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Chapter 2

The BSD conjecture for an
elliptic curve over Q

( 4
√
5
)

Abstract. In this chapter we show that the Birch and Swinnerton-Dyer
conjecture for a certain elliptic curve over Q

(
4
√

5
)

is equivalent to the same
conjecture for a certain pair of hyperelliptic curves of genus 2 over Q. We
numerically verify the conjecture for these hyperelliptic curves. Moreover,
we explain the methods used to find this example, which turned out to be a
bit more subtle than expected.

2.1 Introduction

The Birch and Swinnerton-Dyer conjecture ([BiSw65]) has been generalised by Tate
([Tate66]) to abelian varieties of higher dimension and over general number fields.

Conjecture 2.1.1 (BSD, [Gros86, Conj. 2.10, p. 224]). Let A/K be an abelian variety
of dimension d and algebraic rank r over a number field K of discriminant ∆. Let L(s)
be its L-function, A∨ its dual, R its regulator, X its Tate-Shafarevich group and Ω the
product of its real and complex periods. For each prime p of OK , let cp be the Tamagawa
number of A at p. Then X is finite, L(s) admits an analytic continuation to C having
a zero of order r at s = 1, and

lim
s→1

(s− 1)−rL(s) =
Ω ·R · |X| ·

∏
p cp

|A(K)tors| · |A∨(K)tors| · |∆|d/2
.

In 1989, Kolyvagin ([Koly89, Koly91]) proved equality of the analytic and algebraic rank
for modular elliptic curves over Q of analytic rank at most 1. After the proof of the
modularity theorem ([BCDT01]), this part of the conjecture is now known for all elliptic
curves over Q of analytic rank at most 1.

27
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For elliptic curves with complex multiplication more is known. In 1991, Rubin ([Rub91])
proved the correctness of the p-part of BSD for elliptic curves over an imaginary quadratic
field K with complex multiplication by K, analytic rank equal to 0, and p coprime to
|O∗K |.

Originally, the Birch and Swinnerton-Dyer conjecture has been conceived based on nu-
merical calculations with elliptic curves. In Chapter 1, we numerically verified the
conjecture for hundreds of hyperelliptic curves of genus 2 and 3 over Q, extending the
work of Flynn, Leprévost, Schaefer, Stein, Stoll and Wetherell ([FLSSSW01]), who nu-
merically verified BSD for 32 modular hyperelliptic curves of genus 2 over Q, using
modularity.

This verification consists of two parts. First, we check that the analytic rank (established
numerically) and the algebraic rank are equal. Then we numerically compute all terms
in the BSD formula except for |X| (to more than 20 digits precision), and by rearranging
the formula we deduce a predicted value for |X|. This will a priori be some real number,
but if the BSD conjecture is true then it should in fact be the square of a positive
integer, cf. earlier results of Poonen and Stoll ([PoSt99]). So if our conjectural value of
|X| is indeed the square of a positive integer to high precision, then this provides strong
numerical evidence for the conjecture.

After finishing this verification, a natural question that arose was if the numerical ver-
ification for genus 2 curves over Q, could provide us with examples of elliptic curves
E over quadratic number fields for which BSD numerically seems to hold. The Weil
restriction of E to Q is an abelian variety of dimension 2 over Q and might have the
chance of being the Jacobian of a genus 2 curve over Q. As the Jacobi locus is dense in
the moduli space, one might expect this to happen very often. This was not the case.
While trying many examples, all seemed to fail.

However, this Weil restriction becomes a product of two elliptic curves, after base change.
The product of two elliptic curves, taken with the associated product polarisation, does
not lie in the Jacobi locus. The best we could hope for is the existence of another
polarisation, which makes it isomorphic (as polarised abelian variety) to the Jacobian
of a curve of genus 2. This is actually only possible in a few special cases. By trying
other polarisations in these special cases, we found an example of an elliptic curve over
Q(
√

5), whose Weil restriction is isogenous to the Jacobian of a curve of genus 2 over Q.
However, the isogeny was only defined over Q( 8

√
5, i). We applied some reduction steps

to reduce the size of this field and arrive at the following theorem

Theorem 2.1.2. Let E over Q
(

4
√

5
)

be the elliptic curve given by

y2 = x3 +
4
√

5 · x2 −
(

5 + 3
√

5
)
· x+

4
√

5
(

5 +
√

5
)
.

