresponds to four underdamped harmonic
oscillators of mass zero and mass µ.

– For values µ4 � 16Ω2 k2

a2 we find the same ω2
0 as in Eq. 2.24. This

condition forces us to be on sub-Hubble scales. The dispersion
relations are again given by Eq. 2.29 with ω ∼ k2

a2 , corresponding to
four undamped harmonic oscillators.

We conclude that on sub-Hubble scales the isocurvature perturbations behave
like an underdamped harmonic oscillator of mass µ. On super-Hubble scales
the Hubble friction takes over and the isocurvature perturbations freeze out
(µ = 0), slowly decay (µ2/H2 � 9/4) or rapidly decay (µ2/H2 & 1).

This concludes our brief review of the kinematical description of linear
perturbations in multi-field inflation. From now on we specialize to the two
field scenario.

2.3 Phenomenology of Orbital Inflation

The results from § 2.2 equip us with all the necessary tools to study Orbi-
tal Inflation. We define Orbital Inflation as two-field inflation with a slowly
varying entropy mass µ/H and a constant radius of curvature κ of the infla-
tionary trajectory in field space (see Eq. 2.6). In this section we study how
the predictions for the spectral tilt ns and the tensor-to-scalar ratio r depend
on µ and κ. For that purpose we restrict ourselves to a small entropy mass
0 ≤ µ2/H2 ≤ 0.2. In the regime where κ/Mp . 102 we find non-trivial results,
and as far as we know the phenomenology of this regime has not been studied
before, except for the limiting case µ2/H2 = 0, see [138] and Chapter 3. For
the limit of large entropy mass µ2/H2 � 1 we refer the reader to Chapter 5.
Let us emphasize, though, that in the next section, where we construct explicit
models of Orbital Inflation, the entropy mass can take any value.
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Using the results from § 2.2 we first derive an analytical approximation
for the power spectrum of curvature perturbations based on the evolution of
the coupled perturbations on super-Hubble scales. We complement this with a
numerical computation [216–219] when we present the results in Figure 2.2. To
address the validity of the perturbative numerical computation and our simple
analytical estimate we need the quadratic action of perturbations. Moreover,
we also need it to have the right normalization of the fields when we quantize
the theory. For two-field inflation, in efolds, it is given by [138]

S(2) =
1

2

∫
dNd3xa3M2

pH

[
2ε

(
R′ − 2Mp

κ
S
)2

+ (S ′)2 − µ2

H2
S2 + . . .

]
(2.30)

The ellipses denote the gradient terms −(∂iS)2/H2− 2ε(∂iR)2/H2. The line-
arized system of coupled perturbations Eq. 2.12 for two fields reads

(∂N + 3− ε− η)

(
R′ − 2Mp

κ
S
)

+
k2

a2H2
R = 0,

(∂N + 3− ε)S ′ +
(
µ2

H2
+

k2

a2H2

)
S = −4εMp

κ

(
R′ − 2Mp

κ
S
)
.

(2.31a)

(2.31b)

Notice that we have rewritten the turn rate Ω in terms of the radius of
curvature κ, defined in Eq. 2.6. On super-Hubble scales k2 � a2H2, the
equations simplify considerably. The equation of motion for R has the solution

R′ − 2Mp

κ
S = 0 + decaying part. (2.32)

Meanwhile, neglecting the decaying part on the right hand side of Eq. 2.31b,
the equation for S reduces to

S ′′ + (3− ε)S ′ + µ2

H2
S = 0. (2.33)

For approximately constant 0 < µ2/H2 � 9/4 and ε � 1, this equation
describes an overdamped oscillator with solution

S(N) ≈ S0e
−N−N0

3
µ2

H2 + decaying part. (2.34)

The isocurvature perturbations in turn source the curvature perturbations,
through Eq. 2.32 . Integrating this equation gives the superhorizon solution
for R:

R(N) ≈ R0 + S0
6MpH

2

µ2κ

(
1− exp

(
−N

3

µ2

H2

))
. (2.35)

Here we made use of the fact that κ is constant. In the limit that µ2/H2 = 0,
the isocurvature perturbation freezes out at horizon crossing, conform Eq. 2.34.



