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A B S T R A C T

Flavin adenine dinucleotide (FAD) and its precursor flavin mononucleotide (FMN) are redox cofactors that are
required for the activity of more than hundred human enzymes. Mutations in the genes encoding these proteins
cause severe phenotypes, including a lack of energy supply and accumulation of toxic intermediates. Ideally,
patients should be diagnosed before they show symptoms so that treatment and/or preventive care can start
immediately. This can be achieved by standardized newborn screening tests. However, many of the flavin-
related diseases lack appropriate biomarker profiles. Genome-scale metabolic models can aid in biomarker re-
search by predicting altered profiles of potential biomarkers. Unfortunately, current models, including the most
recent human metabolic reconstructions Recon and HMR, typically treat enzyme-bound flavins incorrectly as
free metabolites. This in turn leads to artificial degrees of freedom in pathways that are strictly coupled. Here, we
present a reconstruction of human metabolism with a curated and extended flavoproteome. To illustrate the
functional consequences, we show that simulations with the curated model – unlike simulations with earlier
Recon versions - correctly predict the metabolic impact of multiple-acyl-CoA-dehydrogenase deficiency as well
as of systemic flavin-depletion. Moreover, simulations with the new model allowed us to identify a larger
number of biomarkers in flavoproteome-related diseases, without loss of accuracy. We conclude that adequate
inclusion of cofactors in constraint-based modelling contributes to higher precision in computational predic-
tions.

1. Introduction

In the past decade, systems biology modelling has become indis-
pensable to explore the behaviour of metabolic networks and gain in-
sight into their response to disease mutations. Genome-scale models of
metabolism comprise the entire set of biochemical reactions known to
exist in an organism or cell type of interest (as described in depth in
[1]). These models represent the metabolic potential of living systems
and provide a comprehensive framework to understand metabolism.
Genome-scale models integrate biochemical and genotypic data and
enable efficient exploration of associations between genotypes and

phenotypes, and mechanisms of (patho)physiology [2]. The most recent
consensus and generic human metabolic reconstructions are Recon 2.2
[3], Recon 3D [4], and HMR 2.0 [5]. Both are comprehensive models
aiming to describe all known metabolic reactions within the human
body.

Genome-scale constraint-based models contain mass-balanced che-
mical equations for each metabolic reaction in a specific cell type or
organism [6]. Classically, neither enzyme kinetics nor enzyme con-
centration is accounted for in this approach [7]. The recently published
GECKO method [8] for yeast models, which links enzyme abundances
with reaction fluxes addresses this issue. Similarly, Shlomi et al. [9]

https://doi.org/10.1016/j.bbadis.2018.10.021
Received 27 July 2018; Received in revised form 10 October 2018; Accepted 17 October 2018

⁎ Correspondence to: B. M. Bakker, Systems Medicine of Metabolism and Signaling, Laboratory of Pediatrics, University Medical Center Groningen, University of
Groningen, Postbus 196, NL-9700 AD Groningen, the Netherlands.

⁎⁎ Correspondence to: M. Suarez-Diez, Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the
Netherlands.

E-mail addresses: b.m.bakker01@umcg.nl (B.M. Bakker), maria.suarezdiez@wur.nl (M. Suarez-Diez).
1 These authors contributed equally.

BBA - Molecular Basis of Disease 1865 (2019) 360–370

Available online 29 October 2018
0925-4439/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/09254439
https://www.elsevier.com/locate/bbadis
https://doi.org/10.1016/j.bbadis.2018.10.021
https://doi.org/10.1016/j.bbadis.2018.10.021
mailto:b.m.bakker01@umcg.nl
mailto:maria.suarezdiez@wur.nl
https://doi.org/10.1016/j.bbadis.2018.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2018.10.021&domain=pdf


successfully studied the Warburg effect in human genome-scale model
by taking an enzyme solvent capacity into consideration. However,
general incorporation of enzyme concentrations and kinetics in human
models remains to be addressed. Consequently, taking enzyme-bound
cofactors into account remains a challenge.

Cofactors are molecular compounds required for the enzyme's bio-
logical activity. Chemically, they can be divided into two groups: in-
organic ions that are taken up by the cell from the environment, and
more complex organic or metalloorganic molecules – also called
coenzymes - which are (partly) synthesized in the cell. The latter are
often derived from vitamins and organic nutrients and their biosynth-
esis pathways must be covered by genome-scale models.

The flavins FAD and FMN are redox cofactors required for the ac-
tivity of 111 human enzymes, 52 of which are known to cause human
diseases if inactive [10]. In human cells, flavins are synthesized from
their precursor riboflavine, also known as vitamin B2. Flavins exist in
three different redox states, namely a quinone, semiquinone and hy-
droquinone state. Unlike nicotinamide adenine dinucleotide (NAD)
which diffuses freely between enzymes, flavins are bound to enzymes
[11]. Enzymes that require bound FAD or FMN for their enzyme activity
are called flavoproteins.

