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Numerical Multi-objective Optimization

Many multi-objective optimization (MOO) algorithms have been proposed and
exploited in real-world problems over the years, e.g., NSGA-II (Deb et al., 2000),
SPEA2 (Zitzler et al., 2001) and SMS-EMOA (Beume et al., 2007). These evolu-
tionary multi-criteria optimization (EMO) algorithms employ heuristic operators
(e.g., random variation and selection operators), instead of using the gradient infor-
mation of the objective functions. For a large subclass of such problems, that is the
continuous multi-objective optimization problem, gradient-based algorithms are
of interest due to the fact that they are generally fast, precise and stable with re-
spect to local convergence. Various gradient-based approaches have been proposed
for the multi-objective optimization task (Fliege and Svaiter, 2000; López et al.,
2012; Hillermeier, 2001; Schütze et al., 2011). A relatively new idea is proposed
by (Emmerich et al., 2007; Emmerich and Deutz, 2014), in which the gradient of
the hypervolume indicator with respect to a set of decision vectors is computed.
In this chapter, we adopt the definition and the computation of the hypervolume
indicator gradient to steer the search points within the decision space. By using
the hypervolume indicator gradient (Emmerich and Deutz, 2014), the search points
are moved into the direction of steepest ascent w.r.t. the hypervolume indicator.
Therefore, the proposed numerical multi-objective optimization algorithm is termed
hypervolume indicator gradient ascent multi-objective optimization (HIGA-MO).
The major benefits of exploiting hypervolume gradients are 1) the points in the
objective space will be well distributed on the Pareto front, 2) it is almost free of
control parameters, and 3) the algorithm has a high precision of convergence to
the Pareto front.

However, the first implementation of this idea showed numerical problems. As
a remedy, ideas that were developed in the field of evolutionary multi-criterion
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5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

optimization are adopted in this thesis. Firstly, the hypervolume indicator may
have zero gradient components at some decision vectors, e.g., the dominated points.
The well-known non-dominated sorting technique is adopted and combined with the
hypervolume indicator gradient computation, in order to equip each decision vector
with a multi-layered gradient. Secondly, the normalization of the hypervolume
indicator sub-gradient is used to overcome the “creepiness” phenomenon observed in
earlier versions of hypervolume gradient ascent, and caused by an imbalance in the
length of sub-gradients which leads to a slow convergence speed (Sosa Hernández
et al., 2014). Thirdly, the usage of constant step-sizes is no longer appropriate if
the precise convergence to the Pareto front is aimed for. Instead, a cumulative
step-size control inspired by the optimal gradient ascent is proposed to dynamically
adapt the step-size. Such a cumulative step-size control resembles the step-size
adaptation mechanism in the well-known CMA-ES (Hansen and Ostermeier, 2001),
an evolutionary algorithm for single objective continuous optimization. The
resulting algorithm is tested on problems named ZDT1-4 and ZDT6 from (Zitzler
et al., 2000). Its performance is compared to three evolutionary algorithms: NSGA-
II (Deb et al., 2000), SPEA2 (Zitzler et al., 2001) and SMS-EMOA (Beume et al.,
2007), as well as the other methods for steering the dominated points.

In addition, the hypervolume-based numerical MOO is extended by differentiat-
ing the hypervolume gradient again, yielding the hypervolume indicator Hessian
matrix. We furthermore investigate the condition on which the Hessian matrix
stays non-singular, showing that it is “safe” to apply the Hessian in general appli-
cations. Based on the Hessian matrix, the hypervolume indicator Newton method
is proposed and validated.

In the following, the general settings/notations on set-oriented numerics are given
first. In multi-objective optimization problems (MOPs), a collection of functions,
represented as the m-tuple below, are optimized simultaneously:

(f1 : S1 → R, f2 : S2 → R, . . . , fm : Sm → R), S1,S2, . . . ,Sm ⊆ Rd.

where d denotes the dimension of the domain of each function and m denotes
the number of objective functions. Without loss of generality, we assume all the
functions above are to be minimized (maximization problems can be transformed
into minimization problems). In this thesis, it is assumed that each objective
function fi is continuously differentiable almost everywhere in Si. Thus, the MOP
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can be formulated as follows:

min
x∈S

f(x), S =
m⋂
i=1

Si ⊆ Rd,

where f(x) = (f1(x), f2(x), . . . , fm(x))> is a vector-valued function composed of
m objective functions: f : S → Rm. Note that the minimization of the vector-
valued function f is understood with respect to the Pareto order ≺ as defined
in Section 1.2. Let a,b be two distinct points in Rm. We say a ≺ b iff ai ≤ bi,
i = 1, . . . ,m, where ≤ is the natural total order on the real numbers. Because of
the continuous differentiability assumption on each objective function, f is again
continuously differentiable almost everywhere in S. The gradient information is
expressed as transpose of the Jacobian matrix as follows:

∂f(x)
∂x = [∇f1(x),∇f2(x), . . . ,∇fm(x)] , ∇fi(x) : S→ Rd, i = 1, 2, . . . ,m.

In addition, it is assumed that each gradient vector above (column vector) can be
computed either analytically or numerically. In MOPs, a set of decision vectors
are moved in decision space S to approximate the Pareto efficient set, which is the
so-called Pareto efficient set approximation:

X =
{

x(1),x(2), . . . ,x(µ)
}
, x(i) ∈ S, i = 1, 2, . . . , µ.

with corresponding Pareto front approximation set (objective vectors) in the
objective space:

Y =
{

y(1),y(2), . . . ,y(µ)
}
, y(i) = f(x(i)) ∈ Rm, i = 1, 2, . . . , µ.

In order to measure and compare the quality among Pareto front approximation
sets Y , one approach is to quantify the quality by constructing a proper indicator.
The most common one is the hypervolume indicator H (Zitzler and Thiele, 1998;
Zitzler et al., 2003). Given a reference point r ∈ Rm, the hypervolume indicator
of the Pareto front approximation set Y can be expressed as:

H(Y ; r) = λm

⋃
y∈Y

[r,y]

 ,

where λm denotes the Lebesgue measure on Rm, which is the size of the hypervolume
dominated by the approximation set Y with respect to the reference space. Note
that the reference point r will be assumed to be a given constant and thus omitted
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5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

in the following notations for brevity. The hypervolume indicator gradient is defined
as the gradient of the hypervolume indicator with respect to the approximation
of the Pareto efficient set, which is proposed in Emmerich and Deutz (2014);
Emmerich et al. (2007). In this thesis, the derivation of the hypervolume indicator
gradient is reformulated and the notation is simplified. In the following, we shall
use matrix calculus notations with denominator layout, meaning that the derivative
of a vector/matrix is laid out according to the denominator.

