
1Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

www.nature.com/scientificreports

Reliable and efficient solution
of genome-scale models of
Metabolism and macromolecular
Expression
Ding Ma1, Laurence Yang2, Ronan M. T. Fleming3, Ines Thiele3, Bernhard O. Palsson2,4 &
Michael A. Saunders1

Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits
integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear
optimization computes steady-state flux solutions to ME models, but flux values are spread over many
orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision
solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based
on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME
models have 70,000 constraints and variables and will grow larger). We have developed a quadruple-
precision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ)
involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other
challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in
systems biology and other applications involving multiscale data.

Constraint-Based Reconstruction and Analysis (COBRA)1 has been applied successfully to predict phenotypes
for a range of genome-scale biochemical processes. The popularity of COBRA is partly due to the efficiency of the
underlying optimization algorithms, permitting genome-scale modeling at a particular timescale using readily
available open source software2,3 and industrial quality optimization algorithms4–6. A widespread application
of COBRA is the modeling of steady states in genome-scale Metabolic models (M models). COBRA has also
been used to model steady states in macromolecular Expression networks (E models), which stoichiometrically
represent the transcription, translation, post-translational modification and formation of all protein complexes
required for macromolecular biosynthesis and metabolic reaction catalysis7,8. COBRA of metabolic networks
or expression networks depends on numerical optimization algorithms to compute solutions to certain model
equations, or to determine that no solution exists. Our purpose is to discuss available options and to demonstrate
an approach that is reliable and efficient for ever larger networks.

Metabolism and macromolecular Expression (ME) models have opened a whole new vista for predictive
mechanistic modeling of cellular processes, but their size and multiscale nature pose a challenge to standard lin-
ear optimization (LO) solvers based on 16-digit double-precision floating-point arithmetic. Standard LO solvers
usually apply scaling techniques9,10 to problems that are not already well scaled. The scaled problem typically
solves more efficiently and accurately, but the solver must then unscale the solution, and this may generate sig-
nificant primal or dual infeasibilities in the original problem (the constraints or optimality conditions may not
be accurately satisfied).

A lifting approach11 has been implemented to alleviate this difficulty with multiscale problems. Lifting reduces
the largest matrix entries by introducing auxiliary constraints and variables. This approach has permitted stand-
ard (double-precision) LO solvers to find more accurate solutions, even though the final objective value is still
not satisfactory. Another approach to increasing the precision is to use an exact solver12. An exact simplex solver

1Stanford University, Dept of Management Science and Engineering, Stanford, CA 94305, USA. 2University of
California, San Diego, Dept of Bioengineering, La Jolla, CA 92093, USA. 3University of Luxembourg, Luxembourg
Centre for Systems Biomedicine, L-4365 Esch-sur-Alzette, Luxembourg. 4Technical University of Denmark, Novo
Nordisk Foundation Center for Biosustainability, 2970 Hørsholm, Denmark. Correspondence and requests for
materials should be addressed to M.A.S. (email: saunders@stanford.edu)

received: 11 August 2016

accepted: 13 December 2016

Published: 18 January 2017

OPEN

mailto:saunders@stanford.edu

www.nature.com/scientificreports/

2Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

QSopt_ex13,14 has been used for a ME model of Thermotoga maritima15 (model TMA_ME) representing a network
with about 18,000 metabolites and reactions. The solution time was about two weeks, compared to a few minutes
for a standard double-precision solver, but the latter’s final objective value had only one correct digit. QSopt_ex
has since been applied to a collection of 98 metabolic models by Chindelvitch et al.16 via their MONGOOSE tool-
box. Most of the 98 models have less than 1000 metabolites and reactions. QSopt_ex required about a day to solve
all models16, compared to a few seconds in total for a standard solver.

To advance COBRA for increasingly large biochemical networks, solvers that perform more efficiently than
exact solvers and also perform more reliably than standard LO solvers are definitely needed. Gleixner et al.17–20
have addressed this need, and Chapter 4 of ref. 19 is devoted to multiscale metabolic networks, showing signif-
icant improvement relative to CPLEX5. Our work is complementary and confirms the value of enhancing the
simplex solver in refs 17–20 to employ quadruple-precision computation, as we have done here.

We use Single, Double, and Quad to denote the main options for floating-point arithmetic (with precision
around 7, 16, and 34 digits respectively). For many years, scientific computation has advanced in two comple-
mentary ways: improved algorithms and improved hardware. Compilers have typically evaluated expressions
using the same arithmetic as the variables’ data type. Most scientific codes apply Double variables and Double
arithmetic throughout (16 significant digits stored in 64-bit words). The floating-point hardware often has slightly
extended precision (80-bit registers). Kahan21 notes that early C compilers generated Double instructions for all
floating-point computation even for program variables stored in single precision. Thus for a brief period, C pro-
grams were serendipitously more reliable than typical Fortran programs of the time. (For Single variables a and
b, Fortran compilers would use Single arithmetic to evaluate the basic expressions a ± b, a*b, a/b, whereas C
compilers would transfer a and b to longer registers and operate on them using Double arithmetic.) Most often,
the C compiler’s extra precision was not needed, but occasionally it did make a critical difference. Kahan calls this
the humane approach to debugging complex numerical software. Unfortunately, Quad hardware remains very
rare and for the foreseeable future will be simulated on most machines by much slower software. Nevertheless, we
believe the time has come to produce Quad versions of key sparse-matrix packages and large-scale optimization
solvers for multiscale problems.

Here, we report the development and biological application of Quad MINOS, a quadruple-precision version of
our general-purpose, industrial-strength linear and nonlinear optimization solver MINOS22,23. We also developed
a Double-Quad-Quad MINOS procedure (DQQ) that combines the use of Double and Quad solvers in order
to achieve a balance between efficiency in computation and accuracy of the solution. We extensively tested this
DQQ procedure on 83 genome-scale metabolic network models (M models) obtained from the UCSD Systems
Biology repository24,25 and 78 from the BiGG database26. We also applied DQQ to ME models of Thermotoga
maritima15 (about 18,000 metabolites and reactions) and E. coli K12 MG165527 (about 70,000 metabolites and
reactions). For M models, we find that Double MINOS alone is sufficient to obtain non-zero steady-state solu-
tions that satisfy feasiblility and optimality conditions with a tolerance of 10−7. For ME models, application of our
DQQ procedure resulted in non-zero steady-state solutions that satisfy feasibility and optimality conditions with
a tolerance of 10−20. The largest ME model required 4.5 hours, mostly in step D of DQQ because of conservative
runtime options. Qsopt_ex would not be practical on such a large model unless warm-started at a near-optimal
solution. The SoPlex80 bit solver28,29 has performed very efficiently on large ME models with the help of rational
arithmetic at a near-optimal solution, but had difficulty on some other challenging problems that DQQ solved
accurately (see ref. 19, Ch. 4], problematic models below, and Supplementary Information).

