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Abstract
Pupillometry research has experienced an enormous revival in the last two decades. Here we briefly review the surge
of recent studies on task-evoked pupil dilation in the context of cognitive control tasks with the primary aim being
to evaluate the feasibility of using pupil dilation as an index of effort exertion, rather than task demand or difficulty.
Our review shows that across the three cognitive control domains of updating, switching, and inhibition, increases in
task demands typically leads to increases in pupil dilation. Studies show a diverging pattern with respect to the
relationship between pupil dilation and performance and we show how an effort account of pupil dilation can
provide an explanation of these findings. We also discuss future directions to further corroborate this account in
the context of recent theories on cognitive control and effort and their potential neurobiological substrates.
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Introduction

BFace a mirror, look at your eyes and invent a mathematical
problem, such as 81 times 17. Try to solve the problem and
watch your pupil at the same time, a rather difficult exercise in
divided attention. After a few attempts, almost everyone is
able to observe the pupillary dilation that accompanies mental
effort.^ Daniel Kahneman, 1973, page 24.

Every day we encounter situations that demand goal-directed
behavior and the control over our automatic, impulsive reactions.
The ability to exert cognitive effort in these situations is highly
important (Kahneman, 1973; Shenhav et al., 2017) and failures
to do so can have consequences ranging from bad, e.g. failing an
important math test as a student, to disastrous, e.g,. a traffic
accident (Niezgoda, Tarnowski, Kruszewski, & Kamiński,
2015). Numerous recent studies have started to investigate the
dilation of the human pupil under such conditions. This body of

literature has started to provide important hints about the potential
neurobiological mechanisms that underlie successful or failed
recruitment of cognitive effort.

Although pupil dilation has been investigated since the early
1960s (Hess & Polt, 1964; Kahneman & Beatty, 1966),
pupillometry research has experienced an enormous revival in
the last two decades. In contrast to the early pioneering work,
pupil dilation is relatively easy to study nowadays; eye trackers
are relatively cheap and typically provide adequate temporal
resolution and precision to detect even relatively small changes
in pupil diameter. Althoughmultiple reviews have already been
published on the topic of pupil dilation and its link with a broad
range of cognitive processes (Andreassi, 1980; Beatty &
Lucero-Wagoner, 2000; Sirois & Brisson, 2014), such as atten-
tion (Laeng, Sirois, & Gredeback, 2012), memory (Goldinger
& Papesh, 2012), and mental load (Just, Carpenter, & Miyake,
2003; Kramer, 1990), a comprehensive review on recent stud-
ies that have investigated pupil dilation in the context of cog-
nitive control tasks is still missing. The current review aims to
fill this gap. For a comprehensive review of older studies on the
topic of pupil dilation and cognition, the reader is referred to
earlier work (Beatty & Lucero-Wagoner, 2000; Just et al.,
2003). The relationship between baseline pupil diameter and
task performance (e.g., Tsukahara, Harrison, & Engle, 2016) is
not covered in this review.
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Focus of the present review

The present review focusses on studies that have investigated
pupil dilation during cognitive control tasks. In this context,
pupil dilation refers to the stimulus-induced increase in pupil
diameter relative to a pre-stimulus baseline period (also
known as the task-evoked pupillary response; Goldinger &
Papesh, 2012). Seminal studies have revealed that pupil dila-
tion increases with increasing task demands. Two interpreta-
tions for this finding have been proposed: whereas some au-
thors have simply concluded that pupil dilation thus reflects
the demands or load by the task, others have taken it a step
further and proposed that pupil dilation actually reflects the
effort exerted in response to these demands (Hess & Polt,
1964; Kahneman, 1973; Kahneman & Beatty, 1966).

In light of recent renewed interest in cognitive effort in the
fields of psychology and neuroscience (Kurzban, Duckworth,
Kable, & Myers, 2013; Shenhav et al., 2017; Westbrook &
Braver, 2015), a pressing aim for this review is to test the
claim whether pupil dilation can be used as an independent
index of effort. This is particularly important because, despite
our increased understanding of the neural and computational
mechanisms underlying cognitive effort, interpreting behavior
in terms of cognitive effort risks circular reasoning (Navon,
1984; Shenhav et al., 2017). Take the case of the Stroop task.
For this task, the difference in reaction time for incongruent
versus congruent trials, i.e., the Stroop effect, is typically used
as a measure of task performance. Without considering an
independent measure of cognitive effort, it is hard to estimate
from the mean reaction times how much effort the participant
exerted. This is because a Stroop effect can simply be taken to
reflect a successful indicator that task demands were increased
and thus required cognitive effort, or alternatively, as an indi-
cation that insufficient effort was recruited to deal with the
demand (Shenhav et al., 2017). Importantly, this issue pertains
to all cognitive tasks that compare behavior in conditions that
vary in task difficulty. Notably, the same reasoning can be
applied to interpret effects of physiological signals in response
to higher task demands. Thus, based on mean differences be-
tween easy and hard conditions alone it is impossible to decide
whether physiological signals reflect mere task demand or
effort exertion.

