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Abstract

Insertional mutagenesis using engineered transposons is a potent forward genetic 
screening technique used to identify cancer genes in mouse model systems. In 
the analysis of these screens, transposon insertion sites are typically identified 
by targeted DNA-sequencing and subsequently assigned to predicted target 
genes using heuristics. As such, these approaches provide no direct evidence 
that insertions actually affect their predicted targets or how transcripts of these 
genes are affected. To address this, we developed IM-Fusion, an approach that 
identifies insertion sites from gene-transposon fusions in standard single- and 
paired-end RNA-sequencing data. We demonstrate IM-Fusion on two separate 
transposon screens of 123 mammary tumors and 20 B-cell acute lymphoblastic 
leukemias, respectively. We show that IM-Fusion accurately identifies transposon 
insertions and their true target genes. Furthermore, by combining the identified 
insertion sites with expression quantification, we show that we can determine the 
effect of a transposon insertion on its target gene(s) and prioritize insertions that 
have a significant effect on expression. We expect that IM-Fusion will significantly 
enhance the accuracy of cancer gene discovery in forward genetic screens and 
provide initial insight into the biological effects of insertions on candidate cancer 
genes.
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Introduction

Transposon-based insertional mutagenesis (TIM) is a high-throughput method for 
cancer gene discovery in mice1. In TIM, discrete DNA elements called transposons 
can migrate throughout the genome by a cut-and-paste mechanism, in which they 
are excised from their original location in the genome and randomly reintegrated 
elsewhere2. Depending on the location and orientation of their reintegration, these 
integrations can activate oncogenes or inactivate tumor suppressors, thereby 
inducing tumor development and progression3. By identifying genomic loci that are 
recurrently affected by transposon insertions in multiple independent tumors, this 
approach can be used to identify candidate cancer genes1,3,4.

Transposon insertion sites are typically identified using targeted DNA-sequencing 
approaches, in which junction fragments containing transposon and flanking 
genomic sequences are selectively amplified and sequenced5. The genomic parts 
of these sequences are mapped to the reference genome to identify insertion sites 
and their genomic locations6. These insertions are then assigned to their putative 
target gene(s) using heuristics, typically picking genes in the direct vicinity of the 
insertion. Examples of such heuristics are nearest gene6, fixed window7 and rule-
based mapping approaches8.

A significant drawback of DNA-sequencing approaches is that they do not provide 
any direct evidence that an insertion actually affects a gene. In ambiguous 
cases with multiple genes in the vicinity of an insertion, heuristic approaches are 
frequently unable to identify the true target(s) of the insertion. This typically leads 
to an arbitrary selection of a single gene (nearest gene), potentially selecting the 
wrong gene or missing other targets (false negatives). Alternatively, heuristics may 
select many genes in the direct vicinity of the insertion (fixed window, rule-based 
mapping), resulting in the selection of many non-target genes (false positives).

Additionally, DNA-sequencing approaches provide limited insight into how the 
expression of a target gene is affected by a transposon insertion and which novel 
transcripts may result from the insertion. This has two main drawbacks. First, 
it prevents prioritizing insertions that have a strong effect on gene expression 
and are therefore likely of more importance than insertions without an effect on 
expression. This limits effective discrimination between driver and passenger 
insertions, resulting in long lists of candidate loci which are likely to include a 
substantial fraction of false positives that do not affect expression. Second, it 
limits our understanding of how gene expression or the expression of (novel) 
gene transcripts is affected by insertions. These insights may be key to ultimately 
understanding the biological effect of insertions and how they may contribute to 
tumorigenesis.

In previous work, Temiz et al. have demonstrated that insertions can be identified in 
paired-end RNA-sequencing data using their tool Fusion Finder9. In Fusion Finder, 
insertions are detected from discordant mate pair alignments, in which one mate 
aligns to a genomic sequence and the other to part of the transposon sequence. A 
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drawback of this approach is that it does not use information from chimeric reads 
overlapping the fusion boundary between the gene and the transposon (split 
reads), limiting the accuracy and sensitivity of insertion detection. Additionally, 
the dependency on mate pair information prevents its use for analyzing datasets 
based on single-end RNA-sequencing.

In this work, we present an approach called IM-Fusion, which uses fusion-aware 
RNA-seq alignment to identify transposon insertions from splicing events between 
endogenous genes and the transposon. Key advantages of this approach are that it 
identifies exactly which gene(s) are affected by a transposon insertion and how the 
transposon is incorporated into the resulting gene transcript. Additionally, by using 
both split reads and discordant mate pairs to identify insertions, IM-Fusion is more 
sensitive than existing approaches and can be used to analyze single-end RNA-
sequencing datasets. Finally, by combining insertions with exon-level expression 
data, we are able to accurately predict the consequences of integrations on gene 
transcripts.

 



131

Identifying transposon insertions and their effects from RNA-sequencing data

4

Materials and methods

IM-Fusion

Identifying insertion sites 
First, we create an augmented reference genome by adding the transposon as an 
extra sequence in the reference genome. Then, for each sample, we align sequence 
reads to the augmented reference genome using a fusion-aware RNA-seq aligner 
such as STAR10 or Tophat-Fusion11. By default, STAR is used for alignment, with 
the argument ‘–chimSegmentMin’ to ensure that chimeric read alignments are 
produced. Chimeric alignments from STAR are filtered to select alignments that 
represent fusions between the transposon and genomic sequences. Alignments 
that overlap with the fusion junction (represented by split-read alignments) are 
grouped by the position of their breakpoints, as these reads precisely identify the 
location of a fusion. Each such group is considered to represent a single gene-
transposon fusion. For paired-end sequencing data, alignments that do not overlap 
with the fusion boundary are grouped if their mate positions fall within a pre-defined 
distance, which depends on the insert size of the dataset. Where possible, these 
‘spanning’ read groups are assigned as additional support for fusions identified 
from split-reads. For cases where no such fusion is found, approximate locations 
for the corresponding fusions are predicted based on the bounds provided by the 
spanning reads.
The identified fusions are annotated to identify which gene(s) and which transposon 
feature(s) are involved in each fusion. Fusions that do not involve splice acceptor 
(SA) or splice donor (SD) features of the transposon or fusions that represent 
biologically implausible situations (such as fusions between transposon features 
and gene exons in opposite orientations) are considered artifacts and removed 
from the list of fusions. Optionally, fusions supported by less than a pre-defined 
number of reads can be removed to avoid fusions with low support. For this filtering, 
we provide two distinct measures: a support score and an FFPM (fusion fragments 
per million) score. The support score simply indicates the number of reads/mates 
that supports the corresponding fusion. The FFPM score is a scaled version of the 
support score, which is normalized for differences in sequencing depth between 
samples. This score is analogous to the FFPM score used by STAR-Fusion12. The 
list of filtered fusions is used to predict approximate locations of the corresponding 
insertion sites, based on the breakpoints of the fusions.

Transcript assembly
To identify cases in which insertions lead to the expression of non-canonical 
transcripts, IM-Fusion provides an optional step which uses StringTie13 to perform 
a reference-guided assembly of novel transcripts using the read alignment from 
STAR. The produced transcript annotation is used to assign any previously 
unannotated insertions to any novel transcripts that overlap with the insertion. 
If such a novel transcript overlaps with any known genes, the corresponding 
insertion is also assigned to these known genes, as the transcript likely represents 
an alternative transcript of these existing genes.
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Selecting commonly targeted genes 
Commonly targeted genes (CTGs) are selected by testing if genes are affected 
by insertions more frequently than would be expected by chance according to 
the Poisson distribution. The Poisson distribution expresses the probability of a 
given number of events occurring in a fixed interval of time or space, as long 
as the expected number of events in a fixed window is known and events occur 
independently. Specifically, 

where k is the number of events and λg is the expected number of events in a 
fixed window. Here, each insertion represents an independent event and the fixed 
window is the genomic region of the gene of interest, optionally expanded to include 
a window around the gene. The expected number of insertions is calculated based 
on the size of the gene window, the size of the transcriptome (the union of windows 
for all genes) and the total number of insertions within the transcriptome windows.

In detail, we first count the number of insertions that were identified for a given 
gene g (by the insertion identification step) and were located within a pre-defined 
window (by default 20 kb) around the gene. This count is denoted as Ng. Second, 
we calculate the expected number of insertions in gene g (λg) based on its window 
size and the total number of insertions within the transcriptome as follows: 

in which Wg corresponds to the size of the window around gene g, Wt the size 
of the transcriptome windows (the sum of windows for all genes in the genome, 
corrected for overlap between gene windows) and Nt represents the total number 
of insertions within the transcriptome windows. Using λg, we then calculate the 
probability of observing Ng or more insertions in gene g as: 

After testing all genes of interest (by default all genes with at least one insertion in 
the gene), calculated P-values are corrected for multiple testing using Bonferroni 
correction.

If the transposon employed in the screen is known to be biased toward integrating 
at specific nucleotide sequences, λg can be calculated differently to take this 
integration bias into account. In this case, instead of using the size of the gene 
windows, we use the number of occurrences of the nucleotide sequence with the 
gene window (Sg) and within the transcriptome windows (St) to calculate λg: 
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To account for a potential bias in integrations on the chromosome on which the 
transposon concatemer is located, insertions and genes on the donor chromosome 
can be excluded from the analysis. In this case, genes on the donor chromosome 
are also excluded when calculating the transcriptome size (Wt /St) and the number 
of insertions (Nt).

Differential expression analysis 
To test for differential expression, we first generate exon expression counts from 
the read alignments using featureCounts14. For this count summarization, we 
use a flattened version of the reference GTF file, which is similar to the flattened 
GTF files produced by DEXSeq15. This flattened GTF is required to ensure that 
overlapping exons from different transcripts of the same gene are only counted 
once by featureCounts.

Next, to test a given gene g for differential expression, we divide the exons of 
gene g into two groups: those before the transposon insertions in the gene ( ) 
and those after the insertions ( ). We assume that the expression counts of exons 
before the insertions ( ) are not directly affected by the presence of an insertion 
and therefore reflect differences in the overall expression of the gene between 
samples. Based on this assumption, we normalize the counts of each sample for 
differences in overall expression of the gene by dividing the counts by a sample-
specific normalization factor, which is calculated from the counts of the exons in  
using DESeq2’s median-of-ratios approach16. We then sum the normalized counts 
of exons in  per sample, to get a single (normalized) count of expression after the 
insertion site for each sample. Finally, to actually test for differential expression in 
the presence of an insertion in gene g, we use a two-tailed Mann–Whitney-U test 
to compare the distribution of these counts between samples with an insertion in 
gene g and samples without an insertion in the gene.

In some cases, the above test is not possible because some samples do not have 
at least one exon before and after their insertion sites. This mostly occurs when 
insertions are located upstream of the first exon of the gene. To handle these 
cases, we first try to remove these problematic samples and repeat the test using 
the remaining samples. For cases where this does not leave us with any samples 
to test, we provide an additional gene-level test, which compares the expression 
of the overall gene between samples with/without insertions after normalizing for 
overall differences in sequencing depth.