Let H and H ′ over Q be the hyperelliptic curves given by y2 = x5 − x3 + 1
5 · x, and

y2 = x5 − 5 · x3 + 5 · x, respectively. Then the generalised Birch and Swinnerton-Dyer
conjecture holds for E over Q

(
4
√

5
)

if and only if it holds for the Jacobians JacH and
JacH ′ over Q.

Finally, because of this reduction of the size of the field, we were able to numerically
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verify the BSD conjecture for the mentioned hyperelliptic curves.

We could also phrase the problem we solved as a moduli problem. For fixed N , we
consider the spaceM of quintuples (E1, E2, A, φ, ρ), where E1 and E2 are elliptic curves,
(A, φ) is a principally polarised abelian surface, and ρ : E1 × E2 → A is an isogeny of
degree N . If ι : M → M is the involution that swaps E1 and E2, then our problem
is the finding of rational points of M/ι, for which (A, φ) is the Jacobian of a smooth
genus-2 curve with its natural principal polarisation.

This moduli problem (or variations thereof) has been studied extensively by others. This
started with Hayashida and Nishi in [HaNi65]. More recently, there is work of Rodriguez-
Villegas ([Rodr00]), Lange ([Lan06]), and Kani ([Kani14], [Kani16]). However, as far as
we are aware, none of these results gives a way to control the size of the field of definition
for the isogeny ρ, which is needed for our verification of the BSD conjecture.

The organisation of this chapter is as follows. In the first section, the final results will be
shown, the equivalence of BSD for a certain elliptic curve over a quartic field and BSD
for a certain pair of hyperelliptic curves of genus 2 over Q. In the second section, the
methods used to find this example will be demonstrated. First we study which elliptic
curves could have the potential to become isogenous to the Jacobian of a genus 2 curve
after Weil restriction. Then we explain how the required isogenies, which are very easy
to find analytically, were algebraised. Finally, we describe some steps that had to be
taken to reduce the size of the number field over which these maps are defined, which
was actually necessary to be able to complete the verification.

The author wishes to thank his supervisors David Holmes and Fabien Pazuki. Moreover
Maarten Derickx is thanked for useful discussions that led to improvements of this
chapter.

2.2 Verification for an elliptic curve over Q
(

4
√
5
)

Throughout this section, let E be the elliptic curve over Q
(

4
√

5
)

given by the Weierstraß
equation

y2 = x3 +
4
√

5 · x2 −
(

5 + 3
√

5
)
· x+

4
√

5
(

5 +
√

5
)
.

Even though it has j-invariant 282880
√

5+632000, it is not the base change of an elliptic
curve over Q(

√
5 ), which can be verified using the isomorphism criteria from [Silv09,

Sect. III.1, p. 42–51]. Even though the following lemma is not strictly necessary for the
proof, it does turn out to be an important property of E.

Lemma 2.2.1. The elliptic curve E geometrically has complex multiplication by Z[
√
−5].

Proof. The Hilbert class polynomial for discriminant −20 is

x2 − 1264000 · x− 681472000,
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see for example [BLP16, Table 2, p. 400]. Its zeros are 632000 ± 282880
√

5. The j-
invariant for E is 632000 + 282880

√
5, which proves that E geometrically has complex

multiplication by Z[
√
−5].

Let H be the hyperelliptic curve of genus 2 over Q given by the Weierstraß equation
y2 = x5 − x3 + 1

5 · x. Let H ′ : y2 = x5 − 5 · x3 + 5 · x over Q be the quadratic twist of H

over Q(
√

5 ).

The following propositions will be used to prove Theorem 2.1.2.

