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Reliable and efficient solution 
of genome-scale models of 
Metabolism and macromolecular 
Expression
Ding Ma1, Laurence Yang2, Ronan M. T. Fleming3, Ines Thiele3, Bernhard O. Palsson2,4 & 
Michael A. Saunders1

Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits 
integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear 
optimization computes steady-state flux solutions to ME models, but flux values are spread over many 
orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision 
solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based 
on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME 
models have 70,000 constraints and variables and will grow larger). We have developed a quadruple-
precision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) 
involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other 
challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in 
systems biology and other applications involving multiscale data.

Constraint-Based Reconstruction and Analysis (COBRA)1 has been applied successfully to predict phenotypes 
for a range of genome-scale biochemical processes. The popularity of COBRA is partly due to the efficiency of the 
underlying optimization algorithms, permitting genome-scale modeling at a particular timescale using readily 
available open source software2,3 and industrial quality optimization algorithms4–6. A widespread application 
of COBRA is the modeling of steady states in genome-scale Metabolic models (M models). COBRA has also 
been used to model steady states in macromolecular Expression networks (E models), which stoichiometrically 
represent the transcription, translation, post-translational modification and formation of all protein complexes 
required for macromolecular biosynthesis and metabolic reaction catalysis7,8. COBRA of metabolic networks 
or expression networks depends on numerical optimization algorithms to compute solutions to certain model 
equations, or to determine that no solution exists. Our purpose is to discuss available options and to demonstrate 
an approach that is reliable and efficient for ever larger networks.

Metabolism and macromolecular Expression (ME) models have opened a whole new vista for predictive 
mechanistic modeling of cellular processes, but their size and multiscale nature pose a challenge to standard lin-
ear optimization (LO) solvers based on 16-digit double-precision floating-point arithmetic. Standard LO solvers 
usually apply scaling techniques9,10 to problems that are not already well scaled. The scaled problem typically 
solves more efficiently and accurately, but the solver must then unscale the solution, and this may generate sig-
nificant primal or dual infeasibilities in the original problem (the constraints or optimality conditions may not 
be accurately satisfied).

A lifting approach11 has been implemented to alleviate this difficulty with multiscale problems. Lifting reduces 
the largest matrix entries by introducing auxiliary constraints and variables. This approach has permitted stand-
ard (double-precision) LO solvers to find more accurate solutions, even though the final objective value is still 
not satisfactory. Another approach to increasing the precision is to use an exact solver12. An exact simplex solver 
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QSopt_ex13,14 has been used for a ME model of Thermotoga maritima15 (model TMA_ME) representing a network 
with about 18,000 metabolites and reactions. The solution time was about two weeks, compared to a few minutes 
for a standard double-precision solver, but the latter’s final objective value had only one correct digit. QSopt_ex 
has since been applied to a collection of 98 metabolic models by Chindelvitch et al.16 via their MONGOOSE tool-
box. Most of the 98 models have less than 1000 metabolites and reactions. QSopt_ex required about a day to solve 
all models16, compared to a few seconds in total for a standard solver.

To advance COBRA for increasingly large biochemical networks, solvers that perform more efficiently than 
exact solvers and also perform more reliably than standard LO solvers are definitely needed. Gleixner et al.17–20 
have addressed this need, and Chapter 4 of ref. 19 is devoted to multiscale metabolic networks, showing signif-
icant improvement relative to CPLEX5. Our work is complementary and confirms the value of enhancing the 
simplex solver in refs 17–20 to employ quadruple-precision computation, as we have done here.

We use Single, Double, and Quad to denote the main options for floating-point arithmetic (with precision 
around 7, 16, and 34 digits respectively). For many years, scientific computation has advanced in two comple-
mentary ways: improved algorithms and improved hardware. Compilers have typically evaluated expressions 
using the same arithmetic as the variables’ data type. Most scientific codes apply Double variables and Double 
arithmetic throughout (16 significant digits stored in 64-bit words). The floating-point hardware often has slightly 
extended precision (80-bit registers). Kahan21 notes that early C compilers generated Double instructions for all 
floating-point computation even for program variables stored in single precision. Thus for a brief period, C pro-
grams were serendipitously more reliable than typical Fortran programs of the time. (For Single variables a and 
b, Fortran compilers would use Single arithmetic to evaluate the basic expressions a ±  b, a*b, a/b, whereas C 
compilers would transfer a and b to longer registers and operate on them using Double arithmetic.) Most often, 
the C compiler’s extra precision was not needed, but occasionally it did make a critical difference. Kahan calls this 
the humane approach to debugging complex numerical software. Unfortunately, Quad hardware remains very 
rare and for the foreseeable future will be simulated on most machines by much slower software. Nevertheless, we 
believe the time has come to produce Quad versions of key sparse-matrix packages and large-scale optimization 
solvers for multiscale problems.

