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� Flux-concentration duality implies an equivalence between descriptions in terms of concentrations or unidirectional fluxes.

� A novel stoichiometric condition for duality between unidirectional fluxes and concentrations is proposed.
� Flux-concentration duality is a pervasive property of biochemical networks.
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a b s t r a c t

Mathematical and computational modelling of biochemical networks is often done in terms of either the
concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical
modelling from either perspective equivalent to the other? Mathematical duality translates concepts,
theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one
manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between
unidirectional fluxes and concentrations. Our numerical experiments, with computational models de-
rived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is
a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is
sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of
molecular species, there is at least one reaction complex that involves species from only one of the two
sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that
the behaviour of the corresponding biochemical network can be described entirely in terms of either
concentrations or unidirectional fluxes.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Systems biochemistry seeks to understand biological function
in terms of a network of chemical reactions. Systems biology is a
broader field, encompassing systems biochemistry, where under-
standing is in terms of a network of interactions, some of which
may not be immediately identifiable with a particular chemical or
biochemical reaction. Mathematical and computational modelling
of biochemical reaction network dynamics is a fundamental
component of systems biochemistry. Any genome-scale model of a
biochemical reaction network will give rise to a system of equa-
tions with a high-dimensional state variable, e.g., there are at least
Ltd. This is an open access article u
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1000 genes in Pelagibacter ubique (Giovannoni et al., 2005), the
smallest free-living microorganism currently known. In order to
ensure that mathematical and computational modelling remains
tractable at genome-scale, it is important to focus research effort
on the development of robust algorithms with time complexity
that scales well with the dimension of the state variable.

Given some assumptions as to the dynamics of a biochemical
network, a mathematical model is defined in terms of a system of
equations. Characterising the mathematical properties of such a
system of equations can lead directly or indirectly to insightful
biochemical conclusions. Directly, in the sense that the recognition
of the mathematical property has direct biochemical implications,
e.g., the correspondence between an extreme ray of the steady
state (irreversible) flux cone and the minimal set of reactions that
could operate at steady state (Schuster et al., 2000). Or indirectly,
in the sense of an algorithm tailored to exploit a recognised
property, which is subsequently implemented to derive
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biochemical conclusions from a computational model, e.g., robust
flux balance analysis algorithms (Sun et al., 2013) applied to in-
vestigate codon usage in an integrated model of metabolism and
macromolecular synthesis in Escherichia coli (Thiele et al., 2012).

Mathematical duality translates concepts, theorems or mathe-
matical structures into other concepts, theorems or structures in a
one-to-one manner. Sometimes, recognition of mathematical
duality underlying a biochemical network modelling problem
enables the dual problem to be more efficiently solved. An ex-
ample of this is the problem of computing minimal cut sets, i.e.,
minimal sets of reactions whose deletion will block the operation
of a specified objective in a steady state model of a biochemical
network (Klamt and Gilles, 2004). Previously, computation of
minimal cut sets required enumeration of the extreme rays of part
of the steady state (irreversible) flux cone, which is computa-
tionally complex in memory and processing time (Haus et al.,
2008). By recognising that minimal cut sets in a primal network
are dual to extreme rays in a dual network (Ballerstein et al., 2012),
one can compute select subsets of extreme rays for the dual net-
work that correspond to minimal cut sets with the certain desired
properties in the primal (i.e., original) biochemical network in
question (von Kamp and Klamt, 2014). This fundamental work has
many experimental biological applications, including metabolic
engineering (Mahadevan et al., 2015).

Recognition of mathematical duality in a biochemical network
modelling problem can have many theoretical biological applica-
tions, in advance of experimental biological applications. For ex-
ample, in mathematical modelling of biochemical reaction net-
works, there has long been an interest in the relationship between
models expressed in terms of molecular species concentrations
and models expressed in terms of reaction fluxes. When con-
centrations or net fluxes are considered as independent variables,
a duality between the corresponding Jacobian matrices has been
demonstrated (Jamshidi and Palsson, 2009). In this case, the con-
centration and net flux Jacobian matrices can be used to estimate
the dynamics of the same system, with respect to perturbations to
concentrations or net fluxes about a given steady state. The primal
(concentration) Jacobian and dual (net flux) Jacobian matrices are
identical, except that one is the transpose of the other. Matrix
transposition is a one-to-one mapping and the aforementioned
duality is between the pair of Jacobians. This does not mean that
the net flux and concentration vectors are dual variables in the
same mathematical sense, and neither are the perturbations to
concentrations or net fluxes. This is because the Jacobian duality
(Jamshidi and Palsson, 2009), which exists for any stoichiometric
matrix, does not enforce a one-to-one mapping between con-
centrations and net fluxes unless the stoichiometric matrix is in-
vertible, which is never the case for a biochemical network
(Heinrich et al., 1978).

Herein we ask and answer the question: what conditions are
necessary and sufficient for duality between unidirectional fluxes
and molecular species concentrations? We establish a necessary
linear algebraic condition on reaction stoichiometry in order for
duality to hold. We also combinatorially characterise this stoi-
chiometric condition in a manner amenable to interpretation for
biochemical networks in general. In manually curated metabolic
network reconstructions, across a wide range of species and bio-
logical processes, we confirm satisfaction of this stoichiometric
condition for the major subset of molecular species within each
reconstruction of a biochemical network. Furthermore, we de-
monstrate how linear algebra can be applied to test for satisfaction
of this stoichiometric condition or to identify the molecular spe-
cies involved in violation of this condition. We also demonstrate
that violation of flux-concentration duality points to discrepancies
between a reconstruction and the underlying biochemistry,
thereby establishing a new stoichiometric quality control
procedure to select a subset of a biochemical network re-
construction for use in computational modelling of steady states.