This review will take into account possible correlations
between pupil dilation and task performance, because these
might provide important cues to dissociate both accounts.
Based on a definition of effort as the exertion of resources in
the service of instrumental behavior (cf. Gendolla & Richter,
2010; Seery, 2013), if anything, effort should be associated
with improved, not impaired task performance. However, we
anticipate that not all studies show these effects because it is
well-known that the exact relationship between effort and be-
havior depends on the specific context studied and that it can
only be reliably investigated in a range where floor and ceiling

effects in bothmeasures are absent (Norman&Bobrow, 1975;
cf. Hockey, 1997). In addition, correlations between pupil
dilation and behavior can be investigated at different levels,
that are sensitive to different confounds. For example, at the
inter-individual level, participants with large pupil dilation
might show better task performance than individuals with
small pupil dilation, but it is important to demonstrate that
such effects cannot be explained by differences in raw base-
line pupil diameter caused by differences in ambient lighting
(Beatty & Lucero-Wagoner, 2000), ethnicity (Quant & Woo,
1992), and age (MacLachlan & Howland, 2002), to name a
few. This issue is particularly concerning in older studies that -
instead of using subtraction – have expressed pupil dilation as
the percent change from baseline pupil diameter, which might
invalidate results (Beatty & Lucero-Wagoner, 2000).
Alternatively, one might consider using pupil dilation differ-
ence scores based on within-subject comparisons, although
these differences could reflect individual differences in the
light reflex if stimulus luminance is not carefully controlled
for. Therefore, evidence from intra-individual within-condi-
tion correlations that cannot be explained by confounding fac-
tors mentioned above will likely provide the most compelling
evidence to test whether pupil dilation reflects effort.

This review is structured as follows: The following three
sections first provide a brief literature review of studies that
have investigated pupil dilation in relation to cognitive con-
trol. Sections are structured along the three domains of cogni-
tive control identified by Miyake et al. (2000), discussing
pupil dilation in relation to updating, switching, and inhibition
respectively. These sections are followed by a critical evalua-
tion of these findings and describe the underlying neural
mechanisms that might underlie pupil dilation and effort.
Finally, implications and directions for future research are
discussed.

Pupil studies on the updating component
of cognitive control

The updating of working memory representations is an impor-
tant aspect of cognitive control. It involves the monitoring of
incoming information, the integration with information that is
currently held in working memory and the updating in re-
sponse to task demands (Miyake et al., 2000; Morris &
Jones, 1990). Typical updating tasks are the letter memory
task (Morris & Jones, 1990), the tone monitoring task
(Binder et al., 1995), and the keep track task (Pylyshyn &
Storm, 1988; Yntema, 1963). A few studies have combined
these tasks with pupil measurements. For example, in the
seminal study by Kahneman and Beatty (1967) using a tone
monitoring task, it was shown that the pupil dilates more with
increasing difficulty of pitch-discrimination. The authors
therefore interpreted pupil dilation to reflect an increase in
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mental activity. More recent studies using the keep track task
have shown increased pupil dilation with an increasing num-
ber of to be tracked objects (Alnæs et al., 2014; Wahn, Ferris,
Hairston, & Ko, 2016; Wright, Boot, & Morgan, 2013).

In recent years, pupil dilation has been more commonly
investigated in the context of mental arithmetic problems
(e.g., Klingner, Tversky, & Hanrahan, 2011), the n-back
task (Kirchner, 1958), the digit span task, and the
Sternberg task (Sternberg, 1966), as reviewed in the follow-
ing subsections.