A classical flavoprotein-dependent disease is multiple-acyl-CoA-de-
hydrogenase deficiency (MADD), also known as glutaric aciduria type
II. It is caused by a defect in one of the electron transfer flavoproteins
(encoded by ETFA or ETFB genes) or in the ‘electron transfer flavo-
protein ubiquinone oxidoreductase’ (ETF-QO, encoded by ETFDH gene)
[12]. These FAD-containing enzymes are crucial to link both mi-
tochondrial fatty acid oxidation (mFAO) and amino acid metabolism
(mostly that of sarcosine and dimethylglycine) to the mitochondrial
respiratory chain. Depending on the residual ETF or ETF-QO activity,
MADD may lead to a life-threatening lack of energy supply to the body,
with episodes of severe metabolic decompensation, hypoglycaemia,
metabolic acidosis, sarcosinemia and cardiovascular failure. The
available treatment consists of low-fat, low-protein and high-carbohy-
drate diet with riboflavin, glycine and L-carnitine supplementation.
However, this treatment is not effective for neonatal patients [13] for
whom experimental treatment with sodium-D,L-3-hydroxybutyrate
showed promising results [14]. To screen for and diagnose diseases, as
well as provide a prognosis for disease severity and treatment outcome,
biomarkers are used. According to the NIH definition, a biomarker is “a
biological molecule found in blood, other body fluids, or tissues that is a
sign of a normal or abnormal process, or of a condition or disease” [15].
They are measured routinely in a non-invasive manner in plasma, urine
or faeces [16]. Several inborn errors of metabolism (IEM) have their
metabolic phenotypes characterized [17]. However, for many diseases
no known biomarker profile exists [18] or their sensitivity is low
causing some patients to be wrongly diagnosed in the screening process
[19]. Additionally, clinical presentations of IEM are often non-specific
and are described as a spectrum rather than a clear one gene – one
phenotype – one disease relation. This further justifies the search for
more sensitive and accurate biomarkers. Systems biology approaches
have already been proven to aid in such research by revealing known
and novel biomarkers of several IEMs [17,20–23]. Human genome-
scale models, Recon 2 and HMR 2, can be used to identify biomarkers
from altered patterns of metabolites taken up or excreted by tissues
[24]. These models typically treat flavins and other enzyme-bound
cofactors as free-floating metabolites, as seen on a Fig. 1A and B [5,23].
This allows enzymes to inadvertently oxidize or reduce flavin molecules
that are in reality confined to another enzyme. In the models, this leads
to artificial uncoupling of pathways. Such an artefact is seen clearly in
the case of MADD where electrons from mFAO should be coupled to the
oxidative phosphorylation system by the ETF/ETF-QO proteins
(Fig. 1C). In the current models, however, FADH produced from mFAO
can also be re-oxidized via other pathways: by reversal of the mi-
tochondrial succinate dehydrogenase reaction as well as an artificial
reaction that represents triglycerides synthesis (Fig. 1B, model

Recon2.2). Another artefact in Recon2.2, but not HMR 2, is that flavin
biosynthesis is not explicitly required due to the presence of an FAD
uptake reaction in the model. Finally, the current description of the
flavoprotein-related reactions is inconsistent, using sometimes free FAD
and sometimes the final electron acceptor. Sometimes both options
occur in parallel if the same biochemical reaction occurs twice in the
model, due to inconsistencies in metabolite naming. Therefore, the ef-
fects of defects associated with FAD biosynthesis or flavoproteins could
not, until now, be accounted for by genome-scale constraint-based
models. Furthermore FMN is not used as an electron acceptor in the
current reconstruction, but only as an intermediate metabolite in the
FAD synthesis.

The aim of this study is to explore the physiological effects of flavin-
related enzymopathies and to identify candidates for biomarkers. To
this end, we modified Recon2.2 to correctly represent flavins as bound
cofactors and we introduced a novel simulation approach that enables
studies of cofactor scarcity in mammalian models. Moreover, we ana-
lysed metabolic disturbances for 38 flavin-related diseases, for which
genes were included in the metabolic reconstruction. For 16 of them,
which are known to affect the core metabolism, we additionally ana-
lysed their ATP production capacity from different carbon sources,
showing metabolic blockages in line with the current knowledge about
these diseases and their biomarkers.

2. Materials and methods

2.1. Genome-scale constraint-based modelling

As described earlier [23] metabolic and transport reactions are
summarized in an m x n stoichiometric matrix S, that contains the
stoichiometric coefficient of each of the m metabolites in each of the n
reactions described by the model. Gene–protein-reaction associations
use Boolean rules (“and” or “or” relationships) to describe the protein
requirement of each reaction.

At steady state, metabolite consumption and production in equili-
brium and therefore b equals of vector of length m with zeros in the
following equation:

=v bS·

with v a vector of length of n and vi representing the flux through
reaction i. Reaction (ir-) reversibility is introduced as constraints lim-
iting minimal and maximal flux values:

…l v u for i {1, , n}.i i i

2.2. Model curation

We started from Recon 2.2 [3] obtained from the Biomodels data-
base (http://identifiers.org/biomodels.db/MODEL1603150001). Fla-
voprotein-related reactions were identified and manually curated based
on a review by Lienhart et al. [10] as well as information available in
the public databases: KEGG, NCBI Gene and OMIM [31]. Additionally,
several rounds of manual curation revealed inconsistencies in direc-
tionality of reactions of fatty-acyl CoA ligase, reactions participating in
the mitochondrial transport of fatty-acyl carnitines, peroxisomal fatty-
acid oxidation and fatty acid synthesis, which were corrected. Missing
reactions in the fatty-acid synthesis pathway were added. Subsequently,
invalid or duplicated reactions were removed from the model. The
curated model was saved as Recon2.2_FAD. For detailed information on
all the changes and the underlying documentation, see Supplementary
Table 2.

Similarly, we performed a manual curation of FAD-related reactions
in Recon 3D model available at (https://vmh.uni.lu). We identified all
reactions dependent on flavoproteins and manually replaced the FAD
and FADH2 with the final electron acceptor (Table S4), creating
Recon3D_FAD model.
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2.3. Model constraints

In simulations of MADD and FAD deficiency, the minimum required
flux through the ‘biomass_reaction’ was set to 0.1 mmol·gDW−1·hr−1, to
mimic the basic cell maintenance (protein synthesis, DNA and RNA
synthesis etc.), unless stated otherwise, as in [25]. Other constraints
used only in specific simulations are indicated where applicable. No
changes to the model boundaries were made, unless stated otherwise.