First, we establish a linear algebraic condition and a combina-
torial condition for duality between unidirectional fluxes and
concentrations. Subsequently, we introduce a procedure to convert
a reconstruction into a computational model in a quality-con-
trolled manner. We then apply this procedure to a range of gen-
ome-scale metabolic network reconstructions and test for the
linear algebraic condition for flux-concentration duality before
and after conversion into a model. We conclude with a broad
discussion, with examples illustrating how a recognition of flux-
concentration duality could help address questions of biological
relevance and improve our understanding of biological
phenomena.
2. Theoretical results

2.1. Stoichiometry and reaction kinetics

We consider a biochemical network with m molecular species
and n (net) reactions. Without loss of generality with respect to
genome-scale biochemical networks, we assume ≤m n. We as-
sume that each reaction is reversible (Lewis, 1925) and can be re-
presented by a unidirectional reaction pair. With respect to the
forward direction, in a forward stoichiometric matrix ∈ ×F m n, let
Fij be the stoichiometry of molecule i participating as a substrate or
catalyst in forward unidirectional reaction j. Likewise, with respect
to the reverse direction, in a reverse stoichiometric matrix ∈ ×R m n,
let Rij be the stoichiometryof molecule i participating as a substrate
or catalyst in reverse unidirectional reaction j. The set of molecular
species that jointly participate as either substrates or products in a
single unidirectional reaction is referred to as a reaction complex.

One may define the topology of a hypergraph of reactions with
a net stoichiometric matrix = −S R F: . However, a catalyst, by defi-
nition, participates in a reaction with the same stoichiometry as a
substrate or product ( = )F Rij ij , so the corresponding row of S is all
zeros unless that catalyst is synthesised or consumed elsewhere in
the same biochemical network, as is the case for many biochem-
ical catalysts (Thiele et al., 2009). For example, consider the ith
molecular species acting as a catalyst in some reactions. If it is
synthesised in the jth reaction of a biochemical network, the
stoichiometric coefficient in the forward stoichiometric matrix will
be less than that of the reverse stoichiometric matrix ( <F Rij ij), so

= − >S R F: 0ij ij ij . This also encompasses the case of an auto-cata-
lytic reaction.

Before proceeding, some comments on our assumptions are in
order. One may derive S from F and R, but the latter pair of ma-
trices cannot, in general, be derived from S because S omits the
stoichiometry of catalysis. The orientation of the hypergraph, i.e.,
the assignment of one direction to be forward (substrates ⇀
products), with the other reverse, is typically made so that net flux
is forward (with positive sign) when a reaction is active in its
biologically typical direction in a biochemical network. This is an
arbitrary convention rather than a constraint, and reversing the
orientation of one reaction only exchanges one column of F for the
corresponding one in R. Although every chemical reaction is in
principle reversible, in a biochemical setting, due to physiological
limits on the relative concentrations of reactants and substrates,
some reactions are practically irreversible (Noor et al., 2013). Our
conclusions also extend to systems of irreversible reactions be-
cause the reaction complexes for an irreversible reaction are the
same as those for a reversible reaction.

In the following, the exponential or natural logarithm of a
vector is meant component-wise, with ( ( )) =exp log 0 : 0. Let ∈ >vf

n
0

and ∈ >vr
n

0 denote forward and reverse unidirectional reaction
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rate vectors. We assume that the rate of a unidirectional reaction is
proportional to the product of the concentrations of each substrate
or catalyst, each to the power of their respective stoichiometry in
that unidirectional reaction (Wilhelmy, 1850), with linear pro-
portionality given by strictly positiverate coefficients ∈ >k k,f r

n
0.

Therefore we have

( ) = ( ( ) + ( ))

( ) = ( ( ) + ( )) ( )

v c k F c

v c k R c

: exp ln ln ,

: exp ln ln , 1

f f
T

r r
T

where ∈ ≥c m
0 are molecular species concentrations. Strictly, it is

not proper to take the logarithm of a unit that has physical di-
mensions, so c should be termed a vector of mole fractions rather
than concentrations (Berry et al., 2000, Eq. 19.93), but safe in the
knowledge that we have taken this liberty, we continue in terms of
concentrations.

If the jth columns of F and R represent the stoichiometry of an
elementary reaction, then the respective jth unidirectional reaction
rate is given by an elementary kinetic rate law in (1). In bio-
chemical modelling, often it is composite reaction stoichiometry
that is represented, in which case the unidirectional reaction rates
are given by pseudo-elementary kinetic rate laws. We shall revisit
this point in discussion, but for now it suffices to mention that, in
principle, all composite reactions can be decomposed into a set of
elementary reactions following elementary reaction kinetics (Cook
and Cleland, 2007), even allosteric reactions (Bray and Duke,
2004). With respect to the forward direction of an elementary
reaction, the term reaction complex implies a corresponding phy-
sical association between substrate molecular species. For the sake
of simplicity, we also use the term reaction complex for composite
reactions, as if there were a corresponding simultaneous physical
association of all substrates, which is generally not the case be-
cause composite reactions occur as a set of elementary reaction
steps.

With respect to time, the deterministic rate of change of con-
centration is

=( − )( ( ) − ( )) ( )
dc
dt

R F v c v c: , 2f r

⎡
⎣⎢

⎤
⎦⎥=( || − || )

( )
( ) ( )

dc
dt

R F F R
v c

v c
: ,

3
f

r

where ( ) − ( )v c v cf r gives a vector of net reaction rates, =: denotes
“is defined to be equal to” and || denotes the horizontal con-
catenation operator that joins two matrices side by side,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= = || =F a b

c d
R

p q
r s

F R
a b p q

c d r s
: , : , .

Time-invariant fluxes or concentrations satisfy (2) with =dc dt/ : 0.

Define 
⎡
⎣⎢

⎤
⎦⎥= ∈ >k :

k

k
n
0

2f

r
to be given constants, then consider the flux

function

⎡
⎣⎢

⎤
⎦⎥( ) = ( ( ) + ( || ) ( )) =

( )
( ) ( )

v c k F R c
v c

v c
: exp ln ln

4
T f

r

with a concentration vector c the only argument. Apart from
(a) our deliberate distinction between unidirectional and net
stoichiometry, (b) our deliberate use of matrix-vector notation,
and (c) our deliberate use of component-wise exponential and
logarithm, the expression for unidirectional rate in (4) is a stan-
dard representation of deterministic elementary reaction kinetics.
2.2. Linear algebraic characterisation of flux-concentration duality

Herein, duality is defined as a one-to-one relationship between
two variable vectors, that is, ∈x n and ∈y m are dual vectors if
there exists a function  →f : n m such that ( ) =f x y and

= ( )−x f y1 . We now establish a linear algebraic condition for duality
between unidirectional flux and concentration vectors. This linear
algebraic condition is a well known result in mathematics, but to
our knowledge its application to establish duality between uni-
directional flux and molecular species concentration is novel.