Mathematical problems

Mathematical problems have been used to investigate task-
evoked pupil dilations and task difficulty by a bulk of
studies. The seminal study on pupil dilation and mental
arithmetic by Hess and Polt (1964) showed that the pupil
dilates more with increasing difficulty, which was interpreted
as that pupil dilation Bcan be used as a direct measure of
mental activity.^ Since then, this finding has been replicated
by a large body of studies (Ahern & Beatty, 1979; Boersma,
Wilton, Barham, & Muir, 1970; Bradshaw, 1968; Klingner
et al., 2011; Payne, Parry, & Harasymiw, 1968; Schaefer,
Ferguson, Klein, & Rawson, 1968). The majority of these
studies have used multiplication problems, which evoke sig-
nificantly more pupil dilation than adding problems (Jainta &
Baccino, 2010). Boersma et al. (1970) reported that with in-
creasing task difficulty overall pupil dilation increased, al-
though at the later phase of the response period pupil dilation
was actually larger for easy then for difficult stimuli, possibly
reflecting diminished sustained engagement in the latter con-
dition. Another study has revealed that relatively difficult au-
ditory presented multiplication problems result in larger
evoked dilation than relatively easy visual presentation of
problems (Klingner et al., 2011).

Ahern and Beatty (1979) have revealed that the link be-
tween arithmetic performance and pupil dilation is moderated
by individual differences in intelligence. Their study has
shown that more intelligent individuals show smaller pupil
dilation and respond more accurately for all levels of task
difficulty as compared to less intelligent individuals. This
finding suggests that intelligent individuals require less effort
because they process information more efficiently. In contrast
to these findings, a more recent study by van der Meer and
colleagues (Van Der Meer et al., 2010) has reported that indi-
viduals with higher fluid intelligence solve an analogical rea-
soning task faster and more accurately, while also showing
larger pupil dilations as compared to normal controls. The
reason for the discrepancy between these two studies might
be the different tasks involved: In contrast to the former study
using an arithmetic task, the reasoning task was not highly
overlearned thus making it more sensitive to differences in
effort mobilization driven by variability in fluid intelligence.

Consistent with this account, another study found that fluid
intelligence was correlated with pupil dilation in an analogy
task, whereas it was not significantly associated with pupil
dilation in an algebra task (Bornemann et al., 2010).

The n-back task

Another frequently used updating paradigm is the n-back task.
The n-back task requires participants to indicate whether the
currently presented letter or number is the same stimulus pre-
sented n trials back. Thus, task difficulty increases with in-
creasing n (Kirchner, 1958). The n-back task is unique in its
demands, because participants must constantly allocate atten-
tion to the task to perform well.

Multiple studies have shown that pupil dilation increases
with increasing n (Belayachi et al., 2015; Brouwer,
Hogervorst, Holewijn, & van Erp, 2014; Hopstaken, van der
Linden, Bakker, & Kompier, 2015; Karatekin, Marcus, &
Couperus, 2007; Niezgoda et al., 2015; Pehlivanoglu, Jain,
Ariel, & Verhaeghen, 2014; Scharinger, Soutschek,
Schubert, & Gerjets, 2015). Notably, a recent study using
classification algorithms has shown that pupil dilation alone
can be sufficient to distinguish high from low cognitive load
up to an accuracy of 75 %. When compared to other measures
such as electroencephalography, skin conductance, respira-
tion, cardiac measures, and eye blinks, only the first exceeded
this value with an classification accuracy of 80% (Hogervorst,
Brouwer, & van Erp, 2014). This finding shows that pupil
dilation might be used as an index of cognitive load, thus is
even suitable for applied contexts.

Regarding the link between pupil dilation and perfor-
mance, one recent study has shown that an increased pupil
dilation to the target stimuli of a 2-back task predicted
improved performance in terms of a lower error rate
(Rondeel, van Steenbergen, Holland, & van Knippenberg,
2015). This correlation at the inter-individual level sug-
gests that pupil dilation reflects effort supporting improved
performance.