2.4. MADD simulations

Multiple acyl-dehydrogenase deficiency was simulated as a single gene
deletion (ETFDH, HGNC:3483), and the solution space of the models was
sampled with the optGpSampler with 10,000 points explored and distance
of 2000 steps [26]. Additionally, uptake of common carbon_sources (glu-
cose, fructose, C4:0, C6:0, C8:0, C10:0, C12:0 C14:0. C16:0, C18:0, C20:0,
C22:0, C24:0, C26:0, alanine, arginine, asparagine, aspartic acid, cysteine,
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Fig. 1. Schematic representation of the difference in handling of the covalently bound cofactors (represented by FAD) between Recon 2.2 and the newly curated
models. A. General scheme of the reactions associated with flavoproteins; top: current Recon 2.2; middle: FAD replaced by the final electron acceptor in the reaction
equation; bottom: linking the reactions to FAD biosynthesis via the artificial metabolite ‘cofactor_FAD’; B. Scheme of electron transfer from fatty-acid oxidation to the
oxidative phosphorylation pathway as in Recon 2.2, C: Scheme of electron transfer from fatty-acid oxidation to the oxidative phosphorylation pathway in our models,
Recon 2.2_FAD and Recon 2.2_flavo. Yellow – flavoproteins.
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glutamine, glutaric acid, glycine, histidine, isoleucine, lysine, methionine,
phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, sar-
cosine) was set to −1 mmol·gDW−1·hr−1.

2.5. FAD limitation

To study the metabolic response to flavin deficiency we adapted
parsimonious FBA [27] to mimic the resource re-allocation among co-
factor requiring enzymes upon cofactor scarcity. Furthermore, we
linked cofactor requirement and cofactor biogenesis in an approach
similar to the method introduced by Beste et al. [28]. In short, flavin-
related reactions were identified using their GPR annotation (with re-
spect to the Boolean relationship – only reactions for which the flavo-
protein is essential were selected), split to two irreversible reactions for
each direction and an artificial metabolite ‘cofactor_FAD’ was added to
be consumed by each of them with an very low (0.000002) stoichio-
metric coefficient based on an average human proteome life-time [29]
and an average kcat value [30]. Biogenesis of the cofactor was linked to
the artificial ‘cofactor_FAD’ through the artificial reaction ‘FADisCo-
factor’. Adjusting the boundaries of FADisCofactor reaction or reducing
the flux of FAD biogenesis pathway allowed us to independently study
flavin shortage effects linked to i) FAD biosynthesis impairments, ii)
enzymatic mutations hampering cofactor binding or iii) defects in co-
factor dissociation and transfer in protein dimers.

Cofactor limitation was obtained by constraining the flux of the
FMN adenyltransferase (FLAT1) reaction. The solution space for the
control model and FAD deficiency model was sampled using
optGpSampler with 10,000 points explored and distance of 2000 steps
[26].

2.6. Calculation of maximum ATP yield per carbon source

To calculate the maximum ATP yield per carbon source we adapted
the method developed by Swainston et al. [3]. All model boundaries for
uptake of nutrients were set to 0 except for a set of compounds defined
collectively as a minimal medium (Ca2+, Cl−, Fe2+, Fe3+, H+, H2O,
K+, Na+, NH4 SO4

2−, Pi) for which the boundaries of uptake and ex-
port fluxes were set to −1000 and 1000 mmol·gDW−1·h−1. Ad-
ditionally, lower bounds of EX_ribflv(e) were set to −1000 – to simu-
late riboflavin addition to the minimal medium since the Recon
2.2_flavo model depended on this vitamin to synthesize FAD. For each
of the specified carbon sources, the uptake flux was set to
−1 mmol·gDW−1·h−1 forcing the model to consume it at a fixed rate.
The demand reaction for ATP, ‘DM_atp_c_’ is used to account for cellular
maintenance requirements. It was used as an objective function for flux
maximization. Under aerobic conditions the possible intake flux of
oxygen was set to −1000 mmol·gDW−1·h−1 by changing the lower
bound of the corresponding exchange reaction, EX_o2(e).

2.7. Analysis of biomarkers for inborn errors of metabolism

Inborn errors of metabolism and known genes mutated in these
IEMs were retrieved from the OMIM database. GPR associations in the
model were used to identify affected reactions and they were subse-
quently removed from the model for the simulation of the corre-
sponding disease. Maximum ATP yield was calculated for a set of
carbon sources linked to known biomarkers, as described above.
Changes in the maximum ATP yields between the diseased model and
its healthy counterpart were compared to reported biomarkers [32].

Secondly, a method described originally by Shlomi et al. [24] and
modified by Sahoo et al. [17] was used to screen for potential bio-
markers. In short, the min and max values of each exchange reaction
were calculated in disease or healthy models. In the disease models a
gene knock-out was simulated by simultaneously blocking all reactions
associated with the tested gene. In the healthy models all reactions
associated with the tested gene were simultaneously activated. Min-

max intervals were then compared to test if the flux range would yield a
higher or lower exchange reaction flux, and as the result, would lead to
increased or decreased concentrations of a studied metabolite in the
bodily fluids (blood/plasma, urine).

A list of tested single enzyme deficiencies together with their re-
spective objective functions and biomarkers has been provided (See
Table S3 [Known biomarkers & diseases]).

2.8. Software

Model curation and all simulations were carried out with MatLab
R2015a (MathWorks Inc., Natick, MA) using the Gurobi5.6 (Gurobi
Optimization Inc., Houston TX) linear programming solver and the COBRA
toolbox [33]. For FVA analysis GLPK 4.63 (GNU Linear Programming Kit,
https://www.gnu.org/software/glpk/) solver was used. Data analysis was
performed using MatLab R2015a. All supplementary files, models, and
scripts can be found at https://github.com/WegrzynAB/Papers.