Here, we report the development and biological application of Quad MINOS, a quadruple-precision version of 
our general-purpose, industrial-strength linear and nonlinear optimization solver MINOS22,23. We also developed 
a Double-Quad-Quad MINOS procedure (DQQ) that combines the use of Double and Quad solvers in order 
to achieve a balance between efficiency in computation and accuracy of the solution. We extensively tested this 
DQQ procedure on 83 genome-scale metabolic network models (M models) obtained from the UCSD Systems 
Biology repository24,25 and 78 from the BiGG database26. We also applied DQQ to ME models of Thermotoga 
maritima15 (about 18,000 metabolites and reactions) and E. coli K12 MG165527 (about 70,000 metabolites and 
reactions). For M models, we find that Double MINOS alone is sufficient to obtain non-zero steady-state solu-
tions that satisfy feasiblility and optimality conditions with a tolerance of 10−7. For ME models, application of our 
DQQ procedure resulted in non-zero steady-state solutions that satisfy feasibility and optimality conditions with 
a tolerance of 10−20. The largest ME model required 4.5 hours, mostly in step D of DQQ because of conservative 
runtime options. Qsopt_ex would not be practical on such a large model unless warm-started at a near-optimal 
solution. The SoPlex80 bit solver28,29 has performed very efficiently on large ME models with the help of rational 
arithmetic at a near-optimal solution, but had difficulty on some other challenging problems that DQQ solved 
accurately (see ref. 19, Ch. 4], problematic models below, and Supplementary Information).

Thus, we expect our DQQ procedure to be a robust and efficient tool for the increasingly detailed study of bio-
logical processes, such as metabolism and macromolecular synthesis, and for challenging optimization problems 
arising in other scientific fields.

Overview
A preliminary version of this work appeared in Ma and Saunders30. Here we name the approach DQQ and report 
experiments with an analogous but cheaper DRR procedure based on conventional iterative refinement of all 
linear equations arising in the simplex method (see Methods section and Supplementary Information). We also 
became aware of the work of Gleixner et al.17–20 and their thorough and successful implementation of iterative 
refinement in SoPlex80 bit. However, we learned that DRR may lose ground during periodic refactorizations of 
the simplex basis matrix B, if the current B is nearly singular and “basis repair” becomes necessary. Our DQQ and 
DRR experience points to the need for an optional Quad version of the basic SoPlex solver to ensure maximum 
reliability of the refinement approach in refs 17–20. Meanwhile, DQQ will be effective on a wide range of prob-
lems as long as step D finishes naturally or is limited to a reasonable number of iterations before steps Q1 and Q2 
take over.

Results
We discuss Double and Quad implementations of MINOS applied to linear optimization (LO) problems of the 
form

. . = ≤ ≤c v Sv v umin s t 0, , (1)v

T

where S ∈  Rm×n. To achieve reliability and efficiency on multiscale problems, we developed the following 3-step 
procedure.
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DQQ procedure. Step D Apply the Double solver with scaling and somewhat strict runtime options.
Step Q1 Warm-start the Quad solver with scaling and stricter options.
Step Q2 Warm-start the Quad solver with no scaling but stricter options.
DQQ is described further in Algorithm 1, where loop 1 is the primal simplex method, P is a permutation matrix, 

and δ1, δ2 are Feasibility and Optimality tolerances. MINOS terminates loop 1 when the (possibly scaled) bounds on 
v are satisfied to within δ1, and the sign of + ∞z y/(1 )j  is correct to within δ2. Table 1 shows the default runtime 
options for Double MINOS and preferred options for each step of DQQ. Scale specifies whether the problem data 
should be scaled before the problem is solved (and unscaled afterward). Tolerances δ1, δ2 specify how well the 
primal and dual constraints of the (possibly scaled) problem should be satisfied. Expand frequency controls the 
MINOS anti-degeneracy procedure31. The LU tolerances balance stability and sparsity when LU factors of B are 
computed and updated.

Steps D and Q1 are usually sufficient, but Q2 costs little more and ensures that the tolerances δ1 and δ2 apply 
to the original (unscaled) problem. For conventional solvers it is reasonable to set δ1 and δ2 to 10−6 or perhaps 
as small as 10−9. For Quad MINOS, we set them to 10−15 to be sure of capturing variables vj as small as O(10−10).

Small M models. Of the 98 metabolic network models in the UCSD Systems Biology repository24, A. Ebrahim 
was able to parse 83 models32 and compute solutions with a range of solvers33. We constructed MPS files for the 83 
models25 and solved them via DQQ. Most models have less than 1000 metabolites and reactions. Almost all mod-
els solved in less than 0.08 seconds, and many in less than 0.01 seconds. The total time was less than 3 seconds. In 
contrast, ref. 16 reports that the exact solver Qsopt_ex needed a day.