By default, we do not use multiple testing correction for the differential expression 
test, as we primarily select CTGs using the Poisson-based test and use the 
differential expression test as an extra test to determine whether to keep the CTG. 
Additionally, not all CTGs may be subjected to the same test, as some genes may 
be tested using the gene-level test if the exon-level version is not applicable.
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Single-sample differential expression 
To test for differential expression in a single sample (as opposed to the group-wise 
test described above), we provide an alternative approach that uses the same 
normalization procedure, but uses a negative binomial distribution to compare 
the expression of the sample of interest to samples without an insertion. In this 
approach, a negative binomial is fitted using the after insertion counts of samples 
without an insertion in the gene. The after count of the sample of interest is then 
compared to this distribution using a two-tailed test to determine if the gene is 
differentially expressed.
Implementation
For convenience and reusability, we implemented the different steps of IM-Fusion 
in a Python package called imfusion, which is freely available on GitHub (https://
github.com/nki-ccb/imfusion). Jupyter notebooks containing the code and results 
of the various computational analyses are also available on GitHub (https://github.
com/jrderuiter/imfusion-analyses).

The Python package provides commands for each main step of IM-Fusion, including 
the construction of the custom reference genome, identification of insertions from 
RNA-seq reads, selection of CTGs and analysis of differential expression. The 
current implementation supports the use of STAR or Tophat-Fusion to detect 
fusions, although support for additional fusion-aware aligners may be added in 
the future. For full functionality, working installations of STAR/Tophat2, StringTie 
and featureCounts are required; as STAR or Tophat2 (which implements Tophat-
Fusion) are used to align reads and detect fusions, StringTie is used to detect 
novel transcripts and featureCounts is used to generate the expression counts. 
Optionally, STAR-Fusion12 can also be used to detect endogenous gene fusions 
as part of the STAR insertion detection pipeline.

Datasets

ILC dataset (RNA-seq) 
Single-end RNA-sequencing data from 123 tumors were obtained from a dataset 
of a Sleeping Beauty (SB) transposon screen in a mouse model of invasive lobular 
breast carcinoma (ILC)17. The RNA-seq data were downloaded from ENA in fastq 
format (accession number PRJEB14134) and analyzed using IM-Fusion (version 
0.3.1) to detect SB insertion sites in each sample, as well as subsequently identify 
CTGs and their effects. For this analysis, we created an augmented reference 
genome using the mm10 version of the mouse genome and the T2/Onc transposon 
sequence18. STAR (version 2.5.2b) was used to perform the alignment, StringTie 
(version 1.3.0) was used for transcript assembly and featureCounts (version 1.5.0-
post3) was used to generate expression counts. Reference genome features were 
downloaded from Ensembl 76.

ILC dataset (ShearSplink) 
DNA-sequencing data prepared using the ShearSplink protocol19 for the same 
tumors as the ILC RNA-seq dataset were downloaded from Figshare (DOI: 
10.6084/m9.figshare.4765111) and analyzed using the ShearSplink pipeline in 
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PyIM (version 0.2.0, https://github.com/jrderuiter/pyim) to identify SB insertion 
sites. In essence, this pipeline first extracts genomic DNA from reads by removing 
the transposon and linker sequences. The genomic sequences are then aligned to 
the reference genome using Bowtie2 (version 2.2.8)20, and the resulting alignments 
are grouped by sample and position to identify the location of insertion sites. 
Finally, identified insertions are assigned to their predicted target genes using the 
windows outlined in KC-RBM8. To reduce the number of identified target genes for 
each insertion, we selected a single target gene for each insertion by picking the 
closest gene identified by KC-RBM. In cases where this was not possible, e.g. due 
to overlapping genes, we retained multiple target genes.

B-ALL dataset 
Insertion data and paired-end RNA-seq data from 20 B-cell acute lymphoblastic 
leukemias (B-ALLs) were obtained from a previously published dataset of a 
SB screen performed in a mouse model of B-ALL21. The RNA-seq data were 
downloaded from ENA in fastq format (study ID: ERP005291, array expression 
ID: E-ERAD-264). The insertion data were obtained from the Supplementary 
Materials of the publication or through personal communication. Control samples 
were omitted from the performed analyses.

Methods—ILC dataset

Gene-transposon fusion validation in RNA 
Tumor RNA was extracted as previously described22 and 300 ng was converted 
to complementary DNA (cDNA) with a Moloney murine leukemia virus reverse 
transcriptase using random hexamer primers according to manufacturer’s protocol 
(Tetro cDNA synthesis kit, Bioline). Gene-transposon fusions were detected by 
standard polymerase chain reaction (PCR) with an annealing temperature of 58°C. 
The following primer sequences were used: 

•	 SA reverse: 5΄-TTCCCGCGAATCCATCTTTC-3΄
•	 En2SA reverse: 5΄-GTCGACTGCAGAATTCGATGA-3΄
•	 SD forward: 5΄-GCCCATCAAGCTTGCTACTA-3΄
•	 Myh9 forward: 5΄-CTGTGTGGTCATCAACCCTTAT-3΄
•	 Trp53bp2 reverse: 5΄-ATCGCTCTGGTTTCGATAAGG-3΄
•	 Ctnnd1 forward 1: 5΄-GCTACATGCCTTGACAGATGA-3΄
•	 Ctnnd1 forward 2: 5΄-GAGAGGAGAAAGGCAGGAAAG-3΄
•	 Hprt forward: 5΄-CTGGTGAAAAGGACCTCTCG-3΄
•	 Hprt reverse: 5΄-TGAAGTACTCATTATAGTCAAGGGCA-3΄

Effects of insertions 
To study the effects of individual SB insertions on expression, we visualized single 
insertions together with the expression of each of their targets in the affected 
sample and tested for differential expression over the insertion site in the sample. 
The visualization was generated using the Python package geneviz, which is freely 
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available on GitHub (https://github.com/jrderuiter/geneviz). Gene annotations for 
the plot were obtained from Ensembl 76. Expression profiles were generated from 
the RNA-seq alignment of the sample using pysam23, by counting the number of 
reads overlapping each nucleotide position in the plotted range. Junction strengths 
were derived from the junction files (SJ.out.tab) generated by STAR during the 
alignment. To test for differential expression, we used the single-sample exon-level 
test implemented by IM-Fusion.

Effects on CTGs 
To identify biases in SA/SD insertions for the various CTGs, we counted the number 
of times each transposon feature (SD, SA, En2SA) was involved in the insertions 
affecting each CTG. The results were visualized to show the different distributions 
across CTGs. To test for differential expression, we applied IM-Fusions group-wise 
DE test for each CTG.

Insertion comparison 
To compare the overlap in insertions between IM-Fusion and ShearSplink, we 
matched two insertions between IM-Fusion and ShearSplink under the following 
conditions: both insertions were identified in the same sample, had the same 
predicted target gene and their relative location and orientation was compatible. 
The latter restriction was used to ensure that a ShearSplink insertion was in the 
correct location to generate the fusion observed by IM-Fusion in the RNA-seq 
data. Insertions matched between the two approaches were marked as ‘Shared’, 
unmatched insertions were designated ‘IM-Fusion only’ or ‘ShearSplink only’ 
depending on the approach that identified them.
To identify features distinguishing shared insertions from insertions that were unique 
to either approach, we compared the set of shared insertions to the IM-Fusion- and 
ShearSplink-specific insertions. For both comparisons (Shared/ShearSplink and 
Shared/IM-Fusion), we first defined a set of features that could potentially affect 
insertion detection by either method. We then trained a logistic regression model 
on these features to predict whether an insertion was matched or unique to the 
corresponding approach. This model was used to determine the significance of 
each feature. Finally, we visualized the distributions of significant features for both 
the matched/unmatched insertions using kernel density estimation (KDE) plots for 
interpretation.

Candidate gene comparison 
To compare the candidate genes identified by ShearSplink and IM-Fusion, we first 
identified significant common insertion sites (CISs) and differentially expressed 
CTGs (DE CTGs) separately using the respective approaches. We then visualized 
the resulting gene rankings, linking genes that were identified as candidate genes 
by both approaches. Candidate genes were colored to distinguish whether they 
were (i) shared between both approaches (black), (ii) were identified to have 
insertions but were not selected as a CTG/CIS by the other approach (blue), (iii) 
were selected as a CTG/CIS but were not differential expressed (green), (iv) were 
not selected as a CTG/CIS and were not differentially expressed (purple) and (v) 
were omitted entirely by the other approach (red).
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ShearSplink insertion validation in DNA 
Tumor DNA was isolated using a phenol–chloroform extraction. Transposon 
insertions were detected in 500 ng DNA by standard PCR with an annealing 
temperature of 58°C. The following primer sequences were used: 

•	 En2SA forward: 5΄-GCTTGTGGAAGGCTACTCGAA-3΄
•	 Nf1 11KOU029-R5.INS_12 reverse: 5΄-CTCACGTGAAGTGGGAAAGACA-3΄
•	 Nf1 12SKA029-R3.INS_15 reverse: 5΄-GGCGCACACCTTTAATCCTAAC-3΄
•	 Nf1 12SKA033-R3.INS_10 reverse: 5΄-TAGCTCCCTGTGTGTTCCTTTG-3΄
•	 Nf1 12SKA068-L3.INS_15 reverse: 5΄-AAGGGTGAAGCAGGAGGATTAC-3΄
•	 Nf1 12SKA092-L2.INS_10 reverse: 5΄-ACGGAGAAGGAGAGAGGGAAA-3΄
•	 Nf1 12SKA104-R3.INS_1 reverse: 5΄-CCAACATCCCTGTTGTGTGTATG-3΄
•	 Hprt forward: 5΄-CTGGTGAAAAGGACCTCTCG-3΄
•	 Hprt reverse: 5΄-TGAAGTACTCATTATAGTCAAGGGCA-3΄

Endogenous fusion identification 
Endogenous gene fusions were identified by applying STAR-Fusion (version 
0.5.4)12 to the raw RNA-seq data (fastq files) using recommended settings. The 
resulting list of fusions were combined across samples and filtered for fusions with 
breakpoints at known splice junctions, as these are most likely to reflect proper 
gene fusions. The filtered fusions were prioritized by grouping fusions on the 
involved genes and ranking by the recurrence of these gene pairs across samples. 
The fusions involving Fgfr2 were validated using the same approach as for the 
gene-transposon fusions, with the following additional primers: 

•	 Fgfr2 forward: 5΄-TGGCCAGGGATATCAACAAC-3΄
•	 Kif16b reverse: 5΄-CTTTCCTGAGGGCTAGAGTTTG-3΄
•	 Myh9 reverse: 5΄-GATAGCGCCTTTGTCTCCTT-3΄
•	 Tbc1d1 reverse: 5΄-CCAGGCTGTGAGAAGGATTT-3΄
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Methods—B-ALL dataset

Candidate gene comparison 
To compare IM-Fusion with the DNA-seq results from the original publication, we 
applied IM-Fusion to the paired-end RNA-seq data and compared the identified 
DE CTGs with the published candidate genes (DE CISs). To avoid selecting CTGs 
with very low support in this relatively deeply sequenced dataset (as these are 
more likely to represent false positives), we filtered insertions with fewer than 10 
supporting reads or mates from the CTG analysis.