5.1 Mixed-Peak Test Problem

Prior to the discussion of the numerical MOO algorithm, a bi-objective problem
class, called Mixed-Peak problems are introduced for investigating the behavior
of the proposed algorithms. Such a problem class is chosen over other standard
benchmark problems, e.g., the so-called ZDT problems (Zitzler et al., 2000), because
1) it allows for controlling the problem difficulty of its instance, by varying the
number of peaks in each objective function. 2) it is smooth and differentiable
almost everywhere in its domain, which makes it a perfect test problem for the
gradient and Hessian methods. As no analytical property is available on this
problem, the detailed analysis is conducted on this problem and as a result, the
expressions of the Pareto front and efficient set are derived.

5.1.1 Mixed-Peak Functions

In this this, a sophisticated problem generator, called Multiple Peaks Model 2
(MPM2, Wessing (2015)), is adopted to illustrate the proposed topological defini-
tions and further analyze the behavior of explorative algorithms. Such a function
class is a mixture of similar unimodal functions, i.e., the peaks, that have convex
local level sets, which is typically combined with the well-known Karush-Kuhn-
Tucker theorem to identify local efficient points. In addition, the complexity of
the problem can be easily controlled by the number of peaks. The mixed-peak
function is defined as an unconstrained function f : Rd → R that is subject to
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5.1 Mixed-Peak Test Problem

minimization:

f(x) = 1− max
1≤i≤N

{gi(x)} , x ∈ Rd. (5.1)

gi(x) = hi

1 +

(√
(x− ci)>Σi(x− ci)

)si
ri

−1

, i = 1, . . . , N. (5.2)

The function g above defines a parameterized quasi-concave unimodal peak, whose
negative leads to quasi-convex valleys on function f . According to the optproblems

package (Wessing, 2016), it has the following parameters: (1) number of peaks
N ∈ Z>0, (2) center ci ∈ Rd, height hi ∈ [0, 1] and radius ri ∈ [0.25

√
d, 0.5

√
d]

per peak, with decision space dimension d, (3) “shape” si ∈ [1.5, 2.5] per peak,
controlling the landscape’s steepness, (4) rotation of the elliptical level sets based
on a positive definite matrix Σi. In the following, we will use the norm notation
‖x− ci‖Σi :=

√
(x− ci)>Σi(x− ci) as it can be considered as the Mahalanobis

distance w.r.t. Σi.

Ridges: As a result from the definition of f (Eq. (5.1)), the landscape can
contain ridges. The set of all ridges of f can be represented by:

R =
{

x ∈ Rd | ∃i 6= j ∈ {1, 2, . . . , N}, gi(x) = gj(x) and gi(x) = max
1≤k≤N

{gk(x)}
}
,

i.e., the set of all points on which the value of f is simultaneously attained by
at least two peak functions. In the simple case, when the Σi’s are identical and
the peaks differ only in centers, the ridges actually form a Voronoi diagram in
the decision space. According to Eq. (5.1), for any point that is not on the ridge,
x ∈ Rd \ R, there is only one peak function that is effective or active. From now
on, the active peak function at x is denoted as gτ w.r.t. τ = arg max1≤i≤N{gi(x)}.
In fact, ridges separate the decision space into many active regions, on each of
which only a single peak function g is active:

Ai =
{

x ∈ Rd | ∀k ∈ {1, 2, . . . , N} \ {i}, gi(x) > gk(x)
}
, i = 1, 2, . . . , N.

Note that the active regions Ai’s are open and mutually disjoint and the union of
all such active regions A = ∪1≤i≤NAi is equal to the set of non-ridge points.
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5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

Convex Local Level Sets: Given the quasi-concavity of each peak gi, 1−gi has
local convex level sets in Rd. If the function 1− gi is restricted to an ε-Euclidean
ball Bε(x∗) =

{
x ∈ Rd | ‖x− x∗‖ < ε

}
for every x∗ ∈ Rd and every ε > 0, the

resulting function 1− gi
∣∣
Bε(x) : Bε(x)→ R also has local convex level sets. Also,

due the fact that the active regions Ai’s are disjoint and open, for every non-ridge
point x∗, it is possible to find a δ > 0 (depending on x∗) such that Bδ(x∗) ⊂ Aτ
and Bδ(x∗) ∩ Ai = ∅, ∀i 6= τ (τ is the unique index of the active peak function
at x∗). Then the restricted f to Bδ(x∗), f

∣∣
Bδ(x∗)

equals 1− gτ
∣∣
Bδ(x∗)

and thus it
has local convex level sets. Therefore, we have the following conclusion:

∀x∗ ∈
(
Rd \ R

)
∃δ > 0, f

∣∣
Bδ(x∗)

has local convex level sets. (5.3)

For the points on the ridge, x∗ ∈ R, the conclusion above does not hold because it
is not possible to find a δ such that Bδ(x∗) has no intersection with all Ai’s except
Aτ .

As the gradient of the mixed-peak function is required to derive the Pareto front,
we given it as follows:

∇f(x) = hτsτ
rτ

(
1 +
‖x− cτ‖sτΣτ

rτ

)−2

‖x− cτ‖sτ−2
Στ

Στ (x− cτ ). (5.4)

5.1.2 Mixed-Peak Bi-objective Problem

By generating two different configurations for the parameters in Eq. (5.1), two
different multimodal functions are constructed, naturally defining a bi-objective
optimization problem:

f1(x) = 1− max
1≤i≤N

gi(x)→ min, f2(x) = 1− max
1≤i≤N ′

g′i(x)→ min .

Note that the peak function g and g′ (and its parameters N and N ′) are distin-
guished by the superscript. Next, the efficient set and Pareto front are derived
analytically. In the following, the analytical efficient set and Pareto front are
derived.

One Peak Scenario We first consider a simple case in which each objective
function consists of one peak without any ridges in the domain. In this case, the
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5.1 Mixed-Peak Test Problem

objective functions degenerate to:

f1(x) = 1− h
(

1 +
‖x− c‖sΣ

r

)−1

, f2(x) = 1− h′
(

1 +
‖x− c′‖s

′

Σ′

r′

)−1

.

According to the Karush-Kuhn-Tucker (KKT) condition (Ehrgott, 2006) for multi-
objective optimization problems, a necessary condition for x∗ ∈ Rd being efficient
is:

∃λ1 > 0, λ2 > 0, λ1∇f1(x∗) + λ2∇f2(x∗) = 0.

Substituting the condition above by the gradient expression (Eq. (5.4)) leads
to:

λ1C(x∗)Σ(x∗ − c) + λ2C
′(x∗)Σ′(x∗ − c′) = 0,

with C(x∗) := hs

r

(
1 +
‖x∗ − c‖sΣ

r

)−2

‖x∗ − c‖s−2
Σ .