The digit span task

The digit span task consists of an encoding and a recall phase.
In the encoding phase a string of digits of varying length is
presented after which it must be recalled. Multiple studies
have reported that the pupil dilates more with an increasing
number of digits, showing that pupil dilation responds to in-
creases in task demands (Granholm, Asarnow, Sarkin, &
Dykes, 1996; Heitz, Schrock, Payne, & Engle, 2008;
Johnson, 1971; Johnson, Singley, Peckham, Johnson, &
Bunge, 2014; Kahneman & Beatty, 1966; Karatekin, 2004;
Klingner et al., 2011; Peavler, 1974; Piquado, Isaacowitz, &
Wingfield, 2010; Poock, 1973).
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Ahandful of studies have investigated pupil dilation under
conditions where task demands exceed the available cogni-
tive resources. These studies have reported that when the
amount of to be processed information exceeds one’s capac-
ity, pupil dilation does no longer increase. For example,
Poock (1973) showed that average pupil dilation drops below
baseline under overload. More recent studies investigating
the temporal dynamics of pupil dilation have revealed that
pupil dilation reaches an asymptote up to a string of nine
digits (Granholm et al., 1996) or 13 digits (Peavler, 1974),
after which the pupil constricts. The exact timing of pupil
dilation decline likely depends on whether instruction em-
phasizes maintaining active rehearsal under overload or not
(Granholm et al., 1996). Two recent studies by Karatekin
(2004) and Johnson, Singley, Peckham, Johnson, and
Bunge (2014) have shown that children reach this asymptote
at the level of six-digit strings.

The Sternberg task

The Sternberg task (Sternberg, 1966) consists of an
encoding and a search phase. In the encoding phase a string
of digits of varying length is presented. After a delay of a
few seconds, the search phase starts: Participants search in a
new string for the letters that they have seen in the previous
string. Task difficulty increases with increasing length of the
digit string.

One pupillometry study on the Sternberg task has revealed
that for young people two dilation peaks were present that
increased with increasing task difficulty: one during the
encoding and one during the search phase (Van Gerven,
Paas, Van Merriënboer, & Schmidt, 2004). In older people,
pupil dilation did not increase with increasing workload dur-
ing the search phase. Notably, together with the absence of
pupil dilation during the search phase, older participants also
showed longer reaction times, whereas young participants did
display increased pupil dilation and were faster. The authors
interpreted the pupil as a sensitive measure of cognitive load,
that might become less sensitive and thus less reliable with
increasing age.

The influence of cognitive load has also been shown in
a visual search task where pupil diameter increased for a
more difficult version of the task and for larger search sets
(Porter, Troscianko, & Gilchrist, 2007). More recent work
has confirmed that pupil dilation increases with set size
(Kursawe & Zimmer, 2015). Moreover, pupil size pla-
teaus when set size exceeds capacity limitations
(Unsworth & Robison, 2015, 2017b).

Summary

To sum up, most studies using updating tasks have shown that
pupil dilation increases with increasing task demands. When

approaching working memory capacity limitations, pupil di-
lation plateaus or drops, depending on task instructions.
Moreover, although not found in all studies (Ahern &
Beatty, 1979), some studies on inter-individual differences
have revealed that increased pupil dilation is associated with
enhanced performance (Rondeel et al., 2015; Van Der Meer
et al., 2010), suggesting that in these contexts pupil dilation
might index the amount of effort allocated to the task at hand.

Pupil studies on the shifting component
of cognitive control

The ability to shift back and forth between tasks, operations,
or mental sets is another important component of cognitive
control. The plus-minus task (Jerslid, 1927; Spector &
Biederman, 1976), the number-letter task (Rogers &
Monsell, 1995), and the local-global task (Navon, 1977) have
been identified as typical tasks that require shifting (Miyake
et al., 2000). However, only the number-letter task has been
related to pupil dilation. In this task participants respond to
numbers according to changing tasks, which allows to com-
pare task switch and task repetition trials. A study on pupil
dilation using this switch task has revealed that pupil dilation
increases during switch trials as compared to repetition trials
(Rondeel et al., 2015), but this effect could not be related to
individual differences in performance.

Another study has investigated whether pupil size changes
when participants were forced to switch tasks or choose them-
selves to switch tasks (Katidioti, Borst, & Taatgen, 2014).
This study has revealed that when a switch was forced, pupil
size peaked briefly after the time of the switch. In contrast,
self-initiated switches were preceded by pupil dilation a few
seconds earlier. These findings suggest that self-initiated de-
cision takes a relatively large amount of time and that this
process might also involve preparatory effort.

In sum, there are few studies that have used switch tasks in
combination with pupillometry. These studies show that the
pupil is sensitive to changes in task difficulty and might also
reflect effortful processes driving self-initiated switches.
There is no clear evidence that links individual differences in
pupil dilation to switching performance.

Pupil studies on the inhibition component
of cognitive control

Inhibition refers to the ability to overcome dominant or auto-
matic responses in order to respond appropriately in a certain
situation (Miyake et al., 2000). Miyake et al. (2000) has used
the Stroop task (for an extensive review see Macleod, 1991;
Stroop, 1935), the antisaccade task (Hallett, 1978), and the
stop-signal task (Logan & Cowan, 1984) to measure
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inhibition ability. In addition to these tasks, other inhibition
paradigms such as the flanker task (Eriksen & Eriksen, 1974),
Simon task (Simon& Rudell, 1967), and Go/No-Go task have
also been related to pupil dilation as reviewed below.