3. Results

3.1. A new representation of flavoprotein biochemistry

We started by manually curating the existing Recon 2.2 model to
improve the simulation of flavin dependent reactions. We assembled a
list of 111 flavoproteins (Table S1 [Flavoproteins]). The genes encoding
62 of these proteins were already present in Recon 2.2 and they were
associated with 378 reactions. First, the gene-protein-reaction (GPR)
associations in the selected reactions were examined. Wrongly anno-
tated genes were corrected. In the mitochondrial and peroxisomal beta-
oxidation pathways, many GPR associations were extended to account
for complete oxidation of fatty acids. Secondly, the directionalities of
fatty-acyl CoA ligases, reactions participating in the mitochondrial
transport of fatty-acid-carnitines, and fatty acid synthesis reactions
were checked, and inconsistencies were corrected. Lastly, missing re-
actions in unsaturated fatty acid synthesis and peroxisomal beta-oxi-
dation were added. Altogether 548 reactions were corrected, 31 were
added, and 49 reactions were deleted from the model (Table S2). In the
original Recon 2.2 model FAD was represented as a free metabolite
similar to NADH (Fig. 1A, top). This approach artificially generated a
pool of free FAD, while physiologically FAD is a part of an active ho-
loenzyme rather than a free metabolite. Thus, systemic effects of fla-
voprotein deficiencies could not be properly accounted for. We have
changed the model to more precisely describe the cofactor dependency
of these reactions. To this end, FAD has first been removed as a free
metabolite and replaced by the final electron acceptor in each reaction,
such as ubiquinone-10 or ETF (Fig. 1A, middle). This approach allows a
more accurate representation of the electron channelling in the
pathway, which is clearly visible in the scheme describing how fatty-
acid oxidation links to oxidative phosphorylation (Fig. 1C). At this
stage, 157 reactions were curated and 33 reactions were deleted. This
curated model version was called Recon 2.2_FAD.

Removing FAD and FMN as free metabolites from all redox reac-
tions, however, made these reactions completely independent from
flavin biosynthesis. To preserve a link between riboflavin dependency
and flavoprotein-related reactions, an artificial metabolite called
‘cofactor_FAD’ was generated from the newly synthesized FAD
(Recon2.2_flavo model). This cofactor was added as an additional
substrate to all flavoprotein-dependent reactions, to be consumed with
a low stoichiometric coefficient (Fig. 1A, bottom). The latter was esti-
mated based on available data on protein half-lives [29] and catalytic
turnover rates (kcat) [30] in humans. Thus, it can be seen as a flavin-
maintenance requirement. In the resulting model version all flavopro-
tein-dependent reactions are strictly dependent on the presence of ri-
boflavin and flavin biosynthesis, yet without introducing the artificial
degrees of freedom of the Recon 2.2 model. We have additionally tested
if the chosen stoichiometric coefficient did not overly constrain the
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model. To this end we tested the sensitivity of the flavoprotein-related
reaction flux through the model to changes in the cofactor stoichio-
metric coefficient. Only a minor effect on the flux was observed (Fig.
S4B). In total 420 reactions were linked to the FAD biosynthesis by
cofactor consumption.

3.2. Metabolic role of the flavoproteome

We mapped the known human flavoproteins (Table S1) to the ori-
ginal and the updated versions of Recon 2.2. For each flavoprotein we

identified all the associated metabolic reaction(s). Also reactions for
which a non-flavoprotein isoenzyme was present, were included in the
mapping. We found that the majority (270 out of 381 for Recon 2.2 and
263 out of 401 for Recon 2.2_FAD/flavo) of the reactions associated
with flavoproteins were localized in peroxisomes and mitochondria
(Fig. S1A). Out of the 65 flavoprotein genes included in the Recon 2.2
38 are linked to known human diseases (Table S1 [Diseases]).
Moreover, our curation added seven additional disease-linked flavo-
proteins genes (NOS1, MTRR, NQO2, L2HGDH, IYD1, D2HGDH and
FOXRED1) to the Recon 2.2 gene set (Fig. 2A). In total 73% of the
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disease-linked flavoproteins were mapped onto Recon 2.2_FAD/flavo,
while 69% of them were mapped on the Recon 2.2 model. Among the
disease-linked flavoproteins that were not included in our models are
those of non-metabolic function: a chaperone (ALR), a pro-apoptotic
factor (AIFM1), a histone demethylase (KDM1A), and a proton channel
(NOX1).

We then investigated the reliance of metabolic subsystems, as de-
fined in the original Recon 2.2 model, on flavoproteins. Vitamin B6
metabolism, cytochrome metabolism, butanoate metabolism, D-alanine
metabolism, and limonene and pinene detoxyfication were most
heavily affected with more than 30% of their reactions depending on
flavoproteins (Fig. 2B). Additionally, oxidative phosphorylation was
also affected with 2 out of 8 of its reactions linked to the flavoproteins
(Fig. S1B).

3.3. The improved model correctly simulates MADD

To simulate MADD, we deleted the ETFDH gene (HGNC:3483;
Fig. 1B and C) from all model versions and calculated the steady-state
solution space. Indeed, the flux through the ETF dehydrogenase reac-
tion was completely blocked in all three models, confirming that the
deletion was effective (Fig. S2A). The biomass production flux re-
mained largely unchanged in all the models (Fig. S2B). This is not
surprising, since the simulations were performed with carbon and en-
ergy sources other than fatty acids available, such as sugars and amino
acids. As we had suspected, deletion of ETFDH did not dramatically
reduce the fatty-acid oxidation flux in the original Recon2.2 model
(Fig. 3).

This can be explained from the fact that in Recon 2.2 the FADH2

produced by the acyl-CoA dehydrogenases in the fatty-acid beta-oxi-
dation is not strictly coupled to ETF dehydrogenase, but can be reox-
idized by other reactions utilising FADH2 (Fig. 1B). This prediction is
clearly incorrect, since mitochondrial fatty-acid oxidation is severely
impaired in MADD patients [13]. In contrast, deletion of ETFDH caused
a total block of the mitochondrial fatty-acid oxidation in Recon2.2_FAD
and Recon2.2_flavo (Fig. 3), in agreement with the disease phenotype.
Since we had, as part of the curation, removed the incorrect FAD re-
action from the model, we checked that this could not explain our re-
sults. Indeed, the results were not altered by addition of free FAD up-
take reaction back to the Recon2.2_FAD model, neither by only deleting
free FAD uptake reaction from Recon 2.2 model (Fig. S2C).