And C ′ is defined similarly to C by adding prime superscripts to all parameters.
As a result, the condition above can further be simplified to:

∃λ1 > 0, λ2 > 0, Σ(x∗ − c) = −λ2C
′(x∗)

λ1C(x∗) Σ
′(x∗ − c′). (5.5)

Let us denote k := λ2C
′(x∗)/λ1C(x∗). Thus, λ1, λ2 > 0 and C,C ′ ≥ 0 result in

k ≥ 0. In addition, C → 0 leads to k →∞, i.e., x∗ → c. Due to the fact that C
and C ′ are continuous functions w.r.t. x∗, k is also continuous in Rd. Therefore, it
must take any value between its minimum and maximum, resulting in 0 ≤ k <∞.
Taking the range of k into account, every point that satisfies Eq. (5.5) can be
written as:

∀k > 0, x∗ = c−
(
Σ

k
+ Σ′

)−1
Σ′(c− c′). (5.6)

Note that the points above are not necessarily local efficient points (as defined
in Section 1.2). The sufficiency can be shown as follows: for any point x∗ ∈ Rd

satisfying Eq. (5.6) – remember, there is no ridge in this scenario – there exists an
ε > 0 such that the restricted objective function f1

∣∣
Bε(x∗)

has local convex level sets
according to Eq. (5.3). Similarly, there exists an ε′ > 0 such that f2

∣∣
Bε′ (x∗)

has local
convex level sets. It is then possible to construct a Euclidean ball with radius ε∗ :=
min{ε, ε′} such that: f1

∣∣
Bε∗ (x∗) and f2

∣∣
Bε∗ (x∗) both have local convex level sets.

This implies that it is always possible to find a neighborhood around a point where
the local level sets of both objective functions are convex. Thus, it is sufficient
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Figure 5.1: Example of analytical Pareto fronts and efficient sets: the contour
lines of f1 (solid curves, 1 peak) and f2 (dashed curves, 3 peaks) are drawn in the
decision space (left) with ridges shown as thick solid curves. Three local efficient
sets are drawn in different colors while the dashed extensions of them represent the
pseudo-efficient sets. The corresponding Pareto fronts are shown on the right.

to conclude that points satisfying Eq. (5.6) are locally Pareto efficient and the
efficient set of the problem is expressed as:

XLE =
{

c−
(
Σ

k
+ Σ′

)−1
Σ′(c− c′)

∣∣ 0 ≤ k <∞
}
. (5.7)

Consequently, the Pareto front can implicitly be obtained by applying the objective
functions to the efficient set from above. When the contour lines are spherical for
both objective functions, the arguments here can be largely simplified. We omit
such a special case, since it has already been discussed in detail in Kerschke et al.
(2016).

Multiple Peaks If each of the objective functions consists of multiple peak
functions, namely N > 1, the efficient set derived in Eq. (5.7) can be adapted
in the following manner: suppose function f1 and f2 contain N and N ′ peaks,
respectively. For each pair of peaks between two objective functions (e.g., gi and
g′j), a pseudo-efficient set can be calculated according to Eq. (5.7) as if the rest of
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5.2 Hypervolume Indicator Gradient

the peaks in both objective functions were not existing:

Pij =
{

ci −
(
Σi

k
+ Σ′j

)−1
Σ′j(ci − c′j)

∣∣ 0 ≤ k <∞
}
,

where ci and c′j are the centers of the i-th and j-th peak of function f1 and f2,
respectively. Note that Eq. (5.7) requires that no ridge is present in the function
domain and thus for the set defined above, it is not necessarily a local efficient
set. Let us denote the active region of peak gi and g′j as Ai and A′j , respectively.
Then the region on which gi and g′j are both active is Ai ∩ A′j . Consider the
intersections of Pij and the ridges R of f1 for instance: at such points, any
infinitesimal movement towards a different active region other than Ai ∩ A′j will
revert the direction of ∇f1 and therefore this movement will improve both f1 and
f2 values of the intersection points. This implies that the points in Pij intersecting
or crossing the ridges are not efficient for gi and g′j . In other words, the efficient
set X ∗ij = Pij ∩ Ai ∩ A′j associated with peak gi and g′j is the intersection of Pij
with the active regions of both peak functions. In addition, all local efficient sets
can be enumerated by calculating the local efficient set associated with each pair of
peaks between two objective functions: X ∗ =

⋃N
i=1
⋃N ′
j=1 X ∗ij . An example of this

is illustrated in Fig. 5.1. Here, three pseudo-efficient sets are depicted in different
colors (red, orange and green) and the orange and green sets are truncated by the
ridges (thick black lines), where the valid local efficient sets are depicted as solid
curves.

5.2 Hypervolume Indicator Gradient

Intuitively, the hypervolume indicator can be expressed as a function of the Pareto
efficient set approximation X, which allows for the differentiation of hypervolume
indicator with respect to decision vectors. More specifically, by concatenation of
all the vectors in this set, we obtain a so-called µ · d-vector:

X =
[
x(1)> ,x(2)> , . . . ,x(µ)>

]>
∈ Sµ ⊆ Rµ·d.

and its corresponding Pareto front approximation vector can be written as a
µ ·m-vector:

Y =
[
y(1)> ,y(2)> , . . . ,y(µ)>

]>
∈ Rµ·m.
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5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

In order to establish a connection between µ ·d-vectors and µ ·m-vectors, we define
a mapping F : Sµ → Rµ·m,

F(X) :=
[
f(x(1))>, f(x(1))>, . . . , f(x(µ))>

]>
.

Now consider that the hypervolume indicator, that is normally defined in the ob-
jective space, can be re-written as a function of µ · d-vectors by composition:

HF(X) := H(F(X)),

which is a continuous mapping from Sµ to R, for which under certain regularity
conditions the gradient is defined (in case of differentiable objective functions only
for a zero measure subset of Rµ·d the gradient is undefined, in which case one-sided
derivatives still exist). Given HF, its derivatives (hypervolume indicator gradient)
are defined (given they exist) by:

∂HF(X)
∂X =

[
∂HF(X)
∂x(1)

>
, . . . ,

∂HF(X)
∂x(µ)

>
]>

, (5.8)

where each of the term in the RHS of the equation above is called sub-gradient, which
is the local hypervolume change rate by moving each decision vector infinitesimally.
It has been shown in Emmerich and Deutz (2014) that the hypervolume indicator
gradient is the concatenation of the hypervolume contribution gradients. Moreover,
the sub-gradients can be calculated by applying the chain rule:

∂HF(X)
∂x(i) = ∂y(i)

∂x(i)
∂HF(X)
∂y(i) (5.9)