Phenomenology of Orbital Inflation 63

In this case the second term in Eq. 2.35 becomes proportional to ∆N , which
is in agreement with the expansion of this term for small µ2/H2. In the quan-
tum analysis of two-field inflation [198] there are two uncorrelated contributi-
ons to R̂. The first contribution is sourced by initial curvature perturbations
where S0 = 0. This corresponds to the constant mode R0 that freezes out
on super-Hubble scales. The second contribution is sourced by initial isocur-
vature perturbations, and corresponds to the second solution proportional to
S0. Using the typical amplitude of quantum perturbations at horizon crossing
S0 ∼

√
2εR0 ∼ H

2π , the power spectrum of curvature perturbations is given
by3

PR ≈
H2

8π2εM2
p

(
1 + 2ε

(
6MpH

2

µ2κ

)2(
1− exp

(
−∆N

3

µ2

H2

))2
)
. (2.37)

Here all variables are understood to be evaluated at horizon crossing, and ∆N
denotes the number of efolds counted from when the observable modes cross
the horizon until the end of inflation. In the limit of small entropy mass µ2/H2,
we can expand the exponential in Eq. 2.37 to find that this terms scales as
∆N2/κ2. To get an improved analytical result, one can perform a full in-in
computation similar to what is done in [138]. We checked our simple analytical
estimate numerically by means of the exact models described in § 2.4.2, using
the Python code developed by [218, 219], and found that it works well for
κ2/M2

p ≥ 1. We plot the results for ns and r in Figure 2.2. The analytical
results are obtained by using

ns =
∂ lnPR
∂N

, r =
2H2

π2M2
p

1

PR
, ε =

p

2∆N + p
. (2.38)

The numerical results are computed using the following potential and kinetic
term

V (θ, ρ) = 3M4
p

(
θ2 +

2M2
p

3f(ρ)

)(
1 +

λ

12

(ρ− ρ0)2

M2
p

)2

,

2K = f(ρ)(∂θ)2 + (∂ρ)2 with f(ρ) = e2ρ/R0 .

(2.39a)

(2.39b)
3As a cross-check we compare the obtained power spectrum with that of quasi-single field

inflation [100]. Matching with the numerical function C(ν) defined in Eq. (3.8) of [100], we
find

C(ν) =
9

2

1(
9
4
− ν2

)2 (1− exp

(
−∆N

3

(
9

4
− ν2

)))2

. (2.36)

This seems to agree reasonably well if we take ∆N ∼ 50− 60, even for µ2/H2 close to 9/4.
When κ2/M2

p . 102 We don’t find the same prediction for ns as in Eq. (3.11) of [100],
because the second term in Eq. 2.37 becomes important, and we have to take into account
the ∆N -dependence of C(ν).
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The field metric is hyperbolic with curvature R = − 2
R2

0
. As explained in § 2.4.2

this model admits Orbital Inflation with κ2 = R2
0 and µ2/H2 = λ

(
1− 1

3ε
)
.

In Figure 2.2 we vary κ2/M2
p between 1 and 105. The lower bound comes

from the validity of the perturbative approach we implicitly assumed. The
numerical code [218] is performing a tree level in-in computation, and higher
order tree level (and loop) corrections should be small compared to the leading
result. Our simple analytical result captures the super-Hubble evolution of R,
and therefore provides an estimate of the leading order tree level computation.
Using Eq. 2.30 we can estimate that α ∼

√
8ε

Mp

κ is the perturbation parameter
that measures the relative size of the higher order tree level corrections compa-
red to the leading tree level computation4. Therefore, we need to ensure that
α� 1, which is why we take κ/Mp ≥ 1. At the same time we should be careful
that quantum perturbations remain much smaller than the radius of curvature
δρ� κ. In particular, we should be careful in the limit that the isocurvature
perturbations are very light µ2/H2 � 1. Fortunately, this is the case. If we
consider small values of κ, such that the second term in Eq. 2.37 dominates,
we get PR ∼ H2

κ2 . Since the amplitude of the power spectrum is fixed by obser-
vations AR ∼ 10−9, this implies that the typical size of quantum fluctuations
gets suppressed if we decrease κ. We find δρ2 ∼ H2 ∼ κ2AR � κ2, so we are
always fine.

From Figure 2.2 we see that the observable predictions are already sig-
nificantly modified for κ2/M2

p . 103 (for µ2/H2 = 0) or κ2/M2
p . 102 (for

µ2/H2 ≈ 0.2). Interestingly, the entropy mass µ2/H2 dictates how the inflatio-
nary predictions fan out in the (ns, r) plane. In particular, the various entropy
masses predict a different change in ns. It would be very interesting to see
if this effect may allow us to distinguish between the various entropy masses.
This requires a complementary analysis of the bispectrum. For these models
we expect to find local primordial non-Gaussianities, because the super-Hubble
evolution of R is the dominant contribution to its final amplitude. Therefore,
in future work we plan to assess the amplitude and the scale-dependence of
the bispectrum in the squeezed configuration. In particular, we would like to
understand its dependence on the kinematical and geometrical parameters of
multi-field inflation. This should give us more insight what to expect from the
simplest modifications to the single field inflationary scenario.