Theorem 1. Assume we are given constants ∈ >k n
0

2 and
∈ ≥

×F R, m n
0 . Suppose a unidirectional reaction flux vector ∈ >v n

0
2

and a molecular species concentration vector ∈ >c m
0 satisfy

= ( ( ) + ( || ) ( )) ( )v k F R cexp ln ln . 5T

Then rank ( || ) =F R m is a necessary and sufficient condition for duality
between fluxes and concentrations.

Proof. That v is uniquely defined given c is trivial. Taking the
logarithm of both sides of (5), we have ( ) − ( ) = ( || ) ( )v k F R cln ln lnT .
Then, if and only if ( || ) =F R mrank is ( )cln , and therefore c, uniquely
defined given v. □

Theorem 1 establishes that the flux function (4) is an injective
function. It is not bijective because one can always find a v such
that ( ) − ( )v kln ln is not in the range of ( || )F R T . Note that the ex-
ponential function is bijective, but if one wished to consider other
flux functions, it would be sufficient to replace the exponential
function with another injective function and Theorem 1 would still
hold.

We now proceed to interpret this stoichiometric condition for
duality in biochemical terms. Consider the following triplet of
isomerisation reactions involving three molecular species:

⇌ ⇌ ⇌A B B C C A, , .

The forward, reverse and net stoichiometric matrices are

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= = ( − ) =

−
−

− ( )
F R R F

1 0 0
0 1 0
0 0 1

,
0 0 1
1 0 0
0 1 0

,
1 0 1

1 1 0
0 1 1

,
6

where flux and concentration vectors are dual vectors because
( || ) = =F R mrank 3 . Consider the following quartet of reactions in-

volving four representatives of supposedly distinct molecular
species:

⇌ + ⇌ + ⇌ + ⇌ +A B C A D B C D A D B C, , , 2 2 .

The forward, reverse and net stoichiometric matrices are

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= =

( − ) =

− − −
−
−

− ( )

F R

R F

1 1 0 1
0 0 1 0
0 0 1 0
0 0 0 1

,

0 0 0 0
1 0 0 2
1 0 0 2
0 1 1 0

,

1 1 0 1
1 0 1 2
1 0 1 2
0 1 1 1

,

7

where flux and concentration vectors are not dual vectors because
( || ) = < =F R mrank 3 4 . Observe that the second and third rows of F

and R are positive multiples of one another. This corresponds to a
pair of supposedly distinct molecules, B and C, that are always
either produced or consumed together with fixed relative stoi-
chiometry. This is an ambiguous model of reaction stoichiometry
because either (i) B and C are actually the same molecular species
and therefore the extra row is superfluous, or (ii) B and C are
different molecular species but the model is missing some reaction
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that would demonstrate they are synthesised or consumed in
distinct reactions.

2.3. Combinatorial characterisation of flux-concentration duality

The aforementioned linear algebraic condition for duality be-
tween unidirectional flux and concentration vectors is hard to
interpret in terms of reaction complex stoichiometry. Therefore we
sought a characterisation that would be easier to interpret in a
(bio)chemically interpretable manner. Here we derive a combi-
natorial characterisation of the condition ( || ) =F R mrank , which
holds independently of the actual values of the stoichiometric
coefficients. Our analysis draws from the theory of L-matrices and
zero/sign patterns (Hershkowitz and Schneider, 1993; Brualdi and
Shader, 2009). First we introduce some definitions and notation.

Definition 1 (Support of a set of vectors). Let be a collection of d-
dimensional row vectors. The support of is defined to be the
subset of ={ … }d: 1, , such that, for each i in the given subset of ,
there exists at least one vector in whose ith component is
nonzero.

For example, if is formed by the last two rows of the matrix

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0 1 1 0 0
0 1 0 0 1 0
0 1 1 0 0 1

,

the support of is { }2, 3, 5, 6 . If is formed by the first and third
columns of the matrix, its support is { }1, 3 .

Definition 2 (Combinatorial independence). A collection of row
vectors (of equal dimension) is said to be combinatorially in-
dependent if does not contain the zero vector and every two
nonempty disjoint subsets of have different supports.

In the above example, the rows of the matrix are combinato-
rially independent. However, the columns of this matrix are not
combinatorially independent because the support of columns
{ }1, 2 is { }1, 2, 3 , which is the same as the support of columns
{ }3, 5 .

Definition 3 (Zero pattern). The zero pattern of a real matrix A is
the ( )0, 1 -matrix obtained by replacing each nonzero entry of A by
1.

Theorem 2 (Combinatorial independence and rank (Richman and
Schneider, 1978, Lemma (5.2))). Let P be an m�d zero pattern. Every
non-negative matrix with zero pattern P has rank m if and only if the
rows of P are combinatorially independent.

Conversely, it follows that if any two disjoint subsets of rows of
P have the same support, then P is row rank-deficient. For ex-
ample, the matrix

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 0 1 0
0 1 1 0 0 0
0 0 0 1 0 1

is row rank-deficient because rows { }1, 2, 3 and rows { }4, 5, 6
have the same support { }1, 2, 3, 4, 5, 6 . Theorem 2 permits us to
state the following.

Theorem 3 (Combinatorial independence and duality). Consider a
family of biochemical networks that share the same zero pattern as

||F R. Assume that each molecular species participates in at least one
reaction in each network in the family. Then, for each network in the
family, with matrix ˜|| ˜F R, the following are equivalent:

1. The matrix ˜|| ˜F R has full row rank.
2. For every two disjoint sets of molecular species, there is at least one

reaction complex that involves species from only one of the two
sets.