Thus, we expect our DQQ procedure to be a robust and efficient tool for the increasingly detailed study of bio-
logical processes, such as metabolism and macromolecular synthesis, and for challenging optimization problems
arising in other scientific fields.

Overview
A preliminary version of this work appeared in Ma and Saunders30. Here we name the approach DQQ and report
experiments with an analogous but cheaper DRR procedure based on conventional iterative refinement of all
linear equations arising in the simplex method (see Methods section and Supplementary Information). We also
became aware of the work of Gleixner et al.17–20 and their thorough and successful implementation of iterative
refinement in SoPlex80 bit. However, we learned that DRR may lose ground during periodic refactorizations of
the simplex basis matrix B, if the current B is nearly singular and “basis repair” becomes necessary. Our DQQ and
DRR experience points to the need for an optional Quad version of the basic SoPlex solver to ensure maximum
reliability of the refinement approach in refs 17–20. Meanwhile, DQQ will be effective on a wide range of prob-
lems as long as step D finishes naturally or is limited to a reasonable number of iterations before steps Q1 and Q2
take over.

Results
We discuss Double and Quad implementations of MINOS applied to linear optimization (LO) problems of the
form

. . = ≤ ≤c v Sv v umin s t 0, , (1)v

T

where S ∈ Rm×n. To achieve reliability and efficiency on multiscale problems, we developed the following 3-step
procedure.

www.nature.com/scientificreports/

3Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

DQQ procedure. Step D Apply the Double solver with scaling and somewhat strict runtime options.
Step Q1 Warm-start the Quad solver with scaling and stricter options.
Step Q2 Warm-start the Quad solver with no scaling but stricter options.
DQQ is described further in Algorithm 1, where loop 1 is the primal simplex method, P is a permutation matrix,

and δ1, δ2 are Feasibility and Optimality tolerances. MINOS terminates loop 1 when the (possibly scaled) bounds on
v are satisfied to within δ1, and the sign of + ∞z y/(1)j is correct to within δ2. Table 1 shows the default runtime
options for Double MINOS and preferred options for each step of DQQ. Scale specifies whether the problem data
should be scaled before the problem is solved (and unscaled afterward). Tolerances δ1, δ2 specify how well the
primal and dual constraints of the (possibly scaled) problem should be satisfied. Expand frequency controls the
MINOS anti-degeneracy procedure31. The LU tolerances balance stability and sparsity when LU factors of B are
computed and updated.

Steps D and Q1 are usually sufficient, but Q2 costs little more and ensures that the tolerances δ1 and δ2 apply
to the original (unscaled) problem. For conventional solvers it is reasonable to set δ1 and δ2 to 10−6 or perhaps
as small as 10−9. For Quad MINOS, we set them to 10−15 to be sure of capturing variables vj as small as O(10−10).

Small M models. Of the 98 metabolic network models in the UCSD Systems Biology repository24, A. Ebrahim
was able to parse 83 models32 and compute solutions with a range of solvers33. We constructed MPS files for the 83
models25 and solved them via DQQ. Most models have less than 1000 metabolites and reactions. Almost all mod-
els solved in less than 0.08 seconds, and many in less than 0.01 seconds. The total time was less than 3 seconds. In
contrast, ref. 16 reports that the exact solver Qsopt_ex needed a day.

Large ME models. COBRA can be used to stoichiometrically couple metabolic and macromolecular expression
networks with single nucleotide resolution at genome-scale15,27. The corresponding Metabolic and macromolecu-
lar Expression models (ME models) explicitly represent catalysis by macromolecules, and in turn, metabolites
are substrates in macromolecular synthesis reactions. These reconstructions lead to the first multi-timescale and
genome-scale stoichiometric models, as they account for multiple cellular functions operating on widely different
timescales and typically account for about 40 percent of a prokaryote’s open reading frames. A typical M model
might be represented by 1000 reactions generated by hand34. In contrast, ME models can have more than 50,000
reactions, most of which have been generated algorithmically from template reactions (defined in the literature)
and omics data15,27. Typical net metabolic reaction rates are 6 orders of magnitude faster than macromolecular
synthesis reaction rates (millimole/gDW vs nanomole/gDW, gDW = gram dry weight), and the number of met-
abolic moieties in a macromolecule can be many orders of magnitude larger than in a typical metabolite. The
combined effect is that the corresponding ME models have biochemically significant digits over many orders of
magnitude. When Flux Balance Analysis (FBA) is augmented with coupling constraints35 that constrain the ratio
between catalytic usage of a molecule and synthesis of the same molecule, the corresponding linear optimization
problem is multiscale in the sense that both data values and solution values have greatly varying magnitudes. For

Default Step D Step Q1 Step Q2

Precision Double Double Quad Quad

Scale Yes Yes Yes No

Feasibility tol δ1 1e − 6 1e − 7 1e − 15 1e − 15

Optimality tol δ2 1e − 6 1e − 7 1e − 15 1e − 15

Expand frequency 10000 100000 100000 100000

LU Factor tol 100.0 1.9 10.0 5.0

LU Update tol 10.0 1.9 10.0 5.0

Table 1. Runtime options for MINOS in each step of the DQQ procedure.

www.nature.com/scientificreports/

4Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

a typical ME model, input data values (objective, stoichiometric or coupling coefficients, or bounds) differ by 6
orders of magnitude, and biochemically meaningful solution values can be as large as 108 or as small as 10−10.

The results of DQQ on three large ME models are shown in Tables 2 and 3, including the model dimensions m
and n, the number of nonzeros in S, the norms of the optimal primal and dual variables (v*, y*), the iterations and
runtime for each step, the final objective value, and the primal and dual infeasibilities (Pinf and Dinf). The con-
straints in (1) are satisfied to within Pinf, and + ∞

⁎z y/(1)j has the correct sign to within Dinf, where BTy = cB
for the optimal basis B, and z = c − STy.