Effect of sequencing depth 
The B-ALL samples were downsampled to depths of 15, 30, 50 and 70 million 
reads using Seqtk (https://github.com/lh3/seqtk). IM-Fusion was applied to each of 
these downsampled datasets to identify DE CTGs, using the same settings as were 
used for the full dataset. The number of insertions and DE CTGs were compared 
between the different depths, as well as the overlap in DE CTGs between depths.

Single- versus paired-end comparison 
A single-end version of the dataset was simulated by supplying only the first pair 
as input to IM-Fusion. The results from the paired-end and single-end analyses 
were compared by juxtaposing DE CTGs and insertions in these genes between 
the two analyses.

Fusion Finder comparison 
We created an augmented version of the mm10 reference genome containing the 
T2/Onc transposon sequence in the same manner as described by Temiz et al.9. 
This reference was modified to mask the En2 and Foxf2 gene loci, which contain 
sequences homologous to parts of the transposon sequence. Tophat2 (version 
2.1.0)24 was used to align reads to this augmented reference, after which the Fusion 
Finder script (version 3.1) was used to identify insertions in each sample. The 
results were compared with IM-Fusions DE CTGs and published candidate genes 
by analyzing the overlap between the identified insertions and the CTGs/CISs. 
To determine why certain CTGs/candidates were not identified by Fusion Finder, 
we visualized the distribution of the used transposon features and compared 
the alignments of reads supporting insertions unique to IM-Fusion between the 
Tophat2 and STAR alignments using pysam23.

Endogenous fusion identification 
Endogenous gene fusions were identified in the same manner as for the ILC 
dataset.
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Results

Identifying insertion sites from gene-transposon fusions
Transposon insertions can affect the expression of nearby genes, potentially 
leading to the activation of oncogenes or the inactivation of tumor suppressors. 
For example, consider the T2/Onc transposon (Figure 1a) that is used in this 
work. When integrated in the vicinity of a gene, this transposon can induce (over)
expression of nearby genes by initiating transcription from its promoter sequence 
(MSCV) and then splicing into the gene using the SD sequence (Figure 1b). 
Alternatively, the transposon can truncate transcripts using either of its SA sites 
(SA/En2SA) and their corresponding polyA (pA) sites (Figure 1c). Depending on 
the gene and the location of the transposon, these truncations can inactivate the 
gene by resulting in an unstable transcript or inactive protein, or activate the gene 
by removing inhibitory protein domains.

In both of these cases, part of the transposon sequence is incorporated into 
the resulting mRNA transcript(s) via splicing between the affected gene and the 
transposon. As such, these transcripts effectively represent fusions between the 

(c)   Transcript truncation (tumor suppressors and oncogenes) 

(b)   Activation of expression (oncogenes)

(a)   Sleeping Beauty transposon (T2/Onc)

Exon 1 Exon 2Promotor

Exon 1 Exon 2Promotor

Exon 1Promotor Exon 2

Exon 1Promotor Exon 2

SA SD En2-SAMSCV pA pA 

SA SD En2-SAMSCV pA pA 

SA SD En2-SAMSCV pA pA 

SASDEn2-SA MSCVpA pA 

AAAA

SA SD En2-SAMSCV pA pA 

AAAA

mRNA

mRNA

mRNA

mRNA

Figure 1

Figure 1. Overview of the T2/Onc transposon and its effects on gene expression. 
(a) The transposon sequence contains two splice acceptor sequences (SA and En2SA) with 
corresponding polyA sequences (pA), and a single promoter sequence (MSCV) combined with a splice 
donor (SD) sequence. (b) Sense insertions of the transposon either within or upstream of a gene may 
drive overexpression of the downstream gene sequence by initiating expression from the transposons 
promoter and SD sequence. (c) Insertions within genes (in either orientation) may truncate gene 
transcripts by splicing to either of the SA sites (SA or En2SA). The resulting truncations may inactive 
tumor suppressor genes, but can also activate oncogenes by removing inhibitory domains from the 
resulting protein.
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transposon sequence and the affected gene. We therefore hypothesized that it 
should be possible to detect transposon insertion sites from RNA-sequencing by 
identifying gene-transposon fusions using existing gene fusion detection tools. By 
further analyzing the breakpoints of each fusion, we could determine exactly which 
gene and which feature of the transposon are involved in the fusion, and use this 
information to predict the location of the corresponding insertion site.

IM-Fusion
In this work, we developed a tool called IM-Fusion, that uses a three-step approach 
to (i) identify insertions from gene-transposon fusions in RNA-sequencing data, 
(ii) select genes that are more frequently affected by insertions than would be 
expected by chance and (iii) test if the expression of these genes is significantly 
changed by their insertions (Figure 2a). A brief description of each of the steps is 
provided below, more details are available in the ‘Materials and Methods’ section.

Identifying insertion sites 
IM-Fusion identifies transposon insertion sites from gene-transposon fusions in 
the RNA-seq data. To identify these fusions, IM-Fusion first creates an augmented 
version of the host reference genome by adding the sequence of the transposon 
as an extra sequence to the original reference sequence. Then, for each sample, 
IM-Fusion uses a fusion-aware RNA-seq aligner to align RNA-seq reads to the 
augmented reference and identify gene fusions. By default, STAR10 is used for 
this purpose, although Tophat-Fusion11 is also supported. The identified fusions 
are filtered to only select fusions between genes and the transposon sequence. 
These gene-transposon fusions are then analyzed to identify the involved genes 
and transposon features, and to infer the approximate locations of the insertions 
(Figure 2b). Optionally, the RNA-seq alignment can be used to perform a reference-
guided transcript assembly, which allows IM-Fusion to detect insertions that result 
in the expression of novel (unannotated) transcripts.

An important advantage of IM-Fusion over DNA-sequencing based approaches is 
that, instead of focusing on deriving the exact location of insertion sites, it focuses 
on determining which genes are affected by insertions. This gene-centric approach 
allows us to select only those insertions that affect expressed genes and are 
therefore most likely to have an actual biological effect. By doing so, IM-Fusion 
provides an important filter that strongly enriches for biologically relevant insertions 
and avoids selecting many extraneous insertions that are unlikely to affect gene 
expression. This greatly increases the specificity of our results, providing more 
confidence in the identified hits.

Selecting commonly targeted genes 
To identify genes that are commonly targeted by insertions, we use the Poisson 
distribution to test whether a given gene has more insertions than may be expected 
by chance (see ‘Materials and Methods’ section). To correct for cases in which 
a single insertion is detected multiple times in the same gene, either due to its 
involvement in multiple gene isoforms or due to local hopping within the gene, 
insertions are by default collapsed into a single insertion per gene per sample 
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Figure 2. Overview of IM-Fusion. 
(a) The IM-Fusion pipeline. Samples are initially processed individually to identify insertions and 
generate gene and exon expression counts for each sample separately. The per-sample results are 
then combined to identify genes that are recurrently affected across samples. For these genes, we then 
combine the expression and insertion data to test for differential expression over the insertion site. The 
results of this analysis are used to determine if insertions have a significant effect on the expression of 
their target genes and exactly how the insertions affect the resulting gene transcript. (b) Transposons 
that affect gene expression are included in gene transcripts and are therefore detectable as fusion 
transcripts between genes and the transposon. These fusions are detected by reads or mate-pairs 
that bridge the fusion site. The breakpoints of the identified gene-transposon fusions are analyzed to 
identify the involved gene(s) and predict an approximate location for the corresponding insertion(s). (c) 
Insertion and expression data are combined to test if an insertion significantly affects the expression 
of exons downstream of the insertion site. Expression counts are calculated both before/after the 
insertion site for a sample with an insertion and a set of background samples without an insertion. The 
‘before’ count is then used to normalize the sample counts, after which the normalized ‘after’ counts are 
compared to the ‘before’ counts to test for differential expression. Samples with a truncating insertion 
are expected to show a lower level of expression after the insertion relative to the background, whilst 
samples with an activating insertion are expected to show increased expression after the insertion.
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(taking the average location of the insertions) before testing for enrichment. This 
ensures that selected CTGs indeed represent recurrent insertions across multiple 
samples, and not just multiple insertions within a single or few samples.

Testing for significant effects on expression 
To establish whether the expression of a CTG is significantly altered by its 
insertions, we test for differential expression over the insertion sites in the gene. 
The main goal of this analysis is to determine if we see a significant increase 
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in expression after the insertion site, indicating that (partial) gene transcripts are 
(over)expressed by the insertions, or observe a significant decrease in expression, 
indicating that gene transcript(s) are truncated by the insertions.

To perform the test, we first normalize for differences in overall expression of the 
gene across all samples based on the expression of exons before the insertion 
site, which we assume are not directly affected by the presence of an insertion. 
After this normalization, we compare the normalized expression levels after 
the insertion site between samples with and without an insertion in the gene to 
test for differential expression (Figure 2c). By default the test performs a group-
wise comparison using the Mann–Whitney U test, in which the expression of 
samples with an insertion is compared to samples without insertions in the gene. 
Alternatively, we also provide a single-sample test based on the negative binomial 
distribution, which determines whether the gene is differentially expressed in a 
specific sample.

For cases without exons before the insertion site(s), which can occur if insertions 
are located upstream of the gene, an additional gene-level test is provided. This 
test compares the expression of the overall gene between samples with/without 
insertions, after normalizing for overall differences in sequencing depth.

Applying IM-Fusion to a mouse model of breast cancer
We tested our approach by using IM-Fusion to identify SB transposon insertions 
in 123 tumors from a mouse model of invasive lobular breast cancer (ILC)17. On 
average, 0.1% of the reads in each sample were chimeric reads supporting a 
potential fusion, of which 0.42% represented a putative gene-transposon fusion 
(Supplementary Table S1). From these fusions, IM-Fusion identified a total of 2057 
transposon insertion sites across all tumors, with a median of 12 insertions per 
tumor (Supplementary Table S2). A total of 1043 genes were affected by at least 
one insertion, 14 of which were selected as differentially expressed (DE) CTGs 
(Supplementary Table S3). To confirm the existence of the identified insertions, 
a subset of insertions was validated using PCRs targeting the predicted gene-
transposon fusion transcripts (Supplementary Figure S1).