=
m∑
k=1

∂HF(X)
∂fk(x(i))

∇fk(x(i)). (5.10)

The first partial derivative in Eq. (5.9) is the gradient of HF in the objective space
while the second one is the transpose of the Jacobian matrix of the mapping F.
Eq. (5.10) is the detailed form. From it, it is clear that the hypervolume indicator
gradient is a linear combination of gradient vectors of objective functions, where
the weight for an objective function is the partial derivative of the hypervolume
indicator at this objective value. We omit the calculation for gradients of HF in the
objective space for simplicity, noting that in the bi-objective case they correspond
to the length of the steps of the attainment curve. For the high dimensional case
and efficient computation, see Emmerich and Deutz (2014).
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5.2 Hypervolume Indicator Gradient

Note that in practice the length of the sub-gradients usually differs by orders of
magnitude, leading to the “creepiness” behavior (Sosa Hernández et al., 2014) that
some decision vectors move much faster than the rest, Such a behavior results in
a very slow convergence speed and points might get dominated by others. As a
remedy, it is suggested to normalize all the sub-gradients.

5.2.1 Steering Dominated Points

The difficulty increases when applying the hypervolume indicator gradient direction
for steering the decision vectors: the hypervolume indicator can either be zero
or only one-sided at decision vectors. For example, at every strictly dominated
search point, the hypervolume indicator sub-gradient is zero, because the Pareto
front and thus the hypervolume indicator remain unchanged if it is moved locally
in an infinitesimally small neighborhood. For every weakly dominated point, the
hypervolume indicator sub-gradient at this point, even does not exist due to the
fact that only one-sided partial derivatives exist. Consequently, such decision
vectors will become stationary in the gradient ascent method. One obvious solution
to such a problem is to apply evolutionary operators (mutation and crossover) on
those search points (decision vectors) until they become non-dominated. However,
as we are aiming for a fully deterministic multi-objective optimization algorithm,
randomized operators are not adopted in this thesis.

Some methods have been proposed to steer dominated points (Ren et al., 2015;
Wang et al., 2017; López et al., 2012). The most prominent one, proposed in López
et al. (2012), computes the gradient at dominated points as follows (for bi-objective
problems):

−

(
∇f1(x(i))∥∥∇f1(x(i))

∥∥ + ∇f2(x(i))∥∥∇f2(x(i))
∥∥
)
, x(i) is dominated.

which is a sum of normalized gradients of each objective function (the minus symbol
is for the minimization problem). It guarantees that dominated decision vectors
move into the dominance cone (Wang et al., 2017). However, such a method only
considers the movement of single points, instead of a set of search points and it
does not generalize to more than two dimensions. We shall call this method Lara’s
direction in the following experiments, where it is compared with the method
proposed in this thesis. Another method for steering the dominated points is

129



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

proposed by the authors in Wang et al. (2017). It steers dominated points towards
the nearest gap on the non-dominated set. The search direction is determined as
the gradient of the distance of the dominated objective vector to the center of its
nearest gap. Again, this method steers dominated points independently and is
termed gap-filling in this thesis. In the above methods, dominated points are
steered widely independent of each other, which might result in a diversity loss.

In this thesis, we propose to use the non-dominated sorting technique that is
developed in the NSGA-II algorithm (Srinivas and Deb, 1994), in order to compute
the hypervolume indicator gradients of multiple layers of non-dominated sets. In
detail, the decision and objective vectors are partitioned into q subsets, or layers
according to their dominance rank in the objective space:

X→
{

X1,X2, . . . ,Xq
}
,

Xi =
[
x(i1)> ,x(i2)> , . . . ,x(iµ)>

]>
,

where Xi indicates a layer of order i and iµ indexes decision vectors in the ith
rank layer. The layers can be recursively defined as (given nd as the procedure

r
f2

f1

Front i

Front i+ 1

Figure 5.2: Schematic graph showing the partition of the objective vectors using
non-dominated sorting. For each partition (layer), a hypervolume indicator is defined
and thus its gradient can be computed.
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5.2 Hypervolume Indicator Gradient

that selects the non-dominated subset from an approximation set):

X1 = nd(X), Xi+1 = nd

X − i⋃
j=1

Xj

 ,

where q is the highest index i such that Xi 6= ∅. Note that the µ ·m-vector is
also partitioned as above. In principle, it is possible to compute the hypervolume
indicator gradient for any layer by ignoring all the layers that dominate it (have a
lower rank) temporarily. This partition is illustrated in Fig. 5.2. The hypervolume
volume indicator gradient on the approximation set X can be (re-)written as the
concatenation of hypervolume indicator gradients on each layer:

∂HF(X)
∂X

:=
[
∂HF(X1)
∂X1

>

,
∂HF(X2)
∂X2

>

, . . . ,
∂HF(Xq)
∂Xq

>
]>

. (5.11)

Note that again q is the number of layers obtained from non-dominated sorting
techniques. The gradient computation given in Eq. (5.10) can be used to compute
each gradient term above. Thus, each decision vector is associated with a steepest
ascent direction that maximizes its hypervolume contribution on each layer.

There are two advantages of using the non-dominated sorting procedure. Firstly,
maximizing the hypervolume will not only steer the points towards the Pareto front,
but also spread out the points across the intermediate Pareto front approximation.
By applying the hypervolume indicator gradient direction on each layer, the decision
vectors on each layer will be well distributed before a dominated layer merges into
the global Pareto front and thus the additional cost to spread out points after
merging is small. Moreover, when the Pareto efficient set is disconnected in the
decision space, the proposed approach will increase the convergence speed due to
the fact that each connected efficient set is treated as one layer and the decision
vectors on it are spread quickly over the efficient sets. This effect can be shown by
visualizing the trajectories of the approximation set on a simple objective landscape.
In Fig. 5.3, trajectories of the approximation set are illustrated in both decision and
objective space, on MPM2 functions (from the R smoof package1). In the decision
space, it is clear that our layering approach (Fig. 5.3) manages to approximate five
disconnected efficient sets with a good distribution of points. Secondly, on the real
landscape, it is possible that local Pareto fronts exist (e.g., consider the well-known
ZDT4 problem (Zitzler et al., 2000)). Using the non-dominated sorting, it is more

1https://github.com/jakobbossek/smoof
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likely to identify those local Pareto fronts, which could be helpful to balance global
and local search. This advantage of the proposed approach is exploited by the
authors in multi-objective multi-modal landscape analysis (Kerschke et al., 2016).

Figure 5.3: Trajectories of 50 points under hypervolume indicator gradient
direction to approximate the Pareto front using 103 function evaluations. The
experiment is conducted on a bi-objective problem MPM2 (from the R smoof
package) in the 2-D decision space. All five disconnected components of the Pareto
front are obtained with well distributed points. Left: the decision space. Right:
the objective space.

