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Introduction

Cosmology is a fascinating field of research. The advance of theory and ob-
servations in the last centuries has enabled us to reformulate philosophical
musings such as “Where do we come from?” as quantitatively testable sci-
entific questions. It is impressive that we have been able to learn about the
universe far in the past. This resulted in the Hot Big Bang model: an excellent
description of the universe from the moment it was merely a few minutes old.
Moreover, cosmological inflation has provided us with a very compelling model
of the primordial universe. It predicts the creation of seeds of structure forma-
tion from quantum perturbations at that time. Therefore, we might still find
an imprint of the primordial universe in the sky. This allows us to look back to
perhaps1 the first 10−30s, a mind-blowing thought! At that time the universe
was extremely dense and tiny and thus dominated by ultra high energy parti-
cle physics. Therefore, inflation connects observations on cosmological scales
to particle physics not accessible at earth-based particle accelerators. In other
words, inflation provides the ultimate playground for a theoretical physicist.

In the main part of this thesis we aim to improve our understanding of the
signatures of new physics at the time of inflation. Additionally, in the second
part we perform a statistical analysis to understand whether we can extract
some of the traces thereof from the 3D map of galaxies in the near future.

Throughout this thesis we work in Planck units ~ = c = kB = 1 and the
reduced Planck mass is given by Mp = (8πG)−1/2.

1Please take the time-scale of inflation with a grain of salt, it is a model dependent
number. It could as well be a factor of a million off, but nevertheless it is still extremely
small.
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4 Introduction

1.1 A brief history of modern cosmology

Most of modern research in cosmology is based on the Standard Model of
Cosmology. For my generation of cosmologists the so-called ΛCDM model is
a natural starting point, but from a historical point of view it must have been
quite some journey to get here. The road was bumpy and the passage required
several radically new ideas. Due to the efforts of many great scientists, ΛCDM
was established within a century. In this section I aim to give an idea of the
historical development of ΛCDM. This section is mainly based on [1–6].

1.1.1 The hot Big Bang model

An expanding universe

Einstein’s General Relativity (GR) [7] marked the beginning of cosmology as a
predictive science. The dynamical and geometrical properties of the universe
are related to its constituents by the Einstein equations. One key property
follows from the premise that there are no privileged positions or directions
in the universe. More precisely, the Cosmological Principle states that the
universe is statistically homogeneous and isotropic at large scales.

Einstein believed in a static universe, and in 1917 he introduced [8] the
static cosmological model as a homogeneous and isotropic solution to GR.
For that purpose he famously introduced the cosmological constant. It turned
out that this solution is unstable [9]. Around the same time De Sitter [10]
published another ‘static’ cosmological model, which in fact described an ex-
ponentially expanding universe (but this was only realized later by Lemaître.)
It corresponds to a universe with no matter, but only a cosmological constant.
He calculated that this would result in a redshift of distant sources and he
realized that this could explain the observation of Slipher [11].

In the following decades substantial observational and theoretical progress
was made. On the theory side, the most general cosmological solution of
a homogeneous and isotropic universe was established: today we call it the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric [12–16]

ds2 = −dt2 + a(t)2

(
dr2

1− κr2
+ r2

(
dθ2 + sin2 θ dφ2

))
(1.1)

Here the constant κ ∈ {−1, 0, 1} denotes whether the curvature of the spatial
slices is negatively curved, flat or positively curved, respectively. The scale
factor a(t) probes the physical distance between two points on the comoving
spatial slice at the time t. It is a measure of the relative size of the universe
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compared to today, i.e. a(t0) = 1. The expansion rate of the universe is
measured by the Hubble parameter H(t) ≡ ȧ(t)

a(t) . The stress-energy tensor
corresponding to the FLRW spacetime is that of a homogeneous and isotropic
fluid with pressure p and energy density ρ. The evolution of the universe, as
parameterized by the Hubble parameter, can therefore be related to its matter
content by the Friedmann equations

H2 ≡ ȧ2

a2
=

ρ

3M2
p

− κ2

a2
,

ρ̇+ 3H (ρ+ p) = 0 .

(1.2a)

(1.2b)

Only when a(t) is constant, or H = 0, this resembles the static solution of
Einstein. A constant Hubble parameter H, and therefore a ∼ eHt, corresponds
to the De Sitter solution.

Lemaître [14] realized that a non-static universe, i.e. H(t) 6= 0, leads
to cosmological redshift of photons. Photons moving freely in an expanding
spacetime lose their energy like E ∼ a−1. In other words their wavelength
stretches, and spectra emitted by distant objects redshift. He understood that
the ‘apparent velocity’ of galaxies as measured by Slipher [11] and Hubble [17]
was in fact mainly caused by the expansion of spacetime2. He also provided
the linear velocity-distance relation

v = Hd . (1.3)

This is now called Hubble’s law3 , after [20].

Big Bang nucleosynthesis

The observation that the universe is expanding led Lemaître [21] to propose
the tantalizing idea that the universe must have been much smaller and denser
in the past. His idea was first met with contempt by his peers; Fred Hoyle even
coined the term ‘Big Bang’ to make fun of Lemaître. However, in 1984 his idea
was put on firmer ground when Gamow and collaborators [22] used his idea to
predict the formation of light elements during the first three minutes. They

2An earlier interpretation came from his mentor Eddington [18], based on Slipher’s mea-
surements of 36 redshifted spiral nebulae in the 1910s. He concluded that De Sitter’s solution
provided an explanation: “there is the general displacement of spectral lines to the red in
distant objects due to the slowing down of atomic vibration which would be erroneously
interpreted as a motion of recession.” Moreover, Lemaître reanalysed the result of De Sitter
in [19] for which he found the linear velocity-distance relation.

3Apparently, in the English translation of Lemaître’s article, the relevant lines about
velocity-distance relation were modified [1].
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had the crucial insight that the nuclear reactions could take place because the
early universe was radiation dominated and very hot. This was the birth of
the Hot Big Bang model, in which Big Bang Nucleosynthesis (BBN) plays a
key role. However, it took the detection of the Cosmic Microwave Background
radiation (see below), before the Hot Big Bang scenario became accepted by
the scientific community. Nowadays, the relative abundances of light elements
are well-tested and - except for the Lithium abundance - in good agreement
with late time observations [23–25].

Cosmic Microwave Background radiation

Soon after, also in 1948, Alpher and Hermann [26] predicted that we should
see an afterglow of the Hot Big Bang. At early times, radiation was in thermal
equilibrium with matter. Only after 380.000 years, when the universe cooled
down to temperatures T ∼ 3000K such that neutral hydrogen could be formed
(recombination), the number of free electrons dropped enormously. Thomson
scattering, coupling photons to free electrons, became inefficient and photons
started to freestream (decoupling). These photons have been travelling since
then, while being redshifted with the expansion of the universe. Alpher and
Hermann predicted that today we are immersed in a bath of thermal photons
of temperature T ∼ 5K. Almost twenty years later Penzias and Wilson [27]
discovered a mysterious isotropic antenna noise, which turned out to be the
Cosmic Microwave Background radiation (CMB). In 1993 the COBE mission
confirmed their measurement and showed that it follows a blackbody spectrum
[28] with average temperature T ≈ 2.7K. Moreover, the COBE team found
[29] small variations in the temperature of order 10−5, reflecting small density
inhomogeneities crucial for structure formation in the late universe. Figure 1.1
shows the most recent map of the CMB temperature variations from the Planck
collaboration [30]

1.1.2 Dark matter and dark energy

Accepting the Hot Big Bang picture of an expanding universe, the next step
was to understand its constituents and its geometry. For that purpose it is
useful to define the critical density for which the universe is flat (κ = 0)

ρc ≡ 3M2
pH

2 . (1.4)

The ratio of the total energy density to the critical density, i.e. the density
parameter Ω ≡ ρ

ρc
is a measure of the geometry of the universe. If Ω = 1

the universe is flat, if Ω < 1 the universe is open (κ = −1) and if Ω > 1 the
universe is closed (κ = 1).
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Figuur 1.1: The CMB intensity map as measured by Planck [30]. The colours
represent small temperature variations of order 10−5 with respect to the background
T ∼ 2.73K.

The BBN computations of Gamow and collaborators [22] provided the first
theoretical prediction of the amount of baryonic matter in the universe. This
was possible, because there is only a short window in time for nucleosynthesis
to take place. The abundance of light elements depends on two parameters:
the expansion rate of the universe (matter to radiation ratio) and the density
of neutrons and protons (baryonic matter). The prediction of Gamow et al
was consistent with the observed matter density in galaxies and intervening
gases, namely a few percent of the critical density. However, this number was
a bit puzzling for another reason. Observations of the rotation curves of the
outer parts of galaxies, starting with the measurements of Babcock [31] and
Oort [32], suggested that the amount of matter in a galaxy should be much
higher, about 20-30 percent of the critical density.

Meanwhile, after the establishment of the Hot Big Bang model and with
the first all-sky redshift surveys of galaxies, Peebles’ picture of hierarchical
structure formation by gravitational clustering [33] gained more support. This
led astronomers to look for temperature variations in the CMB as a proxy for
the amplitude of initial density fluctuations. However, already in the late 70s
it was clear that the temperature fluctuations were too small to account for
all the observed structures [34]. This led several astronomers to suggest the
existence of non-baryonic matter. This idea was not new, because the ear-
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lier observations of Kapteyn [35] (reinterpreted by Jeans [36]) and Zwicky [37]
indicated the presence of invisible matter, or dark matter. Decisive evidence
of dark matter came with the high precision observations of the flattening of
galaxy rotation curves by Rubin [38]. The only known non-baryonic matter
particle was the neutrino, but it was soon realized that its velocity dispersion
is too high to support structure formation on galactic scales. Therefore, seve-
ral Cold Dark Matter (CDM) scenarios were proposed [39–43]. The important
property of CDM is that it has to move with non-relativistic velocities in the
early universe. In addition, the CDM model solved the missing matter pro-
blem described above, so it killed two birds with one stone. Therefore, even
though CDM is of unknown nature up until today, it became part of our mo-
dern cosmological model.

So far so good. A more coherent picture of the contents of the universe
started to emerge. It was believed that the universe contains radiation and
both visible and dark matter, together accounting for ρm ∼ 0.2ρc. If no other
from of energy density were present, this would imply that Ω ∼ 0.2 and that
the universe has an open geometry. However, based on the expectation that
the universe was flat (see § 1.1.3 below), Einstein’s cosmological constant was
reintroduced [44–46] to have Ω = 1. Evidence of a cosmological constant (now
also called dark energy) came from supernovae data [47,48]. It was shown that
the universe is currently in accelerated expansion, exactly what happens if the
cosmological energy density is dominated by dark energy. Moreover, after
COBE identified the tiny temperature variations in the CMB, many more
experiments followed. In particular, the WMAP satellite [49] collected data
on the CMB precise enough to confirm that a flat geometry was favored.

1.1.3 Inflation

With the successes of BBN and CMB another mystery arose. Because the uni-
verse contains a minimal amount of matter, it means that Ω is non-zero today,
and must have been very close to unity in the past. More specifically, it was
argued that if 1−Ω < 0.9 today, then 1−Ω < 10−16 at the time of nucleosyn-
thesis [50]. Moreover, the detection of the CMB suggests that the photons are
in thermal equilibrium across the full sky at the time of decoupling. However,
in the Hot Big Bang model there are about 104 causally disconnected regions
that have not had enough time to interact and reach thermal equilibrium. So,
why is the universe so similar everywhere? It seemed that either a lot of fine-
tuning was required in the initial conditions, or the presence of new physics.
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These problems motivated Guth [51] to propose cosmological inflation4: a
period of exponentially accelerated expansion in the very early universe. Du-
ring inflation 1− Ω quickly decays, and moreover, causally connected regions
become exponentially larger. In other words, the seemingly fine-tuned initial
conditions would be a natural consequence of inflation. However, soon it was
realized [52,53] that his model did not allow for a smooth transition to a FLRW
universe. A new type of inflationary scenario was introduced by Linde [54] and
by Albrecht and Steinhardt [55], which did not suffer from the so-called ‘gra-
ceful exit problem’. Analyses of quantum effects5 followed [58–61] and showed
that inflation also generates small density inhomogeneities. Inflation could
provide the seeds of structure formation!