Proposition 2.2.2. Let K = Q
(

4
√

5
)

and

ϕ : HK → E : (x : y : 1) 7→ (ϕx : ϕy : 1) , with

ϕx =

√
5 · x2 − 4

√
5 · x+ 1

x
, ϕy =

− 4
√

5
3 · xy +

√
5 · y

x2

Then the map ψ : HQ(
√

5 ) →W := ResKQ(
√

5 )
E naturally induced by ϕ induces an isogeny

ν : JacHQ(
√

5 ) →W over Q(
√

5 ).

Proof. For the Weil restriction we have

WK = E × E′,

where E′ over K is the pull-back of E under the automorphism σ : 4
√

5 7→ − 4
√

5 of K
over Q(

√
5 ). Using this identification, after base change, the map ψ becomes

ψK : HK
(ϕ,ϕσ)−→ E × E′.

Suppose that the map νK induced by ψK is not an isogeny. Then the image of νK in
E × E′ is an elliptic curve F over K and we have the following diagram.

E

HK
≥2 //

ϕ,2

44

ϕσ,2

**

F //

1

77

1

''

E × E′

CC

��
E′

As the morphisms ϕ and ϕσ are of degree 2, and the morphism HK → F = ν(HK)
is of degree at least 2, the two morphisms F → E and F → E′ are of degree 1 and



2.2. Verification for an elliptic curve over Q
(

4
√
5
)

31

defined over K. Hence, E and E′ must be isomorphic over K. Even though E and E′

are isomorphic over Q
(
i, 4
√

5
)
, it is easily verified that they are not isomorphic over K.

Therefore, νK must be an isogeny and hence also ν is an isogeny.

Remark 2.2.3. The map ϕ : HK → E is the quotient of HK by the automorphism

HK → HK : x 7→ 1√
5 · x

, y 7→ −y
4
√

5
3 · x3

.

In fact, the geometric automorphism group of H is the dihedral group D4 of order 8, and
the Jacobian of any curve of genus 2 over Q whose automorphism group is non-abelian,
is isogenous to the square of an elliptic curve, over a finite extension of Q, cf. [CGLR99,
Lem. 2.4, p. 42]. Note that this result does not give control on the degree of the field
extension needed to define the isogeny.

Now let us generalise the notion of quadratic twists of elliptic curves to abelian varieties
over number fields.

Definition 2.2.4. Let A be an abelian variety over a number field K, and let K ⊂ L
be an extension of degree 2. Then the L-quadratic twist of A over L is the twist of A
corresponding to the cocycle Gal(L/K) → AutL(A) mapping the non-trivial element
σ ∈ Gal(L/K) to the automorphism −1: A→ A.

Example 2.2.5. Let E : y2 = x3 + x over Q. Then its Q(i)-quadratic twist can be
determined using the following procedure. Let G = Gal(Q(i)/Q) = 〈σ〉. Then we
consider the cocycle ρ : G→ AutQ(i)(E) mapping σ to −1.

Let R = Q(i)(x)[y]/(y2−x3−x) be the function field of E over Q(i). Then the group G
already acts on Q(i). We extend this action to R by g · x = ρ(g)(x) and g · y = ρ(g)(y)
for g ∈ G, i.e. G acts trivially on these coordinates except for σ · y = −y.

Next, we compute RG = Q(x, iy) ⊂ R, and note that RG ∼= Q(x)[y]/(−y2 − x3 − x).
Hence, the Q(

√
−1)-quadratic twist is E′ : − y2 = x3 + x, as in the classical theory.

Note that E and E′ are actually isomorphic over Q in this case. So, the quadratic twist
does not have to be non-trivial. In fact, there is a non-trivial twist of E over Q(i),
which is given by E′′ : y2 = x3 − 4x. It can be obtained by twisting using the cocycle
G→ AutQ(i)(E) mapping σ to the automorphism

EQ(i) → EQ(i) : x 7→ −x, y 7→ iy.

The following proposition is probably well-known to the experts.