Large ME models. COBRA can be used to stoichiometrically couple metabolic and macromolecular expression 
networks with single nucleotide resolution at genome-scale15,27. The corresponding Metabolic and macromolecu-
lar Expression models (ME models) explicitly represent catalysis by macromolecules, and in turn, metabolites 
are substrates in macromolecular synthesis reactions. These reconstructions lead to the first multi-timescale and 
genome-scale stoichiometric models, as they account for multiple cellular functions operating on widely different 
timescales and typically account for about 40 percent of a prokaryote’s open reading frames. A typical M model 
might be represented by 1000 reactions generated by hand34. In contrast, ME models can have more than 50,000 
reactions, most of which have been generated algorithmically from template reactions (defined in the literature) 
and omics data15,27. Typical net metabolic reaction rates are 6 orders of magnitude faster than macromolecular 
synthesis reaction rates (millimole/gDW vs nanomole/gDW, gDW =  gram dry weight), and the number of met-
abolic moieties in a macromolecule can be many orders of magnitude larger than in a typical metabolite. The 
combined effect is that the corresponding ME models have biochemically significant digits over many orders of 
magnitude. When Flux Balance Analysis (FBA) is augmented with coupling constraints35 that constrain the ratio 
between catalytic usage of a molecule and synthesis of the same molecule, the corresponding linear optimization 
problem is multiscale in the sense that both data values and solution values have greatly varying magnitudes. For 

Default Step D Step Q1 Step Q2

Precision Double Double Quad Quad

Scale Yes Yes Yes No

Feasibility tol δ1 1e −  6 1e −  7 1e −  15 1e −  15

Optimality tol δ2 1e −  6 1e −  7 1e −  15 1e −  15

Expand frequency 10000 100000 100000 100000

LU Factor tol 100.0 1.9 10.0 5.0

LU Update tol 10.0 1.9 10.0 5.0

Table 1.  Runtime options for MINOS in each step of the DQQ procedure.
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a typical ME model, input data values (objective, stoichiometric or coupling coefficients, or bounds) differ by 6 
orders of magnitude, and biochemically meaningful solution values can be as large as 108 or as small as 10−10.

The results of DQQ on three large ME models are shown in Tables 2 and 3, including the model dimensions m 
and n, the number of nonzeros in S, the norms of the optimal primal and dual variables (v*, y*), the iterations and 
runtime for each step, the final objective value, and the primal and dual infeasibilities (Pinf and Dinf). The con-
straints in (1) are satisfied to within Pinf, and + ∞

⁎z y/(1 )j  has the correct sign to within Dinf, where BTy =  cB 
for the optimal basis B, and z =  c −  STy.

TMA_ME developed by Lerman et al.15 has some large entries |Sij| and many small solution values vj that have 
meanings to systems biologists. For example, transcription and translation rates can have values O(10−10) or less, 
which is much smaller than metabolic reactions. These small values are linked to large matrix entries arising from 
building large macromolecules from smaller constituents27. The ME part of the model also contains small |Sij|. 
For instance, enzyme levels are estimated in ME models by dividing certain metabolic fluxes by “effective rate 
constants.” Because these constants are typically large (e.g., 234,000 h−1), the matrix entries (the inverse of the rate 
constants) become small. In step D, most iterations were needed to find a feasible solution, with the objective then 
having the correct order of magnitude (but only one correct digit). Step Q1 improved the accuracy, and step Q2 
provided confirmation. Note that the efficiency advantage of our approach is also evident: 385 seconds solve time 
for DQQ (Total time in Table 2) compared to 2 weeks using exact arithmetic15.

Two slightly different versions of this model provided welcome empirical evidence that the optimal objec-
tive and solution values do not change significantly when the problem data are perturbed by O(10−6) (see 
Supplementary Information).

GlcAerWT is a ME model from the study by Thiele et al.27 After 33,000 iterations in step D, MINOS began 
to report singularities following updates to the basis factors (71 times during the next 15,000 iterations). After 
47,718 iterations (D itns in Table 2), step D terminated with maximum primal and dual infeasibilities O(10−4) 
and O(1) (Pinf and Dinf in Table 3). These were small enough to be classified “Optimal”, but we see that the final 
objective value − 6.7687e +  05 had no correct digits compared to − 7.0382e +  05 in steps Q1 and Q2. For large 
models, step Q1 is important. It required significant work: 4,287 iterations costing 1958.9 seconds (Q1 itns and 
time in Table 2). Step Q2 soon confirmed the final objective value. The total time (12,599 seconds ≈  3.5 hours) is 
modest compared to an expected time of months for the exact solver approach of ref. 16.