In light of this major success, the paradigm of inflation was embraced. Fi-
nally, Linde [62] discovered that a stage of inflation would naturally occur for
a broad class of scalar potentials. This is called chaotic inflation, whose me-
chanism is discussed in more detail in § 1.2. The idea that inflation could serve
as the origin of structure was so exciting that theorists tried to embed it in the
cosmological model (see the discussion on dark energy § 1.1.2). Compelling
evidence for inflation came with the observations of the WMAP satellite [49].

This completes the picture of ΛCDM cosmology: an expanding flat uni-
verse filled with dark energy, cold dark matter, baryonic matter, neutrinos and
radiation. This is complemented by scale-free initial conditions for structure
formation. A period of inflation could account for these initial seeds. After
inflation ends, its energy density has to be transferred to the Standard Model
particles, after which the Hot Big Bang starts.

1.1.4 What’s next?

Fast forward to today. Many more precision tests have been performed and
confirmed the predictions of ΛCDM. The baseline model, parameterized by
only six parameters, works surprisingly well. The current best-fit values of the
density parameters of dark energy, dark matter, baryonic matter derived from
the CMB are [63]

Ω0
Λ = 0.692± 0.012, Ω0

ch
2 = 0.1186± 0.0020, Ω0

bh
2 = 0.02226± 0.00023 .

4For more details on the development of inflation, see [3]
5In fact the road had been paved earlier by the quantum perturbation analysis of Muk-

hanov and Chibisov [56] for Starobinky’s model [57] of the primordial universe. Also from
the English translation, which can be found in [4], they already understood that a phase of
cosmological expansion can create the seeds for galaxy formation.
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Here the superscript 0 means that the density parameter is evaluated at the
present time. The parameter h equals the value of the Hubble parameter in
particular units, it is defined in Eq. 1.5. In addition, there are neutrinos and
radiation, but today their contribution to the energy density is very small. Ra-
diation did, however, dominate the energy budget at earlier times. Moreover,
the value of the Hubble parameter at the present time has the best-fit value
(from the CMB)

H0 ≡ 100h
km

s Mpc
= 67.81± 0.92

km
s Mpc

. (1.5)

In addition, two well-constrained assumptions of ΛCDM are the flatness of the
universe and the homogeneity and isotropy of the universe.

The success of ΛCDM is fantastic in the light of observational data. Howe-
ver, we have no clue about the nature of dark matter, dark energy and what
drives inflation. More optimistically speaking, perhaps we are on the verge
of another radically new idea. For instance, some tensions between datasets
are reported [64–66], which might provide us with some hints. And of course
the next generation of CMB experiments [67] and large scale structure sur-
veys [68, 69] are designed to reach unprecedented precision with the aim to
discover new physics.

The remainder of the thesis is dedicated to scientific questions related to
inflation. Broadly speaking, we aim to improve our understanding of which
signals to look for and what we can learn about inflation from observations in
the near future.

1.2 Inflation

We review some relevant elements of inflation, as it is the main topic of this
thesis. We start with a recap of single-field inflation. In particular, we out-
line the generic mechanism of chaotic inflation in § 1.2.1 and the generation
of perturbations in § 1.2.4. Two important ingredients are the slow-roll ap-
proximation and mode freezing at horizon crossing. Mode freezing connects
inflation naturally to the late universe. It results in the observed ‘phase cohe-
rence’ of the CMB, which is the most compelling evidence in favor of inflation,
as we will discuss in § 1.2.5.

Interestingly, the inflationary predictions are sensitive to the details of the
field theory under consideration (see § 1.2.4 and § 1.3). Inflation is therefore
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the crossroad where particle physicists and cosmologists meet, and precision
cosmological observations might reveal a glimpse of high-energy physics. We
discuss the theoretical targets in § 1.2.4 and summarize the outline of future
observations that might help us to reveal the nature of inflation in § 1.2.6.
Finally, we outline the scope of this thesis in § 1.3.

1.2.1 Chaotic inflation

Inflation is a period of accelerated expansion in the early universe. How do
we meet the requirements from § 1.1.3 that it solves the fine-tuning problems,
but also has a graceful exit to a FRLW universe? To achieve the former it
turns out that we need at least 60 efolds of inflation (see e.g. [70]). One efold
is the time in which the universe expands by a factor of e, so after N efolds
the scale factor grows with a factor eN . In other words: dN = d ln a = Hdt
(see the discussion following Eq. 1.2).

One thing that comes to mind is a slowly varying cosmological ‘constant’,
or Ḣ ≈ 0. Linde [62] figured out that this can be realized with a simple scalar
field theory, where the scalar field slowly rolls down to the minimum of its
potential, providing a source of almost constant energy density. Importantly,
in these models inflation is an attractor solution and will eventually happen for
a wide range of initial conditions, which explains the name chaotic inflation.
Let’s see how this works.

We consider the toy model of a simple scalar field ϕ minimally coupled to
Einstein gravity

S = −1

2

∫ √
−g
[
−M2

pR+ gµν∂µφ∂νφ+ 2V (φ)
]
, (1.6)

Here R is the Ricci scalar of spacetime. The potential is a smooth function of φ
with minimum V (φ0) = 0. Without loss of generality we can take φ0 = 0. For
instance, one could thing of a quadratic potential V = 1

2m
2φ2. The dynamics

of the homogeneous scalar field is determined by its equations of motion

φ̈+ 3Hφ̇+ Vφ = 0, (1.7)

where we denote a derivative with respect to φ with a subscript Vφ ≡ ∂V
∂φ ,

together with the Friedmann equations

3H2M2
p =

1

2
φ̇2 + V , (1.8)

Ḣ = − φ̇2

2M2
p

. (1.9)
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The field equation is the same as that of a damped harmonic oscillator, where
the Hubble friction depends on the dynamics of the field itself. The second
Friedmann equation Eq. 1.9 is not an independent equation, but will be useful
in § 1.2.3. Qualitatively, the friction is large when the scalar field is far from
the origin, and it gets even larger when the initial velocity φ̇ is substantial.
The friction quickly slows down the scalar field, such that it approximately
follows the gradient flow [54, 55]

3Hφ̇+ Vφ ≈ 0 . (1.10)

Assuming that we can neglect the contribution of the kinetic energy to the
Hubble friction in Eq. 1.8, the gradient flow approximation becomes (in efolds)

dφ

dN
≈ −

M2
pVφ

V
. (1.11)

This shows that the field displacement is small within one expansion time, as
long as V �Mp|Vφ|. In that case, the potential energy is slowly varying, and
the kinetic energy is indeed negligible. This implies that the Hubble parame-
ter is almost constant, and the scale factor grows quasi-exponentially fast for
many efolds. This is exactly as desired! Finally, we have to check the validity
of the gradient flow approximation. Using Eq. 1.11 we see that we can neglect
the field acceleration in Eq. 1.7 if in addition V �M2

p |Vφφ|.

To prove the attractor behavior of chaotic inflation one has to do a more
careful stability analysis. For a nice treatment see for instance [4]. In this
thesis we will instead review an argument using the Hamilton-Jacobi formu-
lation in § 1.2.3. Moreover, we assume a homogeneous scalar field from the
start. For recent studies of the attractor behavior of scalar field inflation with
inhomogeneous initial conditions see [71,72], see also the review [73].

1.2.2 Slow-roll inflation

An important feature of chaotic inflation is that the scalar field quickly ap-
proaches the gradient flow. Tracing it back to the original requirement of
accelerated expansion, this ensures that the Hubble parameter is slowly chan-
ging in time − Ḣ

H2 � 1. Therefore, the gradient flow approximation can be
formalised as the Hubble slow-roll approximation [74–76]. Slow-roll inflation is
defined as a period of near-exponential expansion for which all Hubble slow-roll
parameters are much smaller than unity

ε ≡ − Ḣ

H2
, εn+1 ≡

ε̇n
Hεn

for n ≥ 2 . (1.12)
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Here it is understood that ε = ε1. Usually, the second slow parameter is
denoted by η = ε2. Notice that in the toy model of § 1.2.1 we could also have
rephrased the gradient flow assumption in terms of conditions on potential

slow-roll parameters εV ∼
M2
p

2

(
Vφ
V

)2
� 1 and ηV ∼

M2
p

2
Vφφ
V � 1. However,

the Hubble slow roll approximation applies to a much more general class of
inflationary models, including many models of multi-field inflation6. For that
reason we will use the Hubble slow-roll parameters, defined in Eq. 1.12, in the
remainder of this thesis.

1.2.3 Hamilton-Jacobi formulation

A particularly neat way to show linear stability of slow roll inflation is presen-
ted by Salopek and Bond [74], see also [76]. They employ the Hamilton-Jacobi
formulation [74, 77, 78] of single field inflation. Moreover, this formalism can
be used to construct inflationary models with exact solutions.

In the Hamilton-Jacobi formalism the scalar field itself7 parameterizes the
inflationary trajectory, and the Hubble parameter H(φ) determines the inflati-
onary dynamics. The Hubble parameter replaces the potential as fundamental
input function and straightforwardly gives all slow-roll parameters (combining
Eq. 1.12 and Eq. 1.14)

ε ≡ 2M2
p

H2
φ

H2
, εn+1 ≡ −2M2

p

εn,φHφ

εnH
for n ≥ 2 . (1.13)

The potential and the Hubble parameter are related through the Hamilton-
Jacobi equation, though. This allows us to prove linear stability of chaotic
inflation. In addition, this formalism can be used to (locally) reconstruct the
potential, given the Hubble slow-roll parameters that characterise the obser-
vations (see § 1.2.4).

6In a multi-dimensional field space the inflationary trajectory is in general not aligned
with the gradient of the potential. Therefore, it makes no sense to use the gradient of the
potential as a proxy of the size of the field velocity.

7The only requirement is that φ is monotonic. This means that, for instance, oscillations
around the minimum of the potential cannot be captured within this approach.
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Hamilton-Jacobi equation

An easy way to derive the Hamilton-Jacobi equation is to replace H(t) with
H(φ) and use the second Friedmann equation Eq. 1.9 to write

Ḣ = φ̇Hφ = −εH2 = − φ̇2

2M2
p

−→ −2M2
pHφ = φ̇ . (1.14)

This allows us to rewrite the first Friedmann equation Eq. 1.8 as the Hamilton-
Jacobi equation

V = 3H2M2
p − 2M4

pH
2
φ, (1.15)

where all functions now explicitly depend on φ. Given some Hubble parameter
H(φ), the potential follows straightforwardly from the Hamilton-Jacobi equa-
tion. If we take the field derivative of Eq. 1.15 and use Eq. 1.14 we find the field
equation of motion Eq. 1.7. This means that the Hamilton-Jacobi equation is
equivalent to the field equation of motion, modulo some integration constant
φ0. The initial value of the Hubble parameter is the same as specifying φ̇0 at
some φ0.