Proposition 2.2.6. Let A be an abelian variety over a number field K, and let K ⊂ L
be an extension of degree 2. Then the Weil restriction W := ResLK AL of the base change
AL to K is isogenous to the product A × A′, where A′ over K is the L-quadratic twist
of A.
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Proof. Recall that HomK(T,W ) = HomL(TL, AL) for any scheme T over K. Consider
the morphism ν : A×A′ →W , given by the morphism

κ : AL ×A′L → AL : (x, y) 7→ x+ ρ(y),

where the isomorphism ρ : A′L
∼= AL comes from the twist data. Then the map

νL : AL ×A′L → AL ×AσL

is given by κ on the first component and κσ on the second component, where σ : L→ L
is the non-trivial element of Gal(L/K). Then κσ is

AL ×A′L → AσL = AL : (x, y) 7→ σ(x) + ρ(σ(y)).

As ρ(σ(y)) = −σ(ρ(y)), by definition of the L-quadratic twist, we now find that the
kernel of νL is finite and that ν is an isogeny.

Example 2.2.7. For example, for an elliptic curve E : y2 = f(x) over K, the L-
quadratic twist is the curve E′ : dy2 = f(x) over K and the isomorphism ρ is given
by E′L → EL : (x, y) 7→ (x, y/

√
d), and

νL : EL × E′L → EL × EL : (x, y) 7→ (x+ ρ(y), σ(x− ρ(y))).

The kernel of νL consists of the pairs (x, ρ−1(x)) where x ∈ E[2]. Hence, the isogeny
E × E′ →W has degree 4.

Proposition 2.2.8. Let A and B be abelian varieties over a number field K, let K ⊂ L
be a finite extension of number fields and let C be an abelian variety over L. Then

(1) BSD holds for A×B over K if and only if it holds for A and B over K;

(2) if A and B are isogenous over K, then BSD holds for A over K if and only if it
holds for B over K;

(3) BSD holds for the Weil restriction ResLK C over K if and only if it holds for C
over L;

(4) if L/K is quadratic, BSD holds for the base change AL over L if and only if it
holds for A over K and its L-quadratic twist A′ over K.

Proof. For (1) and (2), see [Tate66, p. 422]. For (3), see [Mil72]. In the case L/K
is a quadratic extension, ResLK AL is isogenous over K to A × A′, where A′/K is the
L-quadratic twist of A, cf. Prop. 2.2.6 or [Kida95, Thm., p. 53]. Now (4) follows from
(1), (2) and (3).

Proof (Theorem 2.1.2). By Proposition 2.2.8 part (4), BSD holds for JacH and JacH ′

over Q if and only if it holds for JacHQ(
√

5 ) over Q(
√

5 ). The latter is isogenous over

Q(
√

5 ) to Res
Q( 4√5 )

Q(
√

5 )
E by Proposition 2.2.2. Hence, by parts (2) and (3) of Proposition

2.2.8, BSD holds for JacHQ(
√

5 ) over Q(
√

5 ) if and only if it holds for E over Q
(

4
√

5
)
.
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Using the methods in Chapter 1, we can numerically verify that the Birch and Swinnerton-
Dyer conjecture holds for JacH and JacH ′ in the following sense. We numerically ver-
ified that the analytic and algebraic rank agree, and we computed all terms except for
|X|, with more than 20 digits precision. Then we used the conjectural formula to pre-
dict the order of X. This predicted order, |Xan|, appears to equal 1 in both cases. This
gives strong evidence for the conjecture, especially since 1 is the square of an integer,
which is to be expected according to [PoSt99].

In fact, we found the following values for the BSD-invariants:

JacH JacH ′

r 1 1
lims→1(s− 1)−rL(s) 4.54183774632835249986 4.54183774632835249986

R 4.70213971014416647713 0.94042794202883329543
Ω 1.93181743899697988452 9.65908719498489942260
cp c2 = 1, c5 = 2 c2 = 1, c5 = 2
|Jtors| 2 2
Xan 1.00000000000000000000 1.00000000000000000000

Remark 2.2.9. The values of these invariants suggest that JacH and JacH ′ are isoge-
nous; they all seem to differ by an integer multiple. Since, the numerical verification
succeeded for both curves, the author did not try to actually find an isogeny.

2.3 Methodology

In this section, I will try to answer the question how you find an elliptic curve E over a
number field K, with L ⊂ K of degree 2, such that its Weil restriction to L is isogenous
as abelian variety (without fixed polarisation) to the base change of a Jacobian of a
hyperelliptic curve of genus 2 defined over Q.