4In the in-in computation the sourcing of R by S is captured by the interaction term

S
(2)
int =

∫
dτd3xa34ε

M3
pH

κ
(∂τR)S (using Eq. 2.30 written in terms of conformal time dτ =

dN/aH.) Rewriting this in canonical variables u ≡
√

2εaMpR and v ≡ aMpS we get
S

(2)
int ∼

∫
d ln τd3x α(∂τu)v, with α =

√
8ε
Mp
κ
.
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Finally, we should also estimate the relative amplitude of isocurvature per-
turbations compared to the amplitude of curvature perturbations. How they
are related to the late-time non-adiabatic perturbations depends on the me-
chanism of reheating, but we may still want to ensure that they are suppressed
at the end of inflation. From Eq. 2.34 we see that the isocurvature perturba-
tions decay on super-Hubble scales if µ2/H2 & 3/∆N , so we can assume that
isocurvature perturbations with entropy masses of µ2/H2 & 0.06 have decayed
by the end of inflation. However, for µ2/H2 . 0.06, we should be more careful.
The ratio between curvature and isocurvature perturbations is given by

βiso ≡
PS

2εPR
≈ 1

1 + 8ε
M2
p∆N2

κ2

. (2.40)

To arrive at this result, we expanded the exponential in Eq. 2.34. Therefore,
our results are reliable in the regime

1� 8ε
M2
p

κ2
� 1

∆N2
(or µ2/H2 & 0.1) (2.41)

Fortunately, this is contained in the regime where we find non-trivial results.
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Figuur 2.2: This figure shows the predictions of (ns, r) for the model given in
Eq. 2.39 using the numerical code [218, 219]. The entropy mass takes five different
values, as indicated in the legend, with µ2/H2 = λ

(
1− 1

3ε
)
≈ λ. The solid lines

correspond to R2
0/M

2
p ∈ {1, 4, 42, . . . , 48} from bottom to top, and we let ∆N ∈

[50, 60]. On top of that we plot our analytical results (coloured shaded regions) using
Eq. 2.38, where vary κ2/M2

p between 1 and 105. Furthermore, on the background we
plotted the 1σ and 2σ confidence contours from Planck [115].

2.4 Exact models of Orbital Inflation

In this section we derive exact models of Orbital Inflation. For this we first
generalize the Hamilton-Jacobi formalism [74, 75, 77, 78] to two-field inflation
in § 2.4.1, which we use in § 2.4.2 to perform an explicit construction.

2.4.1 Hamilton-Jacobi for two-field inflation

We generalize the Hamilton-Jacobi formalism to two-field inflation, such that
we can locally reconstruct the potential similar to the single field case described
in § 1.2.3. The first step is to replace the time coordinate with the proper field
distance ϕ along the inflationary trajectory

ϕ ≡
∫
dt

√
Gab

dφa

dt

dφb

dt
. (2.42)

Given the Hubble slow roll parameters, we know that we can reconstruct the
potential on the inflationary trajectory, following § 1.2.3. However, in the two-
field case we would like to reconstruct the potential in the neighborhood of the
inflationary trajectory as well. In fact, from Eq. 2.8 we know that the gradient
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of the potential in the orthogonal direction should be such that it counter-
balances the centrifugal force. This provides an additional constraint in the
two-field scenario. Generically, H is a function of the normal field coordinates
σi as well. Therefore we might as well parameterize the Hubble parameter in
terms of any set of field coordinates H = H(φa). This is fine as long as all
coordinates are stricly increasing or decreasing on the inflationary trajectory.

Similarly to the single field case we have a solution for every initial value
H(φa0), however this cannot cover all possible initial data. In the case of two-
field inflation we therefore need an additional function F (φa) to fully specify
the system. Indeed, using the second Friedmann equation Eq. 2.4c we find

Ḣ = φ̇aHa = − φ̇
aφ̇bGab
2M2

p

−→ Ha = −Gabφ̇
b

2M2
p

+ F (φb)Na . (2.43)

Note that we have the freedom to add to Ha any contribution proportional to
the normal vector to the trajectory, because it is projected out when contrac-
ting with φ̇a to get Ḣ. Using Eq. 2.43, we rewrite the first Friedmann equation
as the multi-field Hamilton-Jacobi equation

3H2M2
p = V + 2M4

p

(
HaHa − F 2

)
. (2.44)

Notice that we need both H and F to fully determine the system. This equa-
tion contains the same information as the tangent projection of the field equa-
tions. To see this we write Eq. 2.44 as