Stability of slow-roll inflation

We now review the stability argument presented by Salopek and Bond [74].
Let’s assume that we identified a solution H(φ) to Eq. 1.15 for a given poten-
tial. This is possible in the regime where φ is monotonic. It follows directly
from perturbing Eq. 1.15, while keeping the potential fixed, that a small per-
turbation in H evolves as

δH(φ) = δH(φ0) exp

(∫ φ

φ0

dφ
3

2M2
p

H

Hφ

)
. (1.16)

Since φ̇ and H
Hφ

have opposite sign the perturbations will decay. To understand
how fast they decay rewrite the argument of the exponent in terms of efolds
by using dφ = φ̇

H dN = −2M2
p
Hφ
H dN . This yields

δH(N) = δH(0) exp (−3N) . (1.17)

We learn that different solutions H(φ) of Eq. 1.15 approach each other expo-
nentially fast. Therefore, any functional form of H(φ) provides an (possibly
non- inflationary) linear attractor solution to the corresponding potential, com-
puted from Eq. 1.15, as long as it is monotonic.

To address the attractor behavior of chaotic inflation, let’s make use of the
slow roll expansion. The zeroth order solution (with ε = 0) for the Hubble
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parameter is given by H2
SR = V

3M2
p
. The solution H(φ) to the Hamilton-Jacobi

equation is always larger than this, but to support inflation it has to obey

HSR < H(φ) <

√
3

2
HSR . (1.18)

Therefore, is there a solution close to HSR? If yes, it can be found perturba-
tively from Eq. 1.15

H(0) = HSR, H(1) = HSR

√
1 + 1

3ε
(0), (1.19)

etcetera. Therefore, we expect that if the slow-roll parameters computed with
HSR are small, then the solution to Eq. 1.15 is an inflationary solution, and
moreover it is an attractor. In other words, slow-roll inflation is an attractor.
Please see [76] for a more precise treatment.

Reconstruction potential

The Hamilton-Jacobi formalism can also be used to find exact inflationary
solutions [75, 77, 79, 80]. To illustrate this, we reconstruct the potential which
allows for slow roll parameters of the form

ε =
p

2∆N + p
, (1.20)

where ∆N = Ne −N is the number of efolds before the end of inflation. We
added a p in the denominator to ensure that ε = 1 at the end of inflation.
Notice that with this parameterization all other slow-roll parameters follow
automatically. This parameterization of ε has to be understood as a fit to the
data, i.e. it only is guaranteed to work well at the time that the observable
modes cross the horizon (see § 1.2.4). Therefore, the potential we reconstruct
provides a good approximation around the field values of horizon crossing only.

First, we write ε in terms of φ by integrating dφ/dN = −
√

2εMp. Here the

minus sign is our choice of convention. This yields ε =
2M2

pp
2

φ2 . From Eq. 1.13
it then follows that H = cφp, with c some constant. Therefore, we find the
following potential from the Hamilton-Jacobi equation Eq. 1.15

V = 3c2M2
pφ

2p−2

(
φ2 −

2p2M2
p

3

)
. (1.21)

These are the familiar power law potentials up to a small correction, which
is only there to ensure the exact behavior of the assumed slow roll parame-
ters. One can indeed check that φ̇ = Hdφ/dN = −2cpM2

pφ
p−1 solves the field
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equations of motion exactly.

One might worry that if we slightly change the functional form of H(φ)
around horizon crossing, this could change the global structure of the potential
quite a bit. However, in single field slow roll inflation this will not affect
the inflationary predictions, so long the slow parameters behave smoothly.
Therefore, we should not take the global behavior of the resulting potential too
seriously, except possibly when the form of H(φ) is constrained by symmetries.

1.2.4 Inflation as the origin of structure

The major success of inflation is that it provides a mechanism to create the ini-
tial seeds for structure formation from quantum fluctuations [56]. The rough
picture is that quantum perturbations are stretched exponentially fast during
inflation. The Hubble scale 1

aH quickly drops below their comoving wave-
lengths, where their amplitude freezes out. At much later times, when they
become sub-Hubble again, they provide the gravitational wells that triggers
structure formation.

Primordial perturbations

Let us recap the main steps in the computation of primordial perturbations
for single field slow roll inflation. We follow the treatments of [5,81,82], albeit
with a different notation. The leading order behavior of quantum fluctuations
is captured by a linear perturbation analysis. Therefore, we start with li-
near perturbations around the homogeneous inflationary background solution.
Using the ADM decomposition of the metric [83] we write

φ(t,x) = φ(t) + δφ(t,x),

ds2 = −Ndt2 + gij
(
dxi +N idt

) (
dxj +N jdt

) (1.22a)

(1.22b)

align Here N (t,x) and Ni(t,x) are the lapse and the shift functions, respecti-
vely. They are not dynamical, but auxiliary variables solved by the Einstein
equations, which become constraints in this case. The remaining perturba-
tions in the metric can be decomposed into scalar, vector and tensor modes,
depending on how they transform under rotations about the axis defined by
its Fourier vector k. This decomposition is quite useful because the different
types of perturbations decouple at the linear level, as a consequence of trans-
lational and rotational invariance of the background [5]. The spatial metric
perturbation gij together with the field perturbation can be split in two scalar,
one vector and one tensor mode. However, not all of them are physical degrees
of freedom, since reparametrization invariance xµ → xµ+ξµ(t,x), removes one
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scalar and one vector mode. Therefore, we are left with one scalar and one
tensor mode, equivalent to one scalar and two tensor degrees of freedom. For
the purpose of the computation it is useful to work in a particular gauge that
fixes time and spatial reparametrizations. We choose the comoving gauge

δφ = 0 and gij = a2(t) ((1 + 2R)δij + hij) , (1.23)

where R is the comoving curvature perturbation which measures the curvature
of the spatial hypersurfaces in this gauge. Moreover, hij is transverse and
traceless and contains the two tensor degrees of freedom. The quadratic action
for R and hij can be found by expanding the full action Eq. 1.6 to second
order, replacing N and N i by their solution of the constraint equations, and
performing integration by parts

S(2) =

∫
d4xa3M2

p

[
ε

(
Ṙ2 − 1

a2
(∇R)2

)
+

1

8

(
ḣ2
ij −

1

a2
(∇hij)2

)]
. (1.24)

To perform the quantization of the curvature perturbations, it is convenient
to go to conformal time adτ = dt and change to the canonically normalized
Mukhanov-Sasaki variable [84–86]

v ≡ zRMp with z ≡ a
√

2ε . (1.25)

The quantization of the theory [87] proceeds by promoting the field v to a
quantum operator

v̂(t,x) =

∫
d3k

(2π)3

[
vk(τ)âke

ik·x + v∗k(τ)â†ke
−ik·x

]
, (1.26)

where the creation and annihilation operators satisfy the commutation relati-
ons [

âk, â
†
p

]
= (2π)3δD(k− p), [âk, âp] =

[
â†k, â

†
p

]
= 0 . (1.27)

This, together with the selection of the Bunch-Davies vacuum âk|0〉 = 0, fixes
the initial conditions of the mode functions vk(τ). The mode functions satisfy
a modified Klein-Gordon equation in conformal time

v′′k +

(
k2 − z′′

z

)
vk (1.28)

In the short wavelength limit k2 � z′′

z this is the equation of a harmonic os-
cillator. In the long wavelength limit k2 � z′′

z one of the solutions is vk ∼ z,
which corresponds to R ∼ const. This agrees with the homogeneous equation
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of motion ∂t(a3εṘ) = 0, derived from the quadratic action Eq. 1.24. The con-
stant solution is the dominant one, as long as

∫
dt
a3ε

is decaying. For slow-roll
inflation this is always the case.

More precisely, at first order in slow-roll, the solution of the mode function
to Eq. 1.28 subject to the quantum initial conditions is given by

vk(τ) =

√
π

4k

√
−kτH(1)

ν (−kτ), with ν ≡ 3

2
+ ε− 1

2
η , (1.29)

modulo a random phase. On superhorizon scales −kτ = k
aH � 1 the mode

function of the curvature perturbation asymptotes to [88]

lim
−kτ�1

|k3/2Rk| =
2νΓ(ν)√

8πε

H

Mp
(−kτ)3/2−ν . (1.30)

Using the approximate relation [82] that for slow-roll inflation H
Mp
√
ε

(−kτ)3/2−ν

is a constant, this allows us to evaluate Eq. 1.30 at horizon crossing −kτ =
k
aH = 1 where ν ≈ 3/2. This validates the horizon crossing formalism, where
the typical size of curvature perturbations at the end of inflation is related to
the inflationary background quantities evaluated at horizon crossing.

The variance of curvature perturbations is captured by the dimensionless
power spectrum ∆2

R(k), defined as

k3

2π2
〈R(k)R(k′)〉 ≡ (2π)3δ

(3)
D (k + k′)∆2

R(k) . (1.31)

Homogeneity and isotropy imply that the correlation functions in Fourier space
always come with an overall delta-function. Using Eq. 1.30 the dimensionless
power spectrum evaluates to

∆2
R(k) =

H2

8π2εM2
p

∣∣∣∣
k=aH

. (1.32)

Since H and ε are nearly constant during slow-roll inflation, the power spec-
trum is almost scale-invariant. It has a small scale dependence though, be-
cause different modes cross the horizon at different times and they will all feel
a different Hubble and slow-roll parameter. Therefore it is convenient to pa-
rameterize the power spectrum by its amplitude As and scalar spectral index
ns

∆2
R(k) = As(k∗)

(
k

k∗

)ns−1

. (1.33)
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Here k∗ is the ‘pivot scale’, a reference scale at which the amplitude is evalu-
ated.

A similar analysis applies to the tensor perturbations [57]. The transverse
and traceless hij contains two tensor polarization modes. Comparing the re-
lative normalizations of hij and R in the quadratic action Eq. 1.24 we expect
the power spectrum of tensor perturbations ∆2

t to be 2 × 8ε × ∆2
R, which is

indeed the case:

∆2
t (k) =

2H2

π2M2
p

∣∣∣∣
k=aH

. (1.34)

Also the power spectrum of tensor perturbations can be parametrized in terms
of the tensor spectral index nt and the tensor-to-scalar-ratio r

∆2
t (k) = At(k∗)

(
k

k∗

)nt
and r(k∗) ≡

At(k∗)

As(k∗)
. (1.35)

The tensor-to-scalar-ratio measures the ratio between the amplitude of tensor
perturbations with respect to the scalar perturbations.

Theoretical Targets - First of all, a measurement of stochastic back-
ground of primordial gravitational waves on large scales would be ground-
breaking, as it probes the quantum nature of gravity. Moreover, it provi-
des another important confirmation of inflation and probes its energy scale.
For instance, for the simplest models of inflation8 a measurement of both
the scalar amplitude As and the tensor-to-scalar ratio r is translated into
V 1/4 ∼

(
r

0.009

)1/4×1016 GeV [89]. It has been argued [67] that σ(r) = 0.001 is
a clear theoretical benchmark, because it allows us to falsify all simple models
that naturally explain the observed spectral tilt.
Moreover, using the slow-roll approximation, we can summarize the leading
order predictions of the simplest models of inflation as

r = 16ε, ns = 1− 2ε− η, nt = −2ε . (1.36)

Notice the consistency relation r = −8nt [75]. This provides us with ano-
ther theoretical target: a violation of this consistency relation signals that we
should break at least one of the conditions listed in footnote 8.

At this stage it is perhaps interesting to remark that, going beyond the sim-
plest realization of inflation, the curvature perturbations could have a sound

8 By the simplest models of inflation we mean canonical single-field slow-roll inflationary
models minimally coupled to gravity, and with Bunch-Davies initial conditions.
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speed cs smaller than unity, see e.g. [90]. The quadratic action for curvature
perturbations now reads

S(2) =

∫
d4xa3M2

p

[
ε

(
Ṙ2

c2
s

− 1

a2
(∇R)2

)]
. (1.37)

Repeating similar computations as outlined above yields r = 16εcs, assuming
that cs ≈ const. In other words, this might change our interpretion of the
data. In Chapter 5 we will illustrate how this effect may arise in a simple two
field set-up, where the curvature perturbation interacts with a heavy degree
of freedom.