The Go/No-Go task

Studies using the Go/No-Go paradigm have revealed that No-
Go trials (requiring motor inhibition) evoke significantly
smaller pupil dilations than Go trials (Reinhard & Lachnit,
2002; Richer, Silverman, & Beatty, 1983; Schacht, Dimigen,
& Sommer, 2010; van der Molen, Boomsma, Jennings, &
Nieuwboer, 1989). However, it is difficult to attribute pupil
dilation effects of No-Go versus Go trials to differences in
effort because they are confounded by the absence versus
presence of motor execution, a process that may independent-
ly contribute to pupil dilation effects.

The antisaccade task

Studies using the antisaccade task have shown that
antisaccade trials requiring an eye movement to the opposite
side of the presented target are associated with larger pupil
dilations than prosaccade trials that require an eye movement
to the target (Karatekin, Bingham, & White, 2010; Wang,
Brien, & Munoz, 2015; Wang, McInnis, Brien, Pari, &
Munoz, 2016). Additionally, larger pupil dilations were ob-
served during the preparatory interval of antisaccades, as com-
pared to the preparatory interval of correct prosaccades or
erroneous prosaccades made in the anti-saccade condition.
Notably, analyses on intra-individual correlations for the
anti-saccade condition have revealed that larger preparatory
dilations are associated with faster saccades (Wang et al.,
2015, 2016).

Conflict paradigms

Conflict tasks typically involve conflict between responses
activated by the target and distractor stimuli, and cognitive
control is needed to respond to the relevant information while
inhibiting the irrelevant information (Botvinick et al., 2001).
For example, in the Stroop task participants are asked to name
the ink color whereas the word itself needs to be ignored, in
the flanker task target information is surrounded by irrelevant
distractors, and in the Simon task there is a match or mismatch
between the spatial location of the target and the spatial loca-
tion of the target key.

Many studies have shown that pupil dilation is increased
for incongruent (conflict) trials as compared to congruent tri-
als on the Stroop task (Brown et al., 1999; Brown,
Steenbergen, Kedar, & Nieuwenhuis, 2014; Hasshim &
Parris, 2015; Laeng, Ørbo, Holmlund, Miozzo, & Orbo,
2011; Rondeel et al., 2015; Siegle, Ichikawa, & Steinhauer,

2008; Siegle, Steinhauer, & Thase, 2004; Steinhauer, Siegle,
Condray, & Pless, 2004) and the flanker task (Cohen, Moyal,
& Henik, 2015; Geva et al., 2013; Scharinger, Soutschek,
Schubert, & Gerjets, 2015; Van Bochove, Van der Haegen,
Notebaert, & Verguts, 2013; Wendt, Kiesel, Geringswald,
Purmann, & Fischer, 2014). Initial observations for the
Simon task suggested an absence of conflict-induced pupil
dilation (Schacht et al., 2010). However, more recent studies
have shown increased pupil dilation on incompatible trials as
compared to compatible trials also in this task (D’Ascenzo,
Iani, Guidotti, Laeng, & Rubichi, 2016; Van Steenbergen &
Band, 2013). Surprisingly, some studies have reported that the
size of the Stroop effect (i.e., difference score of incongruent
minus congruent conditions) in pupil dilation positively cor-
relates with the Stroop effect in behavior, suggesting that in-
creased pupil dilation correlates with impaired performance
(Laeng et al., 2011; Rondeel et al., 2015). We will return to
this finding in the next section of our review.

Some recent studies have also started to investigate pupil
dilation in sequences of trials that allow to dissociate effects of
current-trial conflict and previous-trial conflict (D’Ascenzo,
Iani, Guidotti, Laeng, & Rubichi, 2016; Van Steenbergen &
Band, 2013). The typical behavioral sequential effect ob-
served in these paradigms is that the effect of conflict in the
current trial is reduced (improved performance) if the previous
trial was a conflict trial (Duthoo, Abrahamse, Braem, Boehler,
& Notebaert, 2014; Egner, 2007; Gratton, Coles, & Donchin,
1992). This suggests that conflict triggers an adaptive increase
in effort that can be measured in the subsequent trial. Conflict
monitoring theory (Botvinick et al., 2001), posited that there
are two dissociable processes and related neural systems that
are involved in demand detection (conflict monitoring) and
exertion of effort respectively. The original computational im-
plementation of this model suggests that these processes are
temporally dissociable, predicting different results for physi-
ological signals that reflect task demands versus the allocation
of effort.