TMA_ME developed by Lerman et al.15 has some large entries |Sij| and many small solution values vj that have
meanings to systems biologists. For example, transcription and translation rates can have values O(10−10) or less,
which is much smaller than metabolic reactions. These small values are linked to large matrix entries arising from
building large macromolecules from smaller constituents27. The ME part of the model also contains small |Sij|.
For instance, enzyme levels are estimated in ME models by dividing certain metabolic fluxes by “effective rate
constants.” Because these constants are typically large (e.g., 234,000 h−1), the matrix entries (the inverse of the rate
constants) become small. In step D, most iterations were needed to find a feasible solution, with the objective then
having the correct order of magnitude (but only one correct digit). Step Q1 improved the accuracy, and step Q2
provided confirmation. Note that the efficiency advantage of our approach is also evident: 385 seconds solve time
for DQQ (Total time in Table 2) compared to 2 weeks using exact arithmetic15.

Two slightly different versions of this model provided welcome empirical evidence that the optimal objec-
tive and solution values do not change significantly when the problem data are perturbed by O(10−6) (see
Supplementary Information).

GlcAerWT is a ME model from the study by Thiele et al.27 After 33,000 iterations in step D, MINOS began
to report singularities following updates to the basis factors (71 times during the next 15,000 iterations). After
47,718 iterations (D itns in Table 2), step D terminated with maximum primal and dual infeasibilities O(10−4)
and O(1) (Pinf and Dinf in Table 3). These were small enough to be classified “Optimal”, but we see that the final
objective value − 6.7687e + 05 had no correct digits compared to − 7.0382e + 05 in steps Q1 and Q2. For large
models, step Q1 is important. It required significant work: 4,287 iterations costing 1958.9 seconds (Q1 itns and
time in Table 2). Step Q2 soon confirmed the final objective value. The total time (12,599 seconds ≈ 3.5 hours) is
modest compared to an expected time of months for the exact solver approach of ref. 16.

ME model TMA_ME GlcAerWT GlcAlift

m 18210 68300 69529

n 17535 76664 77893

nnz(S) 336302 926357 928815

max |Sij| 2.1e + 04 8.0e + 05 2.6e + 05

||v*||∞ 5.9e + 00 6.3e + 07 6.3e + 07

||y*||∞ 1.1e + 00 2.4e + 07 2.4e + 07

D itns 21026 47718 93857

D time 350.9 10567.8 15913.7

Q1 itns 597 4287 1631

Q1 time 29.0 1958.9 277.3

Q2 itns 0 4 1

Q2 time 5.4 72.1 44.0

Total time 385 12599 16235

Table 2. Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift11,15,27. Dimensions of
m × n constraint matrices S, size of the largest optimal primal and dual variables v*, y*, number of iterations and
runtimes in seconds for each step, and the total runtime of each model.

ME model Step Objective Pinf Dinf

TMA_ME D 8.3789966820e − 07 − 06 − 05

Q1 8.7036315385e − 07 − 25 − 32

Q2 8.7036315385e − 07 — − 32

GlcAerWT D − 6.7687059922e + 05 − 04 + 00

Q1 − 7.0382449681e + 05 − 07 − 26

Q2 − 7.0382449681e + 05 − 21 − 22

GlcAlift D − 5.3319574961e + 05 − 03 − 01

Q1 − 7.0434008750e + 05 − 08 − 22

Q2 − 7.0434008750e + 05 − 18 − 23

Table 3. Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift11,15,27. Optimal
objective value of each step, Pinf and Dinf = final maximum primal and dual infeasibilities (log10 values
tabulated, except – means 0). Bold figures show the final (step Q2) Pinf and Dinf.

www.nature.com/scientificreports/

5Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

GlcAlift was generated because of difficulties that TMA_ME and GlcAerWT presented to Double solvers. The
lifting technique of ref. 11 was applied to GlcAerWT to reduce some of the large matrix values. The aim of lifting
is to remove the need for scaling (and hence magnified errors from unscaling), but with DQQ we do activate scal-
ing in step D because steps Q1 and Q2 follow. Our experience is that lifting improves accuracy for Double solvers
but substantially increases the simplex iterations. On GlcAlift, Double MINOS again reported frequent singulari-
ties following basis updates (235 times starting near iteration 40,000). It took 93,857 iterations (D itns in Table 2),
twice as many as GlcAerWT, with only a slight improvement in max{Pinf, Dinf} (Table 3). Double MINOS with
scaling on the lifted model couldn’t reach agreement with the final objective − 7.0434008750e + 05 in steps Q1
and Q2, and the total solve time increased (4.5 hours), mostly in step D. The objective for both GlcA models is
to maximize v60069. The fact that there are no correct digits in the step D objectives illustrates the challenge that
these models present, but steps Q1 and Q2 are accurate and efficient. The Q2 objectives for GlcAerWt and GlcAlift
should be the same, but limited precision in the data files could explain why there is just 3-digit agreement.

The Tomlab interface36 and CPLEX were used by Thiele et al.27 to improve the results for standard Double
solvers. On the NEOS server37, Gurobi was unable to solve GlcAerWT with default parameters (numeric error
after nearly 600,000 iterations). It performed considerably better on GlcAlift (about 46,000 iterations) but termi-
nated with a warning of unscaled primal/dual residuals 1.07 and 1.22e − 06. As shown above, our DQQ procedure
saves researchers’ effort on lifting the model, and is able to solve the original model faster (3.5 hours vs 4.5 hours).

Further tests of the DQQ procedure on challenging LO problems are reported in Methods. As for the ME mod-
els, the simplex method in Double MINOS usually gives a good starting point for the same simplex method in Quad
MINOS. Hence, much of the work can be performed efficiently with conventional 16-digit floating-point hardware
to obtain near-optimal solutions. For Quad MINOS, 34-digit floating-point operations are implemented in the com-
piler’s Quad math library via software (on today’s machines). Each simplex iteration is therefore considerably slower
than with floating-point hardware, but the reward is high accuracy. Of interest is that Quad MINOS usually achieves
much more accurate solutions than requested (see bold figures in Table 3). This is a favorable empirical finding.

Discussion
Exact solvers compute exact solutions to LO problems involving rational data. Although stoichiometric coeffi-
cients for chemical reactions are in principle integers, most genome-scale metabolic models have non-integer
coefficients where the stoichiometry is known to only a few digits, e.g., a coefficient in a biomass reaction. Such
a stoichiometric coefficient should not be considered exact data (to be converted into a rational number for use
with an exact solver). This casts doubt on any effort to compute an exact solution for a particular FBA problem.