Subsequently we compared the maximum stoichiometric ATP yield
per unit of consumed carbon source in aerobic conditions between the
models. If a substrate was incompletely metabolised, this caused a de-
crease of the maximum ATP yield. If the substrate could not be meta-
bolised to produce ATP, then the obtained yield was zero. In contrast to
the original model, Recon2.2_FAD and Recon2.2_flavo predicted that
ETFDH deletion eliminated any ATP yield from fatty-acids with chain
lengths C4 through C14, which are primarily substrates of mFAO in the
models. Longer fatty acids (C16 to C26) can be partially oxidized by
peroxisomal beta-oxidation and therefore still yield some ATP if ETFDH
is deficient, also in Recon2.2_FAD and Recon2.2_flavo (Table 1). Instead
of the mitochondrial acyl-CoA dehydrogenase, the peroxisomal
pathway contains a hydrogen peroxide producing acyl-CoA oxidase,
which is not dependent on the ETF system as electron acceptor. Gly-
colysis and the TCA cycle remained unchanged, since they do not de-
pend on ETFDH either. Accordingly, aerobic sugar metabolism was not
affected by ETFDH deficiency in any of the models (Table 1).

3.4. FAD deficiency

Subsequently, we studied the systemic effects of riboflavin defi-
ciency caused by reduced FMN and FAD synthesis from their precursor
riboflavin (vitamin B2). Mutations of FAD synthase (encoded by the
FLAD1 gene) are known to exist. Some mutants maintain residual cat-
alytic activity and are therefore responsive to dietary riboflavin, while

others are completely non-responsive to riboflavin supplementation
[34]. FLAD1 mutations cause MADD-like symptoms in patients, with
elevated levels of multiple acylcarnitines and organic acids in blood
and/or urine [34].

We repeated the calculation of ATP yields per unit of carbon source
with and without riboflavin. In Recon2.2_FAD model, FAD had been
removed as an electron acceptor from all flavoprotein-dependent re-
actions, thus completely uncoupling these reactions from FAD bio-
synthesis (Fig. 1A). Accordingly, the ATP yield of none of the substrates
was affected by the absence of riboflavin in this model (Table 1). In
contrast, in Recon 2.2_flavo all flavoprotein-dependent reactions are
strictly dependent on the presence of flavins (Fig. 1A). Therefore, if FAD
and FMN are depleted due to riboflavin deficiency, none of the flavo-
protein-dependent reactions can run anymore. Consistently, we found
that in the Recon 2.2_flavo model the mitochondrial beta-oxidation and
the TCA cycle were fully blocked in the absence of riboflavin. There-
fore, ATP could only be generated in glycolysis, leading to only 2 ATP
per sugar molecule and no ATP was generated from any of the fatty-acid
substrates in the absence of riboflavin. We noted that the net ATP yields
of all substrates in the presence of riboflavin were lower in Recon
2.2_flavo than in Recon2.2_FAD (Table 2). The reason is that the active
FAD biosynthesis in Recon2.2_flavo requires ATP.

Finally, we analysed the response of the models to a gradual lim-
itation of the rate of the FAD synthase reaction (Fig. 4A). First, we
computed how the maximum flux capacity of the summed flavoprotein-
catalysed reactions responded to a limitation of FAD biosynthesis. The
Recon 2.2_FAD model remained unresponsive to the rate of FAD bio-
synthesis (Fig. 4B). This is not surprising, since in Recon 2.2_FAD, the
final electron acceptor replaced FAD in each reaction; hence, all fla-
voproteins were artificially independent of the FAD. Recon 2.2_flavo
instead made the flavoprotein-catalysed reactions dependent on a low
rate of biosynthesis (Fig. 1A). This resulted in a linear decrease of the
flavoproteome-dependent flux capacity in Recon2.2_flavo, when the
FAD synthesis flux was below 0.05 mmol×gDW−1 × h−1.

Subsequently, we calculated how the shape of the actual steady-
state solution space for the FAD-related reactions changed due to the
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Fig. 3. New models can correctly simulate the physiology of MADD. Overall
flux through the mFAO (sum of fluxes through the mFAO reactions). Only in the
new models Recon2.2_FAD and Recon2.2_flavo full block of the mitochondrial
fatty-acid oxidation flux was observed upon deletion of ETFDH. Flux values
were obtained by sampling the solution space using the optGpSampler (10,000
points explored, 2000 steps). Boxes span 25th to 75th percentiles, lines show
medians, whiskers indicate minimum and maximum values.
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cofactor_FAD limitation. The overall average steady-state flux (Fig. 4C)
was lower than its maximum capacity (Fig. 4B). The responsiveness of
the Recon 2.2_flavo model was preserved but since the pathways
worked below their maximum capacity, the cofactor_FAD limitation
started to play a role only when the cofactor availability was close to
zero (Fig. 4C).