Studies analyzing sequential analyses of pupil dilation have
revealed smaller conflict-driven pupil dilations after incongru-
ent than after congruent trials (D’Ascenzo, Iani, Guidotti,
Laeng, & Rubichi, 2016; Van Steenbergen & Band, 2013).
Following conflict monitor theory predictions, this suggest
that pupil dilation reflects the demand for effort rather than
the allocation of effort itself (van Steenbergen & Band, 2013).
However, in contrast to the classic account (Botvinick et al.,
2001), more recent work suggests that conflict monitoring and
subsequent control adaptation are closely coupled in time
(Shenhav, Botvinick, & Cohen, 2013). Therefore, sequential
effects in pupil dilation could equally well be attributed to the
allocation of effort (cf. Scherbaum, Fischer, Dshemuchadse,
& Goschke, 2011). Notably, van Steenbergen and Band
(2013) also observed intra-individual correlations suggesting
that previous trial pupil dilation in conflict trials predicted
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speeded RT in the subsequent trial, which also seems consis-
tent with an effort account of pupil dilation.

In a more recent study, measures of sequential adjustments
in cognitive control were combined with a time-pressure ma-
nipulation in order to increase overall task demand (van
Steenbergen, Band, & Hommel, 2015). Consistent with the
assumed inverted U-shaped relationship between task difficul-
ty and effort imposed by motivational limitations (Brehm &
Self, 1989), overall increase in task demands abolished the
effect of conflict on cognitive control adjustments in the sub-
sequent trial. Moreover, under these high demands conditions,
conflict produced an overall reduction in pupil dilation in the
subsequent trial, possibly reflecting impaired exertion of effort
in this task.

Summary

In sum, many recent studies on inhibitory control have
employed pupillometry. Studies using the antisaccade task
and several conflict tasks have revealed a reliable increase in
pupil dilation in conditions that require inhibitory control.
Intra-individual correlations have indicated a link between
pupil dilation and improved performance (van Steenbergen
& Band, 2013; Wang et al., 2015, 2016). In contrast, associ-
ations investigated at the individual level have shown a posi-
tive correlation between the Stroop-effect in performance and
pupil dilation (Laeng et al., 2011; Rondeel et al., 2015), sug-
gesting that pupil dilation relates to impaired performance in
these studies. We will address this inconsistency in turn.

Evaluation of the reviewed literature

What do the studies reviewed above tell us about the feasibil-
ity to use pupil dilation as an index of cognitive effort? First,
the literature reviewed above clearly shows that increases in
task demands generally led to increases in pupil dilation
across the cognitive control domains of updating, switching,
and inhibition. However, as discussed at the outset of this
review, based on these findings alone it cannot be decided
whether this reflects simply an increase in task demands or
an increase in actual effort exertion.

Given these considerations, one of the aims of this review
was to document available correlations between pupil dilation
and task performance. Although most studies did not report
correlations and null-effects are hardly informative as ex-
plained earlier (Norman & Bobrow, 1975), it is worthwhile
to elaborate on the studies that actually did report significant
correlations. These correlations were observed at two levels.
First, a limited number of studies have investigated correla-
tions at the intra-individual level (van Steenbergen & Band,
2013; Wang et al., 2015, 2016). These studies consistently
suggest that pupil dilation is associated with improved

behavior in conditions that require inhibitory control. As al-
luded to earlier, these findings are particularly compelling be-
cause analyses at the intra-induvial levels are the least sensi-
tive to confounds. Second, studies on intra-individual correla-
tions are more diverging. Consistent with an effort account of
pupil dilation, some of the studies suggested that individuals
with increased pupil dilation actually showed better task per-
formance than individuals with smaller pupil dilation
(Rondeel et al., 2015; Van Der Meer et al., 2010). These find-
ings support an account favoring pupil dilation as an index of
effort exertion whereas these findings are hard to reconcile
with the idea that pupil dilation simply reflects increased de-
mands or task load only. On the other hand, some of the
reviewed studies actually show a negative correlation between
pupil dilation and performance. For example, two studies have
shown a correlation between the Stroop effect in RTs and
pupil dilation (Laeng et al., 2011; Rondeel et al., 2015). At
face value, these observations better fit a task demand inter-
pretation of pupil dilation. By this account, bad Stroop per-
formers show physiological signatures of task demand due to
alleged control impairments in these individuals. It is impor-
tant to notice however that these findings can equally well be
explained by an effort account. Accordingly, bad performers
show increased pupil dilation because they try harder in order
to compensate for their impaired inhibitory control – although
this is unsuccessful (cf. Hockey, 1997). Alternatively, findings
could be taken to reflect that good performers process infor-
mation more efficiently and therefore exert less effort (cf.
Ahern & Beatty, 1979). Taken together, we think that these
preliminary findings show that the effort account could have
more explanatory power and might therefore be preferred over
an account that pupil dilation reflects mere task demands.

