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Summary

The black-box optimization problem is frequently encountered in many applications.
For example, the tuning task of a machine learning algorithm or fitting a curve
to some experimental data. In the PROMIMOOC project (PROcess MIning for
Multi-Objective Online Control with industrial partners Tata Steel and BMW
group), the optimization problem we are facing is to search for proper control
parameters of production processes (for both partners), such that the number of
defects generated during the production would be largely reduced. Such a problem
is typically referred as an “black-box”, as we don’t directly model the physical
mechanism behind the production process and there is no additional information
about its mathematical characteristics (e.g., convexity and continuity) that would
be very useful for the optimization. Therefore, the black-box problem is also
considered very challenging. Another difficulty arises in the extremely high cost
of making trials on the production line: suppose a candidate setting of control
parameters (or candidate solution) is proposed by an optimization algorithm. The
quality of this setting can only be assessed by applying it to the actual production
line and then measuring defect rate in the output. This is typically very costly and
risky: when the candidate setting doesn’t actually perform well, many defects will
be generated, resulting in extra production costs for industrial partners. To solve
this problem efficiently and carefully, several fundamental optimization techniques
have to be combined in a reasonable way.

First of all, as there is not much mathematical assumptions on the problem, we
have to resort to the so-called stochastic optimization algorithm, instead of using
the traditional optimization techniques from mathematics/operational research.
The stochastic optimization algorithm is a class of methods that directly optimize
the objective function by solely using the assessment (evaluation) of the candidate
solution. Stochastic optimization algorithms are underpinned by the so-called
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stochastic variation, which generates (local) random perturbations to modify the
current search point. In evolutionary computation, this is typically called the
mutation operator. Intuitively, the efficiency of a stochastic variation method
greatly affects the performance of the corresponding optimization algorithm. This
is the reason why we investigate the efficiency issue of such methods in depth
(Chapter 2). As a result of the investigation, we propose a novel stochastic variation
method, called mirrored orthogonal sampling, which aims at generating random
perturbations that cover the search space (subset of Rd) evenly. Both theoretical
analysis and empirical study are conducted on the proposed method.

Secondly, because it is very costly to assess candidate solutions, it is common to
replace an actual expensive assessment by a machine learning model, which is
trained on the historical assessments. Then an optimization algorithm can query
the quality of a candidate solution from the model, instead of running the real
production process with this solution. Such a technique is called surrogate modeling.
One big challenge in surrogate modeling is to give a reliable quantification about
the uncertainty in model prediction due to the fact that data-driven models usually
yield significant errors in prediction. In Chapter 3, we study the well-known
Kriging/Gaussian Process Regression (GPR) model, that is capable of quantifying
the uncertainty. The quantification approach in Kriging/GPR is discussed in
detail. When it comes to the application of the Kriging/GPR method to real-world
data, we are confronted with the following obstacle: The Kriging/GPR method
suffers from a cubic time complexity when dealing with large data sets, limiting its
applicability for big data sets. In the reminder of this chapter, a novel algorithmic
framework, called Cluster Kriging is proposed to tackle this issue. Cluster Kriging
is tested on some selected functions and data sets, exhibiting an acceleration of
the modeling speed as well as an improved modeling precision.

Naturally, once a good surrogate model is obtained from the previous discussion,
the next question is how to use such a model in a reasonable manner such that the
uncertainty quantification is taken into account. It is possible to select the most
trustworthy solution based on the surrogate model, or alternatively the point that
possesses the highest potential to help the optimization procedure if the actual
assessment were conducted on it. Such decisions are usually determined through
an utility function on the surrogate model, called infill criterion. This is the topic
of Chapter 4. The difficulty in designing the infill criterion is how to balance the
trade-off between the model prediction (exploitation) and the model uncertainty
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(exploration). In this chapter, we summarize the existing infill criterion and propose
a novel infill criteria, called Moment-Generating Function of Improvement that
allows for controlling this trade-off explicitly and smoothly. Furthermore, the
parallelization issue of infill criteria is also considered thoroughly and several new
parallelization methods are proposed and tested.

Lastly, we discuss the so-called multi-objective optimization problem: suppose we
want to minimize the number of defects generated in the production and maximize
the throughout simultaneously. In this case, it is typical not possible to find a
setting of control parameters that satisfies both objectives in the same time and
thus we have to adopt multi-objective optimization algorithms. In Chapter 5, we
aims at designing a multi-objective optimization algorithm that is able to use
either the gradient or the Hessian matrix of the objective function. To achieve this
goal, the gradient field and Hessian matrix of the so-called hypervolume indicator
are derived and studied in depth. As a result, two novel algorithms, namely
the hypervolume-based first- (gradient) and second-order (Hessian) methods are
proposed and tested.
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