3.5. Prediction of biomarkers

Genome-scale metabolic-models have been shown to assist in bio-
marker prediction. The authors of the original Recon 2.04 model [23],
used the method by Sahoo et al. [17] to predict biomarkers based on
altered maximum uptake and secretion rates of metabolites. We tested
the same method for biomarker prediction in Recon 2.04, Recon2.2 and
Recon2.2_flavo models against the golden standard set of known bio-
markers [17]. Prediction accuracies (correctly predicted biomarkers
compared to total predicted biomarkers), and their p-values, calculated
as reported in Thiele et al. [23] were similar in all the models (Table 2,
GS) and in agreement with the previously published 77% accuracy in

Recon 2 [23]. With respect to True Positive Rate (the percentage of
known biomarkers that was correctly predicted) our Recon 2.2_flavo
model scored highest with 33%, while Recon 2.2 and Recon 2.04 had
31% and 26% TPR respectively (Table 2). This shows that we could
recover more biomarkers without a loss in accuracy. Furthermore, we
used the same method to study flavoproteome-related diseases and
their associated biomarkers (Table S3 [Known biomarkers&diseases])
in our Recon 2.2_flavo model. For this subset of diseases TPR was only
24%, coupled with lower accuracy of 59%. The p-value of the predic-
tion accuracy was higher for this subset of diseases (Table 2, FD). The
high p-value can be linked to the relatively small number of diseases in
our FD set and therefore a higher chance of obtaining the same values
distribution by chance. The low TPR values for all tested models reflect
the FVA-based method's inability to predict many known biomarkers
for important flavoproteome-related diseases, such as those in fatty-
acid metabolism and oxidative phosphorylation (Table S3 [FVA]). For
instance, typical biomarkers of fatty-acid oxidation defects, acyl car-
nitines were not altered in disease simulations.

To circumvent this caveat of the classical method, we decided to

Table 1
Comparison of maximum ATP yields in a medium without riboflavin (B2 -), with riboflavin (B2 +), and in a model with ETFDH knocked out in the presence of B2
(MADD). Minimal medium: Ca2+, Cl−, Fe2+, Fe3+, H+, H2O, K+, Na+, NH4 SO4

2−, Pi, plus the indicated carbon and energy source. Note that this medium is
insufficient for cell growth. ATP yield was expressed stoichiometrically as the net rate of ATP production (in steady-state equal to the rate of the ATP demand
reaction) divided by the rate of carbon-source consumption in mmol·g·DW−1·h−1. If no ATP was produced at all, the yield was set to zero, irrespective of whether the
carbon source was consumed, to avoid division by zero. We verified that the precise value of the stoichiometric coefficient for FAD consumption in Recon2.2_flavo
did not affect the maximum ATP yield from single carbon sources at the accuracy presented here.

Carbon source ATP yield

Theoreticala Recon2.2 Recon2.2_FAD Recon2.2_flavo

B2− B2+ MADD B2− B2+ MADD B2− B2+ MADD

Glucose 31 32 32 32 32 32 32 2 32 32
Fructose 31 32 32 32 32 32 32 2 32 32
C4:0 21.5 22 22 22 22 22 0 0 22 0
C6:0 35.25 36 36 36 36 36 0 0 36 0
C8:0 49 50 50 50 50 50 0 0 50 0
C10:0 62.75 64 64 64 64 64 0 0 63.99 0
C12:0 76.5 82.5 82.5 82.5 78 78 0 0 77.99 0
C14:0 90.25 92 92 92 92.5 92.5 0 0 92.49 0
C16:0 104 106.75 106.75 106.75 108.25 108.25 2.25 0 108.24 0
C18:0 117.75 120 120 120 121.5 121.5 12.75 0 121.49 12.75
C20:0 131.5 134 134 134 135.5 135.5 25 0 135.49 25
C22:0 145.25 147.25 147.25 147.25 147 147 38 0 146.99 38
C24:0 159 160.5 160.5 160.5 159.25 159.25 50.25 0 159.24 50.25
C26:0 172.75 170.75 170.75 170.75 169.5 169.5 61.75 0 169.49 61.75

Cn:0, a saturated fatty acid of length n.
a Theoretical yields as calculated by Swainston et al. after Salway [48].

Table 2
Comparison of the prediction accuracy of Recon 2.04, Recon 2.2 and Recon 2.2_flavo against the gold standard (GS) [17] or against our compendium of flavoprotein-
related diseases (FD).

Recon2 Recon2.2 Recon2.2_flavo Recon2.2 Recon2.2_flavo

GS GS GS FD FD

Correct prediction 76 88 94 11 16
Wrong prediction - wrong directiona 23 29 30 3 11
Accuracyb 77% 75% 76% 78% 59%
p value
(Fischer test)

7.93 × 10−4 1.2 × 10−2 2.6 × 10−3 0.16 0.12

Wrong prediction –
no changec

187 169 162 53 39

True positive rated 26% 31% 33% 17% 24%

a Wrong direction – where the model predicted the metabolite to change in the opposite direction from the experimental values.
b Prediction accuracy measured as a ratio of correct positive predictions to sum of all predicted biomarkers (correct and wrong direction) as reported in Thiele