However, it goes without saying that it is hard to draw
strong conclusions concerning the interpretation of pupil dila-
tion, since it at best reflects a psychophysical marker that can
only be reliable interpreted in restricted contexts (see the
instructive caveats about the use of psychophysiological
measures by Richter & Slade, 2017). Well-controlled lab con-
ditions are always required to prevent alternative explanations
– including for example matched luminance levels for the
different demands in order to rule out an effect on the pupillary
light reflex (Beatty & Lucero-Wagoner, 2000) and matched
numbers of trials to exclude interpretations in terms of an
orienting response or surprise (Braem, Coenen, Bombeke,
van Bochove, & Notebaert, 2015). In addition, future studies
should also start to carefully control for confounding factors
such as age and ethnicity when relating pupil dilation and
performance at the inter-individual level. To further advance
our account, one might run crucial experiments that contrast
predictions from both accounts in a single study. Such a study
might include manipulations of task demands that range from
easy to extremely difficult (cf. Richter, Friedrich, & Gendolla,
2008). Although demand and effort typically co-vary when
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success is possible and worthwhile, extremely high task de-
mands are expected to produce disengagement and withdraw-
al of effort (Brehm & Self, 1989). Testing whether pupil dila-
tion under these conditions of high task difficulty decreases or
increases may provide important evidence for the effort or task
load account respectively.

An alternative approach to further corroborate an effort
account of pupil dilation would be to show that pupil dilation
effects converge with other measures related to effort. For
example, in another line of research, myocardial sympathetic
activity has been proposed as the operational definition of
effort mobilization, as primarily reflected in measures of sys-
tolic blood pressure and the pre-ejection period (Wright,
1996). Indeed numerous studies have shown that these mea-
sures are sensitive to task difficulty manipulations consistent
with a role of effort mobilization (Gendolla, Wright, &
Richter, 2011; Richter et al., 2008). We recently developed a
method to measure a proxy of the pre-ejection period at a
single-trial level. This method makes it possible to analyze
cardiac effort as a task-evoked response (Kuipers et al.,
2017), and to run analyses similar to those used in
pupillometry studies (Spruit, Wilderjans, & van Steenbergen,
2018). Future studies are needed to determine whether pupil
dilation data indeed converges with these cardiovascular mea-
sures of effort.

The activity of facial muscles has also been proposed to
reflect effort (e.g., Boxtel & Jessurun, 1993; Cacioppo, Petty,
& Morris, 1985; de Morree & Marcora, 2010). In particular,
the facial corrugator muscle has been shown to respond to
increases in cognitive demands. Notably, responses in the
corrugator muscle have also been used as a measure of nega-
tive affect (e.g., Larsen, Norris, & Cacioppo, 2003) and thus
might reflect the anxiety associated with task difficulty
(uncertainty) and/or the intrinsic cost of cognitive control
and effort exertion (Botvinick, 2007; Dreisbach & Fischer,
2016; Inzlicht, Bartholow, & Hirsh, 2015; van Steenbergen,
2015). Although the effect of response conflict on the
corrugator seems not easy to identify (Schacht et al., 2010),
it is sensitive to error commissions (Elkins-Brown, Saunders,
He, & Inzlicht, 2017; Elkins-Brown, Saunders, & Inzlicht,
2016; Lindström, Mattsson-Mårn, Golkar, & Olsson, 2013)
and it has been related to subsequent performance adjustments
(Lindström et al., 2013). Similar findings have been observed
for the pupil dilation response to errors (Murphy, Van Moort,
& Nieuwenhuis, 2016). Importantly, pupil dilation to stimuli
with negative valence has also been observed in other studies
(e.g., Chiesa, Liuzza, Acciarino, & Aglioti, 2015), although it
likely reflects the arousal and not the valence dimension of
affective states (Bradley, Miccoli, Escrig, & Lang, 2008;
Snowden et al., 2016; Van Steenbergen, Band, & Hommel,
2011). Thus, it remains an important topic for future studies to
compare the convergence between the pupil dilation response
and facial EMG in the context of cognitive control tasks.