Exact solvers employ rational arithmetic, and have been applied to important problems13–15,17–20,38. Quad pre-
cision and variable-precision floating-point have also been mentioned13,38. Here, we exploit Quad precision more
fully on a range of larger problems, knowing that current genome-scale models will continue to grow even larger.

While today’s commercial solvers (including CPLEX, Gurobi, Mosek, and Xpress4–6,39) are effective on a wide
range of linear and mixed integer optimization models, the work of Thiele et al.27 calls for greater reliability in
solving FBA and ME models in systems biology. Our DQQ procedure has demonstrated that warm starts with
Quad solvers are efficient, and that the accuracy achieved exceeds requirements by a very safe margin. Kahan21
has noted that “carrying somewhat more precision in the arithmetic than twice the precision carried in the data
and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies” and that “default
evaluation in Quad is the humane option,” as opposed to coding specialized tests for each application. The real(16)
datatypes in today’s Fortran compilers provide a humane method for converting existing Double code to Quad.
The float128 datatype in some C+ + compilers makes it possible to switch from Double to Quad at runtime
within a single code, making code maintenance even more humane.

Warm starts are essential for steps Q1 and Q2 of DQQ. Exact simplex solvers can also be warm-started, as
noted by Gleixner et al.18,19. We could envisage a DE procedure: Double solver followed by Exact solver. However,
for the GlcA problems in Table 2 (and for the gen problems in the Mészáros problematic set below), we see that
step Q1 performs a significant number of iterations. Thus, warm-starting an exact solver on large models may not
be practical when the Double solver is not reliable.

Looking ahead, we note that metabolic reconstructions of the form (1) may need to be processed before they
can be treated as stoichiometrically consistent models. As discussed in ref. 40, certain rows of S may need to be
deleted according to the solution of the problem

max 0 s.t. =S 0T , ≥ 0. This problem can be approxi-
mated by the linear problem

α β. . = ≤ ≤ ≤ ≤ ≤

z

S z z

1

1 1

max

s t 0, , 0 , 0 , (2)
z

T

T
,

where scalars α, β are proportional to the smallest molecular mass considered non-zero and the largest molecular
mass allowed (e.g., α = 10−4, β = 104). Note that problem (2) involves ST and is larger than the FBA problem (1)
itself. We could not design consistent FBA models in this way unless we were sure of being able to solve (2) effec-
tively. Our work here offers assurance of such capability.

We believe that reliable solutions are now readily available for large, multiscale applications such as FBA and
flux variability analysis (FVA) in systems biology1,27,35,41,42, and that our DQQ procedure will allow biologists to
build increasingly large models to explore metabolism and macromolecular synthesis. Combined use of Double
and Quad solvers will help other areas of computational science involving multiscale optimization problems. For
example, Dattorro43 describes an approach to analog filter design that requires a Quad optimization solver to deal
with a wide range of frequencies that must be raised to high powers. Like ME models with nonlinear constraints

www.nature.com/scientificreports/

6Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

(7), this application can be treated with Quad precision and binary search on a sequence of problems. We have
also treated nonlinear constraints directly with the nonlinear algorithms in Quad MINOS23,44.

Methods
Multiscale constraint-based modeling. Consider a network of biochemical reactions, represented by a
stoichiometric matrix ∈ ×S m n with each row and column corresponding to a molecular species and biochemi-
cal reaction, respectively. Sij respresents the stoichiometry of molecular species i participating as a substrate (neg-
ative) or product (positive) in reaction j. The evolution of molecular species concentrations with respect to time
(t) is given by the ordinary differential equation

=
dx t

dt
Sv x t() (()), (3)

where ∈ ≥x t() m
0 is a vector of time-dependent concentrations and →≥v x t(()): m n

0 is a nonlinear function
of concentrations that depends on the kinetic mechanism of each reaction.

If one assumes that species concentrations are time-invariant, then the set of all steady-state reaction rates,
satisfying Sv(x) = 0, may be approximated by the linear steady-state constraint Sv = 0, where ∈v n is a vector of
reaction fluxes. Thermodynamic principles and experimental data can also be used to specify lower and upper
bound constraints on reaction fluxes ≤ ≤ v u. Biochemical relationships between the rates of macromolecular
synthesis and utilization can be approximated by coupling of the corresponding reaction fluxes35, e.g., pyruvate
kinase reaction flux and the synthesis flux of pyruvate kinase in a ME model27. Flux coupling can be represented
by bounding the ratio between two reaction fluxes with two coupling coefficients:

σ σ≤ ≤
v
v

,
(4)

i

j
min max

where vi and vj are a pair of non-negative fluxes. This nonlinear constraint can be reformulated into a pair of linear
coupling constraints

σ σ≤ ≤v v v v, , (5)j i i jmin max

or more generally a set of linear inequalities Cv ≤ d. In addition to the aforementioned physicochemical and bio-
chemical contraints, one may hypothesize a biologically motivated objective. For example, in modeling a growing
cell, one may hypothesize that the objective is to maximize the rate of a biomass synthesis reaction. Typically, a
biomass synthesis reaction is created with experimentally determined stoichiometric coefficients, each of which
represents the relative composition of a cellular biomass constituent. Optimization of a linear combination of
reaction fluxes cTv leads to linear optimization problems: (1). Flux balance analysis of a ME model with coupling
constraints results in an ill-scaled instance of this problem because the stoichiometric coefficients and coupling
coefficients vary over many orders of magnitude.

MINOS implementation. MINOS22,23 is a linear and nonlinear optimization solver implemented in Fortran
77 to solve problems of the form

ϕ+ . . ≤

≤c v v

v
Sv
f v

umin () s t
()

,
(6)v

T

where φ(v) is a smooth nonlinear function and f(v) is a vector of smooth nonlinear functions (see Supplementary
Information).

Further tests of DQQ. We report results from the primal simplex solvers in Double and Quad MINOS on
two sets of challenging LO problems shown in Table 4. As with the M and ME models, we used an Apple iMac
with 2.93 GHz quad-core Intel i7 and gfortran compiler with -O flag (GNU Fortran 5.2.0). The input files were
in the MPS format of commercial mathematical programming systems45 with 12-character fields for data values.

The pilot problems. These are economic models developed by Professor George Dantzig in the Systems
Optimization Laboratory at Stanford University during the 1980s. They have been used in other computational
studies (e.g. ref. 38) and are available from Netlib46. We use three examples of increasing size: pilot4, pilot, pilot87.
In Table 5, three lines for each problem show the results of steps D, Q1, Q2 of the DQQ procedure.