ME model TMA_ME GlcAerWT GlcAlift

m 18210 68300 69529

n 17535 76664 77893

nnz(S) 336302 926357 928815

max |Sij| 2.1e +  04 8.0e +  05 2.6e +  05

||v*||∞ 5.9e +  00 6.3e +  07 6.3e +  07

||y*||∞ 1.1e +  00 2.4e +  07 2.4e +  07

D itns 21026 47718 93857

D time 350.9 10567.8 15913.7

Q1 itns 597 4287 1631

Q1 time 29.0 1958.9 277.3

Q2 itns 0 4 1

Q2 time 5.4 72.1 44.0

Total time 385 12599 16235

Table 2.  Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift11,15,27. Dimensions of 
m ×  n constraint matrices S, size of the largest optimal primal and dual variables v*, y*, number of iterations and 
runtimes in seconds for each step, and the total runtime of each model.

ME model Step Objective Pinf Dinf

TMA_ME D 8.3789966820e −  07 − 06 − 05

Q1 8.7036315385e −  07 − 25 − 32

Q2 8.7036315385e −  07 — − 32

GlcAerWT D − 6.7687059922e +  05 − 04 + 00

Q1 − 7.0382449681e +  05 − 07 − 26

Q2 − 7.0382449681e +  05 − 21 − 22

GlcAlift D − 5.3319574961e +  05 − 03 − 01

Q1 − 7.0434008750e +  05 − 08 − 22

Q2 − 7.0434008750e +  05 − 18 − 23

Table 3.  Three large ME biochemical network models TMA_ME, GlcAerWT, GlcAlift11,15,27. Optimal 
objective value of each step, Pinf and Dinf =  final maximum primal and dual infeasibilities (log10 values 
tabulated, except – means 0). Bold figures show the final (step Q2) Pinf and Dinf.
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GlcAlift was generated because of difficulties that TMA_ME and GlcAerWT presented to Double solvers. The 
lifting technique of ref. 11 was applied to GlcAerWT to reduce some of the large matrix values. The aim of lifting 
is to remove the need for scaling (and hence magnified errors from unscaling), but with DQQ we do activate scal-
ing in step D because steps Q1 and Q2 follow. Our experience is that lifting improves accuracy for Double solvers 
but substantially increases the simplex iterations. On GlcAlift, Double MINOS again reported frequent singulari-
ties following basis updates (235 times starting near iteration 40,000). It took 93,857 iterations (D itns in Table 2), 
twice as many as GlcAerWT, with only a slight improvement in max{Pinf, Dinf} (Table 3). Double MINOS with 
scaling on the lifted model couldn’t reach agreement with the final objective − 7.0434008750e +  05 in steps Q1 
and Q2, and the total solve time increased (4.5 hours), mostly in step D. The objective for both GlcA models is 
to maximize v60069. The fact that there are no correct digits in the step D objectives illustrates the challenge that 
these models present, but steps Q1 and Q2 are accurate and efficient. The Q2 objectives for GlcAerWt and GlcAlift 
should be the same, but limited precision in the data files could explain why there is just 3-digit agreement.

The Tomlab interface36 and CPLEX were used by Thiele et al.27 to improve the results for standard Double 
solvers. On the NEOS server37, Gurobi was unable to solve GlcAerWT with default parameters (numeric error 
after nearly 600,000 iterations). It performed considerably better on GlcAlift (about 46,000 iterations) but termi-
nated with a warning of unscaled primal/dual residuals 1.07 and 1.22e −  06. As shown above, our DQQ procedure 
saves researchers’ effort on lifting the model, and is able to solve the original model faster (3.5 hours vs 4.5 hours).

Further tests of the DQQ procedure on challenging LO problems are reported in Methods. As for the ME mod-
els, the simplex method in Double MINOS usually gives a good starting point for the same simplex method in Quad 
MINOS. Hence, much of the work can be performed efficiently with conventional 16-digit floating-point hardware 
to obtain near-optimal solutions. For Quad MINOS, 34-digit floating-point operations are implemented in the com-
piler’s Quad math library via software (on today’s machines). Each simplex iteration is therefore considerably slower 
than with floating-point hardware, but the reward is high accuracy. Of interest is that Quad MINOS usually achieves 
much more accurate solutions than requested (see bold figures in Table 3). This is a favorable empirical finding.

Discussion
Exact solvers compute exact solutions to LO problems involving rational data. Although stoichiometric coeffi-
cients for chemical reactions are in principle integers, most genome-scale metabolic models have non-integer 
coefficients where the stoichiometry is known to only a few digits, e.g., a coefficient in a biomass reaction. Such 
a stoichiometric coefficient should not be considered exact data (to be converted into a rational number for use 
with an exact solver). This casts doubt on any effort to compute an exact solution for a particular FBA problem.

Exact solvers employ rational arithmetic, and have been applied to important problems13–15,17–20,38. Quad pre-
cision and variable-precision floating-point have also been mentioned13,38. Here, we exploit Quad precision more 
fully on a range of larger problems, knowing that current genome-scale models will continue to grow even larger.