5.2.2 Step-size adaptation

The constant step-size setting that is common in gradient descent (ascent) for the
single objective optimization task, is no longer appropriate. Usually, the length of
the gradient vector (in the gradient field) gradually goes to zero when approaching
the local optimum. In this case, a properly set constant step-size will lead to the
local optimum in a stable manner. However, in our case, due to the normalization,
the length of the search steps is always 1 when decision vectors are approaching
the Pareto efficient set. If a constant step-size is applied here, the decision vector
will overshoot its optimal position and begin to oscillate (even diverge). In order
to tackle this issue, the step-size of the decision vectors needs to 1) gradually
decrease when approaching the Pareto efficient set and 2) increase quickly when
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the decision vectors are far away from the efficient set. In addition, it is reasonable
to use individual step-sizes that are controlled independently for each decision
vector because their optimal step-size differs largely.

A cumulative step-size adaptation mechanism is proposed to approximate the
optimal step-size in the optimization process. It is inspired by the following obser-
vation: in single objective gradient optimization, if the step-size is set optimally,
then consecutive search directions are perpendicular to each other. In order to
approximate the optimal step-size setting, the inner product of consecutive nor-
malized hypervolume indicator gradients is calculated. If such an inner product is
positive, it indicates the current step-size is smaller than the optimal one and vice
versa:

I
(i)
t =

〈
∂HF(X)
∂x(i)

(t−1)
,
∂HF(X)
∂x(i)

(t)
〉
, i = 1, . . . , µ, t = 1, 2, . . . .

Note that superscripts (t), (t − 1) are iteration indices. In addition, such an
inner product computed in each iteration fluctuates hugely and direct use of it
leads to unstable adaptation behavior. Therefore, the inner product is cumulated
using exponentially decreasing weights through the iterations to get a more stable
indicator for the step-size adaptation. The cumulative rule for the inner product
is written as follows:

p
(i)
t ← (1− c)p(i)

t−1 + cI
(i)
t , i = 1, . . . , µ, t = 1, 2, . . . . (5.12)

Note that p(i)
t denotes the cumulated inner product for search point i at iteration

t and c (0 < c < 1) is the accumulation coefficient. Such an inner product
accumulation rule is similar to the cumulative step-size adaptation mechanism
in the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen
and Ostermeier, 2001), where consecutive mutation steps are accumulated for
step-size adaptation. Based on the cumulated inner product, a simple control rule
is designed to adapt the step-size online:

σ
(i)
t+1 =


ασ

(i)
t if p(i)

t < 0,
σ

(i)
t if p(i)

t = 0,
σ

(i)
t /α if p(i)

t > 0.
0 < α < 1. (5.13)

where σ(i)
t is the individual step-size for search point i at iteration t. In this

thesis, the settings of c = 0.7, α = 0.8 are suggested by tuning the algorithmic
performance on MPM2 functions.
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The backtracking line search (Nocedal and Wright, 2000), which is a common
technique to approximate the optimal step-size in single objective gradient ascent, is
not suitable for the proposed algorithm. It requires additional function evaluations
for each search point to estimate the optimal step-size setting. Such additional
costs are no longer acceptable for the set-based algorithm. In contrast, the
proposed cumulative step-size adaptation mechanism does not bring any additional
overheads.

5.2.3 Hypervolume Indicator Gradient Ascent Algorithm

In this section, the algorithmic components developed in the previous sections
are combined into the Hypervolume Indicator Gradient Ascent Multi-objective
Optimization (HIGA-MO) algorithm.

In practice, the continuous objective function can be non-differentiable at some
points, even if the function is almost everywhere differentiable (e.g., on the con-
straint boundary of the ZDT1 problem). To overcome this issue, it is suggested
to mutate those points in the decision space. Given a point x ∈ Rd, it is mutated
in the decision space S when the gradient of objective functions at x contains
invalid values (e.g., the derivative becomes infinite when approaching the origin,
on function f = 1/x). The mutation of x should be local but large enough to
escape from the non-differentiable regions. For this purpose, the mutation operator
in Differential Evolution (Storn and Price, 1997) is adopted here because it is
adaptive and only contains a single parameter. Suppose x is in the ith ranked
layer (x ∈ Xi), then the following mutation operation is applied on x:

x← x + F (x(a) − x(b)), (5.14)

where x(a),x(b) are randomly picked from Xi. Furthermore, F ∈ [0, 2] is the
differential weight that is set according to the literature. It is necessary to compute
the differential vector within the same layer of x because the Pareto efficient set
is possibly disconnected in the decision space and differential vectors computed
across layers possibly create non-local mutations.

The resulting algorithm is presented in Alg. 10. In line 4, the non-dominated
sorting procedure is called to partition the approximation set. In line 7 the
hypervolume indicator gradient is computed for every decision vector on each
layer. If a decision vector has either zero gradient or is not differentiable, it is
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mutated in line 9 according to Eq. (5.14). In line 11, the hypervolume indicator
sub-gradient is normalized before decision vectors are moved in the steepest ascent
manner (line 12). The cumulative step-size adaptation (Eq. (5.12) and (5.13)) is
then applied in line 13. In addition to the common usage of the function evaluation
budget for the termination criterion, it is suggested here to check stationarity
of search points: a decision vector is considered stationary if the norm of its

Algorithm 10 Hypervolume Indicator Gradient Ascent Multi-Objective Optimization

1: procedure higa-mo(µ,S, f ,∇f) . ∇f : Jacobian of the objective function
2: c← 0.7, α← 0.8, F ∈ [0, 2]. . endogenous parameters
3: Initialize µ search points X =

{
x(1),x(2), . . . ,x(µ)} ⊂ S uniformly.

4: while the termination criteria are not satisfied do
5: Y ←

{
y(1),y(2), . . . ,y(µ)}← {

f(x(1)), f(x(2)), . . . , f(x(µ))
}

6:
{
X1, X2, . . . , Xq

}
← non-dominated-sorting(X,Y )

7: for k = 1 to q do
8: for every x(i) in Xk do
9: Compute the sub-gradient (Eq. (5.9)):

∂HF(X)
∂x(i) ← ∇f(x(i))

∂HF(X)
∂y(i)

10: if ∂HF(X)
∂x(i) is undefined then

11: Randomly pick x(a) 6= x(b) from Xk

12: x(i) ← x(i) + F (x(a) − x(b))
13: else
14: g(i) ← ∂HF(X)

∂x(i) /
∥∥∥∂HF(X)

∂x(i)

∥∥∥ . sub-gradient normalization
15: x(i) ← x(i) + σ(i)g(i) . gradient ascending
16: p(i) ← (1− c)p(i) + c〈g(i),g(i)

old〉 . cumulation

17: σ
(i)
t+1 =


ασ

(i)
t if p(i)

t < 0,
σ

(i)
t if p(i)

t = 0,
σ

(i)
t /α if p(i)

t > 0.
. step-size control

18: g(i)
old ← g(i)

19: end if
20: end for
21: end for
22: end while
23: return X,Y

24: end procedure
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sub-gradient multiplied by the step-size is close to zero (≤ 10−8).