3. Unidirectional flux and concentration are dual variables.

Proof. The equivalence of 1 and 3 for any given ||F R has already
been established in Theorem 1. The equivalence of 1 and 2 follows
from Theorem 2 as follows. Consider the zero pattern, call it P, of
the input ||F R. The matrix P is a binary matrix obtained by repla-
cing each nonzero entry of ||F R by 1. If the rows of P are combi-
natorially independent, then, according to Theorem 2, every
nonnegative matrix with zero pattern P must have rank m, and
consequently every ˜|| ˜F R in the network family must have full row
rank. Conversely, if every ˜|| ˜F R in the family has full row rank,
Theorem 2 implies that the rows of P must be combinatorially
independent. Given the way the zero pattern P is created, the
latter implication translates (using the definition of combinatorial
independence and biochemical terminology) to condition 2. □

Note that, for a given biochemical network with matrix ||F R, if
condition 2 in the above theorem is true, then one can exchange
any positive stoichiometric coefficient of the network with any
positive value and the corresponding ˜|| ˜F R will still have full row
rank. The above result provides a combinatorial characterisation of
the condition for flux-concentration duality, which holds in-
dependent of the values of the stoichiometric coefficients. This is
analogous to results involving L-matrices for problems such as the
structural controllability of systems (Brualdi and Shader, 2009).

2.3.1. Testing for combinatorial independence
According to Theorem 2, to test if an m� d zero pattern has

rank m, we can equivalently test whether its m rows are combi-
natorially independent. Can this test be performed efficiently? In
general the answer is no (unless P¼NP), as the problem of testing
if a sign pattern (elements { − }0, 1, 1 ) has full row rank is NP-
complete (Klee et al., 1984). The proof of Klee et al. (1984) relies on
a reduction from the 3-SAT problem, which is known to be NP-
complete (Garey and Johnson, 1979). Klee et al. (1984) construct a
non-negative sign pattern (which is a zero pattern), and therefore
their result applies to our case too. Hence we have the following.

Theorem 4. (Testing combinatorial independence (Klee et al., 1984))
Let P be a zero pattern. Testing if the rows of P are combinatorially
independent is NP-complete.

However, as we prove next, when the zero pattern is con-
strained to have at most two non-negative entries per column, the
testing for combinatorial independence can be done in polynomial
time. To our knowledge, this result is new.

Theorem 5. (Testing combinatorial independence in constrained
zero patterns) Let P be a zero pattern with at most two 1 s per col-
umn. Testing if the rows of P are combinatorially independent can be
done in polynomial time.

Proof. Without loss of generality we can assume that each col-
umn of P has exactly two nonzero entries. We view the matrix P as
the incidence matrix of an undirected graph, where each row of P
is a vertex and each column is an edge. Combinatorial dependence
of the rows of P would imply the existence of two disjoint sets of
rows with the same support, which would imply the existence of a
connected component of the graph that is bipartite (2-colorable).
Finding all connected components of a graph and bipartiteness
testing are classical graph problems that can be solved in
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polynomial time (Cormen et al., 2009). □

Since most reconstructed biochemical networks are in terms of
composite reactions, the corresponding ||F R may have more than
two nonzero entries per column and the nonzero stoichiometric
coefficients may differ from 1. However, every composite reaction
is a composition of a set of elementary reactions (Cook and Cle-
land, 2007), each with at most three reactants per reaction, so the
resulting bilinear ||F R will have at most two nonzero entries per
column. It is possible to algorithmically convert any composite
reaction into a set of elementary reactions, with at most two
nonzero entries per column, by creating faux molecular species
representing a reaction intermediate, e.g., the composite reaction

+ ⇌ +A B C D may be decomposed into + ⇌A B E and ⇌ +E C D.
Reaction intermediates are typically not identical for two enzyme-
catalysed composite reactions, suggesting that flux-concentration
duality is a pervasive property of biochemical networks in general.

2.4. Flux-concentration duality in existing genome-scale biochemical
networks

Section 2.3 provided a biochemically interpretable condition, in
terms of molecular species involvement in reaction complex
stoichiometry, that implies flux-concentration duality for an ar-
bitrary network. We now show that flux-concentration duality is a
pervasive property of quality-controlled models derived from
genome-scale biochemical network reconstructions. Testing for
combinatorial independence is computationally complex, so in-
stead we rely on linear algebra to test the rank of ||F R. As detailed
below, we converted 29 genome-scale metabolic network re-
constructions into computational models, then compared the
number of molecular species with the rank of ||F R before and after
conversion. These metabolic reconstructions were all manually
curated and represent a wide range of different species (see Sup-
plementary Table 1).

It is important to distinguish a network reconstruction from a
computational model of a biochemical network. The former may
contain incomplete or inconsistent knowledge of biochemistry,
while the latter must satisfy certain modelling assumptions, re-
presented by mathematical conditions, in order to ensure that the
model is a faithful representation of the underlying biochemistry.
This modelling principle is already well established in the digital
circuit modelling community, and some of the associated model
checking algorithms have been applied to biochemical networks
(Carrillo et al., 2012), especially by the community that use Petri-
nets to model biochemical networks, e.g., Soliman (2012). The
application of modelling assumptions is a key step in the conver-
sion of a reconstruction into a computational model. We now in-
troduce these assumptions, their mathematical representation,
and their relationship to the rank of ||F R. For the sake of simplicity,
the toy examples given to illustrate key concepts only involve re-
actions with two or less reactants, but the theory presented also
applies to systems of composite reactions involving three or more
reactants.

2.4.1. Stoichiometric consistency
All biochemical reactions conserve mass; therefore it is essen-

tial in a model that each reaction, which is supposed to represent a
biochemical reaction, does actually conserve mass. Although it is
not essential to do so (Fleming and Thiele, 2012), reactions that do
not conserve mass are often added to a network reconstruction
(Thiele and Palsson, 2010) in order to represent the flow of mass
into and out of a system, e.g., during flux balance analysis (Palsson,
2006). Every reaction that does not conserve mass, but is added to
a model in order represent the exchange of mass across the
boundary of a biochemical system, is henceforth referred to as an
exchange reaction, e.g., ⇌ ∅D , where ∅ represents null. When
checking for reactions that do not conserve mass, we must first
omit exchange reactions.