2.3.1 Which elliptic curves?

The product of two elliptic curves over a number field, E and E′, taken with the as-
sociated product polarisation, does not lie in the Jacobi locus in the moduli space of
polarised abelian varieties, cf. [Weil57, Satz 2, p. 37]. However, in some cases it might
happen that the abelian variety has another polarisation which makes it into the Jaco-
bian of a smooth curve of genus 2. Heuristically, most polarised abelian varieties lie in
the Jacobi locus, but also most polarised abelian varieties have only one polarisation,
up to multiplication by an integer. So, heuristically it is not so clear whether such E
and E′ actually exist. Hence, we should be looking for elliptic curves E and E′, such
that E × E′ contains a smooth curve of genus 2.

The work of Hayashida and Nishi, [HaNi65], contains sufficient conditions on E and E′

for this situation to arise. In particular, [HaNi65, Thm., §4, p. 14] states: if E and
E′ have complex multiplication by the principal order of the imaginary quadratic field
Q(
√
−m) and m is not 1, 3, 7 or 15, then E × E′ contains a smooth curve of genus 2.
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2.3.2 Reconstruction of the hyperelliptic curve

Assume that E over K geometrically has complex multiplication by O−m = Z[αm],
where

αm =

{√
−m if m 6≡ 3 mod 4;

1
2 (
√
−m+ 1) if m ≡ 3 mod 4.

Now consider the complexification EC and fix an embedding of O−m in C. Then
EC ∼= C/Λ, where Λ is a lattice of the form Z · 1 + Z · βγ with β and γ 6= 0 gen-
erating, as Z-module, an ideal of O−m. Moreover, EC has a Hermitian form, whose
imaginary part, without loss of generality, gives the standard antisymmetric form(

0 1
−1 0

)
on Λ, with respect to the basis just given.

The idea is now to consider the complex lattice Z ( 1
0 ) +Z ( 0

1 ) +Z ( αm0 ) +Z
(

0
αm

)
inside

C2. We try to put other antisymmetric forms on the lattice, and for each such a form,
we choose a basis, such that the antisymmetric form with respect to this basis is of the
standard form 

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

After this, we apply a transformation in GL2(C) to obtain a basis that is of the form
( 1

0 ) , ( 0
1 ) , ( v1v2 ) , (w1

w2
), cf. [Sch89, §5]. If the antisymmetric form satisfies the Riemann

relations, cf. [Lang82, Lem. 1.1 & 1.2, Chap. VII, §1, p. 132], then the matrix

M =

(
v1 w1

v2 w2

)
will be symmetric and its imaginary part will be positive definite, i.e. M has the potential
to be the small period matrix of a hyperelliptic curve H of genus 2.

One can then evaluate the theta functions in M and use these to reconstruct the Igusa
invariants of H. These Igusa invariants can only be computed numerically, up to a
certain precision, but we expect them to be rational. If the precision is high enough,
we can guess the rational values for the Igusa invariants. Then we can use Mestre’s
algorithm ([Mes91]) to construct a hyperelliptic curve with these Igusa invariants. This
part of the reconstruction procedure is explained in more detail in [Weng03].

2.3.3 Constructing algebraic maps

Now we are in the situation that we found an elliptic curve E over K and a hyperelliptic
curve H over Q (i.e. given with explicit equations in P2 over K and Q, respectively),
such that the base change of E × E and J := Jac(H) to C numerically seem to be
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isogenous. If such an isogeny exists, we know by GAGA that it is algebraisable and
defined over a finite extension of K. The only problem that remains is to find such an
algebraic isogeny explicitly.