For pilot, line 1 shows that step D (cold start and scaling) required 16060 iterations and 9 CPU seconds. The
unscaled solution v satisfied the constraints in (1) to within O(10−6) and the dual solution y satisfied the optimal-
ity conditions to within O(10−3). Line 2 shows that step Q1 needed only 29 further Quad iterations and 0.3 sec-
onds to obtain a very accurate solution. Line 3 shows that the “insurance” step Q2 with no scaling gave an equally
good solution (with maximum infeasibilities 0.0 and O(10−32)). The final Double and Quad objective values differ
in the 4th significant digit, as suggested by the O(10−3) dual infeasibility in step D.

For pilot4 and pilot87 the results are analogous.

The Mészáros problematic problems. Our DQQ procedure was initially developed for this set of LO problems
collected by Mészáros47, who named them problematic and noted that “modeling mistakes made these prob-
lems “crazy,” but they are excellent examples to test numerical robustness of a solver.” The first two problems have

www.nature.com/scientificreports/

7Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

large entries in S. The step D objective value for de063155 has only 1 digit of precision, and none for de063157.
Nevertheless, the infeasibilities Pinf and Dinf for steps Q1 and Q2 are small when the solution norms are taken
into account.

model m n nnz(S) max|Sij| ||v*||∞ ||y*||∞
pilot4 411 1000 5145 2.8e + 04 9.6e + 04 2.7e + 02

pilot 1442 3652 43220 1.5e + 02 4.1e + 03 2.0e + 02

pilot87 2031 4883 73804 1.0e + 03 2.4e + 04 1.1e + 01

de063155 853 1488 5405 8.3e + 11 3.1e + 13 6.2e + 04

de063157 937 1488 5551 2.3e + 18 2.3e + 17 6.2e + 04

de080285 937 1488 5471 9.7e + 02 1.1e + 02 2.6e + 01

gen1 770 2560 64621 1.0e + 00 3.0e + 00 1.0e + 00

gen2 1122 3264 84095 1.0e + 00 3.3e + 00 1.0e + 00

gen4 1538 4297 110174 1.0e + 00 3.0e + 00 1.0e + 00

l30 2702 15380 64790 1.8e + 00 1.0e + 09 4.2e + 00

iprob 3002 3001 12000 9.9e + 03 3.1e + 02 1.1e + 00

Table 4. Three pilot models from Netlib46 and eight problematic problems from Mészáros47. Dimensions of
m × n constraint matrices S, size of the largest nonzero in S, and norm of the optimal primal and dual variables v*, y*.

model Itns Times Final objective Pinf Dinf

pilot4 1464 0.1 − 2.5811392619e + 03 − 05 − 12

7 0.0 − 2.5811392589e + 03 − 52 − 31

0 0.0 − 2.5811392589e + 03 — − 29

pilot 16060 9.0 − 5.5739887685e + 02 − 06 − 03

29 0.3 − 5.5748972928e + 02 — − 32

0 0.1 − 5.5748972928e + 02 — − 32

pilot87 19340 22.6 3.0171038489e + 02 − 08 − 06

32 0.9 3.0171034733e + 02 — − 32

0 0.6 3.0171034733e + 02 — − 33

de063155 973 0.1 1.8968895791e + 10 − 14 + 03

90 0.1 9.8830944565e + 09 — − 27

0 0.0 9.8830944565e + 09 — − 24

de063157 1473 0.1 2.6170359397e + 12 — + 08

286 0.2 2.1528501109e + 07 − 29 − 12

0 0.0 2.1528501109e + 07 — − 12

de080285 418 0.0 1.4495817688e + 01 − 09 − 02

132 0.1 1.3924732864e + 01 − 35 − 32

0 0.0 1.3924732864e + 01 — − 32

gen1 303212 156.9 − 8.1861282705e − 08 − 06 − 13

216746 3431.2 1.2939275026e − 06 − 12 − 31

8304 112.5 1.2953925804e − 06 − 46 − 31

gen2 45905 60.0 3.2927907833e + 00 − 04 − 12

2192 359.9 3.2927907840e + 00 — − 29

0 10.4 3.2927907840e + 00 — − 32

gen4 38111 151.3 − 1.2724113149e − 07 − 07 − 12

58118 6420.2 2.8932557999e − 06 − 12 − 31

50 4.3 2.8933064888e − 06 − 53 − 30

l30 1302602 805.6 9.5266141670e − 01 − 08 − 09

500000 6168.8 − 4.5793509329e − 26 − 25 − 00

16292 204.4 − 6.6656750251e − 26 − 25 − 31

iprob 1087 0.2 2.6891551285e + 03 + 02 − 11

0 0.0 2.6891551285e + 03 + 02 − 30

0 0.0 2.6891551285e + 03 + 02 − 28

Table 5. Iterations and runtimes in seconds for steps D, Q1, Q2 on the problems of Table 4. Pinf and
Dinf = final maximum primal and dual infeasibilities (log10 values tabulated, except – means 0). Problem iprob
is infeasible. Bold figures show Pinf and Dinf at the end of step Q2. Note that Pinf/||v*||∞ and Dinf/||y*||∞ are
O(10−30) or smaller, even though only O(10−15) was requested.

www.nature.com/scientificreports/

8Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

The gen problems arise from image reconstruction. There are no large entries in S, v, y, but the primal solutions
v are highly degenerate. For gen1, 60% of the step D and Q1 iterations made no improvement to the objective, and
30% of the basic variables in the final solution are on their lower bound. Step Q1 gave an almost feasible initial
solution (253 basic variables outside their bounds by more than 10−15 with a sum of infeasibilities of O(10−8)), yet
over 200,000 iterations were needed to reach optimality. Evidently Quad precision does not remove the need for
a more rigorous anti-degeneracy procedure (such as Wolfe’s method as advocated by Fletcher48) or steepest-edge
pricing49 to reduce the total number of iterations. Problems gen1 and gen4 show that step Q2 is sometimes needed
to achieve high accuracy.

Problem l30 behaved similarly (80% degenerate iterations in steps D and Q1). Since the objective value is
essentially zero, we can’t expect the Q1 and Q2 objectives to agree. The Q1 iterations were inadvertently limited to
500,000, but step Q2 did not have much further to go.

Problem iprob is artificial and intended to be feasible with a very ill-conditioned optimal basis, but the MPS
file contained low-precision data such as 0.604 or 0.0422. The Double and Quad runs determine that the problem
is infeasible. This is an example of Quad removing doubt that would inevitably arise with just Double.