Primordial non-Gaussianities

We have seen that single field inflation generates scalar and tensor perturba-
tions. Above we only computed their variance, but in principle the full pro-
bability distribution could be computed. Primordial non-Gaussianities have
been studied thoroughly since the pioneering works [81,91], see e.g. [92,93] for
reviews. Since the computation of primordial perturbations is organized per-
turbatively, it is natural to work with correlation functions. In this thesis we
consider only the two- and three-point correlation functions. The bispectrum
of curvature perturbation is defined by

〈R(k1)R(k2)R(k3)〉 ≡ (2π)3δ
(3)
D (k1 + k2 + k3)BR(k1, k2, k3) . (1.38)

A similar definition applies to the tensor perturbations and any cross-correlation
between the variables. The dimensionless bispectrum and shape function are
given by

IR(k1, k2, k3) ≡ k2
1k

2
2k

2
3

4π4
BR(k1, k2, k3),

fNL(k1, k2, k3) ≡ 5

6

BR(k1, k2, k3)

PR(k1)PR(k2) + PR(k1)PR(k3) + PR(k2)PR(k3)
,

(1.39a)

(1.39b)

respectively. The denominator of the shape function depends on the dimensi-
onfull power spectrum PR(k) ≡ 2π2

k3 ∆2
R(k). The full scale dependence of the

bispectrum for canonical single field slow-roll inflation has been computed for
the first time by Maldacena [81]. It turns out that the amplitude of the signal
is very small, because interaction terms are slow-roll suppressed fNL ∼ O(ε, η).

The bispectrum contains a wealth of information. If we constrain or probe
its amplitude and its three dimensional scale-dependence, we learn about the
possible (self-)interactions of the inflaton. More sizeable non-Gaussianities
fNL ∼ 1 might be generated if we deviate from one of the assumptions of
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canonical single-field slow-roll inflation with Bunch-Davies initial conditions.
However, please keep in mind that a bispectrum with amplitude of order unity
is already extremely challenging to measure, since the amplitude of the power
spectrum is tiny ∆2

R ∼ 10−9 (see § 1.2.5), implying that IR ∼ 10−18fNL. But
this is definitely worth pushing for.

The bispectrum is a three-dimensional function, which makes it challenging
to compare efficiently with data. Also, the scale-dependence cannot always be
computed analytically for a given inflationary model. In order to compare
with the data, it is therefore useful to have a set of templates that resemble
various possible scale-dependencies of the bispectrum well. Let us highlight
three well-motivated shape templates for the bispectrum:

• The local shape. A simple modification to the Gaussian probability dis-
tribution function (in real space) arises from a small non-linear correction
to the Gaussian curvature perturbation [94]

R(x) = Rg(x) +
3

5
f locNL

(
R2
g(x)− 〈R2

g(x)〉
)
. (1.40)

This corresponds to a constant shape function equal to f locNL. This ex-
plains why fNL is defined as it is. The factor 3/5 comes from the trans-
lation to the primordial gravitational potential, see § 1.4. The dimen-
sionless bispectrum, on the other hand, peaks in the squeezed configu-
ration where one of the wavenumbers is much smaller than the others
k1 � k2, k3. This type of non-Gaussianity arises for instance in multi-
field inflation [95], where the curvature perturbations are sourced on
super-Hubble scales by the other fields. For a nice explanation and a
review of other scenarios that create local non-Gaussianities see [96].

• The equilateral shape. The dimensionless bispectrum of equilateral non-
Gaussianity peaks in the equilateral configuration where all wavenumbers
are equal k1 = k2 = k3.

IeqR (k1, k2, k3) =
6

5
f eqNL

81∆2
R

(2π2)4

k1k2k3

K3
, with K ≡ k1+k2+k3 . (1.41)

Equilateral non-Gaussianity is generated in models of inflation where the
interactions are most important around the time of horizon crossing. For
instance it is created in single field inflation with a small inflaton sound
speed [97–99].

• The quasi-single-field shape. Finally, if the inflaton interacts with an
isocurvaton of mass µ . H a bispectrum with a shape that interpolates
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between local and equilateral is produced [100,101]. Its scale dependence
is well approximated by the following template

IqsfR (k1, k2, k3) =
6

5
fqsfNL

9
√

3∆2
R

(2π2)4

k1k2k3

K3

Nν(8κ)√
κNν(8/27)

, (1.42)

with κ ≡ k1k2k3/K
3 andNν the Neumann function of order ν ≡

√
9
4 −

µ2

H2 .

Theoretical targets - Which precision do we require from future ob-
servations, such that we learn something even in the absence of a detection?
Concerning the amplitude of these three shapes, the theoretical benchmark
for equilateral non-Gaussianity reads σ(f eqNL) = O(1). First of all, single-field
slow-roll inflation necessarily produces an amplitude smaller than unity [97].
Second, a detection of f eqNL larger than unity implies that inflation becomes
strongly coupled, or it signals the presence of new fields [102–104]. The theo-
retical benchmarks for the other two shapes are less clear. In [103] it has been
argued that σ(f locNL) = O(1) is of theoretical interest, because this can disfavor
a particular class of inflationary models.
A very important target for future observations is to constrain the amplitude
of the bispectrum in the squeezed configuration, where one the wavenumbers
is much smaller than the others. Maldacena [81] derived an important consis-
tency relation of the single field bispectrum

Bsq
R (q, ks) ≡ lim

q�ks
BR(q, ks, ks) = (1− ns(ks))P (q)P (ks) . (1.43)

This relation was proven to be valid for all single-field attractor models of
inflation [105–107]. Moreover, it was shown to be non-observable [108,109] in
the late universe, up to projection effects. In terms of the shape function one
gets9

f sq, obsNL (q, ks) = 0 +O
(
(q/ks)

2
)

(1.44)

Therefore, any detection of a signal in the squeezed limit would rule out single
field inflation!

9The reason is that a local observer is freely falling in a FRLW background modified by
the long wavelength perturbation R`. It turns out that the observer can only distinguish
R` from the background by its second spatial derivative (or higher) [110].
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Initial conditions after inflation

After inflation ends, its energy density is transferred into a soup of particles
that lead to the universe today. This process is called reheating, and its pre-
cise mechanism is unknown. After many interactions in this dense plasma it
is expected that the baryons, photons and neutrinos thermalize. This is the
onset of the Hot Big Bang.

The reason why we can probe the epoch of inflation, regardless of the de-
tails of reheating and other unknown physics, is due to an important theorem
by Weinberg [111]. It states that the curvature perturbationR remains conser-
ved on superhorizon scales whenever perturbations are adiabatic, independent
of the matter content of the universe. Only when the curvature perturbations
enter the horizon, they start to evolve again. This allows us to probe the pri-
mordial universe by observing the largest scales we can access today.

Adiabatic perturbations are perturbations that mimic a local time shift
of the homogeneous background. Perturbations along the inflationary back-
ground solution correspond to a local time shift of the homogeneous back-
ground. Some parts of the universe end inflation slightly ahead of time and
other parts slightly behind, i.e. single field inflation produces adiabatic per-
turbations. After the inflaton has decayed into the hot plasma, we can relate
the overdensities of the various particle species X and Y to each other

δt =
δρY
ρ̇Y

=
δρX
ρ̇X
∼ δX

1 + ωX
=

δY
1 + ωY

. (1.45)

Here we defined the density contrast δX ≡ δρX
ρX

and the equation of state
ωX ≡ pX/ρX for each of the particles species X. This implies the following
relation between matter, cold dark matter, photon and neutrino overdensities
on superhorizon scales

δb = δc =
3

4
δγ =

3

4
δν . (1.46)

Therefore, as long as we understand the evolution of the density perturbati-
ons when they enter the horizon, we can relate their statistical properties to
those of R. It is most convenient to study perturbations on the largest sca-
les, because i) they only entered the horizon recently, where we understand
better the constituents of the universe and ii) they are well captured by li-
near perturbation theory and carry the cleanest information from the early
universe.
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1.2.5 Evidence and constraints

The statistics of the CMB temperature variations confirm a couple of non-
trivial predictions of inflation. The CMB provides us with a snaphot of the
universe when it was only approximately 380.000 years old. This means that we
probe, among other things, superhorizon correlations of density fluctuations.
This is the reason that it provides an excellent test of inflation. Moreover,
the current precision reached by CMB measurements starts to constrain the
subtle details of inflation. We summarize the key findings so far:

• The structure of peaks and troughs of the CMB power spectrum provides
compelling evidence in favor of inflation [112]. To appreciate this idea,
we give an extremely simplified explanation of CMB physics, see e.g.
[113, 114] for more details. Before the CMB photons were emitted, the
photons were tightly coupled to electrons through Thomson scattering.
The electrons were, in turn, tightly coupled to protons by the Coulomb
interaction. Therefore, the system behaved like a single photon-baryon
fluid. This fluid supports ‘acoustic oscillations’ as a consequence of the
competing effects of gravitational collapse and radiation pressure. The
gravitational source term is set by the initial conditions provided by
inflation. The special feature of inflation is that Ṙ = 0 on superhorizon
scales, which implies that the density perturbations all start oscillating
in phase (at maximal amplitude). The acoustic oscillations suddenly
stop at recombination when the radiation pressure disappears and the
CMB photons start free-streaming towards us. Because the photons have
to climb out of the potential wells created by the matter overdensities,
they provide us with a snapshot of the density field at recombination.
The density perturbations of a given wavenumber are all captured in
the same phase of their oscillation, because they started oscillating at
the same time when they entered the horizon. On the largest scales the
perturbations are still frozen. On the smaller scales some modes are
captured in their minimum, some in their maximum, and this produces
the peaks and troughs in the CMB temperature power spectrum. If not
for this phase coherence, the peaks in the CMB temperature spectrum
would be washed away.

• The CMB probes the primordial power spectrum of curvature perturbati-
ons in the range 0.0001 Mpc−1 ≤ k ≤ 0.3 Mpc−1. The Planck collabora-
tion [115] has reported a detection of the deviation from a scale-invariant
power spectrum with 5.6σ confidence level. Moreover, the amplitude is
given by ln(1010As) = 3.089 ± 0.036 at k∗ = 0.05 Mpc−1. Joint cons-
traints on the scalar tilt ns and the tensor-to-scalar ratio r are shown
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in Figure 1.2. They are evaluated at the pivot scale k∗ = 0.002 Mpc−1,
which corresponds to a horizon-crossing time between 50 and 60 efolds
before the end of inflation [116].

Figuur 1.2: Marginalized joint 68% and 95% CL contours on the tensor-to-scalar
ratio r and spectral tilt ns at the pivot scale k∗ = 0.002 Mpc−1 from Planck [115]
together with other datasets. The predictions of some selected inflationary models
are shown as well.

• Phase coherence puts strong constraints on the adiabaticity of the uni-
verse. Planck [115] has tested some of the relations in Eq. 1.46 to almost
percent level accuracy. A detection would falsify single field slow-roll
inflation, and is for that reason very interesting. It is possible that iso-
curvature (non-adiabatic) perturbations are generated during inflation,
but it requires that more than one scalar degree of freedom is excited.
Therefore, late-time isocurvature perturbations could give us some in-
formation about the mechanism of inflation. However, how the late-time
isocurvature perturbations are related exactly to the isocurvature pertur-
bations produced during inflation depends on the details of reheating. In
fact, reheating might even wash out (part of) the primordial isocurvature
perturbations [117].

• The Gaussianity of the primordial fluctuations has also been tested to a
high degree. In the comparison with CMB data [118], various templates
for the shape are considered, some of them are described in Eq. 1.40,
Eq. 1.41 and Eq. 1.42. The amplitude is evaluated in the equilateral
configuration fNL(k) ≡ fNL(k, k, k). The current best constraints [118]
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on the local and equilateral types of non-Gaussianity are

f locNL = 0.8± 5.0 and f eqNL = −4± 43 (68% CL) . (1.47)

• The location of the first peak in the CMB spectrum depends on the
geometry of the universe. This indicates that the universe is flat to very
high precision Ωκ = −0.005+0.016

−0.017 at 95% CL [115]. This is compatible
with inflation, because it was designed to create a flat universe.