It is possible to numerically construct an analytic isogeny τ : HC → JC → EC ×EC. We
consider the four composite maps

τ1,x, τ1,y, τ2,x, τ2,y : HC // EC × EC //// EC
y
//

x // P1
C ,

where the middle two maps are the two projections, and x and y are coordinate maps,
and try to ‘guess’ them. We assume that the map τ1,x : HC → P1

C (and analogously for
τ1,y, τ2,x, τ2,y) is of the shape

(x, y) 7→
∑N
i=0

∑1
j=0 ai,jx

iyj∑M
i=0

∑1
j=0 bi,jx

iyj
,

for certain ai,j , bi,j ∈ C and N,M ∈ Z≥0. We pick R := 2N+2M complex-valued points
Pk := (αk, βk) ∈ HC(C) for k = 1, . . . , R and numerically compute Qk := τ1,x(Pk). Each
such point gives rise to a linear equation

N∑
i=0

1∑
j=0

ai,jα
i
kβ

j
k −Qk ·

M∑
i=0

1∑
j=0

bi,jα
i
kβ

j
k = 0

in the coefficients ai,j and bi,j . Or, to phrase it in other words, the vector of coefficients
(a0,0, . . . , aN,1, b0,0, . . . , bM,1) is in the kernel of the matrix

A =

α0
1β

0
1 · · · αN1 β

1
1 −Q1α

0
1β

0
1 · · · −Q1α

M
1 β0

1
...

. . .
...

...
. . .

...
α0
Rβ

0
R · · · αNRβ

1
R −QRα0

Rβ
0
R · · · −QRαMR β1

R

 .

We can compute this kernel numerically and choose N and M such that the kernel is
1-dimensional. In this way, we can be sure to find a basis vector, which is a C-multiple
of a vector with algebraic entries, instead of obtaining a random C-linear combination
of two or more.

We compute a generator for the kernel and rescale it to make one of the non-zero entries
equal to 1. Then we use LLL to guess algebraic relations for the other entries. In this

way, we found a solution (a0,0, . . . , bM,1) ∈ QR and, if M and N were chosen appro-
priately, it can be verified algebraically that these functions indeed define a morphism
ϕ : HL → EL ×EL, where L is the field extension of K generated by all ai,j , bi,j , whose
base change to C is ((τ1,x, τ1,y), (τ2,x, τ2,y)).

2.3.4 Smaller fields

A priori, the field L might be way too big for a feasible numerical verification of BSD.
For example, in our specific case, a priori the curve H and E were defined over Q and
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Q(
√

5 ), respectively, but the maps ϕ and ψ were only defined over L = Q( 8
√

5, i) and
ϕ : H → E : (x : y : 1) 7→ (ϕx : ϕy : 1) was given by

ϕx =

1
2 i

4
√

5 · x4 − x3 − 1
2 i
(

4
5

4
√

5
3 − 4
√

5
)
· x2 + 1

5

√
5 · x+ 1

10 i
4
√

5

x3 + 2i
5

4
√

5
3 · x2 − 1

5

√
5 · x

,

ϕy =

1
4ε

8
√

5
3 · x4y + δ 8

√
5 · x3y − 1

4ε
(

4
5

8
√

5
7

+ 8
√

5
3
)
· x2y − δ

5
8
√

5
5 · xy + 1

20ε
8
√

5
3 · y

x5 + 3i
5

4
√

5
3 · x4 − 3

5

√
5 · x3 − 1

5 i
4
√

5 · x2
,

where ε = 1− i and δ = 1 + i. Of course this still proves that JacHL and EL ×EL are
isogenous.

However, it is not feasible yet to numerically verify BSD for HL. The situation is not
as good as in Proposition 2.2.8 part (4). In the isogeny decomposition of the Weil
restriction ResLQ(

√
5)

Jac(HL), there will not only be twists of JacH occuring, but also

higher dimensional factors, see also [DiNa03]. Even if we are lucky, and all these factors
are Jacobians of hyperelliptic curves over Q, these curves will be of genus greater than
3. Numerical verification of BSD for such curves might take too much time.

In order to reduce the size of L and reduce to the case of a quadratic field extension, we
performed some twists, for example on E by ε 8

√
5 and on H by −1. We then repeated

the procedure in the previous paragraph and even managed to find a map of smaller
degree over the smaller field Q( 4

√
5).

Having found the appropriate map defined over Q( 4
√

5), we were able to get the result
in Proposition 2.2.2 in order to finally prove Theorem 2.1.2.