Table 5 shows that Quad MINOS usually achieves much greater accuracy than requested (the primal and dual
infeasibilities are almost always much smaller than 10−15). Thus our procedure for handling the problematic prob-
lems has seemed appropriate for the systems biology M and ME models. Like the gen problems, the ME models
showed many degenerate iterations in step D, but fortunately not so many total iterations in step Q1 (see Table 2).
This is important for FVA and for ME models with nonlinear constraints, which involve multiple warm starts.

ME models (FBA with coupling constraints). In these models, coupling constraints are often functions of the
organism’s growth rate μ. Thus, O’Brien et al.50 consider growth-rate optimization nonlinearly, with μ entering as
the objective in (1) instead of via a linear biomass objective function. Nonlinear constraints of the form

∑µ≥v v k/
(7)

i
j

j i j,
eff

are added to (1), where vi, vj, μ are all variables, and ki j,
eff is an effective rate constant. If μ is fixed at a specific value μk,

the constraints (7) become linear. O’Brien et al.50 implemented a binary search on a discrete set of values within
an interval µ µ[,]min max to find the largest μk ≡ μ* that keeps the associated linear problem feasible. The procedure
required reliable solution of a sequence of LO problems.

Flux Variability Analysis (FVA). After FBA (1) returns an optimal objective value cTv* = Z0, FVA examines how
much a flux vj can vary within the feasible region without much change to the optimal objective:

γ± . . = ≥ ≤ ≤v Sv c v Z l v umin s t 0, , , (8)v
j

T
0

where 0 < γ < 1 and γ ≈ 1. Potentially 2n LO problems (8) must be solved if all reactions are of interest. Warm
starts are used when j is increased to j + 142. For such a sequence of problems it would be simplest to warm-start
each problem in Quad, but warm-starting in Double and then Quad might be more efficient.

Conventional iterative refinement. A Double simplex solver would be more reliable with the help of iter-
ative refinement (Wilkinson51) on each linear system involving the basis matrix B or its transpose, but we found
this inadequate for the biology models (see DRR procedure in Supplementary Information).

The zoom strategy. A step toward warm-starting interior methods for optimization was proposed in ref. 52
to take advantage of the fact that a low-accuracy solution (x1, y1) for a general problem

. . = ≤ ≤c x Ax b x umin s t , (9)T

can be obtained relatively cheaply when an iterative solver for linear systems is used to compute each search direc-
tion. (The iterative solver must work harder as the interior method approaches a solution.) If (x1, y1) has at least
some correct digits, the primal residual r1 = b − Ax1 will be somewhat small (σ=r O(1/)1 for some σ ≫ 1) and
the dual residual d1 = c − ATy1 will be comparably small in the elements associated with the final B. If we define

σ σ
σ σ

σ σ

= =
= − = −

= + = +

b r c d
x u u x

x x x y y y

, ,
(), (),

1 , 1 ,
(10)

2 1 2 1

2 1 2 1

1 2 1 2

and note that the problem is equivalent to

− − . . = ≤ ≤c x y Ax b Ax b x umin () s t , (11)
T T

1

with dual variable y − y1, we see that x2 solves

. . = ≤ ≤c x Ax b x umin s t , (12)T
2 2 2 2 2 2 2

with dual variable y2. Importantly, with σ chosen carefully we expect (x2, y2) in this “zoomed in” problem to be of
order 1. Hence we can solve the problem with the same solver as before (as solvers use absolute tolerances and

www.nature.com/scientificreports/

9Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

assume that A and the solution are of order 1). If the computed (x2, y2) has at least some digits of accuracy, the
correction ← +

σ
x x x1 1

1
2, ← +

σ
y y y1 1

1
2 will be more accurate than before. The process can be repeated. With

repeated zooms (named refinement rounds in refs 18 and 19), the residuals (r1, d1) must be computed with increas-
ingly high precision. Subject to the expense of using rational arithmetic for this purpose, ref. 18 gives extensive
results for over 1000 challenging problems and shows that exceptional accuracy can be obtained in reasonable
time: only 3 or 4 refinements to achieve 10−50 precision, and less than 20 refinements to achieve 10−250.
SoPlex80 bit28,29 is used for each refinement round with feasibility and optimality tolerances set to 10−9. In ref. 18
the authors recognize that much depends on the robustness of the simplex solver used for the original problem
and each refinement. The potential difficulties are the same as in each step of our DRR procedure, where Double
MINOS is on the brink of failure on the Glc problems because B is frequently near-singular when it is refactorized
every 100 iterations. A practical answer for ref. 18 is to use a more accurate floating-point solver such as Quad
MINOS (or Quad versions of SoPlex or SNOPT53) for all refinement rounds.

DQQ serves the current purpose. In the context of ME models whose non-integer data is accurate to only
4 or 5 digits, we don’t need 10−50 precision. Tables 3 and 5 show that our DQQ procedure achieves more accuracy
than necessary on all tested examples. For models where the Double solver is expected to encounter difficulty,
step D can use a reasonable iteration limit. Step Q1 will perform more of the total work with greatly improved
reliability. Step Q2 provides a small but important improvement at negligible cost, ensuring small residuals for
the original (unscaled) problem.

The need for Quad precision. To summarize why a conventional Double solver may not be adequate for
multiscale problems (even with iterative refinement on systems Bp = a and BTy = cB each iteration), we note that
the current basis matrix B must be factorized at regular intervals. If B appears to be nearly singular, a “basis repair”
procedure replaces some columns of B by appropriate unit vectors (thus making certain slack variables basic). The
new B is better conditioned, but the solution obtained after recomputing the basic variables from BvB + NvN = 0
may have an objective value cTv that is unpredictably less optimal than before. The preceding iterations would
make progress, but basis repair allows loss of ground. Basis repair is unlikely to happen if Quad precision is used
for all storage and computation, as it is in steps Q1 and Q2 of DQQ.

Data and software availability. Double and Quad Fortran 77 implementations of MINOS are included
within the Cobra toolbox2. MPS or JSON files for all models discussed are available from ref. 25. Python code for
running Double and Quad MINOS on the BiGG JSON files is also available from ref. 25.

References
1. Palsson, B. O. Systems Biology: Properties of Reconstructed Networks (Cambridge University Press, NY, 2006).
2. Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.

Nature Protocols 6, 1290–1307 (2011).
3. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python.