5.2.4 Experiments

Experiment settings To test the performance of HIGA-MO, the well-known
ZDT problems (Deb et al., 2000) are selected as benchmark problem set. The pro-
posed algorithm is compared to three well-established evolutionary multi-objective
optimization algorithm: NSGA-II, SPEA2 and SMS-EMOA. The parameters in
those two algorithms are set according to the literature (Deb et al., 2000; Beume
et al., 2007; Zitzler et al., 2001). In addition, other methods for steering the
dominated point (Section 4), Lara’s direction and Gap-filling, are tested against
HIGA-MO. For these two methods, the non-dominated points are moved using the
hypervolume indicator gradient.

The hypervolume indicator and convergence measure used in Beume et al. (2007),
are adopted here as the performance metrics. The convergence measure is calculated
numerically by discretizing the Pareto front into 1000 points. For the hypervolume
indicator computation, the reference point [11, 11]> is used for the test problems
ZDT1− 4 and ZDT6. Two experiments are conducted: one with a relatively small
population setting µ = 40 while the other uses a large population, µ = 100. A
relatively small function evaluation budget, 100µ, is chosen here due to the reason
that in long runs, all deterministic methods stagnate to local optima. All the
algorithms terminate if the maximal function evaluation budget is reached. For
each algorithm, 15 independent runs are conducted to obtain average performance
measures. The initial step-size of the proposed HIGA-MO algorithm is set to 0.05
multiplied by the maximum range of the decision space. The internal reference
point to compute the hypervolume indicator gradient is set to [11, 11]> to ensure
every objective vector is within the reference space.

Results The test results are shown in Tab. 5.1 for µ = 40 and Tab. 5.2 for
µ = 100. The hypervolume of the non-dominated set after termination is used to
compute the performance measures. For the small population setting, HIGA-MO
outperforms the evolutionary algorithms (NSGA-II, SPEA2 and SMS-EMOA)
on ZDT1-3 and ZDT6 problems, both in terms of hypervolume indicator and
convergence measure. By checking the standard deviation, it is obvious that
HIGA-MO generates more stable results compared to evolutionary algorithms and
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such deviations are only affected by the initialization of the approximation set and
the technique to handle the non-differentiable points (Eq. (5.14)). Comparing it
to the other two methods, namely, Lara’s direction and Gap-filling, that steer the
dominated points independently, HIGA-MO gives a higher hypervolume indicator
value on ZDT1-3 while Lara’s method performs better on ZDT6.

Table 5.1: µ = 40: performance measures on ZDT1-4 and ZDT6 problems.

Test- Convergence measure Hypervolume indicator
function Algorithm Average Std. dev. Rank Average Std. dev. Rank
ZDT1 HIGA-MO 0.00500490 1.3075e-02 1 120.62948062 4.0750e-03 1

Lara’s direction 0.07747718 6.4031e-02 3 120.33761711 1.2309e-01 2
Gap-filling 0.06061863 1.2352e-01 2 120.22307239 4.6840e-01 3
NSGA-II 0.10960371 3.2542e-02 5 119.33541376 3.7345e-01 4
SMS-EMOA 0.09376444 3.5934e-02 4 119.20965862 4.8101e-01 5
SPEA2 0.32006024 5.9788e-02 6 116.27370195 1.6826e+00 6

ZDT2 HIGA-MO 0.00036082 3.6233e-05 3 120.31634691 9.8307e-04 1
Lara’s direction 0.00011253 5.0289e-05 1 118.92812930 3.5019e+00 3
Gap-filling 0.00015973 2.0645e-04 2 119.45871166 2.5324e+00 2
NSGA-II 0.16511979 7.7092e-02 4 114.03423180 3.7806e+00 4
SMS-EMOA 0.24929199 8.4178e-02 5 109.17629732 3.2584e+00 5
SPEA2 0.67688451 1.5708e-01 6 104.54506810 3.3537e+00 6

ZDT3 HIGA-MO 0.00031903 5.0492e-05 2 128.55259300 7.9970e-01 2
Lara’s direction 0.00028076 5.0842e-05 1 125.78304061 3.5114e+00 6
Gap-filling 0.00034568 5.4557e-05 3 128.75911576 9.2658e-03 1
NSGA-II 0.00228282 5.9689e-03 4 126.56081625 2.8857e+00 3
SMS-EMOA 0.00405046 5.7238e-03 5 125.88966563 2.9289e+00 5
SPEA2 0.00635668 1.0852e-02 6 126.55026001 2.5895e+00 4

ZDT4 HIGA-MO 38.13060527 7.6780e+00 4 0.00000000 0.0000e+00 6
Lara’s direction 43.19742796 1.1544e+01 5 0.00000000 0.0000e+00 5
Gap-filling 52.35972878 1.2465e+01 6 1.16325406 4.3525e+00 4
NSGA-II 4.07411956 1.6869e+00 2 75.28344930 1.8038e+01 2
SMS-EMOA 3.52099683 1.7386e+00 1 78.04608227 1.8555e+01 1
SPEA2 11.17677922 4.9514e+00 3 19.34577362 2.2000e+01 3

ZDT6 HIGA-MO 3.83694298 1.3668e+00 6 113.28359226 1.3577e+00 2
Lara’s direction 0.00010409 4.3909e-05 1 116.86127498 1.6820e+00 1
Gap-filling 3.02249489 2.7090e+00 5 106.81768735 2.0573e+01 3
NSGA-II 1.28139859 3.0071e-01 2 97.53535725 3.8143e+00 4
SMS-EMOA 1.36426329 3.1163e-01 3 96.84386232 4.2309e+00 5
SPEA2 2.22799304 7.2398e-01 4 86.25780584 7.9570e+00 6

In terms of the convergence measure, Lara’s direction always outperforms HIGA-
MO on ZDT1-3 and 6. Lara’s direction moves the dominated points toward the
Pareto front without considering their distribution while HIGA-MO is designed
to achieve both. Thus, HIGA-MO requires more efforts to approach the Pareto
front than Lara’s direction, in terms of the convergence measure. On ZDT4, which
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has a highly multi-modal landscape, none of the gradient-based methods (HIGA-
MO, Lara’s direction and Gap-filling) achieves comparable results to evolutionary
algorithms. The gradient-based methods easily stagnate in the local Pareto-
front and fail to move towards the global one. For such a highly multi-modal
optimization problem, a restart heuristic could improve the performance of gradient-
based algorithms. For the large population setting, Tab. 5.2 shows roughly the
same results for algorithm comparisons as for the small population setting.