Besides exchange reactions, a reconstruction may contain re-
actions with incompletely specified stoichiometry or molecules
with incompletely specified chemical formulae, because of (for
instance) limitations in the available literature evidence. While
stoichiometrically inconsistent biochemical reactions may appear
in a reconstruction, they should be omitted from a computational
model derived from that reconstruction, especially if the model is
to be used to predict flow of mass, else erroneous predictions
could result. One approach is to require that chemical formulae be
collected for each molecule during the reconstruction process
(Thorleifsson and Thiele, 2011), then omit non-exchange reactions
that are elementally imbalanced (Schellenberger et al., 2011). A
complementary approach is to detect reactions that are specified
in a stoichiometrically inconsistent manner (Gevorgyan et al., 2008).
For instance, the reactions + ⇌A B C and ⇌C A are stoichiome-
trically inconsistent because it is impossible to assign a positive
molecular mass to all species whilst ensuring that each reaction
conserves mass.

A set of stoichiometrically consistent reactions is mathemati-
cally defined by the existence of at least one ℓ ∈ >

m
0 such that

ℓ = ℓR FT T , equivalently ℓ = ( − ) ℓ =S R F 0T T , where ℓ is a vector of
the molecular mass of m molecular species. Consider the afore-
mentioned stoichiometrically inconsistent example, where the
corresponding stoichiometric matrices are
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⎦
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⎥= − = − =

−
−

−
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0 1
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1 0
1 0
0 1

1 1
1 0

1 1
,

with rows from top to bottom corresponding to molecular species
A B C, , . Let ∈a b c, , denote the molecular mass of A B C, , . We
require a b c, , such that
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F0 0 1
1 0 0

1 1 0
0 0 1

.T T

However, the only solution requires a¼c and b¼0, i.e., a zero mass
for the molecule B, which is inconsistent with chemistry; therefore
the reactions + ⇌A B C and ⇌C A are stoichiometrically incon-
sistent. In general, given F and R, one may check for stoichiometric
consistency (Gevorgyan et al., 2008) by solving the optimisation
problem

ℓ

ℓ =
≤ ℓ

ℓ

S

max

s. t. 0,

0 .

T

0

Here, ℓ 0 denotes the zero-norm or equivalently the cardinality
(number of non-zero entries) of ℓ. However, maximising the car-
dinality of a non-negative vector in the left nullspace of S is a
problem that is challenging to solve exactly. This problem has been
represented as a mixed-integer linear optimisation problem (Ge-
vorgyan et al., 2008), but since algorithms for such problems have
unpredictable computational complexity, we implemented a novel
and more efficient approach.

The cardinality of a non-negative vector is a quasiconcave (or
unimodal) function (Boyd and Vandenberghe, 2004). The problem
of maximising this particular quasiconcave function, subject to a
convex constraint, may be approximated by a linear optimisation
problem (Vlassis et al., 2014), in our case the problem
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


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β

ℓ =
≤ ℓ
≤ ≤
≤ ℓ ≤ ( )

ℓ
z

S

z

z

max

s. t. 0,

,

0 ,

0 , 8

z

T

T

,

where ℓ ∈z, m and  denotes an all ones vector. In this ap-
proximation, we maximise the sum over all dummy variables zi,

= …i m1, , , but it is ℓi that represents the stoichiometrically
consistent molecular mass of the ith molecule. The scalars

α β ∈ >, 0 are proportional to the smallest molecular mass
considered non-zero and the largest molecular mass allowed. An
upper bound on the largest molecular mass avoids the possibility
of a poorly scaled optimal ℓ. We used α = −10 4 and β = 104 as all
models tested were of metabolism, so eight orders of magnitude
between the least and most massive metabolite is sufficient. As
this approximation is based on linear optimisation, it can be im-
plemented numerically in a scalable manner. We applied (8) to
each reconstruction in Supplementary Table 1 in order to identify
stoichiometrically inconsistent rows. That is, if ℓ⋆ denotes the
optimal ℓ obtained from (8) then the ith row is stoichiometrically
inconsistent if αℓ <⋆

i . Stoichiometrically inconsistent rows and the
corresponding columns were omitted from further analyses.
Where molecular formulae were available, we confirmed that all
retained biochemical reactions were elementally balanced, as ex-
pected. To reiterate, in our numerical check of rank ||F R, discussed
below, all rows correspond to metabolite species involved in
stoichiometrically consistent reactions, with the exception of ex-
change reactions.

2.4.2. Net flux consistency
If one assumes that all molecules are at steady state, the cor-

responding computational model should be net flux consistent,
meaning that each net reaction of the network has a nonzero flux
in at least one feasible steady state net flux vector. Due to in-
complete biochemical knowledge, a reconstruction may contain
net flux inconsistent reactions that do not admit a nonzero steady
state net flux. For example, consider the set of reactions

∅ ⇌ ⇌ ⇌ ∅ ⇌ ( )D G D H, . 9

In this set, the reaction ⇌D H is net flux inconsistent, as any
nonzero net flux is inconsistent with the assumption that the
concentration of H should be time invariant. Inclusion of net flux
inconsistent reactions, like ⇌D H , in a dynamic model would be
perfectly reasonable, but we omit such reactions because the focus
of this paper is on modelling of steady states.

Let ∈ ×B m p denote the stoichiometric matrix for a set of p
exchange reactions. We say a matrix S is net flux consistent if there
exist matrices ∈ ×V n k and ∈ ×W p k such that

= −SV BW ,

where each row of V and each row of W contains at least one
nonzero entry. Consider the aforementioned net flux inconsistent
example, where the corresponding stoichiometric matrices are
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Let ∈p q r s, , , denote the net rate of the reactions, from left to
right in (9). We require p q r s, , , such that

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

− −
=

− −
=

−
=

−
= −SV

p
q

p q
p
q

r
s r

s BW
1 1

1 0
0 1 0

1 0
0 1
0 0

.