BMC Syst Biol 7, 74 (2013).
4. Gurobi optimization system for linear and integer programming (2014). URL http://www.gurobi.com (Date of access: 01/02/2016).
5. IBM ILOG CPLEX optimizer (2014). URL http://www.ibm.com/software/commerce/optimization/cplex-optimizer/ (Date of access:

27/04/2014).
6. MOSEK Optimization Software (2014). URL http://www.mosek.com/ (Date of access: 27/04/2014).
7. Thiele, I., Jamshidi, N., Fleming, R. M. T. & Palsson, B. O. Genome-scale reconstruction of E. coli’s transcriptional and translational

machinery: A knowledge-base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5, e1000312
(2009).

8. Thiele, I., Fleming, R. M. T., Bordbar, A., Que, R. & Palsson, B. O. A systems biology approach to the evolution of codon use pattern.
Nature Precedings (2011). URL http://dx.doi.org/10.1038/npre.2011.6312.1 (Date of access: 13/10/2016).

9. Fourer, R. Solving staircase linear programs by the simplex method, 1: Inversion. Math. Program. 23, 274–313 (1982).
10. Tomlin, J. A. On scaling linear programming problems. In Computational Practice in Mathematical Programming, vol. 4 of

Mathematical Programming Studies 146–166 (Springer, 1975).
11. Sun, Y., Fleming, R. M. T., Thiele, I. & Saunders, M. A. Robust flux balance analysis of multiscale biochemical reaction networks.

BMC Bioinformatics 14 (2013).
12. Dhiflaoui, M. et al. Certifying and repairing solutions to large LPs: How good are LP-solvers? In Proceedings of the 14th annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’03) 255–256 (Baltimore, MD, 2003).
13. Applegate, D. L., Cook, W., Dash, S. & Espinoza, D. G. Exact solutions to linear programming problems. Operations Res. Lett. 35,

693–699 (2007).
14. Applegate, D., Cook, W., Dash, S. & Mevnkamp, M. QSopt_ex: A simplex solver for computing exact rational solutions to LP

problems (2008). URL http://www.math.uwaterloo.ca/ bico/qsopt/ex (Date of access: 13/10/2016).
15. Lerman, J. A. et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 3, 10 pp

(2012).
16. Chindelevitch, L., Trigg, J., Regev, A. & Berger, B. An exact arithmetic toolbox for a consistent and reproducible structural analysis

of metabolic network models. Nat. Commun. 5, 9 pp (2014).
17. Gleixner, A. M., Steffy, D. E. & Wolter, K. Improving the accuracy of linear programming solvers with iterative refinement. In

Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, 187–194 (Grenoble, 2012).
18. Gleixner, A. M., Steffy, D. E. & Wolter, K. Iterative refinement for linear programming. ZIB Report 15-15, Konrad-Zuse-Zentrum

für Informationstechnik Berlin, Berlin, Germany (May 2015).
19. Gleixner, A. M. Exact and Fast Algorithms for Mixed-Integer Nonlinear Programming. Ph.D. thesis, Konrad-Zuse-Zentrum für

Informationstechnik Berlin (ZIB), Technical University of Berlin (2015).
20. Gleixner, A. M., Steffy, D. E. & Wolter, K. Iterative refinement for linear programming. INFORMS J. Computing 28, 449–464 (2016).
21. Kahan, W. Desperately needed remedies for the undebuggability of large floating-point computations in science and engineering.

IFIP/SIAM/NIST Working Conference on Uncertainty Quantification in Scientific Computing, Boulder CO (2011). URL http://
www.eecs.berkeley.edu/wkahan/Boulder.pdf (Date of access: 16/12/2013).

22. Murtagh, B. A. & Saunders, M. A. Large-scale linearly constrained optimization. Math. Program. 14, 41–72 (1978).

http://www.gurobi.com
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.mosek.com/
http://dx.doi.org/10.1038/npre.2011.6312.1
http://www.math.uwaterloo.ca/ bico/qsopt/ex
http://www.eecs.berkeley.edu/wkahan/Boulder.pdf
http://www.eecs.berkeley.edu/wkahan/Boulder.pdf

www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

23. Murtagh, B. A. & Saunders, M. A. A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints. Math.
Program. Study 16, 84–117 (1982).

24. UCSD Systems Biology Research Group. Available predictive genome-scale metabolic network reconstructions (2015). URL http://
systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms (Date of access: 03/05/2016).

25. Multiscale systems biology collaboration (2016). URL http://stanford.edu/group/SOL/multiscale/models.html (Date of access:
13/09/2016).

26. King, Z. A. et al. BiGG Models: A platform for integrating, standardizing, and sharing genome-scale models. Nucl. Acids Res. 44,
D515–522 (2016).

27. Thiele, I. et al. Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of
codon usage. PLOS ONE 7, 18 pp (2012).

28. Wunderling, R. Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technische Universität Berlin (1996).
29. Soplex: The sequential object-oriented simplex solver (2016). URL http://soplex.zib.de. (Date of access: 16/06/2016).
30. Ma, D. & Saunders, M. A. Solving multiscale linear programs using the simplex method in quadruple precision. In Al-Baali, M.,

Grandinetti, L. & Purnama, A. (eds) Numerical Analysis and Optimization, NAO-III, Muscat, Oman, January 2014, vol. 134 of
Springer Proceedings in Mathematics and Statistics (Springer International Publishing Switzerland, 2015).

31. Gill, P. E., Murray, W., Saunders, M. A. & Wright, M. H. A practical anti-cycling procedure for linear and nonlinear programming.
Math. Program. 45, 437–474 (1989).

32. Ebrahim, A. Generation of 83 models from UCSD repository (2015). URL https://github.com/opencobra/m_model_collection/
blob/master/load_models.ipynb (Date of access: 10/06/2016).

33. Ebrahim, A. Solution of 83 models from UCSD repository (2015). URL https://github.com/opencobra/m_model_collection/blob/
master/exact_solving_models.ipynb. (Date of access: 10/06/2016).

34. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information. Mol Syst Biol 3, e121 (2007). URL http://www.hubmed.org/display.cgi?uids= 17593909 (Date of
access: 05/03/2016).

35. Thiele, I., Fleming, R. M. T., Bordbar, A., Schellenberger, J. & Palsson, B. O. Functional characterization of alternate optimal solutions
of Escherichia coli’s transcriptional and translational machinery. Biophysical J 98, 2072–2081 (2010).