While today’s commercial solvers (including CPLEX, Gurobi, Mosek, and Xpress4–6,39) are effective on a wide 
range of linear and mixed integer optimization models, the work of Thiele et al.27 calls for greater reliability in 
solving FBA and ME models in systems biology. Our DQQ procedure has demonstrated that warm starts with 
Quad solvers are efficient, and that the accuracy achieved exceeds requirements by a very safe margin. Kahan21 
has noted that “carrying somewhat more precision in the arithmetic than twice the precision carried in the data 
and available for the result will vastly reduce embarrassment due to roundoff-induced anomalies” and that “default 
evaluation in Quad is the humane option,” as opposed to coding specialized tests for each application. The real(16) 
datatypes in today’s Fortran compilers provide a humane method for converting existing Double code to Quad. 
The float128 datatype in some C+ +  compilers makes it possible to switch from Double to Quad at runtime 
within a single code, making code maintenance even more humane.

Warm starts are essential for steps Q1 and Q2 of DQQ. Exact simplex solvers can also be warm-started, as 
noted by Gleixner et al.18,19. We could envisage a DE procedure: Double solver followed by Exact solver. However, 
for the GlcA problems in Table 2 (and for the gen problems in the Mészáros problematic set below), we see that 
step Q1 performs a significant number of iterations. Thus, warm-starting an exact solver on large models may not 
be practical when the Double solver is not reliable.

Looking ahead, we note that metabolic reconstructions of the form (1) may need to be processed before they 
can be treated as stoichiometrically consistent models. As discussed in ref. 40, certain rows of S may need to be 
deleted according to the solution  of the problem 

max 0 s.t. =S 0T , ≥ 0. This problem can be approxi-
mated by the linear problem

α β. . = ≤ ≤ ≤ ≤ ≤  



z

S z z

1

1 1

max

s t 0, , 0 , 0 , (2)
z

T

T
,

where scalars α, β are proportional to the smallest molecular mass considered non-zero and the largest molecular 
mass allowed (e.g., α =  10−4, β =  104). Note that problem (2) involves ST and is larger than the FBA problem (1) 
itself. We could not design consistent FBA models in this way unless we were sure of being able to solve (2) effec-
tively. Our work here offers assurance of such capability.

We believe that reliable solutions are now readily available for large, multiscale applications such as FBA and 
flux variability analysis (FVA) in systems biology1,27,35,41,42, and that our DQQ procedure will allow biologists to 
build increasingly large models to explore metabolism and macromolecular synthesis. Combined use of Double 
and Quad solvers will help other areas of computational science involving multiscale optimization problems. For 
example, Dattorro43 describes an approach to analog filter design that requires a Quad optimization solver to deal 
with a wide range of frequencies that must be raised to high powers. Like ME models with nonlinear constraints 
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(7), this application can be treated with Quad precision and binary search on a sequence of problems. We have 
also treated nonlinear constraints directly with the nonlinear algorithms in Quad MINOS23,44.

Methods
Multiscale constraint-based modeling. Consider a network of biochemical reactions, represented by a 
stoichiometric matrix ∈ ×S m n with each row and column corresponding to a molecular species and biochemi-
cal reaction, respectively. Sij respresents the stoichiometry of molecular species i participating as a substrate (neg-
ative) or product (positive) in reaction j. The evolution of molecular species concentrations with respect to time 
(t) is given by the ordinary differential equation

=
dx t

dt
Sv x t( ) ( ( )), (3)

where ∈ ≥x t( ) m
0 is a vector of time-dependent concentrations and  →≥v x t( ( )): m n

0  is a nonlinear function 
of concentrations that depends on the kinetic mechanism of each reaction.

If one assumes that species concentrations are time-invariant, then the set of all steady-state reaction rates, 
satisfying Sv(x) =  0, may be approximated by the linear steady-state constraint Sv =  0, where ∈v n is a vector of 
reaction fluxes. Thermodynamic principles and experimental data can also be used to specify lower and upper 
bound constraints on reaction fluxes ≤ ≤ v u. Biochemical relationships between the rates of macromolecular 
synthesis and utilization can be approximated by coupling of the corresponding reaction fluxes35, e.g., pyruvate 
kinase reaction flux and the synthesis flux of pyruvate kinase in a ME model27. Flux coupling can be represented 
by bounding the ratio between two reaction fluxes with two coupling coefficients:

σ σ≤ ≤
v
v

,
(4)

i

j
min max

where vi and vj are a pair of non-negative fluxes. This nonlinear constraint can be reformulated into a pair of linear 
coupling constraints

σ σ≤ ≤v v v v, , (5)j i i jmin max

or more generally a set of linear inequalities Cv ≤  d. In addition to the aforementioned physicochemical and bio-
chemical contraints, one may hypothesize a biologically motivated objective. For example, in modeling a growing 
cell, one may hypothesize that the objective is to maximize the rate of a biomass synthesis reaction. Typically, a 
biomass synthesis reaction is created with experimentally determined stoichiometric coefficients, each of which 
represents the relative composition of a cellular biomass constituent. Optimization of a linear combination of 
reaction fluxes cTv leads to linear optimization problems: (1). Flux balance analysis of a ME model with coupling 
constraints results in an ill-scaled instance of this problem because the stoichiometric coefficients and coupling 
coefficients vary over many orders of magnitude.