Effects of individual insertions 
To evaluate the effect of individual insertions, we visualized single insertions 
together with the expression of their target genes in the corresponding sample. An 
example is shown in Figure 3a, which shows an antisense insertion in the Trps1 
gene. This insertion was identified from a fusion between the transposons En2SA 
site and the fourth exon of the gene, indicating that the insertion truncated the 
gene after this exon. This hypothesis was supported by the expression profile of 
the gene in this sample, which showed a marked reduction in expression after the 
insertion site. Using the single sample DE test, we confirmed that this reduction 
in expression was indeed significant compared to background samples without an 
insertion in the gene (Figure 3b).
A second example (Figure 3c) shows a sense insertion in the Trp53bp2 gene, which 
was identified from two distinct gene-transposon fusions. The first fusion, between 
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Figure 3. Examples of identified insertions, CTGs and their effect on gene expression. 
(a) An example of an antisense insertion in Trps1 that results in truncation of the gene transcript. 
The insertion (red arrow) is shown above the main transcript of the gene, together with expression 
levels of the gene. The expression of the exons is shown along the top in blue, which reflects the 
number of reads covering the various exons. Similarly, the black arches below indicate the strength 
of the splicing junctions between the different exons, with the height of the arch indicating the number 
of reads supporting the splice junction. Taken together, these expression profiles show a strong 
decrease in expression after the insertion site, supporting the hypothesized truncation. (b) Quantified 
expression levels before/after the insertion site for the Trps1 insertion shown in (A). Compared to the 
samples without an insertion (gray), the sample with this insertion (blue) shows a significant decrease 
in expression after the insertion. (c and d) An example of a sense insertion in Trp53bp2 (blue arrow). 
This insertion results in both truncation of the gene and overexpression of a partial transcript. This 
overexpression is clearly reflected by the increase in expression after the insertion site. (e) Frequencies 
of the transposon features involved in the insertions of the top six identified CTGs. A bias toward SA/
En2SA favors truncation of the gene, whereas a bias toward SD favors overexpression. (f) Differential 
expression across the insertion sites for each of the CTGs. An increase in the presence of an insertion 
indicates overexpression, a decrease indicates truncation.

the SA site of the transposon and exon 12 of the gene, indicated that the insertion 
truncated gene transcription after this exon. However, the second fusion, between 
the SD site and exon 13, indicated that the insertion also drove overexpression of 
a partial gene transcript downstream of the insertion. Taken together, this showed 
that the insertion simultaneously resulted in both the truncation of the original gene 
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transcript and overexpression of a C-terminal transcript containing exons 11–18. 
This overexpression was clearly reflected in the expression levels of the gene, 
which were significantly increased after the insertion site (Figure 3d). Finally, from 
the shown splice junctions we saw that the full-length transcript of Trp53bp2 (and/
or the truncated N-terminal transcript) was still expressed in this sample, though at 
lower levels than the partial transcript.
General effects of insertions on CTGs 
To determine how each identified CTG was affected by its insertions, we first 
analyzed the insertions in each CTG to identify if the gene was biased to SD or SA 
insertions. In this analysis, a bias to SD insertions would indicate the gene is mainly 
overexpressed by insertions in the gene (Figure 1b). Conversely, a bias toward 
the SA/En2SA sites would indicate the gene is mainly truncated by its insertions 
(Figure 1c). Second, we used IM-Fusion to test for differential expression across 
the insertion site to determine if the insertions affect the expression of the gene and 
whether the observed effect points to truncation or overexpression of the gene. For 
clarity we limited our analysis here to the top six candidate genes; similar results 
for the other candidates are available in Supplementary Figure S2.

This analysis showed that most top CTGs (Ppp1r12a, Trps1, Myh9, Tgfbr2 and 
Runx1) were clearly biased toward SA/En2SA insertions (Figure 3e), indicating 
that transcripts of these genes were being truncated by the transposon insertions. 
This hypothesis was further supported by the DE tests (Figure 3f), which confirmed 
that each of these genes showed a significant decrease in expression after the 
insertion site, indicating that genes are indeed truncated. Conversely, for one top 
CTG, Trp53bp2, we saw a clear bias toward SD insertions, indicating that this gene 
is overexpressed by its insertions. This was again supported by the DE analysis, 
which determined that Trp53bp2 showed a significant increase in expression after 
its insertion sites.

Comparison with targeted DNA-sequencing
To assess if IM-Fusion identifies similar insertions to targeted DNA-sequencing 
approaches, we compared our results to those obtained by targeted DNA-
sequencing of insertions using the ShearSplink protocol19. For this comparison, 
we matched insertions between the two approaches (IM-Fusion and ShearSplink) 
if they identified the same target gene and had compatible genomic locations and 
orientations. Note that, using this approach, an insertion is counted multiple times 
if it is assigned to multiple genes, thereby increasing the apparent total number of 
insertions.

Matched insertions were considered to be shared by both approaches, whereas 
unmatched insertions were categorized as ‘ShearSplink-specific’ or ‘IM-Fusion-
specific’ depending on their source. This analysis showed that the majority of the 
insertions identified by IM-Fusion (578/818) were shared with ShearSplink (Figure 
4a). However, a substantial number of insertions were unique to either IM-Fusion 
(240) or ShearSplink (2838), indicating a considerable disparity between the two 
approaches.
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Figure 4. Comparison of insertions identified by IM-Fusion and ShearSplink. 
(a) Venn diagram of the insertions identified by ShearSplink (red) and IM-Fusion (blue). Many IM-
Fusion insertions are shared with ShearSplink (green), but a considerable number of insertions are 
unique to either approach. (b and c) Distribution of features reflecting biases of RNA-sequencing that 
affect the detection of insertions by IM-Fusion. ShearSplink-specific insertions (red) typically have low 
expression compared to shared insertions (green) and are therefore more difficult to detect by RNA-
seq. Similarly, insertions toward the start of the gene are more frequently missed by IM-Fusion due to 
the 3΄ bias of the polyA tail selection used in the RNA-sequencing. (d and e) Distributions of support 
of DNA-seq insertions and support of RNA-seq insertions. Insertions with low DNA-seq support are 
more often missed by IM-Fusion, whilst insertions with low IM-Fusion support are often not detected by 
ShearSplink. These differences likely reflect heterogeneity of subclonal insertions present in the tumor 
tissue samples used for DNA-seq and RNA-seq, respectively. (f) Comparison of the frequency-based 
ranking of candidate genes identified by IM-Fusion and ShearSplink. Gray lines indicate the relative 
rankings of genes that were identified by both approaches. Genes missed by the other approach are 
marked red. Genes that were identified to have insertions but not selected as CISs/CTGs by the other 
approach are colored blue or purple, depending on their differential expression status. Genes that were 
identified as CISs/CTGs but were not differentially expressed are marked green.
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ShearSplink-specific insertions 
To investigate why certain insertions were not identified by IM-Fusion, we compared 
the ShearSplink-specific insertions to the insertions identified by both approaches. 
The goal of this comparison was to identify features that distinguished the two sets 
of insertions (see ‘Materials and Methods’ section) and might therefore provide 
insight into the underlying reasons for the observed differences. Of the considered 
features, the following were determined to be significantly predictive: the expression 
level of the predicted target gene, the relative location of the insertion within its 
target, the distance of an insertion to its target and the support of the ShearSplink 
insertion.
The first two of these features point toward biases in the sequencing coverage 
of the RNA-seq data that affect the detection of insertions. The first feature, the 
expression level of the target gene, indicates that IM-Fusion had trouble identifying 
insertions in genes with no or low expression (Figure 4b). The lack of insertions 
in non-expressed genes was expected, as these insertions are not represented in 
the RNA-seq data. As these insertions are unlikely to have any biological effect, 
their omission is expected to increase the specificity of IM-Fusion with regard to 
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biologically relevant insertions. The lack of insertions in genes with low expression 
reflects an inherent bias of RNA-seq toward highly expressed genes, which results 
in less sequencing coverage for genes with low expression.

Similarly, the second feature, the relative position of an insertion within the gene, 
showed that IM-Fusion misses more insertions at the 5΄ end of genes (Figure 4c). 
This is due to a well documented 3΄ bias of the polyA-tail selection used to enrich 
for mRNAs in RNA-sequencing, which results in decreasing coverage toward the 
5΄ end of gene transcripts. Together, these two biases limit the ability of RNA-seq-
based approaches such as IM-Fusion to detect insertions in lowly expressed genes, 
particularly at their 5΄ end. This effect can be mitigated by deeper sequencing and 
by using a different approach to enrich for mRNAs in the preparation for RNA-
sequencing (such as rRNA depletion).

Another significant feature, the support of an insertion (Figure 4d), showed that 
IM-Fusion mainly missed ShearSplink insertions with a low support score. This 
bias may be due to one or more of the following reasons. First, our RNA-seq data 
may not be deep enough to detect very subclonal insertions that are only present 
in a very small fraction of the tumor cells. Second, the observed differences may 
reflect intratumoral heterogeneity, as we did not use the same tumor fragments for 
RNA and DNA extraction and sequencing, but instead used two separate pieces of 
the same tumor. For clonal insertions this is not an issue, but subclonal insertions 
might be present in only one of the tumor pieces, therefore leading to some of the 
observed differences between IM-Fusion and ShearSplink.

Finally, we found that the heuristic assignment of target genes by ShearSplink 
also introduced biases. Even after restricting the assignment of target genes to the 
closest gene, ShearSplink was unable to identify a unique target gene for some 
insertions. For example, insertions within the Arfip1/Fbxw7 locus were frequently 
assigned by ShearSplink to both Fbxw7 and Arfip1. Closer inspection of these 
insertions indicated that these insertions are in fact closely clustered in Fbxw7 and 
are therefore unlikely to affect the Arfip1 transcript that overlaps with Fbxw7. This 
hypothesis was supported by the IM-Fusion results, which only identified insertions 
in Fbxw7, indicating that Arfip1 is a false positive of the heuristic assignment by 
ShearSplink. Similarly, the distance to target gene feature indicated that insertions 
further away from their target genes are rarely matched by IM-Fusion. These 
hits are also likely to be artifacts of the heuristic assignment of target genes by 
Shearsplink.

IM-Fusion-specific insertions 
To determine why some insertions were only identified by IM-Fusion, we also 
compared the set of insertions unique to IM-Fusion to the shared insertions. This 
comparison identified the support score of an insertion as the most predictive 
feature of IM-Fusion-specific insertions (Figure 4e). This feature, which reflects the 
number of reads supporting the corresponding gene-transposon fusion, showed 
that ShearSplink mainly misses insertions with a low IM-Fusion support score. As 
these insertions are only supported by a few reads in the RNA-seq data, they are 
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likely either false positives of IM-Fusion or subclonal insertions that are present in 
a small fraction of tumor cells or in specific parts of the tumor. In the latter case, 
the missed insertions are again likely attributable to heterogeneity between the 
DNA- and RNA-seq samples, as previously explained for the ShearSplink support 
feature.

Comparison of identified candidate genes
To assess if IM-Fusion identified different candidate genes than ShearSplink, 
we compared the DE CTGs from IM-Fusion to the genes associated with CISs 
from the ShearSplink analysis. This comparison showed that IM-Fusion and 
ShearSplink identified 14 and 32 candidate genes respectively, of which 12 
were shared between both approaches. From a comparison of the rankings of 
the candidate genes (Figure 4f), we saw the strongest concordance between the 
most frequently recurring candidate genes, with more discrepancy among the less 
frequent candidates.