et al. [23].
c No change - where model predicted no change in the metabolite, despite it being known as a biomarker.
d True Positive Rate measured as a ratio of correct predictions to the sum of all biomarkers in the database.
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Fig. 4. Coupling of FAD-related reactions to FAD-biosynthesis enabled the new model to respond to low cofactor availability. A. Schematic representation of FAD
biosynthesis, RFK – riboflavin kinase, FLAD1 flavin adenine dinucleotide synthetase 1. B. Average flux through the FAD-related reactions as a function of FAD
biosynthesis flux. Maximum capacity was calculated by maximizing the objective function – a sum of fluxes through all the FAD-related reactions. C. Average and SD
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2.2, second (grey): Recon 2.2_FAD, third (black): Recon
2.2_flavo. Ratios between ATP yields in disease model vs.
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(1), dark blue – reaction is blocked in disease model (0)). Red
frames - metabolites known to be affected, elevated in blood
and/or plasma, in patients. See Supplementary Table 3
[Known biomarkers&diseases] for details about the IEM's and
the reactions used as biomarkers. ACADL – Acyl-CoA dehy-
drogenase very long-chain deficiency (MIM:201475);
ACADSB - Short/branched-chain acyl-CoA dehydrogenase
deficiency (MIM:610006); ACOX1 – Adrenoleukodystrophy
(MIM:264470); DLD – Dihydrolipoamide dehydrogenase de-
ficiency (MIM:246900); SARDH– sarcosinemia (OMIM entry
MIM:268900); DPYD - Dihydropyrimidine dehydrogenase
deficiency (MIM:274270); ETFA - Glutaric aciduria IIA
(MIM:231680); ETFB - Glutaric aciduria IIB (MIM:231680);
ETFDH - Glutaric aciduria IIC(MIM:231680); GCDH– glutaryl-
CoA dehydrogenase deficiency (MIM:231670); IVD–
Isovaleric academia (MIM:243500); NDUFV1 - Leigh syn-
drome (MIM:256000); PRODH - Hyperprolinemia 1
(MIM:239500); SDHA - Mitochondrial complex II deficiency
(MIM:252011); ACAD8 - Isobutyryl-CoA dehydrogenase de-
ficiency (MIM:611283); FOXRED1– mitochondrial complex I
deficiency (MIM: 252010);
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study the maximum ATP yields for a selected range of carbon sources
that are also biomarkers in human diseases, modifying the method of
Swainston et al. [3]. This method allows to study the capacity to me-
tabolise a carbon source under defined model boundaries and compare
the outcome from the disease model and control model. We selected 16
diseases which are known to affect core metabolism and for which we
expected changes in the net ATP production from certain carbon
sources. In total for 11 out of 16 diseases studied, the known bio-
markers, marked in red boxes in Fig. 5, could be linked to the metabolic
changes seen in the Recon 2.2_flavo model. For FOXRED1, PRODH and
ETFDH deficiencies the Recon 2.2 model did not predict any metabolic
changes while our flavoproteome-curated models showed reduced ATP
yield from carbon sources known as biomarkers for these diseases.
Moreover, our method revealed disrupted amino acid metabolism in
ACADSB, DLD, GCDH, IVD, and ACAD8 deficiencies, which may point
to new possible biomarker profiles. In all MADD variants (ETFDH, ETFA
or ETFB deficiency) a full block of mitochondrial FAO capacity was seen
only in our improved models. Long-chain fatty acids (above C20:0)
were still partially metabolised as peroxisomal FAO remained func-
tional. In contrast, and as expected, when simulating deficiency of the
peroxisomal enzyme ACOX1, only the peroxisomal FAO was impaired.

For many diseases, metabolic biomarkers are not known, or the
known biomarkers fail to differentiate between patients with different
severity of the disease. Our models predicted metabolic changes at the
level of maximum ATP yield per carbon source in all tested flavin-re-
lated diseases. Clear disease-specific patterns are seen, which allow to
distinguish between different diseases. Most of the changes were
identified in the amino acids metabolism. Those compounds are routi-
nely used in the newborn screening test; however, they have not yet
been related to these diseases.

3.6. Compatibility with Recon 3D

During the writing of this manuscript Recon 3D came out [4], an-
other major update of the human metabolic reconstruction that had
been developed in parallel to Recon 2.2 [3]. The number of reactions
was increased by 74% to 13,543, and the number of metabolites by
56% to 4140 in Recon 3D compared to Recon 2.2. Furthermore, the
representation of enzymes involved in oxidative phosphorylation
system has been corrected according to the fix made in Recon 2.2 [3].
However, the change of the gene mapping from GeneID to HGNC
standard proposed in Recon 2.2 was not applied in Recon 3D. We tested
the applicability of our curation to Recon 3D, in order to ensure that it
can be readily used with different model versions. Similar to previous
model versions, Recon 3D treats FAD as a free cofactor. Our method of
replacing FAD with the final electron acceptor was easily applied to
Recon 3D (Table S4). The impact of FAD cofactor limitation was similar
as in the Recon2.2-derived models (Fig. S4A). Additionally, we tested
how Recon 3D responded to simulation of MADD. As seen before, there
was a significant remaining total flux through the mFAO reactions in
the Recon 3D model with ETFDH deficiency, while in the flavopro-
teome-curated models the mFAO flux was correctly blocked by MADD
(Fig. S5A). We verified that the deletion was effective (Fig. S5B), and
that the biomass production flux remained largely unchanged in all the
models (Fig. S5C).

Since Recon 3D has a much larger metabolic coverage than its
predecessors, we tested its capability of detecting biomarkers. However,
the model showed no substantial change in the accuracy (74%) of
biomarker predictions, while a significant decrease in the TPR value
(10%) was observed (Table S5).

4. Discussion

We present an updated version of Recon 2.2 that was curated and
extended to correctly represent the flavoprotein-catalysed reactions.
Furthermore, we introduced a new method to study the role of enzyme-

bound cofactors, such as FAD. Curating the representation of FAD in
Recon 2.2 allowed to correctly simulate aberrant metabolic behaviour
upon single enzyme deficiencies. Since the predecessor of Recon 2, the
metabolic reconstruction Recon 1 [35], was published, many groups
have extended and improved model versions. They used it as a basis for
tissue specific models [5,23,36–39], studied the effects of diet [37], and
predicted biomarkers for enzymopathies [17,23,24,37]. Work by
Smallbone [40] and Swainston et al. [3] focused on a full mass and
charge balance and on simulations of energy metabolism. However,
despite their crucial role in metabolism, none of the curative efforts in
human reconstructions, including the most recent Recon 3D [4], fo-
cused on cofactors, not even organic cofactors that are (in part) syn-
thesized in the cell. Metabolism related to other apoenzymes requiring
other bound cofactors for their activity (metals, iron‑sulfur clusters, or
heme) would potentially profit from the same solution to further en-
hance biomarker research in genome-scale models.