MINOS implementation. MINOS22,23 is a linear and nonlinear optimization solver implemented in Fortran 
77 to solve problems of the form

ϕ+ . . ≤











≤c v v

v
Sv
f v

umin ( ) s t
( )

,
(6)v

T

where φ(v) is a smooth nonlinear function and f(v) is a vector of smooth nonlinear functions (see Supplementary 
Information).

Further tests of DQQ. We report results from the primal simplex solvers in Double and Quad MINOS on 
two sets of challenging LO problems shown in Table 4. As with the M and ME models, we used an Apple iMac 
with 2.93 GHz quad-core Intel i7 and gfortran compiler with -O flag (GNU Fortran 5.2.0). The input files were 
in the MPS format of commercial mathematical programming systems45 with 12-character fields for data values.

The pilot problems. These are economic models developed by Professor George Dantzig in the Systems 
Optimization Laboratory at Stanford University during the 1980s. They have been used in other computational 
studies (e.g. ref. 38) and are available from Netlib46. We use three examples of increasing size: pilot4, pilot, pilot87. 
In Table 5, three lines for each problem show the results of steps D, Q1, Q2 of the DQQ procedure.

For pilot, line 1 shows that step D (cold start and scaling) required 16060 iterations and 9 CPU seconds. The 
unscaled solution v satisfied the constraints in (1) to within O(10−6) and the dual solution y satisfied the optimal-
ity conditions to within O(10−3). Line 2 shows that step Q1 needed only 29 further Quad iterations and 0.3 sec-
onds to obtain a very accurate solution. Line 3 shows that the “insurance” step Q2 with no scaling gave an equally 
good solution (with maximum infeasibilities 0.0 and O(10−32)). The final Double and Quad objective values differ 
in the 4th significant digit, as suggested by the O(10−3) dual infeasibility in step D.

For pilot4 and pilot87 the results are analogous.

The Mészáros problematic problems. Our DQQ procedure was initially developed for this set of LO problems 
collected by Mészáros47, who named them problematic and noted that “modeling mistakes made these prob-
lems “crazy,” but they are excellent examples to test numerical robustness of a solver.” The first two problems have 
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large entries in S. The step D objective value for de063155 has only 1 digit of precision, and none for de063157. 
Nevertheless, the infeasibilities Pinf and Dinf for steps Q1 and Q2 are small when the solution norms are taken 
into account.

model m n nnz(S) max|Sij| ||v*||∞ ||y*||∞
pilot4 411 1000 5145 2.8e +  04 9.6e +  04 2.7e +  02

pilot 1442 3652 43220 1.5e +  02 4.1e +  03 2.0e +  02

pilot87 2031 4883 73804 1.0e +  03 2.4e +  04 1.1e +  01

de063155 853 1488 5405 8.3e +  11 3.1e +  13 6.2e +  04

de063157 937 1488 5551 2.3e +  18 2.3e +  17 6.2e +  04

de080285 937 1488 5471 9.7e +  02 1.1e +  02 2.6e +  01

gen1 770 2560 64621 1.0e +  00 3.0e +  00 1.0e +  00

gen2 1122 3264 84095 1.0e +  00 3.3e +  00 1.0e +  00

gen4 1538 4297 110174 1.0e +  00 3.0e +  00 1.0e +  00

l30 2702 15380 64790 1.8e +  00 1.0e +  09 4.2e +  00

iprob 3002 3001 12000 9.9e +  03 3.1e +  02 1.1e +  00

Table 4.  Three pilot models from Netlib46 and eight problematic problems from Mészáros47. Dimensions of 
m ×  n constraint matrices S, size of the largest nonzero in S, and norm of the optimal primal and dual variables v*, y*.