To determine why some ShearSplink candidate genes were not identified by IM-
Fusion, we examined them in more detail. Five genes (Arfip1, Gm26836, Gm14798, 
Ppp2r2a and Bach2) were not identified at all by IM-Fusion, suggesting that these 
are either false positives of the ShearSplink analysis, as we have already argued 
for Arfip1, or are weak/subclonal insertions that were not picked up by IM-Fusion. 
For Nf1, IM-Fusion did detect several weak insertions, which were only supported 
by single reads and were therefore filtered from the CTG analysis. These 
insertions, together with additional validation of several ShearSplink insertions 
(Supplementary Figure S3), demonstrated that Nf1 was not a false positive of the 
ShearSplink analysis. However, closer inspection showed that Nf1 insertions were 
generally supported by few reads in the ShearSplink data, thereby explaining their 
omission by IM-Fusion.

Several other genes (Setd5, Gab1, Ppp1r12b, e.g.) were identified to have 
insertions by IM-Fusion, but were not detected in enough samples to be selected 
as a CTG. Further analysis showed that insertions in missing samples were 
supported by few ShearSplink reads, indicating that these insertions are missed 
due to their low clonality. This also explains why several of these genes (Ppp1r12b, 
Nfix, Rmb47, etc.) are not differentially expressed in the presence of an insertion, 
as we are less likely to pick up expression differences if the signal is weak due to 
subclonality.

A few candidate genes, including Fgfr2—the top hit from the ShearSplink analysis, 
were not selected as DE CTGs due to a lack of differential expression. Closer 
analysis showed that Fgfr2 is affected by a mix of sense and antisense insertions. 
Whilst the antisense insertions merely truncate the gene, the sense insertions 
both truncate the gene and induce the overexpression of a partial C-terminal 
transcript (Supplementary Figure S4). Together, this results in a mix of samples 
with increased and decreased expression, thereby representing a more complex 
pattern of expression changes than the overall changes that the DE test was 
designed to detect. This indicates that, although the DE test is useful for prioritizing 
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candidate genes, frequently recurring CTGs that are not differentially expressed 
should be investigated in more detail to avoid filtering out more complex cases of 
differential expression. This can, for example, be done by grouping samples based 
on the orientation of their insertions (as done here) or on the involved SD/SA sites 
if these are expected to have different effects on expression.

Finally, besides the known candidates, IM-Fusion identified two novel candidates 
that were not identified by ShearSplink. Interestingly, both of these genes were 
identified in similar numbers of samples (two-three samples) by both ShearSplink 
and IM-Fusion, indicating that IM-Fusion may have more power to identify rare 
CTGs.

Application of IM-Fusion to paired-end RNA-sequencing data from B-ALL tumors
To test IM-Fusion on paired-end RNA-sequencing data, we used an additional 
dataset of SB-induced B-cell acute lymphoblastic leukemias (B-ALL) for which 
both targeted DNA-sequencing and relatively deeply sequenced paired-end RNA-
sequencing (70–90 million reads) was available21. In the original analysis of this 
dataset, Van der Weyden et al. first identified CISs from targeted DNA-sequencing 
data, and then selected predicted target genes that showed significant differential 
expression in the presence of an insertion (DE CISs). For our comparison, we 
applied IM-Fusion using only the RNA-sequencing data and compared the 
identified insertions and CTGs to the results of the DNA-seq analysis. In light of 
the higher sequencing depth of the B-ALL dataset (relative to the ILC dataset), we 
removed insertions with fewer than 10 supporting reads in the CTG analysis to 
avoid selecting genes that are recurrently detected but have low support, as these 
are likely to represent false positives (Supplementary Figure S5).

CTG comparison 
On average, 0.72% of the mate pairs in each sample reflected chimeric alignments, 
of which 0.45% supported potential gene-transposon fusions (Supplementary 
Table S4). From these fusions (Supplementary Table S5), IM-Fusion identified six 
CTGs (Jak1, Stat5b, Cblb, Zfp423, Dlx3 and Bmi1), of which all except Bmi1 and 
Dlx3 coincided with the six DE CISs identified by the DNA-seq analysis (Figure 
5a and b). Two genes were only identified by the DNA-seq analysis (Foxp1 and 
Il2rb). Closer inspection of the original DNA-seq data showed that insertions in 
these genes were generally supported by <10 reads (Supplementary Table S6), 
suggesting that these insertions are subclonal and are therefore not represented in 
the RNA-seq sample due to the afore-mentioned issues with sample heterogeneity. 
Interestingly, both of the novel CTGs (Bmi1, Dlx3) have been reported to play a 
role in the development of B-ALL25,26, suggesting that these are true hits that were 
missed by the DNA-based analysis.

Effect of sequencing depth 
To determine how sequencing depth affects the detection of insertions and CTGs, 
we made use of the high sequencing depth of the B-ALL dataset to repeat the 
analysis at reduced depth by downsampling the original dataset to 15, 30, 50 and 
70 million reads per sample. These analyses showed that the number of detected 
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insertions increases linearly with the sequencing depth (Supplementary Figure 
S6a), indicating that additional sequencing depth provides more power to detect 
insertions. In contrast, only one extra DE CTG (Dlx3) was detected at higher 
sequencing depths (Supplementary Figure S6b and c), suggesting that deep 
sequencing may provide limited returns when screening for candidate genes. 
However, less insertions were detected in some of these CTGs at the lower depths 
(Supplementary Table S7), demonstrating that a higher sequencing depth will 
provide more accuracy in the detection of weak insertions.

Single- versus paired-end sequencing 
To study the added value of paired-end sequencing, we simulated a single-end 
version of the dataset by applying IM-Fusion to only one of the paired-ends. 
Although the analysis of the single-end dataset identified the same DE CTGs as the 
paired-end analysis (Figure 5c), the paired-end data yielded on average two times 
higher support scores for insertions due to the higher effective depth of paired-end 
sequencing, and identified a number of insertions that were not detected in the 
single-end sequencing data (Supplementary Table S8). Overall, this suggests that 
paired-end sequencing data is not strictly necessary for detecting insertions, but is 
beneficial for the detection of weak insertions.

(a)

(c)

(b)

Figure 5

Figure 5. Comparison of candidate genes identified by IM-Fusion and the original DNA-
sequencing analysis in the B-ALL dataset. (a) Comparison of candidate gene rankings between 
IM-Fusion (left) and the original DNA-seq-based analysis (right). Colors are coded as in Figure 4f. (b) 
Overlap of IM-Fusions DE CTGs and the published DE CISs. (c) Comparison of DE CTG rankings by 
IM-Fusion on the single- and paired-end versions of the B-ALL dataset.
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Comparison with Fusion Finder 
Finally, to compare IM-Fusion with existing approaches, we analyzed the B-ALL 
dataset using Fusion Finder9, which uses Tophat224 to identify transposon insertions 
from discordant mate pairs in paired-end RNA-sequencing data. Comparison of 
the identified insertions showed that Fusion Finder identified recurrent insertions 
in Cblb and Dlx3, but was only able to identify insertions in a single sample for 
Jak1 and Bmi1, and was unable to detect insertions in any of the other DE CTGs 
identified by IM-Fusion (Supplementary Table S9).

More detailed analyses of the results showed that the insertions in CTGs missed 
by Fusion Finder are (i) biased toward SD insertions and (ii) mainly supported by 
chimeric reads overlapping the fusion boundary, rather than mate pairs that span 
the fusion (with one mate on either side of the fusion). The latter explains why 
the majority of these insertions were not detected by Fusion Finder, as Fusion 
Finder does not incorporate split read information into its insertion detection. This 
highlights an important advantage of using fusion-aware aligners such as STAR 
and Tophat-Fusion, as these aligners explicitly account for chimeric fusion reads 
in their alignment, resulting in increased sensitivity for the detection of these 
insertions.

Although Fusion Finder failed to detect insertions involving the SD site of the 
transposon in this dataset, it did identify SD insertions in the original study by 
Temiz et al.9. We expect that the differences between our result and theirs are due 
to differences in read lengths, as the B-ALL dataset uses 100 bp reads compared 
to the 50 bp read length used in their dataset. The longer read length makes it 
more likely that reads overlap the fusion boundary, making an approach that uses 
chimeric reads preferable with longer read lengths.
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Discussion

We have presented IM-Fusion, a novel approach for identifying transposon insertion 
sites from gene-transposon fusions in RNA-sequencing data. A key advantage of 
this approach is that it focuses on identifying insertions that affect gene expression. 
As such, IM-Fusion provides a significant filter that strongly enriches for insertions 
that actually affect the expression of their target genes and are therefore most likely 
to be biologically relevant. This greatly increases the specificity of the approach, 
providing more confidence in detected insertions and genes and increasing our 
power to identify rare candidate genes. Furthermore, by combining the insertions 
with a differential expression analysis, IM-Fusion provides valuable insight into the 
effect of insertions on the affected target genes.

An important advantage of using RNA-sequencing rather than targeted DNA-
sequencing for identification of transposon insertions, is that RNA-sequencing 
provides much more information than just the location of insertion sites. For 
example, IM-Fusion uses RNA-expression information to determine how a gene 
is affected by the presence of an insertion. The same expression data may also 
be used to identify more global changes in gene expression associated with 
tumor subtypes or with specific insertions17, or be used to detect single nucleotide 
variants and somatic gene fusions that contribute to tumorigenesis. As an example 
of the latter, we have identified several endogenous fusions in the ILC and B-ALL 
datasets (Supplementary Figure S7 and Table S10), including several Fgfr2 fusions 
that reflect known oncogenic fusions previously identified in human cancers27. 
Most importantly, these extra analyses can be performed on the same RNA-seq 
sample, thereby inherently avoiding potential discrepancies resulting from the 
use of different tumor material for DNA- and RNA-sequencing, an issue that we 
encountered in the analyses of both the ILC and the B-ALL datasets.

A potential limitation of IM-Fusion is that it requires splicing between the 
transposon and the affected genes to identify the corresponding insertions. As a 
result, it will not detect transposon insertions that affect expression via enhancer 
sequences, as the effects of these insertions are not mediated via splicing. In our 
analyses, this does not seem to be an issue, as DNA-sequencing approaches did 
not identify any candidate genes that were perturbed via enhancer effects. This 
suggests that the MSCV enhancer sequence present in the T2/Onc transposon is 
not particularly active and that the transposon therefore mainly affects expression 
via splicing. This notion is in agreement with previous studies reporting preferential 
intragenic insertion of the T2/Onc transposon8, making it less likely to act as an 
enhancer. Enhancer effects may however play a more important role in case other 
transposons are employed. Similarly, IM-Fusion may be unable to detect insertions 
that result in transcript instability or degradation, as these will be under-represented 
in the RNA-seq data. Although we do not observe evidence pointing to transcript 
degradation in the presence of (clonal) SB insertions (Supplementary Figure S8), 
other transposons might have different effects on transcript stability.
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A strategy to identify both insertions whose effects are mediated by transcriptional 
enhancement and insertions that affect expression via splicing, would be to combine 
DNA- and RNA-sequencing methods, ideally using RNA and DNA isolated from 
the same sample. In such a combined approach, RNA-sequencing could be used 
to identify and characterize insertions that are mediated via splicing. For insertions 
that are uniquely identified by DNA-sequencing, the RNA-seq data could be 
used to analyze their effects on expression of the predicted target genes. Such a 
strategy would effectively unite the advantages of both approaches, by combining 
the unbiased identification of insertion sites by DNA-sequencing with the additional 
biological information provided by RNA-sequencing in a single analysis.