1.2.6 Future probes of inflation

What are the observations that will teach us more about inflation in the future?

Cosmic Microwave Background experiments - There is much room
for improvement in CMB experiments to constrain the amplitude of primordial
tensor fluctuations by observing primordial B-mode polarization. The CMB
photons are polarized via Thomson scattering, see e.g. [119]. An electron at the
last scattering surface is surrounded by a slightly non-isotropic radiation field,
because of the small temperature variations. Therefore, the CMB photons will
carry an overall polarization that is correlated with the temperature fluctuati-
ons. Polarization is a vector field and can be decomposed in so-called E-modes
and B-modes [120–122]. This decomposition is particularly useful because only
tensor perturbations can create a primordial B-mode signal. Therefore, cons-
training the amplitude of the primordial B-mode polarization is an important
observational goal. It has been forecast that CMB-S4 [67] will be able to do
better than σ(r) = 0.001, provided there is large increase in the number of
detectors.

Concerning primordial non-Gaussianities, it has been estimated [123] that,
with improved temperature and polarization measurements, the error bars can
maximally decrease by a factor of two, which is unfortunately not sufficient to
reach the theoretical thresholds quoted between Eq. 1.42 and Eq. 1.43. Fortu-
nately, there is a promising opportunity to constrain the squeezed primordial
bispectrum from the CMB by observing spectral distortions [124, 125]. The
energy spectrum of the CMB is not a perfect blackbody, but has tiny distor-
tions [126]. Two types of spectral distortions are sensitive to the integrated
power spectrum between 1Mpc−1 < k < 50Mpc−1 [127] and 50Mpc−1 <
k < 104Mpc−1 [126] respectively. Therefore, correlating the spectral distor-
tion with large scale temperature fluctuations provides a measurement of the
bispectrum in the ultra-squeezed limit. It has been forecast [128] that a fu-
turistic idealized cosmic-variance-limited survey can reach error bars of order
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σ(f sqNL) = O(10−4).

Large Scale Structure experiments - Long after the emission of the
CMB photons the small initial density perturbations evolved into the large
scale structures in which galaxies formed. Galaxies and neutral hydrogen
trace the underlying matter distribution, and can be used to infer its sta-
tistical properties. Moreover, weak lensing in addition infers the integrated
matter density along the line of sight. Since large scale structure surveys help
us to reconstruct the three-dimensional distribution of matter, they contain in
principle much more information than the two-dimensional CMB. The chal-
lenge, however, is to extract this information, because gravitational clustering
is a non-linear process. Moreover, since galaxies are expected to form only
in the densest regions, they are biased tracers of the matter distribution. In
this thesis we consider the possibility of using the bispectrum as a probe of
primordial non-Gaussianities (see § 1.3 and § 1.4.) Another opportunity to
constrain primordial non-Gaussianities comes from galaxy bias. It turns out
that a non-zero squeezed bispectrum imprints a particular scale-dependence
in the galaxy power spectrum [129]. The prospects are that Euclid [69] can
reach σ(f sqNL) = O(5) [130] and the optimized proposed SPHEREx survey
can reach σ(f sqNL) = O(1) [130]. Moreover, future intensity mapping experi-
ments (of neutral hydrogen) such as SKA [131], are expected to be competitive
σ(f sqNL) = O(0.5) [132].

Other probes - With the exciting discipline of gravitational-wave cos-
mology [133], we can search for a stochastic background of primordial gravita-
tional waves directly. From the CMB to ground-based GW experiments, a
range of scales with more than 20 orders of magnitude [134] is scanned. This
allows us to constrain the tensor tilt nt to much better accuracy than the CMB
alone [134, 135]. Moreover, it constrains the amplitude of primordial gravita-
tional waves and therefore r. Another probe is offered by the non-detection of
primordial black holes [136], which constrains the integrated primordial scalar
power spectrum.
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1.3 Outline thesis

This thesis is about “spectroscopy” of two-field inflation. The power spectrum
and bispectrum contain a wealth of information about the primordial universe.
In particular, the amplitude and scale dependence of inflationary spectra might
tell us something about the spectrum of masses of other fields relevant at the
time of inflation, and their couplings to the inflaton.

This thesis consists of two parts. In Part I we study the phenomenology
of two-field extensions of the simplest models of inflation. In Part II we in-
vestigate the utility of the bispectrum as a probe of non-Gaussianities in large
scale structure experiments.

Multi-field inflation

Inflation gives us an opportunity to probe energy scales not accessible at earth
based experiments. This means that inflation may shed light on the UV com-
pletion of the Standard Model and teach us something about fundamental
physics. For instance, string theory typically predicts the presence of many
scalar moduli fields [137] which could be active during inflation, and leave their
imprint in the data. Being agnostic about the precise UV completion of infla-
tion and the Standard Model, it is important to identify some of its essential
features. For instance, when only one light degree of freedom is excited during
inflation, the effective field theory of inflation [99] provides the most general
way to parametrize our ignorance about the parent theory. However, we even-
tually would like to interpret the EFT coefficients in terms of properties of the
UV embedding, such as extra dimensions, the mass and spin of other fields,
higher order kinetic terms, etcetera. Therefore, in general it is important to
understand how various classes of inflationary theories affect the low energy
dynamics of the inflaton and its possible coupling to other light degrees of
freedom.

In Part I of this thesis we will be mainly concerned with two-field inflation
as a representative of the inflationary class of multi-field models of the form

S =
1

2

∫
d4x
√
−g
[
M2
pR−Gab(φc)∂µφa∂µφb − 2V (φa)

]
. (1.48)

Here Gab(φc) is the field metric characterizing the kinetic terms. Moreover,
R is the Ricci scalar of spacetime and V (φa) the potential energy density of
the scalar fields. The action of perturbations will now contain an extra scalar
degree of freedom besides the curvature perturbation: the isocurvature per-
turbation. We study a broad mass spectrum of the isocurvature perturbation,
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ranging from massless all the way to heavy with respect to the Hubble scale.
Our aim is to improve our understanding about the observational viability and
falsifiability of such theories when the isocurvaton and inflaton are coupled to
each other. Depending on the coupling strength, the transfer of power from the
isocurvature perturbations to the curvature perturbations is either efficient or
inefficient. In Figure 1.3 we illustrate the different regimes of parameter space
we cover in this thesis.

1

Figuur 1.3: An illustration of the parameter space of two-field inflation covered
in Part I of this thesis. On the vertical axis we vary the mass of the isocurvature
perturbations (see Eq. 2.13) in units of the Hubble scale µ2/H2. The horizontal axis
represents the coupling strength between isocurvature and curvature perturbations.
It is divided into two regimes. The (left) right part corresponds to (in)efficient transfer
of power from the isocurvature perturbations to the curvature perturbations.

• Chapter 2: the first part of this chapter serves as a review of a few
selected elements of multi-field inflation. In particular, we recap the ki-
nematical analysis of multi-field inflation and we pay special attention
to the definition of the entropy mass (the effective mass of isocurvature
perturbations). In turns out that the linear dynamics of two-field infla-
tion is described by only a few kinematical and geometrical parameters.
These are the field radius of curvature, the entropy mass and the Hubble
slow-roll parameters.
This motivates us to introduce Orbital Inflation: a family of two-field
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models of inflation where all these parameters are (approximately) con-
stant. We discuss their phenomenology, and we highlight a few results
in the regime typically not considered in quasi-single field inflation (in-
flation with additional fields of mass m ∼ H). First, the larger the
coupling to the isocurvature perturbations, the more they become sup-
pressed compared to the curvature perturbations. Second, the value of
the isocurvature mass determines how the predictions for ns shift. This
may help to distinguish between various entropy masses. Finally, by
means of the Hamilton-Jacobi formalism we locally reconstruct potenti-
als with exactly these properties. This allows us to numerically test our
predictions. Moreover, this provides a playground for quasi-single field
models of inflation, because higher order couplings can be tuned as well.
As far as we know, no exact models of QSF are known.

• Chapter 3: we study Orbital Inflation (see Chapter 2) in the limit
that the entropy mass is zero. We dub this ‘ultra-light Orbital Infla-
tion’ because these models realize the shift symmetry described in [138].
If the radius of curvature of the inflationary trajectory is sufficiently
small, the amplitude of isocurvature perturbations and primordial non-
Gaussianities are highly suppressed. These models mimic the predictions
of single-field inflation, because only one degree of freedom is responsi-
ble for the observed perturbations. Inflation proceeds along an ‘angular’
isometry direction in field space at arbitrary radius and is a special case
of Orbital Inflation discussed in Chapter 2. We prove neutral stability
of a class of exact attractor solutions.

The results in this chapter are based on joint work with Ana Achúcarro,
Edmund Copeland, Oksana Iargyina, Gonzalo Palma and Dong-Gang
Wang.

• Chapter 4: we investigate two-field cosmological α-attractors, which are
characterized by a hyperbolic field metric. The important property of
the single field realization of α-attractors is that, in the limit of small
α < O(10), their predictions converge to ns ' 1 − 2

N , r ' 4
N2 . In the

two-field case, we find that the inflationary predictions show universal
behavior too, insensitive to significant modifications of the potential. In
particular, when both fields are light, the multi-field effects conspire in
such a way that the predictions remain unchanged with respect to the
single field scenario. We emphasize the key role played by the hyperbolic
field space. We also list the constraints on the potential to ensure the
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validity of our results.

This chapter is based on [139]:
Universality of multi-field α-attractors, A. Achúcarro, R. Kallosh, A. Linde,
D-G. Wang and Y.Welling, JCAP 1804 (2018) 07, 028, (arXiv:1711.09478
[hep-th]).

• Chapter 5: we illustrate the impact of heavy fields on the inflationary
observables by a simple two-field embedding of a few large-field models
of inflation. In our set-up the inflaton corresponds to the phase of a com-
plex field with mildly broken U(1) symmetry. This type of embedding
affects the background evolution and modifies the effective sound speed
of the curvature perturbation. The overall effect is that the tensor-to-
scalar ratio is reduced, which improves the viability of the inflationary
models under consideration.

The results in this chapter are based on [140]:
On the viability of m2φ2 and natural inflation, A. Achúcarro, V. Atal
and Y. Welling, JCAP 1507 (2015) 07, 008, (arXiv:1503.07486 [astro-
ph.CO]).

Large scale structure

In Part II of this thesis we study the detectability of non-Gaussianities in near
future large scale structure experiments, using the bispectrum as observable.
In § 1.4 we describe how the primordial perturbations from inflation evolve into
the large scale structures we see around us today. To extract information about
the early universe we have to understand the relation between the distribution
of galaxies and the primordial power spectrum and bispectrum. One of the
ingredients is to understand the clustering of dark matter. On the largest scales
this is well captured by linear perturbation theory. We review the main idea
of the ‘Effective Theory of Large Scale Structure’ (EFT of LSS), a theoretical
method that extends the perturbative description to quasi non-linear scales.

• Chapter 6: we perform a simple statistical analysis to understand whe-
ther the EFT of LSS can help us to improve the constraints on primordial
non-Gaussianities in upcoming surveys such as Euclid. As a first step we
focus exclusively on the matter bispectrum. Already in this simplified
set-up we find that it is unlikely to reach the theoretical benchmarks
quoted between Eq. 1.42 and Eq. 1.43. On the other hand, the EFT
reduces the size of the error bars by a factor of 3 compared to standard
perturbation theory (SPT) in this set-up. We put special emphasis on
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the modeling of theoretical uncertainties.