model Itns Times Final objective Pinf Dinf

pilot4 1464 0.1 − 2.5811392619e +  03 − 05 − 12

7 0.0 − 2.5811392589e +  03 − 52 − 31

0 0.0 − 2.5811392589e +  03 — − 29

pilot 16060 9.0 − 5.5739887685e +  02 − 06 − 03

29 0.3 − 5.5748972928e +  02 — − 32

0 0.1 − 5.5748972928e +  02 — − 32

pilot87 19340 22.6 3.0171038489e +  02 − 08 − 06

32 0.9 3.0171034733e +  02 — − 32

0 0.6 3.0171034733e +  02 — − 33

de063155 973 0.1 1.8968895791e +  10 − 14 + 03

90 0.1 9.8830944565e +  09 — − 27

0 0.0 9.8830944565e +  09 — − 24

de063157 1473 0.1 2.6170359397e +  12 — + 08

286 0.2 2.1528501109e +  07 − 29 − 12

0 0.0 2.1528501109e +  07 — − 12

de080285 418 0.0 1.4495817688e +  01 − 09 − 02

132 0.1 1.3924732864e +  01 − 35 − 32

0 0.0 1.3924732864e +  01 — − 32

gen1 303212 156.9 − 8.1861282705e −  08 − 06 − 13

216746 3431.2 1.2939275026e −  06 − 12 − 31

8304 112.5 1.2953925804e −  06 − 46 − 31

gen2 45905 60.0 3.2927907833e +  00 − 04 − 12

2192 359.9 3.2927907840e +  00 — − 29

0 10.4 3.2927907840e +  00 — − 32

gen4 38111 151.3 − 1.2724113149e −  07 − 07 − 12

58118 6420.2 2.8932557999e −  06 − 12 − 31

50 4.3 2.8933064888e −  06 − 53 − 30

l30 1302602 805.6 9.5266141670e −  01 − 08 − 09

500000 6168.8 − 4.5793509329e −  26 − 25 − 00

16292 204.4 − 6.6656750251e −  26 − 25 − 31

iprob 1087 0.2 2.6891551285e +  03 + 02 − 11

0 0.0 2.6891551285e +  03 + 02 − 30

0 0.0 2.6891551285e +  03 + 02 − 28

Table 5.  Iterations and runtimes in seconds for steps D, Q1, Q2 on the problems of Table 4. Pinf and 
Dinf =  final maximum primal and dual infeasibilities (log10 values tabulated, except – means 0). Problem iprob 
is infeasible. Bold figures show Pinf and Dinf at the end of step Q2. Note that Pinf/||v*||∞ and Dinf/||y*||∞ are 
O(10−30) or smaller, even though only O(10−15) was requested.
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The gen problems arise from image reconstruction. There are no large entries in S, v, y, but the primal solutions 
v are highly degenerate. For gen1, 60% of the step D and Q1 iterations made no improvement to the objective, and 
30% of the basic variables in the final solution are on their lower bound. Step Q1 gave an almost feasible initial 
solution (253 basic variables outside their bounds by more than 10−15 with a sum of infeasibilities of O(10−8)), yet 
over 200,000 iterations were needed to reach optimality. Evidently Quad precision does not remove the need for 
a more rigorous anti-degeneracy procedure (such as Wolfe’s method as advocated by Fletcher48) or steepest-edge 
pricing49 to reduce the total number of iterations. Problems gen1 and gen4 show that step Q2 is sometimes needed 
to achieve high accuracy.

Problem l30 behaved similarly (80% degenerate iterations in steps D and Q1). Since the objective value is 
essentially zero, we can’t expect the Q1 and Q2 objectives to agree. The Q1 iterations were inadvertently limited to 
500,000, but step Q2 did not have much further to go.

Problem iprob is artificial and intended to be feasible with a very ill-conditioned optimal basis, but the MPS 
file contained low-precision data such as 0.604 or 0.0422. The Double and Quad runs determine that the problem 
is infeasible. This is an example of Quad removing doubt that would inevitably arise with just Double.

Table 5 shows that Quad MINOS usually achieves much greater accuracy than requested (the primal and dual 
infeasibilities are almost always much smaller than 10−15). Thus our procedure for handling the problematic prob-
lems has seemed appropriate for the systems biology M and ME models. Like the gen problems, the ME models 
showed many degenerate iterations in step D, but fortunately not so many total iterations in step Q1 (see Table 2). 
This is important for FVA and for ME models with nonlinear constraints, which involve multiple warm starts.

ME models (FBA with coupling constraints). In these models, coupling constraints are often functions of the 
organism’s growth rate μ. Thus, O’Brien et al.50 consider growth-rate optimization nonlinearly, with μ entering as 
the objective in (1) instead of via a linear biomass objective function. Nonlinear constraints of the form

∑µ≥v v k/
(7)

i
j

j i j,
eff

are added to (1), where vi, vj, μ are all variables, and ki j,
eff  is an effective rate constant. If μ is fixed at a specific value μk, 

the constraints (7) become linear. O’Brien et al.50 implemented a binary search on a discrete set of values within 
an interval µ µ[ , ]min max  to find the largest μk ≡  μ* that keeps the associated linear problem feasible. The procedure 
required reliable solution of a sequence of LO problems.