Although Temiz et al.9 have provided a proof-of-concept showing that transposon 
insertions can be identified via paired-end RNA-sequencing, our analysis was 
performed on a much larger dataset (123 versus 20 samples), allowing us to 
determine biases that affect insertion detection in DNA- and RNA-sequencing 
data and identify potential limitations of either approach. Furthermore, IM-Fusion 
improves on Fusion Finder by using a fusion-aware RNA-seq aligner to identify 
transposon insertions, which enables the use of single-end RNA-sequencing data 
and increases the sensitivity and the accuracy of insertion detection by also using 
chimeric reads to identify gene-transposon fusions. Finally, IM-Fusion is provided 
as comprehensive software package that enables users to perform the entire 
analysis from start to finish, including the generation of augmented reference 
genomes, identification of CTGs and testing for differential expression.

In summary, IM-Fusion provides a convenient approach for the identification of 
insertion sites and their effects on target gene expression from standard single- 
and paired-end RNA-sequencing data. By combining the identification of insertion 
sites with expression data, our approach provides valuable insight into the effect of 
an insertion on its target gene(s) and helps prioritize insertions that are biologically 
relevant. We expect that this approach will significantly enhance the accuracy of 
cancer gene discovery in forward genetic screens and prioritization of the identified 
candidate cancer genes for functional validation studies.
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(a) Sample overview

# Sample Chrom. Position Strand Support Transposon feature Gene Type
1 13SKA014-R3 15 77807867 1 198 En2SA Myh9 Shared
2 12SKA029-R3 15 77807867 1 10 En2SA Myh9 IM-Fusion-specific
3 12SKA101-L3 15 77807867 -1 10 SA Myh9 Shared
4 12SKA102-R3 15 77807867 -1 2 SA Myh9 IM-Fusion-specific

1 182448400 1 7 SD Trp53bp2 Shared
5 11KOU051-R3 1 182448400 1 23 SD Trp53bp2 Shared
6 12SKA017 2 84615087 1 6 SA Ctnnd1 IM-Fusion-specific
7 12SKA108-R3 2 84650405 1 2 SA Ctnnd1 Shared
8 11KOU012-R5 2 84650405 1 9 SA Ctnnd1 Shared

(b) Validation results

Hprt

Ctnnd1 FW2 - En2SA 

Ctnnd1 FW1 - En2SA 

SD - Trp53bp2

Myh9 - SA

Myh9 - En2SA 

MQ1 2 3 4 5 6 7 8

Supplementary Figure S1: Validation of gene-transposon fusions from the ILC dataset via
targeted PCR on cDNA. A selection of predicted insertions from IM-Fusion were validated using PCR
primers targeting the corresponding fusions. (a) Overview of the samples used in the validation. The Type
column indicates whether the insertion was shared or only identified by IM-Fusion. Samples were chosen to
(i) include a mix of SA/SD/En2SA insertions and (ii) span a range of low/high support scores. (b) Results of
the validation, showing that each of the expected fusions is indeed detected in the cDNA of the corresponding
sample. MQ (= MilliQ) is a water control, which was used a negative control.
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Supplementary Figure S1. Validation of gene-transposon fusions from the ILC dataset via 
targeted PCR on cDNA. A selection of predicted insertions from IM-Fusion were validated 
using PCR primers targeting the corresponding fusions. (a) Overview of the samples used in the 
validation. The Type column indicates whether the insertion was shared or only identified by IM-Fusion. 
Samples were chosen to (i) include a mix of SA/SD/En2SA insertions and (ii) span a range of low/
high support scores. (b) Results of the validation, showing that each of the expected fusions is indeed 
detected in the cDNA of the corresponding sample. MQ (= MilliQ) is a water control, which was used 
a negative control.
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(a)

(b)

Supplementary Figure S2: Feature bias and differential expression for all DE CTGs in the ILC
dataset. (a) Frequencies of the transposon features involved in the insertions for each CTG. A bias towards
SA/En2SA favors truncation of the gene, whereas a bias towards SD favors overexpression. (b) Differential
expression across the insertion sites for each CTG. An increase in the presence of an insertion indicates
overexpression, a decrease indicates truncation.
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Supplementary Figure S2. Feature bias and differential expression for all DE CTGs in the ILC 
dataset. (a) Frequencies of the transposon features involved in the insertions for each CTG. A bias 
towards SA/En2SA favors truncation of the gene, whereas a bias towards SD favors overexpression. 
(b) Differential expression across the insertion sites for each CTG. An increase in the presence of an 
insertion indicates overexpression, a decrease indicates truncation.
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(a) Sample overview

# Insertion id Sample Chrom. Position Strand Support Gene Type

1 11KOU029-R5.INS 12 1566 15 11KOU029-R5 11 79461479 1 11 Nf1 Shared
2 12SKA029-R3.INS 15 2049 38 12SKA029 R3 11 79359162 -1 10 Nf1 ShearSplink-specific
3 12SKA033-R3.INS 10 2800 1 12SKA033-R3 11 79426158 -1 6 Nf1 ShearSplink-specific
4 12SKA068-L3.INS 15 2800 20 12SKA068-L3 11 79439837 1 2 Nf1 ShearSplink-specific
5 12SKA092-L2.INS 10 2800 36 12SKA092-L2 11 79446215 -1 15 Nf1 ShearSplink-specific
6 12SKA104-R3.INS 1 2800 44 12SKA104-R3 11 79382459 -1 58 Nf1 ShearSplink-specific

(b) Validation results

1 2 3 4 5 6 MQ

Nf1-1

Nf1-2

Nf1-3

Nf1-4

Nf1-5

Nf1-6

Hprt

Supplementary Figure S3: Validation of ShearSplink insertions from the ILC dataset via
targeted PCR on DNA. Several ShearSplink insertions in Nf1 were validated using PCR primers targeting
the insertion sites. (a) Overview of the samples and insertions used in the validation. The Type column
indicates whether the insertion was shared or only identified by ShearSplink. (b) Results of the validation,
showing that each of the expected insertions is indeed detected in the DNA of the corresponding sample.
MQ (= MilliQ) is a water control, which was used a negative control.
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Supplementary Figure S3. Validation of ShearSplink insertions from the ILC dataset via targeted 
PCR on DNA. Several ShearSplink insertions in Nf1 were validated using PCR primers targeting 
the insertion sites. (a) Overview of the samples and insertions used in the validation. The Type 
column indicates whether the insertion was shared or only identified by ShearSplink. (b) Results of 
the validation, showing that each of the expected insertions is indeed detected in the DNA of the 
corresponding sample. MQ (= MilliQ) is a water control, which was used a negative control.
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(a) (b)

Supplementary Figure S4: Detailed analysis of insertion effects in Fgfr2 in the ILC dataset.
(a) Stratifying the differential expression test for the orientation of insertions in samples shows that samples
with sense insertions (using the SA/SD sites) show significant overexpression of the end of the gene, whilst
samples with antisense insertions (using the En2SA site) show a decrease in expression. (b) The majority
of samples with a sense insertion show both truncation of the transcript via the SA site and overexpression
via the SD site. This indicates that these samples effectively have a truncated gene transcript, but that the
remainder of the gene is simultaneously overexpressed as a separate transcript.
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Supplementary Figure S4. Detailed analysis of insertion effects in Fgfr2 in the ILC dataset. 
(a) Stratifying the differential expression test for the orientation of insertions in samples shows that 
samples with sense insertions (using the SA/SD sites) show significant overexpression of the end 
of the gene, whilst samples with antisense insertions (using the En2SA site) show a decrease in 
expression. (b) The majority of samples with a sense insertion show both truncation of the transcript 
via the SA site and overexpression via the SD site. This indicates that these samples effectively have 
a truncated gene transcript, but that the remainder of the gene is simultaneously overexpressed as a 
separate transcript.
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(a)

(b)

Supplementary Figure S5: Number of supporting mates in the B-ALL paired-end RNA-
sequencing data, before and after filtering by support scores. (a) Support for top genes (ranked
by insertion frequency) before filtering insertions for a minimum support of 10 reads. This shows that a
number of genes (such as Pten, Gm6206 and Ube2d2a) recur frequently, but have very low support and are
therefore more likely to represent false positives or weak/subclonal insertions. (b) Support for the top genes
after filtering for a minimum support of 10 mates. This shows that the remaining genes all have a reasonable
number of supporting reads. As such, this filtering improves the confidence in any CTGs identified from this
filtered set of insertions and improves detection power by limiting the number of tests (thereby reducing the
multiple testing correction).
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Supplementary Figure S5. Number of supporting mates in the B-ALL paired-end RNA-
sequencing data, before and after filtering by support scores. (a) Support for top genes (ranked 
by insertion frequency) before filtering insertions for a minimum support of 10 reads. This shows that 
a number of genes (such as Pten, Gm6206 and Ube2d2a) recur frequently, but have very low support 
and are therefore more likely to represent false positives or weak/subclonal insertions. (b) Support for 
the top genes after filtering for a minimum support of 10 mates. This shows that the remaining genes all 
have a reasonable number of supporting reads. As such, this filtering improves the confidence in any 
CTGs identified from this filtered set of insertions and improves detection power by limiting the number 
of tests (thereby reducing the multiple testing correction).
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(a) (b)

(c)

Supplementary Figure S6: Effects of downsampling in the B-ALL dataset. (a) The number of
detected insertions as a function of sequencing depth, showing a linear relation between sequencing depth and
the number of insertions. (b) The number of DE CTGs detected at different sequencing depths. (c) Overlap
between DE CTGs detected across the different sequencing depths.
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Supplementary Figure S6. Effects of downsampling in the B-ALL dataset. 
(a) The number of detected insertions as a function of sequencing depth, showing a linear relation 
between sequencing depth and the number of insertions. (b) The number of DE CTGs detected at 
different sequencing depths. (c) Overlap between DE CTGs detected across the different sequencing 
depths.
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(a) Sample overview

Sample Left gene Right gene Left breakpoint Right breakpoint Support (junction)

12SKA127-R3 Fgfr2 Kif16b 7:130167703:- 2:142834136:- 5
12SKA035-L3 Fgfr2 Myh9 7:130167703:- 15:77767663:- 3
11KOU023 Fgfr2 Tbc1d1 7:130167703:- 5:64256715:+ 11