The results in this chapter are based on [141]:
Lifting Primordial Non- Gaussianity Above the Noise, Y. Welling, D. van
der Woude, and E. Pajer, JCAP 1608 (2016) 08, 044, (arXiv:1605.06426
[astro-ph.CO]).

1.4 Large scale structure as a probe of inflation

After inflation produced the tiny initial density inhomogeneities, they slowly
evolved into the structures we see around us today. The current picture of
structure formation is based on work by Zeldovich, Peebles and collabora-
tors [33,142–144]. It is believed that gravitational instability drives cold dark
matter to evolve into large scale filaments. In this network, structures form
through hierarchical clustering of small objects, such as galaxies. With our
telescopes we observe light coming from these galaxies, and they trace the
underlying network of dark matter. This allows us to connect the observed
galaxy distribution with the dark matter distribution, which in its turn probes
the initial conditions set by inflation.

However, extracting information about the primordial universe is challen-
ging. There are several complex steps that have to be understood in order
to make connection with the observational data. The first step we have to
understand is the non-linear gravitational evolution of dark matter overden-
sities. Second, galaxies10 only form in the densest regions, and are therefore
biased tracers of the dark matter distribution. Finally, there are observational
complexities, such as redshift space distortions and projection effects.

Fortunately, on sufficiently large scales, gravitational evolution, biasing and
redshift space distortions are controllable by perturbative methods [145–147].
Since our aim is to learn something about inflation11, we are mainly interested
in these large scales, where the imprint of initial conditions has not been much
distorted yet. This calls for a theoretical description that captures both ini-
tial conditions and gravitational evolution by a finite number of parameters.

10Or any other tracer of dark matter.
11Of course, from the mildly non-linear scales there is more to learn about cosmology than

just inflation. For instance, the shape and the location of the Baryon Acoustic Oscillations
(BAO) in the range k ∼ 0.05 − 0.25hMpc−1 provides a powerful probe of the properties of
dark energy [148].
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In this thesis we focus exclusively on the gravitational evolution of dark matter.

Depending on how far we can push the analytical description, large scale
structure (LSS) surveys have the potential to become competitive with the
CMB. The main advantage is that LSS surveys are three dimensional, and
therefore they contain in principle much more information. The number
of independent measurements we can extract from the CMB scales roughly
as NCMB ∼ (kmax/kmin)2 ∼ 107, whereas in LSS12 it scales like NLSS ∼
(kmax/kmin)3. This means that if we can push kmin closer to the non-linear
scale kNL ∼ 0.2hMpc−1 (see § 1.4.1) and map the largest volume kmin ∼ H

c ∼
10−4hMpc−1, we might even approach a factor O(102) more datapoints with
respect to the CMB.

To describe the evolution of dark matter on mildly non-linear scales, we
employ Eulerian perturbation theory. In this framework, dark matter is mo-
delled as a self-gravitating effective fluid on large scales (see § 1.4.2). In its
first formulation in the nineties, dark matter was assumed to take the form
of a pressureless perfect fluid. This resulted in Standard Perturbation Theory
(SPT), for a comprehensive review see [149]. With the increasing precision
of (future) LSS surveys [68, 130, 150–152], several improvements on SPT were
proposed in the following decades, see e.g. [153–165]. In particular, it was
realized [159, 166–168] that SPT is limited by the assumption that dark mat-
ter can described in terms of density and velocity perturbations only. For
instance, SPT assumes a vanishing velocity dispersion. However, the velocity
dispersion was shown to give percent level corrections to the predictions of
SPT [166]. Therefore, this should be incorporated in the analytical descrip-
tion as well. More generally, we should take into account the backreaction of
the short scale physics on the dynamics of the dark matter fluid.

This has led to the development of several new perturbation techniques,
among which the so-called Effective Theory of Large Scale Structures (EFT
of LSS) [159, 162]. The backreaction of short scale physics is captured by an
effective viscous shear tensor in the fluid equations. By expanding the stress
tensor in terms of the long wavelength density and velocity perturbations, the
fluid equations become an effective description of dark matter, valid on large
scales. The small and large scales become correlated during their joint gra-
vitational evolution, and might also be correlated initially in the presence of
primordial non-Gaussianities.

12This is a naive estimate of the number of independent measurements, neglecting shot-
noise and cross-correlations.
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In this section we review some elements of perturbation theory relevant for
Chapter 6. In § 1.4.1 we show the behavior of the transfer function, which
captures the linear evolution of the matter density perturbation from the pri-
mordial to the late universe. This allows us to estimate the non-linear scale at
which the density perturbations become order unity. In § 1.4.2 we recap how
to describe dark matter as a fluid on scales larger than the non-linear scale.
In particular, we pay special attention to the smoothing procedure and the
appearance of an effective stress tensor. After expanding the stress tensor in
terms of the long wavelength fields, we can solve the fluid equations perturba-
tively. In § 1.4.3 we show how to compute a non-linear correction to the power
spectrum. Finally, in § 1.4.4 we discuss shortly the bispectrum, which is the
topic of Chapter 6.

1.4.1 Transfer Function

During most of the history of the universe the matter density perturbations
were tiny δm � 1. Only during the epoch of matter domination they started
to grow substantially and form the non-linear structures. The linear evolution
from the initial conditions from inflation to the late universe (well after matter-
radiation equality) can be captured by the transfer function

δm,k(a) =
2

5Ωm

k2

a2H2
Tδ(k)Rk . (1.49)

It is conventional to factor out some terms, such that the transfer function
asympotes to unity on large scales and only depends on k otherwise. Let’s
recap how the transfer function scales with k. We follow the set of lectures
by Baumann [70], where everything is more rigorously derived13. First of all,
the Poisson equation relates the evolution of the perturbed energy density
to the gravitational potential as ∇2Φ = a2δρ/M2

p . Assuming we are in the
epoch of matter domination or later, we can replace δρ = ρ̄mδm, because the
contribution from radiation is negligible and dark energy does not cluster.

13In short, in § 1.4.1 we work in Newtonian gauge in conformal time adτ = dt

ds2 = a2(τ)
[
(1 + 2Ψ)dτ2 − (1− 2Φ)δijdx

idxj
]
, (1.50)

where we assume the absence of anisotropic stress, which implies Ψ = Φ. The tensor and
vector modes are neglected. Here Φ corresponds to the Newtonian potential in the weak
field limit. When we map the inflationary predictions to the late universe, the variables we
work with have to be understood as gauge invariant variables. The gravitational potentials
are indentified with the Bardeen variables [169] and the curvature perturbation and density
perturbation are the comoving curvature perturbation [86] and density perturbation ∆m.
On sub-Hubble scales ∆m ≈ δm.
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Going to Fourier space and using the Friedmann equation Eq. 1.8 we rewrite
the Poisson equation as

δm,k = − 2k2

3a2ΩmH2
Φk . (1.51)

The evolution of the gravitational potential directly translates to that of δm.
The linear dynamics of the gravitational potential turns out to be quite simple.
First of all, on super Hubble scales the gravitational potential Φ is related to
the curvature perturbation as follows

R = −5 + 3w

3 + 3w
Φ, (1.52)

where w is the equation of state of the background. Assuming adiabatic14

initial conditions, this implies that the gravitational potential is conserved on
super Hubble scales, as long as the equation of state is constant. In the tran-
sition from radiation to matter Φ however drops by a factor of 9/10, because
R remains constant. The evolution of the gravitational potential on all scales
is captured by the Einstein equations. It can be shown that the gravitatio-
nal potential is constant throughout the matter era. If perturbations become
sub-Hubble at that time we therefore have the simple relation15 Φk = −3

5Rk

which yields

δm,k =
2

5Ωm

k2

a2H2
Rk . (1.53)

On the other hand, if the gravitational potential enters the horizon (at kτ =
−1) during the radiation era it decays as τ−2 until matter-radiation equality.
Therefore, in this case the gravitational potential receives an additional sup-
pression Φk ∼ (keq/k)2. This results in the following approximate asymptotic
scalings [114]

Tδ(k) = 1 for k � keq,

Tδ(k) ≈ 12

(
keq
k

)2

ln

(
k

8keq

)
for k � keq .

(1.54a)

(1.54b)

Here the logarithmic correction reflects the logarithmic growth of matter per-
turbations during radiation domination. Improved theoretical fitting functions
are given in [170,171]. Exact transfer functions can be computed numerically
with CMBFAST [172] or CAMB [173]. If we set initial conditions well in the

14See the discussion around Eq. 1.46.
15This explains the funny normalization of fNL in Eq. 1.40.
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epoch of matter domination, the linear dimensionless matter power spectrum
is therefore given by

∆2
δ(k, τ) =

4

25Ω2
m

k4

a4H4
T 2
δ (k)∆2

R(k) (1.55)

Its exact behavior, computed using CAMB [173], is shown in Figure 1.4. The
scaling of ∆2

δ agrees qualitatively with that of Eq. 1.54b. Around the scale
of matter-radiation equality the power spectrum bends over from power law
growth (k/keq)

4 to logarithmic growth ln(k/keq).
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Figuur 1.4: The linear dimensionless matter power spectrum today ∆2
δ(k, τ0) (solid

line) generated with the online tool of CAMB [173]: http://lambda.gsfc.nasa.
gov/toolbox/tb_camb_form.cfm. We used Ω0

Λ = 0.728, Ω0
b = 0.046, Ω0

dm = 0.226,
Ω0
r = 8.4 · 10−5, ns = 0.967, h = 0.704 and σ8 = 0.81. We indicate the scale of

matter-radiation equality keq ≈ 0.073hΩ0
m hMpc−1 [114] and the non-linear scale

kNL ≈ 0.25 hMpc−1, at which ∆2
δ(kNL, τ0) = 1. Moreover, we compare with the

result we get by using a transfer function that has the asymptotic limits quoted in
Eq. 1.54b (dashed line). More precisely, we used T (x ≡ k

8keq
) = ln(1+x)

x

(
1 + 2

3x
)−1,

which we inserted into Eq. 1.55.

http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
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Non-linear scale

Note from Eq. 1.51, that, even though the amplitude of the gravitational
potential is always ∆2

Φ(k) ∼ 10−9T 2
δ (k), the amplitude of density fluctua-

tions is much larger and grows with a2 during matter domination, where
H2 ∼ ρm ∼ a−3. Today the linear matter power spectrum exceeds unity
at the non-linear scale kNL ≈ 0.25 hMpc−1. This signals the breakdown of the
linear approximation, or more precisely the breakdown of perturbation theory
in the density contrast δm. To make sensible theoretical predictions within
perturbation theory, we need to consider sufficiently large scales compared to
the non-linear scale. We will next see how dark matter can be modeled as an
effective fluid on these scales.

1.4.2 The Dark Matter Fluid

We assume that dark matter consists of a collection of non-relativistic particles
of mass m, which interact only gravitationally. They can be described by the
collisionless Boltzmann equation, or Vlasov equation [174]

Df

Dτ
≡ ∂f

∂τ
+

p

am
· ∇f + ∂τp ·

∂f

∂p
= 0 . (1.56)

Here f(τ,x,p) is the particle number density in phase space, with p ≡ amv
the conjugate momentum to the comoving spatial coordinate x of the particle.
Moreover, v = ∂τx denotes its peculiar velocity. Notice that the conjugate mo-
mentum can be related to the spatial part of the four momentum as pi = δijPj .
We denote the partial derivative with respect to xi as ∇i and raise its index
with δij . This notation is commonly used in the literature. We limit ourselves
to sub-Hubble scales, such that we can use the Newtonian limit of the geo-
desic equation ∂τp = −am∇Φ and the Poisson’s equation ∇2Φ = a2δρ/Mp

(see [174,175]).