Table 5.2: µ = 100: performance measures on ZDT1-4 and ZDT6 problems.

Test- Convergence measure Hypervolume indicator
function Algorithm Average Std. dev. Rank Average Std. dev. Rank
ZDT1 HIGA-MO 0.00031201 4.1269e-05 1 120.64580412 1.7718e-03 1

Lara’s direction 0.02103585 4.7314e-02 5 120.48926778 5.2474e-02 2
Gap-filling 0.02091304 6.1387e-02 4 120.42616648 2.7937e-01 5
NSGA-II 0.01769266 4.6048e-03 3 120.45030137 4.5135e-02 4
SMS-EMOA 0.01234011 2.6377e-03 2 120.48071780 3.6130e-02 3
SPEA2 0.06017346 1.7966e-02 6 119.86686583 2.1615e-01 6

ZDT2 HIGA-MO 0.00028335 3.3303e-05 3 120.31710222 2.3560e-03 1
Lara’s direction 0.00005498 1.2085e-05 1 120.30338190 2.9998e-03 2
Gap-filling 0.00007857 8.7094e-05 2 120.14758158 1.5778e-01 3
NSGA-II 0.02834448 4.4153e-03 5 119.16220851 1.0985e+00 4
SMS-EMOA 0.02338094 7.0938e-03 4 118.40070248 2.7352e+00 5
SPEA2 0.08566545 4.8472e-02 6 114.48551919 4.4285e+00 6

ZDT3 HIGA-MO 0.00047505 7.5997e-05 3 128.77154126 8.5828e-03 3
Lara’ direction 0.00046485 5.9553e-05 2 128.77257561 5.2596e-03 2
Gap-filling 0.00039660 4.9392e-05 1 128.77099724 3.3611e-03 4
NSGA-II 0.00063823 5.1880e-05 5 128.77436195 1.1318e-03 1
SMS-EMOA 0.00055256 3.5594e-05 4 128.34841609 1.0889e+00 6
SPEA2 0.00243258 6.6391e-03 6 128.55447469 7.9741e-01 5

ZDT4 HIGA-MO 31.34155544 3.9090e+00 4 0.00000000 0.0000e+00 6
Lara’s direction 40.35930710 1.1041e+01 5 0.00000000 0.0000e+00 5
Gap-filling 43.47103886 1.5933e+01 6 5.23444012 1.5425e+01 4
NSGA-II 0.80498648 5.0038e-01 1 109.60569075 5.4368e+00 1
SMS-EMOA 1.01209147 6.3095e-01 2 107.14186469 7.1460e+00 2
SPEA2 2.80155378 1.3959e+00 3 83.82023960 1.5461e+01 3

ZDT6 HIGA-MO 3.54689504 1.2985e+00 5 113.79978098 8.8488e-01 2
Lara’s direction 0.00004369 1.2553e-05 1 116.49314419 1.4990e+00 1
Gap-filling 4.12388484 2.9230e+00 6 86.58598768 3.4123e+01 6
NSGA-II 0.43202530 7.1773e-02 3 109.28079070 1.2513e+00 4
SMS-EMOA 0.40028650 1.1394e-01 2 109.87049482 1.8951e+00 3
SPEA2 0.49692387 1.2882e-01 4 108.17997611 1.9177e+00 5

As shown in the experimental results on ZDT4, the proposed algorithm fails to
approach the global Pareto front and gets stuck in local ones instead. In practice,
such an issue can be tackled by using restart heuristics to re-sample the stagnated
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points. In addition, it is possible to hybridize HIGA-MO with an evolutionary
multi-objective (EMO) algorithm, where the global search ability of an EMO helps
the algorithm to escape from a deceptive, local Pareto front and HIGA-MO could
achieve fast convergence speed when approaching the global Pareto front. Such
an approach has been proposed in López et al. (2012) and the optimal way to
combine HIGA-MO with EMOs should be investigated.

The experiments conducted in this thesis are on a small number of problems. In
future research, the proposed algorithm should be investigated on more multi-
objective problems. When using a large number of search points, the objective
vectors on the Pareto front are close to each other, which might result in relatively
slow movement. In this case, its performance needs to be further tested. In
addition, it is of interest to compare HIGA-MO empirically to other set-based
scalarization method (Schütze et al., 2016).

5.3 Hypervolume Indicator Hessian

In this section, we first derive the Hessian matrix of the hypervolume indicator
for the general multi-objective optimization scenario. The Hessian matrix in bi-
objective cases is treated in Section 5.3.1. For conciseness, matrix calculus notations
are used in the following derivation, which helps to understand the structure of
the Hessian matrix. The hypervolume Hessian matrix is the “Jacobian” of the
hypervolume gradient defined as follows:

∇2HF(X) = ∂

∂X

(
∂HF(X)
∂X

)
(5.15)

=

 ∂

∂X

(
∂HF(X)
∂x(1)

)
︸ ︷︷ ︸

µ·d×d

, . . . ,
∂

∂X

(
∂HF(X)
∂x(µ)

)

=


∂

∂x(1)

(
∂HF(X)
∂x(1)

)
. . . ∂

∂x(1)

(
∂HF(X)
∂x(µ)

)
...

. . .
...

∂
∂x(µ)

(
∂HF(X)
∂x(1)

)
. . . ∂

∂x(µ)

(
∂HF(X)
∂x(µ)

)
 ,

where each sub-gradient is differentiated with respect to X. This results in µ2

block partitions (d × d) of the Hessian matrix. The (i, j)-block matrix can be
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further expressed as follows:

∂

∂x(i)

(
∂HF(X)
∂x(j)

)
= ∂

∂x(i)

(
∂y(j)

∂x(j)
∂HF(X)
∂y(j)

)
=

m∑
k=1

∂

∂x(i)

(
∂fk(x(j))
∂x(j)

∂HF(X)
∂fk(x(j))

)

=
m∑
k=1

∂

∂x(i)

(
∂HF(X)
∂fk(x(j))

)
∇fk(x(j))

>

︸ ︷︷ ︸
Aij

+
m∑
k=1

∂2fk(x(j))
∂x(i)∂x(j)

∂HF(X)
∂fk(x(j))︸ ︷︷ ︸

Bij

. (5.16)

According to the differentiation above, each (i, j)-block matrix is a combination of
two components: Aij and Bij . Note that matrix Aij , ∂

∂x(i)

(
∂HF(X)
∂fk(x(j))

)
is a column

vector of size n and stands for the sub-gradient of ∂HF(X)
∂fk(x(j)) at x(j). In the following,

we abbreviate fk(x(i)) as f (i)
k and its gradient ∇fk(x(i)) as ∇f (i)

k .