Flux Variability Analysis (FVA). After FBA (1) returns an optimal objective value cTv* =  Z0, FVA examines how 
much a flux vj can vary within the feasible region without much change to the optimal objective:

γ± . . = ≥ ≤ ≤v Sv c v Z l v umin s t 0, , , (8)v
j

T
0

where 0 <  γ <  1 and γ ≈  1. Potentially 2n LO problems (8) must be solved if all reactions are of interest. Warm 
starts are used when j is increased to j +  142. For such a sequence of problems it would be simplest to warm-start 
each problem in Quad, but warm-starting in Double and then Quad might be more efficient.

Conventional iterative refinement. A Double simplex solver would be more reliable with the help of iter-
ative refinement (Wilkinson51) on each linear system involving the basis matrix B or its transpose, but we found 
this inadequate for the biology models (see DRR procedure in Supplementary Information).

The zoom strategy. A step toward warm-starting interior methods for optimization was proposed in ref. 52 
to take advantage of the fact that a low-accuracy solution (x1, y1) for a general problem

. . = ≤ ≤c x Ax b x umin s t , (9)T

can be obtained relatively cheaply when an iterative solver for linear systems is used to compute each search direc-
tion. (The iterative solver must work harder as the interior method approaches a solution.) If (x1, y1) has at least 
some correct digits, the primal residual r1 =  b −  Ax1 will be somewhat small ( σ=r O(1/ )1  for some σ ≫  1) and 
the dual residual d1 =  c −  ATy1 will be comparably small in the elements associated with the final B. If we define

σ σ
σ σ

σ σ

= =
= − = −

= + = +

 

b r c d
x u u x

x x x y y y

, ,
( ), ( ),

1 , 1 ,
(10)

2 1 2 1

2 1 2 1

1 2 1 2

and note that the problem is equivalent to

− − . . = ≤ ≤c x y Ax b Ax b x umin ( ) s t , (11)
T T

1

with dual variable y −  y1, we see that x2 solves

. . = ≤ ≤c x Ax b x umin s t , (12)T
2 2 2 2 2 2 2

with dual variable y2. Importantly, with σ chosen carefully we expect (x2, y2) in this “zoomed in” problem to be of 
order 1. Hence we can solve the problem with the same solver as before (as solvers use absolute tolerances and 
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assume that A and the solution are of order 1). If the computed (x2, y2) has at least some digits of accuracy, the 
correction ← +

σ
x x x1 1

1
2, ← +

σ
y y y1 1

1
2 will be more accurate than before. The process can be repeated. With 

repeated zooms (named refinement rounds in refs 18 and 19), the residuals (r1, d1) must be computed with increas-
ingly high precision. Subject to the expense of using rational arithmetic for this purpose, ref. 18 gives extensive 
results for over 1000 challenging problems and shows that exceptional accuracy can be obtained in reasonable 
time: only 3 or 4 refinements to achieve 10−50 precision, and less than 20 refinements to achieve 10−250. 
SoPlex80 bit28,29 is used for each refinement round with feasibility and optimality tolerances set to 10−9. In ref. 18 
the authors recognize that much depends on the robustness of the simplex solver used for the original problem 
and each refinement. The potential difficulties are the same as in each step of our DRR procedure, where Double 
MINOS is on the brink of failure on the Glc problems because B is frequently near-singular when it is refactorized 
every 100 iterations. A practical answer for ref. 18 is to use a more accurate floating-point solver such as Quad 
MINOS (or Quad versions of SoPlex or SNOPT53) for all refinement rounds.

DQQ serves the current purpose. In the context of ME models whose non-integer data is accurate to only 
4 or 5 digits, we don’t need 10−50 precision. Tables 3 and 5 show that our DQQ procedure achieves more accuracy 
than necessary on all tested examples. For models where the Double solver is expected to encounter difficulty, 
step D can use a reasonable iteration limit. Step Q1 will perform more of the total work with greatly improved 
reliability. Step Q2 provides a small but important improvement at negligible cost, ensuring small residuals for 
the original (unscaled) problem.

The need for Quad precision. To summarize why a conventional Double solver may not be adequate for 
multiscale problems (even with iterative refinement on systems Bp =  a and BTy =  cB each iteration), we note that 
the current basis matrix B must be factorized at regular intervals. If B appears to be nearly singular, a “basis repair” 
procedure replaces some columns of B by appropriate unit vectors (thus making certain slack variables basic). The 
new B is better conditioned, but the solution obtained after recomputing the basic variables from BvB +  NvN =  0 
may have an objective value cTv that is unpredictably less optimal than before. The preceding iterations would 
make progress, but basis repair allows loss of ground. Basis repair is unlikely to happen if Quad precision is used 
for all storage and computation, as it is in steps Q1 and Q2 of DQQ.

Data and software availability. Double and Quad Fortran 77 implementations of MINOS are included 
within the Cobra toolbox2. MPS or JSON files for all models discussed are available from ref. 25. Python code for 
running Double and Quad MINOS on the BiGG JSON files is also available from ref. 25.
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