The position space equations can be obtained by taking successive moments
of the Vlasov equation and replacing

1

a3

∫
d3p mf(τ,x,p) = ρ(τ,x),

1

a3

∫
d3p

pi

a
f(τ,x,p) = ρvi(τ,x) ≡ πi(τ,x),

1

a3

∫
d3p

pipj

a2m
f(τ,x,p) = ρvivj(τ,x) + ρσij(τ,x),

etc . . . .

(1.57a)

(1.57b)

(1.57c)
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Here we implicitly assumed some spatial smoothing of the phase space dis-
tribution function 16 in order to define the mass density ρ and mean peculiar
momentum density πi. This induces velocity dispersion σij because there
are multiple individual particle velocities in a given spatial patch. Moreover,
there could already be a microscopic velocity dispersion if particle trajectories
cross [168]. It has been estimated numerically [166] and theoretically [167]
that velocity dispersion induces a percent level correction to large scale matter
power spectrum at k ∼ 0.1hMpc−1. This means that we have to take it into
account in our theoretical description.

Taking moments of the Vlasov equation generates an infinite set of evo-
lution equations (the Boltzmann hierarchy) which couple the moments of the
distribution function to each other. To arrive at the fluid description, we ne-
glect the higher moments contained in the dots of Eq. 1.57, such that the full
Boltzmann hierarchy is reduced to the Euler equations. This is possible as
long as we pick a smoothing scale larger than the distance that dark matter
particles have travelled 1/k � vp/aH [159, 168, 176]. Here vp is the typical
size of the peculiar velocity of the dark matter particles, and O(1)

aH represents
the particle horizon since reheating. Using linear theory (see § 1.4.3) one can
estimate ∆2

v ∼ a2H2

k2 ∆2
δ , and therefore, if we only consider scales larger than

the non-linear scale, this suggests that the fluid description is applicable, ta-
king vp .

√
∆2
v(kNL) ∼ aH/kNL. The intuitive interpretation of [159] is that

dark matter has an effective mean free path of the order of the non-linear
scale, because of the finite horizon induced by gravity. Higher moments are
suppressed, because they did not have time to develop.

16The microscopic phase space distribution for a collection of particles is given by the
Klimontovich density

f(τ,x,p) =
∑
n

δ(3)(p− p(n))δ
(3)(x− x(n)) . (1.58)

To get the coarse-grained stress tensor in some comoving ball ∆V around x we are effectively
smoothing f . For instance, with a spherical top-hat window function

〈Tµν〉(x) =

∫
∆V

d3x′

∆V

∫
ΠjdPj√
−g

PµPν
P 0

f(x′,p, τ) =
1

a4∆V

∑
n

P
(n)
µ P

(n)
ν

P 0
(n)

∣∣∣∣∣
x(n)∈∆V

. (1.59)
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Euler Equations

Truncating the Boltzmann hierarchy at the second moment allows us to de-
scribe the dynamics of dark matter on sufficiently large scales by the continuity
equation and Euler equation

∂τρ+ 3aHρ+∇i(ρvi) = 0,

ρ∂τv
i + aHρvi + ρvj∇jvi + ρ∇iΦ = −∇jτ ijΛ .

(1.60a)

(1.60b)

The index Λ on the stress tensor τ ijΛ emphasizes that we have smoothed the
Vlasov equation on a scale Λ � kNL. The resulting long wavelength fields ρ,
v and Φ variables should also carry an index ` (for long), but we dropped it
to avoid cluttering of notation. Importantly, smoothing the Vlasov equation
creates an effective stress tensor in the Euler equation. For instance, the
smoothing of the part that is responsible for the term ∼ ρvv induces velocity
dispersion as we saw above. We will see below that a similar story applies
to the term ∼ ρΦ. The other terms in the Euler equations are linear in ρ or
πi. Therefore, we end up with an effective stress tensor τ ijΛ that captures the
velocity dispersion and the gravitationally induced stress, and also contains
contributions from the higher moments that we have neglected.

Smoothing the Vlasov Equation

We smooth the Vlasov equation because it allows us to truncate the Boltzmann
hierarchy. To understand the appearance of the effective stress tensor and its
structure, we follow [159, 162] and see what happens if we smooth with a
Gaussian window function

WΛ(x) =

(
Λ√
2π

)3

e−
1
2 Λ2x2

or in Fourier space WΛ(k) = e−
1
2
k2

Λ2 . (1.61)

This provides a smooth cut-off k ∼ Λ in Fourier space. Smoothed quantities
are defined as

OΛ(x, τ) ≡
∫
d3x′WΛ(x− x′)O(x′, τ) or OΛ(k, τ) = WΛ(k)O(k, τ) .

(1.62)
The goal is to express the Euler equations in terms of long wavelength fields
ρ`, v` and Φ` only, such that we can perturbatively solve the fluid equations.

Notice that Eq. 1.57 naturally defines ρ` = ρΛ, ρ`v` = πΛ and ρ`σ
ij
` =

(ρσij)Λ. It is what we get if we convolve the moments of the phase space
distribution with the window function. This means that the long wavelength
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peculiar velocity is implicitly defined as v` ≡ πΛ
ρΛ

. Furthermore, we define Φ` =
ΦΛ. When smoothing the Vlasov equation we encounter the terms (ρ∂iΦ)Λ

and (ρvivi)Λ which are not the same as a products of the corresponding long
wavelength fields. For instance, smoothing a bilinear quantity fg yields [159]

(fg)Λ = f`g` + (fsgs)Λ +
1

Λ2
∇f` · ∇g` + . . . , (1.63)

where the dots represent higher derivative terms. The short wavelength fields
are defined as fs ≡ f − f`. The same can be computed for trilinears. It
has been shown that with this smoothing procedure the stress tensor receives
contributions of the form [159,168,177]

τ ijΛ ⊃ −
(
ρvisv

j
s +

M2
p

a2

(
δij∇kΦs∇kΦs − 2∇iΦs∇jΦs

)
+ ρσijs

)
Λ

+ . . . . (1.64)

The dots represent the derivative terms suppressed by (k/Λ)2. These derivative
terms are very small, because they contain two or more powers of the long
wavelength fields, where at least one of them is v` or Φ`.

Effective Theory of Large Scale Structure

From Eq. 1.64 we see that the effective stress-tensor captures the backreaction
of the short scale physics on the dynamics of dark matter on the largest sca-
les. By construction, we cannot evaluate Eq. 1.64 within perturbation theory.
Therefore, the next step is to parameterize our ignorance of the small scales
by expanding the stress tensor in terms of the long wavelength fields in the
most generic way allowed by symmetries. This is where the so-called Effective
Theory of Large Scale Structure (EFT of LSS) [159,162] comes in.

What kind of contributions do we expect from the microscopic theory?
Let’s zoom in on a random small comoving box of particles of size ∼ 1/Λ3

which evolves in a background of a long wavelength gravitational potential Φ`.
The worldlines of the particles inside the box are affected by long wavelength
tidal fields and this changes the distribution of velocities. They also experience
a common acceleration by the gradient of the gravitational potential , but this
is locally unobservable. Averaging over many of these boxes, given a realization
of the long wavelength perturbations, this results in a shear tensor correlated
with the tidal field [159]

〈(ρvisvjs)Λ|Φ`〉 = 〈(ρv2
s)Λ〉0

(
c1δij + c2

∇i∇jΦ`

a2H2
+ . . .

)
. (1.65)

The first term contributes to the isotropic pressure, which is generated even in
the absence of long wavelength perturbations. The second term is an example
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of how the short scale physics feels the background of long modes in which
they evolve, and how this is memorized in their backreaction.

More generally, one can write down all operators on the right hand side of
the Euler equation that are allowed by the equivalence principle [159,162,178].
Local observables can only be affected by tidal forces ∇i∇jΦ (or equivalently
the shear ∇ivj [179]) and their spatial derivatives. To linear order in perturba-
tions, up to higher derivative terms, this results in the Navier-Stokes equations
with an average stress-tensor

〈(τij)Λ|δ`, . . .〉 = p(τ)δij+ρ

[
c2
s(Λ, τ)δ`δ

ij − c2
bv(Λ, τ)

∇kvk`
aH

δij

−3

2
c2
sv(Λ, τ)

∇(iv
j)
` −

1
3δ
ij∇kvk`

aH

] (1.66)

Here the contraction ∇2Φ` has been replaced by δ`, using the Poisson equa-
tion. It has been shown that the induced pressure p(τ) ∼ 10−5 is tiny and has
a negligible effect on the dynamics of the background [159], so we will ignore it
further. For some observables a higher precision is required, and one needs to
go beyond the linear expansion [180–182]. Moreover, when averaging over an
ensemble of realizations of small domains, like we did in Eq. 1.65, we assumed
that short scales only get correlated with the long modes through non-linear
gravitational evolution. This is true as long as the initial short scale fluctua-
tions are independent of the long wavelength perturbations. However, in the
presence of primordial non-Gaussianities the short modes are correlated with
the long wavelength perturbations through their dependence on the realization
of the primordial potential [183]. The short scales memorize these initial con-
ditions and this affects their backreaction on the evolution of the long modes.

The resulting EFT coefficients, such as c2
s(Λ, τ), explicitly depend on the

unphysical smoothing scale Λ. This is important, because if we compute ob-
servable quantities, such as the power spectrum, we will at the same time
encounter loop integrals that are bounded by the scale Λ. For a well-defined
perturbation theory, these dependencies on Λ should cancel. We will see that
this is the case for the simplest contribution to the power spectrum in § 1.4.3.
Internal consistency of the EFT of LSS has been demonstrated explicitly for
the power spectrum up to two loop [178, 180, 184], for the one loop bispec-
trum [181–183] and eventually to all orders in perturbation theory in [185].



42 Introduction

Scalings with k/kNL

Let’s find out the relative importance of terms in the Euler equation by compa-
ring their scaling with k/kNL. For simplicity we consider scales kH < k < keq
such that Φ ∼ 10−5. On smaller scales we saw in § 1.4.1 that its amplitude is
even more suppressed. First of all, at linear scales we have (using the results
from § 1.4.1 and § 1.4.3

∆2
δ ∼

(
k

aH

)4

∆2
Φ and ∆2

v ∼
(
k

aH

)2

∆2
Φ with , (1.67)

indicating that velocities and the gravitational potential remain small even
when ∆2

δ gets close to unity. This allows us to compare the various terms in
the Euler equation, using that δ ∼ (k/kNL)2 and ∇Φ

aH ∼ v ∼
√
δΦ [159,162]

• The non-linear terms on the left-hand side of the Euler equation Eq. 1.60b
scale like δ compared to the friction term

v∇v
aHv

∼ δ∇Φ

aHv
∼ δ (1.68)

• The linear terms in the stress tensor

c2
s

∇δ
aHv

∼ c2
v

∇∇v
a2H2v

∼ c2 δ

Φ
, (1.69)

where the coefficients are a measure of kinetic and gravitational stress
induced by the short scales. For instance, in the example of Eq. 1.65,
we would get c2 ∼ 〈v2

s〉. At the non-linear scale we expect the velocity
to approach v2 ∼ Φ. The same applies to virialized scales, where the
kinetic and gravitational energy are of the same order. Therefore, a
rough estimate is c2 ∼ Φ ∼ 10−5. This suggests that the leading terms
in the stress tensor scale like δ as well.

• Higher order corrections to the stress tensor come with additional powers
of derivatives (k/kNL)2 and long wavelength fields, so they are additio-
nally suppressed.