(b) Validation results

Hprt

MQ1 2 3

Fgfr2-Tbc1d1

Fgfr2-Myh9

Fgfr2-Kif16b

Supplementary Figure S7: Validation of endogenous Fgfr2 fusions from the ILC dataset via
targeted PCR on cDNA. (a) Overview of endogenous fusions from STAR-Fusion (Supplementary Table
S10) involving Fgfr2, which reflect oncogenic fusions of FGFR2 identified in human breast cancers. (b) Val-
idation results for these fusions, showing that each of the expected fusions is indeed detected in the cDNA
of the corresponding sample. MQ (= MilliQ) is a water control, which was used a negative control.
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Supplementary Figure S7. Validation of endogenous Fgfr2 fusions from the ILC dataset via 
targeted PCR on cDNA. (a) Overview of endogenous fusions from STAR-Fusion (Supplementary Table 
S10) involving Fgfr2, which reflect oncogenic fusions of FGFR2 identified in human breast cancers. (b) 
Validation results for these fusions, showing that each of the expected fusions is indeed detected in the 
cDNA of the corresponding sample. MQ (= MilliQ) is a water control, which was used a negative control.
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Supplementary Figure S8: Effects of ShearSplink insertions on transcript stability (quantified
using expression before the insertion sites) in the ILC dataset. Compares expression between
samples with and without an insertion (left) and across samples with varying levels of insertion clonality
(right), showing that (clonal) insertions do not result in reduced expression. Expression values were quantified
using the exons before the insertion sites (after normalizing for overall differences in expression between
samples), as the expression of these exons should not be affected by the insertion(s). Correlations and p-
values were calculated using Spearman’s Rank correlation (indicated as rs and p, respectively). For brevity,
results are shown for the top 10 ShearSplink candidate genes (continued on the next page).
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Supplementary Figure S8. Effects of ShearSplink insertions on transcript stability (quantified 
using expression before the insertion sites) in the ILC dataset. Compares expression between 
samples with and without an insertion (left) and across samples with varying levels of insertion 
clonality (right), showing that (clonal) insertions do not result in reduced expression. Expression values 
were quantified using the exons before the insertion sites (after normalizing for overall differences 
in expression between samples), as the expression of these exons should not be affected by the 
insertion(s). Correlations and p-values were calculated using Spearman’s Rank correlation (indicated 
as rs and p, respectively). For brevity, results are shown for the top 10 ShearSplink candidate genes 
(continued on the next page).
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Supplementary Figure S8: Effects of ShearSplink insertions on transcript stability (continued).
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Supplementary Figure S8. Effects of ShearSplink insertions on transcript stability (continued).
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Supplementary Table S1: Quantification of fusion reads in the ILC dataset. Quantification of the
number of RNA-seq reads in each sample of the ILC dataset, together with the number of reads supporting
gene-fusions and how many of these fusion reads support gene-transposon fusions. The two ratio columns
indicate the fraction of fusion reads relative to the total number of reads and the fraction of fusions that
support gene-transposon fusions.

Supplementary Table S2: Fusions identified by IM-Fusion in the ILC dataset. Overview of
all insertions identified by IM-Fusion in the ILC dataset. The genomic breakpoints of the corresponding
fusions are described in the Chromosome, Position and Strand columns. The Feature columns describe the
transposon features that are involved in the fusions and the position of the transposon breakpoints. The
Gene columns describe the genes involved in each fusion, whilst the Novel transcript column indicates if
a novel transcript is created by the fusion. Finally, the Support and Ffpm columns indicate the degree of
support for each fusion (see Methods for more details).

Supplementary Table S3: Overview of the CTGs identified by IM-Fusion in the ILC dataset.
DE CTGs were selected with a corrected CTG p-value < 0.05 and a DE p-value < 0.05. The DE direction
column indicates the direction of the differential expression after the insertion site.

Gene CTG p-value CTG q-value Num. samples DE p-value DE direction

Ppp1r12a 2.14e-99 7.37e-97 41 4.93e-17 down
Trps1 3.81e-95 1.32e-92 44 5.41e-16 down
Fgfr2 5.90e-70 2.04e-67 52 1.05e-01 up
Myh9 9.09e-70 3.14e-67 27 1.93e-08 down
Trp53bp2 2.55e-27 8.79e-25 12 4.03e-07 up
Tgfbr2 5.57e-19 1.92e-16 9 6.17e-05 down
Runx1 2.19e-18 7.54e-16 10 4.45e-04 down
Eras 5.67e-15 1.95e-12 6 7.88e-08 up
Rasgrf1 2.59e-11 8.93e-09 6 3.86e-05 up
Fbxw7 3.57e-10 1.23e-07 6 1.09e-04 down
Cblb 5.53e-10 1.91e-07 6 6.39e-05 down
Eef1a1 3.00e-09 1.03e-06 4 5.16e-01 down
Zfp207 1.26e-08 4.34e-06 4 5.73e-01 down
Luc7l3 1.61e-08 5.56e-06 4 1.44e-01 down
Trp53 4.40e-07 1.52e-04 3 4.68e-03 down
Socs5 2.08e-06 7.19e-04 3 4.22e-03 down
Ctnnd1 5.42e-06 1.87e-03 3 2.74e-02 down
Arid1a 6.68e-06 2.30e-03 3 1.21e-01 down
Gmds 9.25e-05 3.19e-02 4 9.64e-04 up

Supplementary Table S4: Quantification of fusion reads in the B-ALL dataset. Quantification
of the number of RNA-seq reads in each sample of the B-ALL dataset, together with the number of reads
supporting gene-fusions and how many of these fusion reads support gene-transposon fusions. The two ratio
columns indicate the fraction of fusion reads relative to the total number of reads and the fraction of fusions
that support gene-transposon fusions (same as for Supplementary Table S1).
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Supplementary Table S1. Quantification of fusion reads in the ILC dataset (online available). 
Quantification of the number of RNA-seq reads in each sample of the ILC dataset, together with the 
number of reads supporting gene-fusions and how many of these fusion reads support gene-transposon 
fusions. The two ratio columns indicate the fraction of fusion reads relative to the total number of reads 
and the fraction of fusions that support gene-transposon fusions.

Supplementary Table S2. Fusions identified by IM-Fusion in the ILC dataset (online available). 
Overview of all insertions identified by IM-Fusion in the ILC dataset. The genomic breakpoints of the 
corresponding fusions are described in the Chromosome, Position and Strand columns. The Feature 
columns describe the transposon features that are involved in the fusions and the position of the 
transposon breakpoints. The Gene columns describe the genes involved in each fusion, whilst the 
Novel transcript column indicates if a novel transcript is created by the fusion. Finally, the Support and 
Ffpm columns indicate the degree of support for each fusion (see Methods for more details).

Supplementary Table S3. Overview of the CTGs identified by IM-Fusion in the ILC dataset. DE 
CTGs were selected with a corrected CTG p-value < 0.05 and a DE p-value < 0.05. The DE direction 
column indicates the direction of the differential expression after the insertion site.

Supplementary Table S4. Quantification of fusion reads in the B-ALL dataset (online available). 
Quantification of the number of RNA-seq reads in each sample of the B-ALL dataset, together with the 
number of reads supporting gene-fusions and how many of these fusion reads support gene-transposon 
fusions. The two ratio columns indicate the fraction of fusion reads relative to the total number of reads 
and the fraction of fusions that support gene-transposon fusions (same as for Supplementary Table 
S1).
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Supplementary Table S5: Fusions identified by IM-Fusion in the B-ALL dataset. Overview of
all insertions identified by IM-Fusion in the B-ALL dataset. The table structure is the same as described for
Supplementary Table S2.

Supplementary Table S6: Overview of B-ALL insertions from the original DNA-sequencing
analysis for each of the published candidate genes. Due to lack of the original annotation, insertions
were selected for each gene if they occurred within 20kb of the gene. The Support column indicates the
number of reads supporting the insertions. The RNAseq column states whether the insertion was also
identified in the (single-end) RNA-sequencing analysis performed using IM-Fusion. Altogether, these tables
show that the majority of the insertions not identified by IM-Fusion had a relatively low depth in the
DNA-sequencing data. Additionally, Foxp1 and Ill2rb are generally only supported by insertions with low
depth.

(a) Jak1

Sample Chrom. Position Support RNAseq

TAPJ84-3c 4 100864603 669 True
TAPJ49-1a 4 100921507 666 True
TAPJ52-2c 4 100892389 336 True
TAPJ52-2a 4 100888660 312 True
TAPJ87-6j 4 100920339 92 True
TAPJ72-3c 4 100864603 38 True
TAPJ64-1g 4 100908538 18 True
TAPJ49-5c 4 100886398 4 True
TAPJ7-2e 4 100925452 2 True
TAPJ102-5c 4 100899386 1 False

(b) Stat5b

Sample Chrom. Position Support RNAseq

TAPJ72-3c 11 100689140 122 True
TAPJ68-5a 11 100683416 61 True
TAPJ64-1g 11 100671851 61 True
TAPJ49-5c 11 100687148 48 True
TAPJ102-5c 11 100706741 22 True
TAPJ23-1e 11 100683363 19 False
TAPJ87-6j 11 100710357 6 False
TAPJ47-4a 11 100686193 1 True

(c) Foxp1

Sample Chrom. Position Support RNAseq

TAPJ52-2c 6 99217008 227 True
TAPJ49-5c 6 99289945 8 True
TAPJ53-3m 6 99159295 7 False
TAPJ64-3d 6 99190553 3 False
TAPJ47-4a 6 99189463 2 False
TAPJ23-2b 6 99217008 1 False
TAPJ48-5c 6 99217008 1 False
TAPJ52-2a 6 99199292 1 False

(d) Zfp423

Sample Chrom. Position Support RNAseq

TAPJ52-2a 8 90487143 567 False
TAPJ49-1a 8 90440457 266 True
TAPJ6-1g 8 90487143 4 False
TAPJ52-2c 8 90335321 2 False
TAPJ84-3c 8 90472854 1 True
TAPJ72-3c 8 90487143 1 False

(e) Cblb

Sample Chrom. Position Support RNAseq

TAPJ102-5c 16 52142665 244 True
TAPJ49-5c 16 52141664 123 True
TAPJ52-2a 16 52141414 28 True
TAPJ23-2b 16 52202808 6 False
TAPJ23-1e 16 52017672 1 False
TAPJ47-4a 16 52142665 1 False
TAPJ62-3d 16 52141432 1 False

(f) Il2rb

Sample Chrom. Position Support RNAseq

TAPJ64-3d 15 78325852 24 False
TAPJ7-2e 15 78325852 6 False
TAPJ87-6j 15 78324142 1 True
TAPJ49-5c 15 78324099 1 False
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Supplementary Table S5. Fusions identified by IM-Fusion in the B-ALL dataset (online available). 
Overview of all insertions identified by IM-Fusion in the B-ALL dataset. The table structure is the same 
as described for Supplementary Table S2.

Supplementary Table S6. Overview of B-ALL insertions from the original DNA-sequencing 
analysis for each of the published candidate genes. Due to lack of the original annotation, insertions 
were selected for each gene if they occurred within 20kb of the gene. The Support column indicates the 
number of reads supporting the insertions. The RNAseq column states whether the insertion was also 
identified in the (single-end) RNA-sequencing analysis performed using IM-Fusion. Altogether, these 
tables show that the majority of the insertions not identified by IM-Fusion had a relatively low depth 
in the DNA-sequencing data. Additionally, Foxp1 and Ill2rb are generally only supported by insertions 
with low depth.
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Supplementary Table S7: Number of samples with insertions in each DE CTG of the B-ALL
dataset at different sequencing depths, showing that additional insertions in Jak1, Stat5b and
Dlx3 are detected at the higher depths.