36. TOMLAB optimization environment for Matlab (2015). URL http://tomopt.com (Date of access: 03/05/2016).
37. NEOS server for optimization (2016). URL http://www.neos-server.org/neos/ (Date of access: 02/01/2016).
38. Koch, T. The final Netlib-LP results. Operations Research Letters 32, 138–142 (2004).
39. FICO Xpress Optimization Suite (2015). URL http://www.fico.com/en/products/fico-xpress-optimization-suite/ (Date of access:

27/04/2014).
40. Fleming, R. M. T., Vlassis, N., Thiele, I. & Saunders, M. A. Conditions for duality between fluxes and concentrations in biochemical

networks. J. Theoretical Biology 409, 1–10 (2016).
41. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nature Biotechnology 28, 245–248 (2010).
42. Gudmundsson, S. & Thiele, I. Computationally efficient flux variability analysis. BMC Bioinformatics 11 (2010).
43. Dattorro, J. Convex Optimization & Euclidean Distance Geometry (Meboo Publishing USA, 2015). V2015.09.29, pp 208-214.
44. Yang, L. et al. solveME: fast and reliable solution of nonlinear ME models. BMC Bioinformatics 17 (2016).
45. Input format for LP data (1960). URL http://lpsolve.sourceforge.net/5.5/mps-format.htm (Date of access: 27/04/2014).
46. Netlib collection of LP problems in MPS format (1988). URL http://www.netlib.org/lp/data. (Date of access: 27/04/2014).
47. Mészáros, C. A collection of challenging LP problems (2004). URL http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic

(Date of access: 19/03/2014).
48. Fletcher, R. On Wolfe’s method for resolving degeneracy in linearly constrained optimization. SIAM J. Optim. 24, 1122–1137 (2014).
49. Forrest, J. J. & Goldfarb, D. Steepest-edge simplex algorithms for linear programming. Math. Program. 57, 341–374 (1992).
50. O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. O. Genome-scale models of metabolism and gene expression

extend and refine growth phenotype prediction. Mol Syst Biol 9, 693 (2013).
51. Wilkinson, J. H. The Algebraic Eigenvalue Problem (Oxford University Press, 1965).
52. Saunders, M. A. & Tenenblat, L. The Zoom strategy for accelerating and warm-starting interior methods. Talk at INFORMS Annual

Meeting, Pittsburgh, PA, USA (2006). URL http://stanford.edu/group/SOL/talks/saunders-tenenblat-INFORMS2006.pdf (Date of
access: 10/06/2016).

53. Gill, P. E., Murray, W. & Saunders, M. A. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review 47,
99–131 (2005). SIGEST article.

Acknowledgements
We thank Jon Dattorro, Philip Gill, Edward O’Brien, Elizabeth Wong, and several other colleagues for their
valuable help. Joshua Lerman at UC San Diego provided the model named TMA_ME here (originally model_
final_build_unscaled.mat) and advised us of the final objective values obtained by SoPlex and QSopt_ex. Yuekai
Sun at Stanford University created the reformulated version named GlcAlift here. Ed Klotz of IBM in Carson
City NV provided MPS files for the Mészáros problematic problems and lengthy discussions of their properties.
Ambros Gleixner guided our comparisons with SoPlex80 bit (see Supplementary Information) and pointed to
nonstandard bounds of “-Inf ” in the MPS file for GlcAlift (corrected in ref. 25). This work was supported by the
National Institute of General Medical Sciences of the National Institutes of Health [award U01GM102098], the US
Department of Energy [award DE-SC0010429], and the Novo Nordisk Foundation [award NNF16CC0021858].
The content is solely the responsibility of the authors and does not necessarily represent the official views of the
funding agencies.

Author Contributions
R.F. and M.S. conceived this study. D.M. and M.S. developed the DQQ procedure and designed the manuscript.
M.S. developed the Double and Quad MINOS solvers. L.Y. implemented Python interfaces and verified the
solvers on linear and nonlinear ME models. R.F. implemented Matlab interfaces within the COBRA toolbox.
I.T. highlighted the impact of coupling constraints in ME models and built the largest example, GlcAerWT. All
authors read and revised the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
http://stanford.edu/group/SOL/multiscale/models.html
http://soplex.zib.de
https://github.com/opencobra/m_model_collection/blob/master/load_models.ipynb
https://github.com/opencobra/m_model_collection/blob/master/load_models.ipynb
https://github.com/opencobra/m_model_collection/blob/master/exact_solving_models.ipynb
https://github.com/opencobra/m_model_collection/blob/master/exact_solving_models.ipynb
http://www.hubmed.org/display.cgi?uids=17593909
http://tomopt.com
http://www.neos-server.org/neos/
http://www.fico.com/en/products/fico-xpress-optimization-suite/
http://lpsolve.sourceforge.net/5.5/mps-format.htm
http://www.netlib.org/lp/data
http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic
http://stanford.edu/group/SOL/talks/saunders-tenenblat-INFORMS2006.pdf
http://www.nature.com/srep

www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:40863 | DOI: 10.1038/srep40863

How to cite this article: Ma, D. et al. Reliable and efficient solution of genome-scale models of Metabolism and
macromolecular Expression. Sci. Rep. 7, 40863; doi: 10.1038/srep40863 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
	Overview
	Results
	DQQ procedure.
	Small M models.
	Large ME models.

	Discussion
	Methods
	Multiscale constraint-based modeling.
	MINOS implementation.
	Further tests of DQQ.
	The pilot problems.
	The Mészáros problematic problems.
	ME models (FBA with coupling constraints).
	Flux Variability Analysis (FVA).

	Conventional iterative refinement.
	The zoom strategy.
	DQQ serves the current purpose.
	The need for Quad precision.
	Data and software availability.

	Acknowledgements
	Author Contributions
	Table 1.  Runtime options for MINOS in each step of the DQQ procedure.
	Table 2.  Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift11,15,27.
	Table 3.  Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift11,15,27.
	Table 4.  Three pilot models from Netlib46 and eight problematic problems from Mészáros47.
	Table 5.  Iterations and runtimes in seconds for steps D, Q1, Q2 on the problems of Table 4.

 application/pdf

 Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

 srep , (2016). doi:10.1038/srep40863

 Ding Ma
 Laurence Yang
 Ronan M. T. Fleming
 Ines Thiele
 Bernhard O. Palsson
 Michael A. Saunders

 doi:10.1038/srep40863

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 The Author(s)
 10.1038/srep40863
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep40863

 doi:10.1038/srep40863

 srep , (2016). doi:10.1038/srep40863

 True