However, the only solution requires q¼0, i.e., a zero net flux
through the reaction ⇌D H , corresponding to a zero row of V;
therefore this reaction is net flux inconsistent. Our definition of
net flux consistency is weaker than the assumption that all reac-
tions admit a nonzero net flux simultaneously, which would be
equivalent to requiring a single net flux vector with all nonzero
entries, i.e., k¼1. It is also weaker than the assumption of net flux
consistency subject to bounds on the direction of reactions (Vlassis
et al., 2014), which we do not impose here. Enforcing net flux
consistency requires omission of any net reaction that cannot carry
a non-zero net flux at a steady state.

Within FASTCORE, a scalable algorithm for reconstruction of
compact and context-specific biochemical network models (Vlas-
sis et al., 2014), a key step employs linear optimisation as de-
scribed above (8) to identify the largest set of net flux consistent
reactions in a given model. We created a computational model
from the stoichiometrically consistent subset of each reconstruc-
tion in Supplementary Table 1. We allowed all reactions to be re-
versible (lower and upper bounds −1000 and 1000), included
exchange reactions in each reconstruction, and then identified and
omitted all net flux inconsistent reactions ( < ϵ = −v 10j

4). We also
omitted the corresponding rows, where a molecular species is only
involved in flux inconsistent reactions. Therefore, in our check of
rank( ||F R), all rows correspond to metabolite species involved in
net flux consistent reactions. As Supplementary Table 1 illustrates,
this is typically a subset of the stoichiometrically consistent rows.

2.4.3. Unique and non-trivial molecular species
In a reconstruction, one may find a pair of rows in S that are

identical up to scalar multiplication. As these extra rows typically
represent inadvertent duplication of an identical molecular spe-
cies, any such duplicate rows were omitted. Likewise, we omitted
any row with all zeros, e.g., corresponding to a metabolite that was
only involved in stoichiometrically inconsistent or net flux in-
consistent reactions. Hereafter, any biochemical network without
zero rows or rows identical up to scalar multiplication we refer to
as being non-trivial.
3. Pervasive flux-concentration duality in genome-scale
models

We investigated the stoichiometric properties of a re-
presentative subset of published metabolic network reconstruc-
tions. Specifically, numerical experiments were performed on 29
published reconstructions where a Systems Biology Markup Lan-
guage (Keating et al., 2006) compliant Extensible Markup Lan-
guage (.xml) file was available and at least 90% of the molecular
species corresponded to stoichiometrically consistent rows. Nu-
merical linear algebra was used to compute matrix rank (cf. Sup-
plementary File 1, Section 6.1.1). The results are summarised in
Fig. 1 and provided in detail in Supplementary File 2. All numerical
experiments may be reproduced with the MATLAB code distributed
with the COBRA Toolbox at https://github.com/opencobra/co
bratoolbox (cf. Supplementary File 1, Section 6.3).

The number of (possibly indistinct) molecular species is, by
definition, equivalent to the number of rows of = −S R F: derived
directly from the reconstruction, without additional assumptions.
By forming ||F R directly from a reconstruction, we found that

( || )F Rrank is usually (21/29) less than the number of rows of S, with
some (8/29) exceptions, e.g., the genome-scale reconstruction of
the metabolic network of Rhodobacter sphaeroides, iRsp1095
(Imam et al., 2011).

Most genome-scale reconstructions (26/29) were accompanied
by chemical formulae for the majority of reactions. If the number
of stoichiometrically consistent rows is less than the number of

https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobratoolbox


Fig. 1. Usually, only a subset of a reconstruction will satisfy the mathematical conditions imposed when a corresponding computational model is generated. The original size
of [ ]S S, e (outer black rectangle) varies across the 29 reconstructions tested. Due to exchange reactions, only a subset of the columns of a reconstruction correspond to
stoichiometrically consistent rows (red rectangles). If a molecular species is exclusively involved in exchange reactions, the number of stoichiometrically consistent rows is
less than the number of rows of reconstruction. Due to reactions that do not admit a nonzero steady state net flux, only a subset of mass balanced reactions and a subset of
exchange reactions are also flux consistent (blue and grey rectangles, respectively). When F and R are derived from a subset of a genome-scale biochemical network
reconstruction, assuming no zero rows of ||F R and no rows that are identical up to scalar multiplication, stoichiometric and net flux consistency is often but not always
sufficient to ensure that ||F R has full row rank. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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molecules exclusively involved in reactions that are supposed to
be elementally balanced, as determined by a check for elemental
balance, then at least one chemical formula for a molecular species
must be incorrectly specified. In only 3 of the 26 reconstructions
that supplied chemical formulae, this issue was apparent (cf.
Supplementary File 1). Each reconstruction was converted into a
computational model where ∈ ≥

×F R, m n
0 satisfy the following

conditions:

1. All rows of = −S R F: correspond to molecular species in stoi-
chiometrically consistent reactions, with the exception of ex-
change reactions.

2. No two rows in ||F R are identical up to scalar multiplication.
3. All rows of S correspond to molecular species in net flux con-

sistent reactions, assuming all reactions are reversible, including
exchange reactions.

4. No row of ||F R is all zeros.

Of the 29 reconstructions subjected to the aforementioned
conditions, 26 generated a model where ||F R had full row rank.
When ||F R was row rank-deficient, the rank was never more than
three less than the number of rows of ||F R. In each case, the rank-
deficiency was a result of omitted biochemical reactions that
would otherwise have resulted in an ||F R with full row rank. A
typical example of a genome-scale reconstruction with row rank-
deficient ||F R is highlighted in Section 6.2. In general, should a row
rank-deficient ||F R arise, there are two options: (i) further manual
reconstruction effort to correctly specify reaction network
stoichiometry, or (ii) omission of the dependent molecular species
from any derived kinetic model.