Sequencing depth 15 30 50 70
Gene

Bmi1 2 2 2 2
Cblb 5 5 5 5
Dlx3 - - 2 2
Jak1 7 7 7 9
Stat5b 5 7 7 7
Zfp423 2 2 2 2

Supplementary Table S8: Overview of single- and paired-end support scores for insertions
identified by IM-Fusion for the DE CTGs in the B-ALL dataset. For brevity, the table is limited
to the strongest insertion for each gene in the corresponding sample. This table highlights four insertions
that were missed by the single-end analysis, as well as differences in support scores between the single-end
and paired-end dataset, although the majority of the paired-end insertions are identified from chimeric reads
spanning the fusion junction.

Sample Gene Supp. single Supp. paired Supp. paired (junction) Supp. paired (spanning)

TAPJ49 5c Bmi1 443 1714 1714 0
TAPJ64 3d Bmi1 226 549 548 1
TAPJ53 3m Cblb 761 1286 1029 257
TAPJ84 3c Cblb 374 670 523 147
TAPJ49 5c Cblb 334 651 515 136
TAPJ52 2a Cblb 272 569 441 128
TAPJ102 5c Cblb 232 498 380 118
TAPJ53 3m Dlx3 25 47 32 15
TAPJ102 5c Dlx3 22 26 20 6
TAPJ49 1a Jak1 305 522 522 0
TAPJ52 2c Jak1 302 541 541 0
TAPJ52 2a Jak1 290 305 305 0
TAPJ87 6j Jak1 185 282 282 0
TAPJ84 3c Jak1 177 1947 1944 3
TAPJ7 2e Jak1 111 179 179 0
TAPJ64 1g Jak1 58 85 85 0
TAPJ49 5c Jak1 - 13 13 0
TAPJ72 3c Jak1 - 16 16 0
TAPJ62 3d Stat5b 84 461 461 0
TAPJ64 1g Stat5b 43 217 217 0
TAPJ102 5c Stat5b 34 169 169 0
TAPJ72 3c Stat5b 33 171 171 0
TAPJ68 5a Stat5b 10 59 59 0
TAPJ47 4a Stat5b - 35 34 1
TAPJ49 5c Stat5b - 38 38 0
TAPJ84 3c Zfp423 27 600 600 0
TAPJ49 1a Zfp423 22 201 200 1
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Supplementary Table S7. Number of samples with insertions in each DE CTG of the B-ALL 
dataset at different sequencing depths, showing that additional insertions in Jak1, Stat5b and 
Dlx3 are detected at the higher depths.

Supplementary Table S7: Number of samples with insertions in each DE CTG of the B-ALL
dataset at different sequencing depths, showing that additional insertions in Jak1, Stat5b and
Dlx3 are detected at the higher depths.

Sequencing depth 15 30 50 70
Gene

Bmi1 2 2 2 2
Cblb 5 5 5 5
Dlx3 - - 2 2
Jak1 7 7 7 9
Stat5b 5 7 7 7
Zfp423 2 2 2 2

Supplementary Table S8: Overview of single- and paired-end support scores for insertions
identified by IM-Fusion for the DE CTGs in the B-ALL dataset. For brevity, the table is limited
to the strongest insertion for each gene in the corresponding sample. This table highlights four insertions
that were missed by the single-end analysis, as well as differences in support scores between the single-end
and paired-end dataset, although the majority of the paired-end insertions are identified from chimeric reads
spanning the fusion junction.

Sample Gene Supp. single Supp. paired Supp. paired (junction) Supp. paired (spanning)

TAPJ49 5c Bmi1 443 1714 1714 0
TAPJ64 3d Bmi1 226 549 548 1
TAPJ53 3m Cblb 761 1286 1029 257
TAPJ84 3c Cblb 374 670 523 147
TAPJ49 5c Cblb 334 651 515 136
TAPJ52 2a Cblb 272 569 441 128
TAPJ102 5c Cblb 232 498 380 118
TAPJ53 3m Dlx3 25 47 32 15
TAPJ102 5c Dlx3 22 26 20 6
TAPJ49 1a Jak1 305 522 522 0
TAPJ52 2c Jak1 302 541 541 0
TAPJ52 2a Jak1 290 305 305 0
TAPJ87 6j Jak1 185 282 282 0
TAPJ84 3c Jak1 177 1947 1944 3
TAPJ7 2e Jak1 111 179 179 0
TAPJ64 1g Jak1 58 85 85 0
TAPJ49 5c Jak1 - 13 13 0
TAPJ72 3c Jak1 - 16 16 0
TAPJ62 3d Stat5b 84 461 461 0
TAPJ64 1g Stat5b 43 217 217 0
TAPJ102 5c Stat5b 34 169 169 0
TAPJ72 3c Stat5b 33 171 171 0
TAPJ68 5a Stat5b 10 59 59 0
TAPJ47 4a Stat5b - 35 34 1
TAPJ49 5c Stat5b - 38 38 0
TAPJ84 3c Zfp423 27 600 600 0
TAPJ49 1a Zfp423 22 201 200 1

13

Supplementary Table S8. Overview of single- and paired-end support scores for insertions 
identified by IM-Fusion for the DE CTGs in the B-ALL dataset. For brevity, the table is limited to 
the strongest insertion for each gene in the corresponding sample. This table highlights four insertions 
that were missed by the single-end analysis, as well as differences in support scores between the 
single-end and paired-end dataset, although the majority of the paired-end insertions are identified from 
chimeric reads spanning the fusion junction.
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Supplementary Table S9: Overview of insertions identified by Fusion Finder in the B-ALL
dataset. For brevity, this table is limited to the published candidate genes and DE CTGs from the IM-
Fusion analysis, as these were the candidates of interest for the comparison.

Sample Gene Chrom. Start End Transposon feature Num. reads

TAPJ49 5c Bmi1 2 18681750 18682050 SA 150
TAPJ49 5c Bmi1 2 18682050 18682350 SA 22
TAPJ49 5c Bmi1 2 18682650 18682950 IR/DR2 10
TAPJ52 2a Cblb 16 52139250 52139550 En2SA 13
TAPJ84 3c Cblb 16 52140750 52141050 En2SA 22
TAPJ53 3m Cblb 16 52142550 52142850 En2SA 109
TAPJ53 3m Cblb 16 52141050 52141350 En2SA 56
TAPJ53 3m Cblb 16 52140750 52141050 En2SA 42
TAPJ52 2a Cblb 16 52139550 52139850 En2SA 68
TAPJ84 3c Cblb 16 52142550 52142850 En2SA 48
TAPJ49 5c Cblb 16 52139550 52139850 En2SA 76
TAPJ49 5c Cblb 16 52139250 52139550 En2SA 25
TAPJ102 5c Cblb 16 52139550 52139850 En2SA 71
TAPJ102 5c Cblb 16 52139250 52139550 En2SA 19
TAPJ84 3c Cblb 16 52141050 52141350 En2SA 38
TAPJ53 3m Dlx3 11 95124750 95125050 IR/DR1 106
TAPJ102 5c Dlx3 11 95124750 95125050 IR/DR1 59
TAPJ84 3c Jak1 4 101193750 101194050 SA 12
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Supplementary Table S9. Overview of insertions identified by Fusion Finder in the B-ALL 
dataset. For brevity, this table is limited to the published candidate genes and DE CTGs from the IM-
Fusion analysis, as these were the candidates of interest for the comparison.
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Supplementary Table S10: Overview of the top endogenous fusions detected in the two RNA-
seq datasets. (a) Top 20 fusions identified in the ILC dataset. Fusions with En2 and Foxf2 were filtered
from the results, as these genes contain sequences that are homologous with the En2SA and SD sequences of
the transposon. These fusions therefore actually represent gene-transposon fusions, rather than endogenous
fusions, which is also evident from the observation that all involved fusion partners coincide with candidate
genes from the IM-Fusion analyses. The three predicted Fgfr2 fusions were validated using a targeted PCR
(Supplementary Figure S7), thus confirming the presence of these fusions. (b) Top 20 fusions identified
in the B-ALL dataset, using the same filtering. The engineered Etv6-Runx1 fusion was detected in most
samples, supporting the validity of the results. This fusion was likely missed in the remaining four samples
due to (i) differences in expression of the fusion and/or (ii) differences between the mouse/human sequences
of Runx1 (as the reference used for STAR-Fusion contains the mouse Runx1 sequence, whilst the engineered
fusion was created using the human sequence).

(a) SB fusions

Gene a Gene b Freq.

4930448N21Rik Stox2 3
Atxn7l1os1 Fam173b 1
Cnksr3 Cand1 1
Cnst Smyd3 1
Cpq Sdc2 1
Fgfr2 Kif16b 1
Fgfr2 Myh9 1
Fgfr2 Tbc1d1 1
Frs2 Arhgef25 1
Frs2 Dtx3 1
Frs2 Rap1b 1
Gm13830 Gnas 1
Gsr Znrf1 1
Igkv1-110 Igkj1 1
Igkv1-110 Igkj4 1
Igkv1-110 Igkj5 1
Igkv1-135 Igkc 1
Il1rap Eci2 1
Nfyc Raly 1
Trp53bp2 Dst 1

(b) B-ALL fusions

Gene a Gene b Freq.

Etv6 Runx1 16
Hexdc Khdrbs1 9
A430104N18Rik Mcm7 8
Dnmt1 Dyx1c1 5
Mcm9 Asf1a 5
Ighv12-3 Ighm 4
RP23-32C18.5 Ms4a4d 4
A430104N18Rik 2010111I01Rik 3
Diap3 Tdrd3 3
Hba-a1 Hbb-bt 3
Hbb-bs Hba-a1 3
Ighv2-9 Ighg1 3
Nfe2l2 Hnrnpa3 3
Ralyl Ralyl 3
4930448N21Rik Stox2 2
Fbxo42 Gm12940 2
Fubp1 Ivns1abp 2
Gm26740 Gm2539 2
Ighv2-2 Ighg3 2
Ighv3-6 Igha 2
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Supplementary Table S10. Overview of the top endogenous fusions detected in the two RNA-
seq datasets. (a) Top 20 fusions identified in the ILC dataset. Fusions with En2 and Foxf2 were filtered 
from the results, as these genes contain sequences that are homologous with the En2SA and SD 
sequences of the transposon. These fusions therefore actually represent gene-transposon fusions, 
rather than endogenous fusions, which is also evident from the observation that all involved fusion 
partners coincide with candidate genes from the IM-Fusion analyses. The three predicted Fgfr2 fusions 
were validated using a targeted PCR (Supplementary Figure S7), thus confirming the presence of these 
fusions. (b) Top 20 fusions identified in the B-ALL dataset, using the same filtering. The engineered 
Etv6-Runx1 fusion was detected in most samples, supporting the validity of the results. This fusion 
was likely missed in the remaining four samples due to (i) differences in expression of the fusion 
and/or (ii) differences between the mouse/human sequences of Runx1 (as the reference used for 
STAR-Fusion contains the mouse Runx1 sequence, whilst the engineered fusion was created using 
the human sequence).




