Stochastic and deterministic algorithms for continuous black-box optimization
Wang, H.

Citation

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/66671

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/66671 holds various files of this Leiden University dissertation.

Author: Wang, H.
Title: Stochastic and deterministic algorithms for continuous black-box optimization
Issue Date: 2018-11-01
Propositions
accompanying the thesis

Stochastic and Deterministic Algorithms for
Continuous Black-Box Optimization

Hao Wang

1. The effectiveness and efficiency of a stochastic variation can be judged by
 the discrepancy of the sample generated from it. Chapter 2.

2. When using Kriging for modeling, we should always question about the
 assumption that the target function can be represented in the function space
 induced by Kriging. Chapter 3.

3. In modeling, it is better to build fine-grained local models and construct a
 global model by combining the local ones. This makes it possible to extend
 Kriging for big data sets. Chapter 3.

4. The balance between exploration and exploitation can be controlled care-
 fully by using the weighted combination of moments on the Kriging model.
 Chapter 4.

5. Niching methods can facilitate the parallelization of infill criteria, with rela-
 tively small computational overhead. Chapter 4.

6. In hypervolume indicator gradient method, adaptively controlling the step-
 size of the steepest descent direction speeds up the convergence significantly.
 Chapter 5

7. The so-called Kriging mean squared error measures how well the assumed
 stochastic process is approximated by finite samples.

8. During the optimization process, it is beneficial to infer the structure and
 feature of the objective function online.

9. The convergence rate of efficient global optimization is affected by the con-
 traction rate of the Kriging model and the error that occurs when optimizing
 the infill criterion.