Neurobiological mechanisms

There is an increasing body of evidence that has started to
reveal the brain mechanisms that underlie effort-related pupil
dilation. The size of the pupil is controlled by twomuscles, the
sphincter and dilator muscles, which are differentially influ-
enced by activity in the parasympathetic and sympathetic
branches of the nervous system, respectively. Sympathetic
activity drives the dilator muscle evoking dilation, whereas
inhibition of parasympathetic activity reduces constriction of
the sphincter muscle, which also results in dilation (Beatty &
Lucero-Wagoner, 2000). These systems in turn reflect activity
of neuromodulatory brain systems involving catecholamines
and acetylcholine (Aston-Jones & Cohen, 2005; Verguts,
Vassena, & Silvetti, 2015).

The modulations in arousal that drive pupil dilation in re-
sponse to task demands are related to the locus-coeruleus nor-
epinephrine (LC-NE) system. More specifically, it has been
proposed that the LC receives input from brain areas that
detect task demands such as the ACC, and that its efferent
projections influences the levels of neural gain throughout
the cortex, including frontal and parietal regions important
for cognitive control (Aston-Jones & Cohen, 2005;
Nieuwenhuis, De Geus, & Aston-Jones, 2011) and subcortical
areas, such as the superior colliculus, important for attention
(Foote & Morrison, 1987). Importantly, LC activity closely
correlates with pupil diameter likely via common input from
the gigantocellularis nucleus of the ventral medulla (Joshi, Li,
Kalwani, & Gold, 2016). A growing number of studies have
therefore used pupil diameter as an indirect index of the ac-
tivity of the LC-NE system. Neurons in the LC-NE system
have tonic and phasic modes of firing and task-evoked pupil
dilation to a stimulus is driven by the latter. Notably, the phasic
response of LC-NE neurons depends on its tonic mode and is
strongest at intermediate levels of tonic firing. This mecha-
nism suggests an inverted-U shape relationship between tonic
LC activity and task-evoked arousal, which might also under-
lie individual differences in working memory capacity and
effort (Unsworth & Robison, 2017a).

Similarly, acetylcholine has been proposed to play an im-
portant role in compensatory effort to keep up task perfor-
mance under challenging conditions (Sarter, Gehring, &
Kozak, 2006). Acetylcholine neurons originating from the
basal forebrain have been shown to upregulate prefrontal areas
in response to cognitive demands and these neurons also re-
ceive projections from frontal and midbrain areas, thus being
in an ideal position to control motivated behavior (Sarter et al.,
2006). Interestingly, a recent study has shown that activity in
both norepinephrine and acetylcholine axons are reflected by
pupil dilation, although they differ in temporal dynamics
(Reimer et al., 2016).

The norepinephrine and acetylcholine systems receive pro-
jections from the anterior cingulate cortex which has been
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proposed to monitor the environment for cognitive conflict
and demands (Botvinick et al., 2001), and to optimize the
amount of effort based on its associated costs and expected
payoffs coded in other regions of the brain such as the insula,
ventral prefrontal cortex, striatum, and midbrain (Shenhav
et al., 2013). These neural circuits thus support the amount
of effort or control invested in a task, and the underlying
processes are likely better captured by a decision process rath-
er than by a capacity or resource that is physically limited
(Kurzban et al., 2013; Shenhav et al., 2017). From this per-
spective, cognitive control shares many processes that are also
important for value-based decision making (Berkman,
Hutcherson, Livingston, Kahn, & Inzlicht, 2017), and it re-
mains an important aim for future studies to use physiological
measures including pupil dilation to better characterize the
effort processes determined by these brain systems.

Conclusion

The studies reviewed here show that pupil dilation can be used
as an indirect index of effort in cognitive control tasks. Across
the domains of updating, switching and inhibition, studies
show that pupil dilation closely responds to changes in task
demands and in some cases predict improved task perfor-
mance. Future work that integrates other physiological indices
of cognitive effort with neuroimaging techniques is needed to
advance our understanding of the intricate role of brain and
body mechanisms that underlie cognitive effort.
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