Although conditions 2 and 4 are trivial and clearly necessary,
neither of conditions 1 or 3 (stoichiometric consistency or net flux
consistency) is necessary for ||F R to have full row rank. For almost
one third (8/29) of the reconstructions, one could form ||F R
without any further assumptions and yet ||F R had full row rank.
For instance, the genome-scale Methanosarcina acetivorans C2A
metabolic model (iMB745 (Benedict et al., 2012)) has 715 mole-
cular species and without stoichiometric or net flux consistency
being imposed, ( || ) =F Rrank 715, even though this is 2 greater than
the number of stoichiometrically consistent rows of S.

When a stoichiometrically inconsistent row of S is omitted
from a metabolic model, the corresponding row of the biomass
reaction is also omitted. This reduction in the number of con-
straints could lead to an increase in the maximum biomass
synthesis rate. In contrast, removal of net flux inconsistent reac-
tions might reduce the maximum biomass synthesis rate or render
biomass synthesis infeasible. Flux balance analysis of each of the
29 genome-scale reconstructions before and after application of
the aforementioned four conditions revealed that growth feasi-
bility was not extinguished and tended to increase (data not
shown). Further iterations of reconstruction and model validation
would be required for each model derived in the manner de-
scribed above prior to use in applications. In particular, one should
check that each omitted reaction is balanced for each atomic ele-
ment and conduct further literature research to resolve flux in-
consistent reactions that contributed toward optimal biomass
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synthesis in models derived from reconstructions without the
aforementioned quality control steps.
4. Discussion

Any net stoichiometric matrix ∈ ×S m n may be derived by
taking the difference between a pair of forward and reverse stoi-
chiometric matrices ∈ ≥

×F R, m n
0 , that is = −S R F: . The horizontal

concatenation || ∈ ×F R m n2 is a key mathematical object that ap-
pears in the deterministic, elementary, unidirectional reaction ki-
netic rate equation = ( ( ) + ( || ) ( ))v k F R cexp ln lnT , relating con-
centrations ∈c m and rate coefficients ∈k n2 to fluxes ∈v n2 .
We address the question: When does there exist a one-to-one
relationship between concentrations and unidirectional fluxes?

We have proven that, given rate coefficients, there is a one-to-
one relationship between concentrations and unidirectional fluxes
if and only if ||F R has full row rank. Furthermore, this dual re-
lationship exists if and only if there are no two disjoint sets of
molecular species where every corresponding unidirectional re-
action involves at least one molecular species from each of the
disjoint sets. Flux-concentration duality implies that one could
discuss biochemistry either entirely in terms of fluxes or entirely
in terms of concentrations, as both would be different perspectives
on the same biochemical system. This has clear implications when
interpreting biochemical network function from the perspective of
either concentrations or fluxes.

One has a choice between modelling in terms of unidirectional
fluxes or concentrations. Ultimately, this choice must be made
depending on the specific situation being modelled, so it is diffi-
cult to prescribe a choice for all situations. Since >n m2 , it will
always be the case that there are more unidirectional fluxes than
molecular species, so it is clear that the more parsimonious
mathematical expression is to have one variable per molecular
species. Unidirectional fluxes are consistent with energy con-
servation and the second law of thermodynamics if they satisfy a
relation of the form:

⎛
⎝⎜

⎞
⎠⎟

( )
( )

= ( − )
( )

v c
v c

R F yln
10

r

f

T

where ∈y m represents the chemical potential of each com-
partment-specific molecular species. Consider the following
modified unidirectional reaction kinetic rate law:

^( ) = ( ( ) + ( || − || ) ( )) ( )v c k F R R F c: exp ln ln . 11T

If the rate coefficients satisfy a relation of the form:

⎛
⎝⎜

⎞
⎠⎟ = ( − )k

k
R F zln r

f

T

for some ∈z m, then use of either (11) or the standard uni-
directional reaction kinetic rate law in (1) will ensure that (10)
holds. This illustrates that unidirectional reaction rates may be
consistent with thermodynamics but not consistent with standard
unidirectional reaction kinetic rate laws. If one assumes that these
standard kinetic rate laws are correct, then modelling from the
perspective of molecular species concentrations, with explicit re-
presentation of rate laws, would seem to be a preferable approach.

Within a wide range of non-trivial biochemical network re-
constructions, including metabolism and signalling networks, we
observe from numerical experiments that together, stoichiometric
and net flux consistency of S is often sufficient to ensure that ||F R
has full row rank. After application of these conditions we occa-
sionally observe that ||F R is row rank-deficient and this is due to
omission of reactions from the corresponding reconstruction.
Finding a numerical example where ||F R is row rank-deficient does
not reduce the biochemical significance of our observations if the
underlying network is not biochemically realistic. In each parti-
cular case, it was clear that row rank-deficiency ||F R was due to the
omission of known biochemical reactions that would have given

||F R full row rank. It is easy to test if ||F R has full row rank for a
particular network, but it is a rather abstract linear algebraic
condition, so it is not easy to see if it applies to biochemical net-
works in general. Therefore, we sought a complementary char-
acterisation of full-row-rank ||F R that was applicable in general
and more easily interpretable from a biochemical network
perspective.

We have established biochemically interpretable combinatorial
conditions that are necessary and sufficient for ||F R to have full row
rank dependent only on the sparsity pattern of F and R; that is,
independent of the actual values of their nonzero entries. How-
ever, in practice these combinatorial conditions may be too strong,
because for any given biochemical network, the values of the
nonzero entries are fixed and the corresponding ||F R may have full
row rank, even if combinatorial independence of its rows does not
hold. Combinatorial independence of the rows of a given ||F R
implies full row rank, but in general, the reverse implication does
not hold. In Section 2.4, we applied numerical linear algebra to
check the rank of ||F R derived from 29 reconstructions, each sub-
ject to certain conditions. However, as the aforementioned ||F R all
correspond to networks of composite biochemical reactions, there
exist columns of ||F R with more than two nonzero entries. We do
not test for combinatorial independence of the rows of these ||F R,
as this problem is NP-hard (Garey and Johnson, 1979).