Flavoprotein-linked diseases can lead to very strong metabolic re-
sponses in patients, such as episodes of severe metabolic derangement,
hypoglycaemia, metabolic acidosis, sarcosinemia and cardiovascular
failure in MADD patients. Acylcarnitines, as well as sarcosine are
known to be changed in the plasma and urine of MADD patients
[12–14]. The original Recon 2.2 model could not predict any of the
known biomarkers and no systemic effects of MADD were seen in the
simulations, because the model incorrectly comprised alternative routes
to reoxidize FADH2. In our new model, in which the electrons are
transferred to the final electron acceptor of each flavoprotein-catalysed
reaction rather than to a soluble FAD pool, and in which flavoprotein-
dependent reactions are dependent on flavin synthesis, both systemic
effects and metabolic changes linked to biomarkers were predicted
correctly. This is seen clearly by a full block of mFAO capacity while
peroxisomal FAO remained functional in MADD. In contrast, when si-
mulating deficiency of the peroxisomal enzyme ACOX1, only the per-
oxisomal FAO was impaired, leading to reduced metabolism of long-
chain fatty acid substrates (Fig. 5). This extension is relevant for a
correct description of mitochondrial fatty-acid oxidation defects, which
can be partly rescued by peroxisomes [41].

In total, we tested metabolic changes for 45 diseases, out of which
31 are associated with biochemical biomarkers. A caveat of the existing
methods for biomarker predictions is that they only include the meta-
bolites that are known as biomarkers. The models, however predict
many more metabolites with altered production or consumption rates.
These are potential novel biomarkers. Since they have most often not
been explored experimentally, however, we do not know if the pre-
dictions are correct. If these would be tested, we would get a more
complete insight into the accuracy of our predictions. Therefore, we
propose usage of true positive rates for more correct description of
model performance. Using Recon 2, Recon 2.2, and Recon 2.2_flavo, we
predicted biomarkers for diseases included in the compendium of in-
born errors of metabolism published by Sahoo et al. [17] with True
Positive Rates of 26%, 31% and 33% respectively, while accuracies, as
calculated in Thiele et al. [23], remained similar to previously pub-
lished 77% (77%, 75% and 76% respectively). A lower (17% and 24%)
TPR was reported with Recon2.2 and Recon2.2_flavo respectively for
biomarkers of the flavoprotein-related diseases subset, with accuracies
of 78% and 59% respectively. However more detailed studies of me-
tabolism, using ATP production yield estimation performed for 16 fla-
voprotein-related diseases linked to the core metabolism, showed pro-
mising results for both our models. This method allowed us to test if
alternative metabolic pathways exists that allow ATP production from
the single carbon sources in various IEMs. The metabolic changes
identified with this method were in line with clinical data, including
impaired FAO and sarcosine degradation in all MADD cases, no proline
degradation in PRODH deficiency and blocked very-long chain FAO in
ACOX1 deficiency [32]. Interestingly, ATP-generating breakdown of
amino acids has been predicted to be affected in several diseases ana-
lysed. Valine breakdown has been predicted by our model to be
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significantly impaired in isobutyryl-CoA dehydrogenase deficiency
(ACAD8) which is in line with the literature knowledge about this
disease [42]. Furthermore, our models predict a decreased ATP yield
from breakdown of several amino acids, and a general impairment of
energy metabolism in SDHA deficiency. This extremely rare disease is
indeed known to affect energy metabolism. However, due to its low
prevalence, no specific biomarkers are known [43]. Our models predict
valine, leucine, threonine, and methionine degradation pathways to be
most severely affected in this disease. FAD-containing enzymes are
crucial in both fatty acid oxidation and amino acid metabolism as was
highlighted in flavoproteome mapping (Figs. 2B and S1B). Consistently,
their impact on biomarkers became more pronounced after our curation
(Fig. 5). For all 16 tested flavoprotein–related diseases we predicted
new metabolic changes that may lead to new biomarker patterns. Our
data suggests that these diseases might have multiple identifiable bio-
markers. Using a multimarker approach or specific biomarkers ratios,
which is common in cardiovascular risk assessment [44], instead of
only single compounds, we could better differentiate between different
diseases and potentially also between patients with different severity of
the defects which has been proven recently for Zellweger syndrome
patients differentiation [19]. The latter was not pursued here, since we
only studied complete enzyme deficiencies.

Limitations in accuracy and True Positive Rates of biomarker pre-
dictions with existing methods and models, may have different causes.
Cellular lipid profiles are very complex [19], and currently in-
completely represented in the human genome-scale models. Since many
flavoprotein-related diseases affect lipid metabolism it is likely that a
better representation of the lipid metabolism will improve the predic-
tions. Additionally, our new method of cofactor implementation could
be extended to account for all different cofactors required in human
metabolism. Future improvement of our method may involve a differ-
entiation in stoichiometric coefficients of flavin usage per enzyme de-
pending on the specific protein half-life. This would allow the in-
corporation of differences in efficiency of flavin utilization for various
flavin-dependent enzymes, thereby increasing the accuracy of meta-
bolic predictions. In addition, one should remain critical on our as-
sumption that all FAD or FMN is tightly bound as a prosthetic group.
While some flavoproteins have FAD covalently bound, most have a non-
covalent, yet tight-binding FAD or FMN. Some flavoproteins, however,
may have a relatively low FAD binding affinity. This holds for instance
for bacterial two-component monooxygenases in which reduced FAD
must be translocated from one protein domain to another [45]. Low
FAD affinity of cancer-associated variants of NAD(P)H quinone oxi-
doreductase 1 leads to low protein stability [46]. We are not aware of
low-affinity flavoproteins that depend on free diffusion of reduced FAD.

We noted that the currently most extensive reconstruction of human
metabolism, Recon 3D, showed a significant decline in the number of
correctly predicted biomarkers compared to its predecessors (Table S5).
By extending the coverage of the metabolic network, alternative path-
ways have been created. One may hypothesise that their physiological
relevance is smaller in reality than in the model, e.g. due to kinetics,
spatial separation, or thermodynamics. This limitation can possibly be
overcome by using tissue-specific models with an appropriate set of
boundaries for the exchange reactions, as has been proposed recently
by Thiele et al. [47]. Finally, it is quite likely that some biomarkers will
only be predicted correctly when kinetic and thermodynamic con-
straints are included.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbadis.2018.10.021.
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