3H2M2
p = V + 2M4

pH
2
ϕ with Hϕ = HT = − ϕ̇

2M2
p

(2.45)

and take a derivative with respect to ϕ to find Eq. 2.8a. In addition we have
to obey the normal projection of the field equations Eq. 2.8b, which provides a
constraint on F . We compute DtT

a using T a = −2M2
p

ϕ̇ (Ha − FNa). Moreover
VN can be computed using Eq. 2.44. Together they lead to the constraint
equation

3HF − 2M2
pHTFT + 2F (FN −HNN ) = 0 . (2.46)

In particular, F = 0 gives a solution compatible with the constraint equation.
However, there are also solutions that have a non-trivial F .

At this point we would like to stress that we intend to apply the Hamilton-
Jacobi formalism to reconstruct the potential in the neighborhood of a given
inflationary trajectory only. Therefore, we only need to solve for Eq. 2.44 and
Eq. 2.46 on the trajectory. These equations restrict the normal projection of
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the gradient of the potential, but other than that they leave the potential
free. For this local reconstruction it might be convenient to pick the natural
kinematical field coordinates. This implies that each normal vector is parallel
transported along its normal direction, i.e. Na

i ∇aN b
i = 0. In the two-field case

we therefore have HNN ≡ NaN b∇a∇bH = Na∇aF ≡ FN and the constraint
equation further simplifies to

3HF − 2M2
pHϕFϕ = 0 . (2.47)

This restricts the form of F only at σ = σ0, i.e. on the trajectory. We will next
see that this allows us to construct inflationary models with any isocurvature
mass.

2.4.2 Orbital inflation

We are now ready to construct inflationary potentials with constant κ and
(almost) constant µ2/H2, using Eq. 2.44 and Eq. 2.47. A constant radius of
curvature can be achieved by considering an inflationary trajectory that pro-
ceeds along an isometry direction of the field metric that is not a geodesic.
This is the key characteristic of the exact models of Orbital Inflation. And in
this sense it is an attempt of realizing spontaneously symmetry probing [196]
in inflation. The existence of an isometry implies that we are free to choose
our field coordinates (θ, ρ), such that the field metric Gab does not depend on
θ. Moreover, we have also the freedom to put Gθρ to zero5. Furthermore, we
denote f(ρ) = Gθθ.

We would like to reconstruct the potential that admits Orbital Inflation,
that is, solutions of the form

ρ̇ = 0, θ̇ < 0. (2.48)

The sign of θ̇ is our choice of convention, also we take θ > 0 on the inflationary
trajectory. This means we can replace ϕ→

√
fθ and Hϕ → 1√

f
Hθ. Moreover,

the relevant kinematical and geometrical inflationary background quantities
simplify to

T a =
1√
f

(−1, 0) and Na = (0, 1),

θ̇ = −2M2
p

Hθ

f
, ε =

2M2
pH

2
θ

fH2
, κ =

2f

∂ρf
, R =

2

κ2
− fρρ

f
.

(2.49a)

(2.49b)

5If Gθρ 6= 0, define θ̃ = θ +
∫
dρ

Gθρ(ρ)

Gθθ(ρ)
such that G̃θ̃ρ = 0.
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Here f = f(ρ) and H = H(θ, ρ). On the desired inflationary trajectory the
radial coordinate takes a constant value ρ0. Therefore, we expand H(ρ, θ)
around ρ = ρ0:

H(ρ, θ) = Mp

(
W (θ) +X(θ)

ρ− ρ0

Mp
+ Y (θ)

(ρ− ρ0)2

M2
p

+ . . .

)
. (2.50)

Moreover, we take F (ρ, theta) = ∂ρH(ρ, θ). We insert this into the constraint
equation Eq. 2.46 to identify the restrictions on X(θ). First of all, on the
desired inflationary trajectory we have F = Hρ and Hρρ = Fρ, which allows
us to use Eq. 2.47. Moreover, we express tangent derivatives in terms of
derivatives with respect to θ. The constraint equation simplifies to

3W (θ)X(θ)−
2Wθ(θ)Xθ(θ)M

2
p

f(ρ0)
= 0 . (2.51)

An obvious solution is given by X(θ) = 0, which we will assume for simplicity.
Next, we compute the effective mass of isocurvature perturbations. For the
orbital inflationary trajectory we have µ2 = Vρρ+εM2

pH
2
(
R + 6

κ2

)
, which can

be written as

µ2 = 12M2
pY (θ)W (θ)−

8M4
p

f(ρ0)
Yθ(θ)Wθ(θ) . (2.52)

Therefore, we can construct a potential with any isocurvature mass we like.
For instance, specializing to Y (θ) = 1

12λW (θ) yields

µ2

H2

∣∣∣∣
ρ=ρ0

= λ

(
1−

2M2
p

3f(ρ0)

W 2
θ (θ)

W 2(θ)

)
. (2.53)

Notice that the second term in Eq. 2.53 is proportional to the slow roll para-
meter ε on the trajectory, using Eq. 2.49. Therefore, well within the slow-roll
regime we approximately get µ2

H2 ≈ λ.