There are many interesting open problems, the solution of
which would be interesting extensions to this work. We know that
all composite reactions are defined from the composition of a set
of elementary reactions, and the latter give rise to an ||F R with at
most two nonzero entries in each column. Given an ||F R derived
from a network of composite reactions, if one were to express the
network as a set of elementary reactions that properly reflects the
underlying biochemistry (Cook and Cleland, 2007), does the cor-
responding ||F R also have full row rank? One could ask the same
question starting from an elementary reaction network with an

||F R that has full row rank. Indeed, by Theorem 4, testing the
combinatorial independence of the latter is solvable in polynomial
time. It is exciting that so many of the non-trivial, stoichiome-
trically consistent and net flux consistent biochemical networks
that we tested do give rise to an ||F R of full row rank, despite the
fact that mathematically we know that these conditions are not
sufficient for ||F R to have full row rank. What are the undiscovered,
necessary, mathematical, yet biologically interpretable conditions
that ensure ||F R has full row rank, even if its rows are not com-
binatorially independent?

Putting this work into a broader context, one must always
make a clear distinction between a reconstruction and a model. In
practice, the latter is a numerical implementation that must satisfy
certain mathematical conditions that are usually not satisfied by
every metabolite species and every reaction in a given re-
construction. Indeed, depending on one's combination of mathe-
matical assumptions, one could derive many different models
from the same reconstruction. Testing for compliance with
mathematical conditions is a vital element of quality control when
converting a reconstruction into a correctly specified computa-
tional model. Of note in this respect is the relatively low compu-
tational complexity of the linear optimisation algorithms we use to
solve the problem of checking for stoichiometric and net flux
consistency.

Reconstruction mis-specification is often not due to some error,
especially for reconstructions that are ambitious in scope. Such
reconstructions will inevitably contain knowledge gaps, where the
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exact stoichiometry, chemical formula, etc, is unknown for certain
reactions. That is, reconstruction mis-specification is often a re-
flection of incomplete biochemical knowledge. As any computa-
tional model will only represent the subset of the metabolite
species and reactions that satisfy certain mathematical conditions,
e.g., stoichiometric consistency, one must take care to omit that
part of a reconstruction not satisfying certain conditions before
generating model predictions and absolutely before making any
biological conclusions. Otherwise grossly erroneous conclusions
may be obtained.

In applied mathematics, the development of an algorithm to
find a solution to a system of equations begins with certain as-
sumptions on the properties of the function(s) involved. In sys-
tems biochemistry, deterministic modelling of molecular species
concentrations gives rise to systems of nonlinear equations, e.g.,
(2), the general mathematical properties of which are still being
discovered. Given rate coefficients, there is a paucity of scalable
algorithms, with guaranteed convergence properties, to solve large
nonlinear biochemical reaction equation systems for non-equili-
brium, stationary concentrations. Likewise for the problem of fit-
ting optimal rate coefficients given concentrations and a known
reaction equation system. Observe that (2) contains the matrix ||F R
twice and the matrix ||R F once.

That ( || ) = ( || ) =F R R F mrank rank is a pervasive property of bio-
chemical networks from a diverse set of organisms motivates the
development of algorithms to exploit this property and its con-
sequences, e.g., Artacho et al. (2015). This algorithmic develop-
ment proceeds with two complementary approaches: theory and
numerical experiments. Of particular importance in this regard is
that the set of models generated herein (with ( || ) = )R F mrank sa-
tisfy a common set of mathematical conditions, thereby reducing
the possibility for spurious numerical results, when numerically
testing hypothesised but unproven theorems concerning the
properties of biochemical networks in general. For instance it is
known that a full row rank ||R F is a necessary but insufficient
condition to preclude the existence of multiple positive steady
states for certain chemical reaction networks (Müller et al., 2014).
Testing the rank of ||R F can be done efficiently, but it is still an
open problem to design a tractable algorithm to test for the ne-
cessary and sufficient conditions to preclude the existence of
multiple positive steady states for genome-scale biochemical
networks (Müller et al., 2014). Numerical tests of a mathematical
conjecture, using biochemically realistic stoichiometric matrices,
can be an efficient way to find a counter-example or to provide
support for the plausibility of a conjecture. These tests help one
decide where to invest the mental effort required to attempt a
proof of a conjecture. It is important therefore that such numerical
tests be conducted with (a) a wide selection of stoichiometric
matrices, in case a conjecture holds only for certain network
topologies, and (b) a set of stoichiometric matrices that each sa-
tisfy a specified set of biochemically motivated mathematical
conditions, in case a conjecture holds only for stoichiometric
matrices corresponding to realistic biochemical networks.
5. Conclusions

Mathematical and computational modelling of biochemical
networks is often done in terms of either the concentrations of
molecular species or the fluxes of biochemical reactions. Mathe-
matical modelling from either perspective is equivalent when
concentrations and unidirectional fluxes are dual variables. As-
suming elementary kinetic rate laws for each reaction, we show
that this duality holds if and only if the matrix || ∈ ≥

×F R m n
0

2 has full
row rank, where ||F R is formed by horizontal concatenation of the
stoichiometric matrices ∈ ≥

×F m n
0 and ∈ ≥

×R m n
0 , respectively
corresponding to forward and reverse reaction directions, for m
reactants and n reactions. Numerical experiments with computa-
tional models derived from many genome-scale biochemical net-
works indicate that flux-concentration duality is a pervasive
property of biochemical networks. For an arbitrary biochemical
network, we provide a combinatorial characterisation that is suf-
ficient to ensure flux-concentration duality. That is, for every two
disjoint sets of molecular species, if there is at least one reaction
complex that involves species from only one of the two sets, then
duality holds. Our stoichiometric characterisation of the condi-
tions for duality between concentrations and unidirectional
fluxes has fundamental implications for mathematical and com-
putational modelling of biochemical networks. When flux-con-
centration duality holds, interpretation of biochemical network
function from the perspective of unidirectional fluxes is equivalent
to interpretation from the perspective of molecular species
concentrations.
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