1.4.3 Perturbation Theory

With all the ingredients at hand we can do perturbation theory in the long
wavelength perturbations ρ`, v` and Φ`. For that purpose it is convenient to
define the long wavelength density contrast, velocity divergence and vorticity
as

δ` ≡
ρ` − ρ̄
ρ̄

, θ` ≡ ∇ · v`, and w` ≡ ∇× v`, (1.70)
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respectively. For notational convenience we drop the index ` from now on.
Using Eq. 1.66, the leading order source term of the Euler equation Eq. 1.60b
is given by

1

ρ
∇jτ ijΛ ≈ c

2
s∇iδ −

4c2
bv + c2

sv

4aH
∇iθ − 3c2

sv

4aH
∇2vi + J i, (1.71)

with J i = 1
ρ̄∇j∆τ

ij a stochastic term to account for the fact that the stress
tensor is not precisely equal to its ensemble average over the short scales, i.e.
(τ ij)Λ = 〈(τ ij)Λ|δ`, . . .〉 + ∆τ ij . After subtracting the background evolution
of ρ̄ using Eq. 1.2b we obtain equations for the density contrast, velocity
divergence and vorticity. First of all, the equation of motion for vorticity
reads [177] (

∂τ + aH − 3c2
sv

4aH
∇2

)
w = ∇× (v ×w − J) . (1.72)

In the absence of the terms on the right hand side, vorticity decays [149]
(assuming c2

sv > 0). If it is not present initially it may be generated by the
stochastic term, or by the higher order terms in the effective stress tensor [177].
However, numerical studies [166] find a negligible amount of vorticity on the
larger scales, which gives less than a 0.01% correction to the matter power
spectrum at k ∼ 0.1hMpc−1, so we neglect it.

The Euler equations Eq. 1.60 simplify considerably and in Fourier space
they read

∂τδ + θ = Sα,

(∂τ + aH)θ +
3

2
Ωma

2H2δ = Sβ + c2
sk

2δ − c2
v

k2θ

aH
− J ,

(1.73a)

(1.73b)

where the two viscocity coefficients are combined into one c2
v = c2

sv + c2
bv and

the stochastic term is contracted to the scalar J = 1
ρ̄∇i∇j∆τ

ij . The SPT
source terms are given by [149]

Sα(k, τ) = −
∫
p

p · k
p2

θ(p, τ)δ(k− p, τ),

Sβ(k, τ) = −
∫
p

k2p · (k− p)

p2(k− p)2
θ(p, τ)θ(k− p, τ).

(1.74a)

(1.74b)

The equations can be solved perturbatively using Green’s functions, and the
solution can be written in terms of a power series of the initial density contrast
δ1(k) = δ(k, τin)

δ(k, τ) =
∑
n

δ(n)(k, τ), θ(k, τ) =
∑
n

θ(n)(k, τ) . (1.75)
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The n-th order solution receives SPT, viscosity and noise contributions (and
mixing terms, but they do not appear at the order we consider now)

δ(n)(k, τ) = δ
(n)
SPT(k, τ) + δ(n)

c (k, τ) + δ
(n)
J (k, τ) (1.76)

The linear solutions are obtained by setting the right-hand side of Eq. 1.73
to zero, i.e. δ(1)(k, τ) = δ

(1)
SPT(k, τ). The contributions from the stress-tensor

are treated as a next-to-leading-order correction, since they are derivatively
suppressed.

SPT Solution

The SPT solutions are obtained by putting the effective stress tensor to zero.
To a remarkable good approximation they are of the separable form [149]

δ
(n)
SPT(k, τ) ≈ Dn

1 (τ)δn(k),

θ
(n)
SPT(k, τ) ≈ −aHf(τ)Dn

1 (τ)θn(k) .

(1.77a)

(1.77b)

Here D1(τ) is the linear growth factor and f(τ) its logarithmic derivative with
respect to the scale factor. In a universe filled with matter and dark energy
only (Ωm + ΩΛ = 1) the growing mode solutions are given by [186–188]

D1(a) =
5Ω0

m

2
H2

0H(a)

∫ a

ain

dã

ã3H3(ã)
and f(a) ≡ d lnD1(a)

d ln a
≈ Ω5/9

m (a) .

(1.78)
Furthermore, the initial conditions δn and θn are convolutions of multiple δ1’s
with the SPT kernel functions Fn and Gn (please see [149] for their explicit
form)

δn(k) =

∫
p1

· · ·
∫
pn

(2π)3δ
(3)
D (k− p1...n)Fn(p1, · · ·pn)δ1(p1) · · · δ1(pn),

θn(k) =

∫
p1

· · ·
∫
pn

(2π)3δ
(3)
D (k− p1...n)Gn(p1, · · ·pn)δ1(p1) · · · δ1(pn) .

(1.79a)

(1.79b)

Remember that we are integrating over the long wavelength fields only, the-
refore each δ1(p) implicitly carries a factor WΛ(p).

Notice that we can express the linear solution for the velocity field in terms
of the gravitational potential. First, we saw in Eq. 1.72 that the vorticity
decays on linear scales. This means that the linearized Euler equation must
give a solution of the form vi ∼ ∇iΦ. More precisely, using the SPT results
from above we find

vi(1) =
2f(τ)

3aHΩm
∇iΦ . (1.80)

Therefore, at the linear order the tidal tensor and shear tensor are proportional
to each other.
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EFT Solution

To leading order the EFT contributions coming from the stress-tensor are given
by

δ(1)
c (k, τ) = −ξ(τ)k2δ

(1)
SPT(k, τ),

δ
(1)
J (k, τ) = N(k, τ) .

(1.81a)

(1.81b)

Here ξ(τ) is a time integral over the Green’s function corresponding to the
Euler equations Eq. 1.73 convolved with a combination of the viscocity para-
meters c2

s(τ) and c2
v(τ). The viscocity contribution correlates with the long

wavelength density contrast, whereas the noise term is uncorrelated.

Power Spectrum

Using the ingredients above we can compute the contributions to the matter
power spectrum

∆2
δ(k, τ) =

k3

2π2
〈δ(k, τ)δ(−k, τ)〉′ = ∆2

11+∆2
13+∆2

22+∆2
1c+∆2

JJ+. . . , (1.82)

where ∆2
mn(k, τ) ≡ k3

2π2

(
〈δ(m)

SPT(k, τ)δ
(n)
SPT(−k, τ)〉′ + perm.

)
, and the other two

contributions come from contractions of δ(1)
SPT with δc, and δJ with itself, res-

pectively. The dots represent higher order terms that we have neglected. Fur-
thermore, in this example we have assumed Gaussian initial conditions, so
after Wick contracting initial density contrasts (the δ1’s), terms such as ∆2

12

will vanish.

Notice that all the terms on the right-hand side of Eq. 1.82 individually
depend on the unphysical smoothing scale Λ, because they are constructed
from the long wavelength density fields. The Λ dependence should cancel
if we add all terms, otherwise the perturbative description makes no sense.
Fortunately, this can be ensured. To see how this works, let’s consider the
‘renormalization’ of the sum of ∆2

13 and ∆2
1c. The renormalization of ∆2

22+∆2
JJ

proceeds in a similar way. The two individual contributions are given by

∆2
13(k,Λ) = 6∆2

11(k,Λ)

∫
q
F3(k,q,−q)P11(q,Λ),

∆2
1c(k,Λ) = −ξ(τ,Λ)k2∆2

11(k,Λ) .

(1.83a)

(1.83b)

For notational convenience we suppressed the τ argument of the power spectra.
It is understood that ∆2

11(k,Λ) = D2
1(τ)W 2

Λ(k)∆2
in(k). The initial conditions

are set well in the epoch of matter domination, such that the assumption
Ωm + ΩΛ = 1 applies. Let’s switch from Gaussian smoothing to imposing
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a hard cut-off, where the window function is replaced by a heaviside step
function that becomes zero at the scale Λ. This means we can split ∆2

13(k,Λ)
and ∆2

1c(k,Λ) in a cut-off dependent and a cut-off independent part

∆2
13(k,Λ) = 6∆2

11(k)

(∫ ∞
q,0

F3(k,q,−q)P11(q)−
∫ ∞
q,Λ

F3(k,q,−q)P11(q)

)
,

∆2
1c(k,Λ) = −(ξph(τ) + ξ∞(τ,Λ))k2∆2

11(k) .

(1.84a)

(1.84b)

For large wavenumbers q � k the SPT kernel F3 scales like F3(k,q,−q) ∼ k2

q2

[189]. This ensures that we can indeed cancel the cut-off dependence with the
EFT coefficient

ξ∞(τ,Λ) = −6k−2

∫ ∞
q,Λ

F3(k,q,−q)P11(q), (1.85)

as long as we pick Λ2 � k2. The final result is therefore independent of the
cut-off scale and we are left with a physical coefficient ξph(τ), that has to be
fitted to observational data or numerics

∆2
13(k,Λ) + ∆2

1c(k,Λ) = ∆2
11(k)

(
ξph(τ)k2 + 6

∫ ∞
q,0

F3(k,q,−q)P11(q)

)
(1.86)

Of course we do not necessarily need to integrate up to infinity. We could also
integrate up to the non-linear scale kNL, for instance, and this automatically
redefines what we mean by ξph(τ). However, from a computational perspec-
tive it does not matter what integration limit we choose, considering that the
integral converges in our universe.

Finally, we should mention that the time dependence of the physical EFT
coefficients is not known. This is not a problem necessarily, it just means
that they have to be fitted at every redshift separately. On the other hand,
this might be a bit too unrestrictive. In the limit of an Einstein-de-Sitter
universe (Ωm = 1) with power law initial conditions ∆2

δ,in ∼ kn+3, the time
dependence of the EFT coefficients is fixed by symmetry [184]. For instance,
the time dependence of ξph is given by ξph ∼ D1(τ)

1−n
n+3 . Therefore, one may

also consider to make an ansatz for its time dependence ξph(τ) ∼ D1(τ)p for
some value of p.
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1.4.4 Bispectrum

In Chapter 6 we focus on the bispectrum as observable to constrain primordial
non-Gaussianities. One can apply the same machinery as in § 1.4.3 to find
all contributions to the bispectrum up to a given order. The gravitational
induced bispectrum with Gaussian initial conditions has been computed up to
one loop in [190] (SPT) and [181, 182] (EFT). The bispectrum coming from
primordial non-Gaussianities has been computed to one-loop in [191] (SPT)
and [183] (EFT). Schematically, the perturbative theoretical prediction for the
bispectrum is given by

Bth = BG
SPT +BG

EFT + fNL
(
BNG
SPT +BNG

EFT
)
. (1.87)

With the introduction of primordial non-Gaussianities we are doing a double
expansion in fNL and k/kNL. Therefore, the relative importance of the various
contributions to the bispectrum is harder to assess. Moreover, the bispectrum
is a three dimensional function. The one-loop correction to the primordial
signal might be more relevant in the squeezed configuration than, say, in the
equilateral configuration.

local

quasi-single-field

equilateral

Figuur 1.5: Spectroscopy: comparison of the SPT one-loop corrected non-Gaussian
bispectra (solid lines) for local, quasi-single-field and equilateral type of primordial
non-Gaussianities. The dashed lines show the linearly evolved primordial bispectra.
The gravitational distortions tend to decrease the difference between the various
shapes. Moreover, the loop corrections kick in on relatively large scales. This Figure
is taken from [183].

The gravitational distortion (one-loop SPT) of the primordial non-Gaussian
signal is shown in Figure 1.5. We plot three different types of primordial non-
Gaussianities, the local, equilateral and quasi-single-field templates defined in
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Eq. 1.40, Eq. 1.41 and Eq. 1.42 (with ν = 1/2), respectively. Figure 1.5 shows
that the loop corrections become important already on relatively large sca-
les. This was for us the main motivation to compute the EFT corrections
to the one-loop bispectrum [183]. However, the gravitational distortions tend
to decrease the difference between the three shapes. Therefore, we perform
a simple statistical analysis in Chapter 6 to understand how much the EFT
of LSS improves the modeling of the matter bispectrum, with the purpose of
constraining primordial non-Gaussianities.