It should be clear that if one continues in this fashion, combinations of the
higher order derivatives of the potential can be tuned as well. For instance,
this technique may be used to contruct explicit quasi-single-field models of
inflation with large Vρρρ [100]. Moreover, there are many more ways to arrive
at a constant entropy mass. For now we put the higher order corrections to H
and F to zero, and use Eq. 2.44 to find

V (θ, ρ) = 3M4
p

(
W 2(θ) +

2M2
pW

2
θ (θ)

3f(ρ)

)(
1 +

λ

12

(ρ− ρ0)2

M2
p

)2

, (2.54)
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which constitutes a realization of Orbital Inflation. Finally, using the results
from § 1.2.3, we may choose W (θ) = θp such that ε is given by

ε =
p

2∆N + p
, (2.55)

where ∆N denotes the number of efolds before the end of inflation where the
observable modes cross the horizon. We used this potential with p = 1 in the
numerical/analytical computations presented in Figure 2.2.

Finally, we would like to point out an interesting limit. Notice that we can
locally achieve a zero entropy mass µ by choosing Y (θ) = 0. If we demand
Orbital Inflation at any radius ρ0 with µ = 0, this forces H to be a function
of θ only. Therefore the masslessness of radial perturbations corresponds to a
radial shift symmetry in H rather than in the resulting potential. We study
this particular limit in Chapter 3.

2.5 Summary

In two-field inflation there are only a few kinematical and geometrical parame-
ters that determine the evolution of linear perturbations. These are the radius
of curvature of the inflationary trajectory in field space, the entropy mass (the
mass of the isocurvature perturbations) and the Hubble slow-roll parameters.
This motivates us to introduce Orbital Inflation, in which the radius of cur-
vature is constant, and the remaining parameters are slowly varying. This is
one of the simplest two-field extensions to single field inflation.

In § 2.3 we discussed the phenomenology of Orbital Inflation. In particular
we focus on the regime of small entropy mass µ2/H2 ≤ 0.2 and we found that
the predictions are substantially modified already for κ2/M2

p . 102. Further-
more, in § 2.4 we showed how to explicitly construct exact models of Orbital
Inflation. The key characteristic of these models is that inflation proceeds
along an isometry direction of the field metric. We used a generalization of
the Hamilton-Jacobi formalism to find the potential locally around the infla-
tionary trajectory. Finally, we saw that an interesting limiting case is to have
a vanishing entropy mass. This is reflected by a shift symmetry in the Hubble
parameter rather than in the resulting potential. We investigate this particu-
lar case in Chapter 3.

For convenience of the reader, we collect the relevant formulas and ele-
ments that describe the two-field models we have reconstructed in § 2.4. The
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procedure is more general, and can be used to reconstruct other multi-field
models of inflation as well

• We specialized to a two-field model with two scalar fields θ and ρ descri-
bed by the following action

S =
1

2

∫
d4x
√
−g
[
M2
pR− f(ρ)∂µθ∂

µθ + ∂µρ∂
µρ− 2V (θ, ρ)

]
. (2.56)

with R the Ricci scalar of spacetime. The scalar kinetic term has an
isometry in the θ direction.

• In order to achieve a constant radius of curvature, we force inflation to
proceed exactly in the θ direction. This puts a restriction on the form
of H(ρ, θ), namely that it has to be independent of θ on the trajectory
ρ = ρ0.

• Next, we compute the entropy mass in terms of H(ρ, θ) expanded around
ρ = ρ0. We took into account that the entropy mass, defined in Eq. 2.13,
receives geometrical and kinematical corrections as well. This allowed us
to reconstruct the following potential, which admits an approximately
constant entropy mass µ2/H2 ≈ λ up to slow-roll corrections

V = 3M4
p

(
W 2(θ) +

2M2
pW

2
θ (θ)

3f(ρ)

)(
1 +

λ

12

(ρ− ρ0)2

M2
p

+ . . .

)2

, (2.57)

The ellipses denote higher order terms in the expansion around ρ = ρ0 we
left unspecified. They determine higher order derivatives of the potential,
such as Vρρρ.