The first component: Aij Due the fact that the matrix aij is a sum of m outer
products, this term has at most rank m. It is possible to make Aij to have full rank
only if m ≥ n. In other cases, Aij is always rank deficient (rank(Aij) ≤ m < d).
This indicates that in the “usual” multi-objective optimization case, where the
number of objective functions is smaller than the number of decision variables,
such a matrix Aij is always singular.

In the following lemma, a detailed expression of Aij is given for the bi-objective
case (m = 2). Without loss of generality, we assume that the objective vectors
(and corresponding decision vectors) are arranged according to the ascending order
of the first objective values.
Lemma 5.1. Let m = 2, i = 1, . . . , µ and j = 1, . . . , µ. Assume that all vectors
x(i) are mutually non-dominated, then the first component Aij is non-zero only
if the block matrix is located on the main diagonal (i = j) or the first diagonal
above/below the main diagonal (|i− j| = 1), and it can be written as:

Aij =



∇f (j)
2 ∇f

(j)
1
>

+∇f (j)
1 ∇f

(j)
2
>

if i = j

−∇f (j+1)
1 ∇f (j)

2
>

if i = j + 1

−∇f (j−1)
2 ∇f (j)

1
>

if i = j − 1

0 otherwise.

(5.17)

Proof. Assume a fixed reference point r = (r1, r2)>. To simplify the formulation,
we denote f (µ+1)

1 := r1 and f (0)
2 := r2. The partial derivative of the hypervolume
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indicator w.r.t. the objective value is derived in Emmerich and Deutz (2014),
which corresponds to the length of the steps of the attainment curve:

∂HF(X)
∂f

(j)
1

= f
(j)
2 − f (j−1)

2 ,
∂HF(X)
∂f

(j)
2

= f
(j)
1 − f (j+1)

1 . (5.18)

It is clear that ∂HF(X)
∂f

(j)
1

is a function of only x(j) and x(j−1) (similar argument holds

for ∂HF(X)
∂f

(j)
2

). The gradient of the partial derivatives can be given, for example:

∂
∂x(j)

(
∂HF(X)
∂f

(j)
k

)
= ∇f (j)

2 . Such a gradient is nonzero for at least one objective

function, when i = j, i = j + 1 or i = j − 1. By substituting the required gradients
into Eq. (5.16), the expression of Aij can be obtained.

The second component: Bij Bij is a weighted sum of second order deriva-
tives of the objective functions, where the weights are partial derivatives of the
hypervolume indicator at each objective value (cf. Eq. (5.10)). Note that the
second order derivative ∂2f

(j)
k

∂x(i)∂x(j) is not zero if and only if i = j:

H(j)
k :=

∂2f
(j)
k

∂x(j)2 ,

is the Hessian matrix of objective function fk at point x(j). Consequently, matrix
Bij can be written as:

Bij =


m∑
k=1

∂HF(X)
∂f

(j)
k

H(j)
k if i = j

0 if i 6= j.

(5.19)

Note that ∂HF(X)
∂f

(j)
k

can be obtained from Eq. (5.18). The singularity of matrix
Bij depends on the properties of the Hessian matrices of the objective functions.
Under the assumption that all objective functions are convex (the objective-
wise Hessian matrices are positive-definite), matrix Bij is also positive-definite,
under the condition that all objective functions are subject to maximization (for
minimization, Bij is negative-definite). In general, if each objective function has
non-singular Hessian matrix almost everywhere, it is obvious that the matrix Bij

is non-singular.
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5.3.1 The Bi-objective Case

For a bi-objective optimization problem, the hypervolume Hessian matrix has the
following structure:

∇2HF(X) =



D1 Ã1
Ã>1 D2 Ã2

Ã>2
. . . . . .
. . . . . . Ãµ−1

Ã>µ−1 Dµ

 ,

where Di = Aii+Bii and Ãi = Ai(i+1) = −∇f (i)
2 ∇f

(i+1)
1

>
according to Eq. (5.17).

Note that the Hessian matrix ∇2HF(X) is a tridiagonal block matrix. It is
important to investigate when the diagonal block matrix is singular. Due to the
difficulty of the investigation, we start to discuss the invertibility of the Hessian
matrix in two special cases: single-point system, where only a single decision vector
is moved and two-point system where the interactions between two points need to
be considered.

One-point system In this case, the hypervolume Hessian matrix degenerates
to the diagonal block matrix Di, that can be expressed using Eq. (5.19):1

Di =
(
f

(i)
2 − f

(i−1)
2

)
H(i)

1 +
(
f

(i)
1 − f

(i+1)
1

)
H(i)

2︸ ︷︷ ︸
Bii

+∇f (i)
2 ∇f

(i)
1
>

+∇f (i)
1 ∇f

(i)
2
>︸ ︷︷ ︸

Aii

.

To investigate the invertibility of such a matrix, we assume that each objective
function is convex, in addition to the differentiability assumption.
Theorem 5.1. If the decision vector belongs to the efficient set, x(i) ∈ PX and
its two neighbors x(i−1) and x(i+1) are not weakly dominated simultaneously, then
the diagonal block matrix Di is non-singular and negative definite.

Proof. Note the following facts: 1) Due the assumption that both objective func-
tions are convex, the objective-wise Hessian matrices H(i)

1 and H(i)
2 are positive

definite. 2) Since the minimization task is assumed and x(i−1),x(i+1) are not weakly
dominated simultaneously, the coefficients

(
f

(i)
2 − f

(i−1)
2

)
and

(
f

(i)
1 − f

(i+1)
1

)
are

non-positive but do not take zero value at the same time (Emmerich and Deutz,
1As only a single decision vector is considered here, the script index i can be removed. We

still keep it because the discussion of invertibility here holds for every diagonal block matrix.
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2014). 3) If x(i) ∈ PX , then the two objective-wise gradients are anti-parallel
to each other, namely ∃β > 0, ∇f (i)

1 = −β∇f (i)
2 , due the Karush-Kuhn-Tucker

theorem (Ehrgott, 2006). Then, ∀y ∈ Rd \ {0}, the quadratic form associated with
Di is:

y>Diy =
(
f

(i)
2 − f

(i−1)
2

)
y>H(i)

1 y +
(
f

(i)
1 − f

(i+1)
1

)
y>H(i)

2 y− 2β
(

y>∇f (i)
2

)2
.

Each term on the right-hand-side of the equation above is negative according to
the facts listed above and therefore their sum, y>Diy < 0. Consequently, Di is
negative definite and thus non-singular.

Theorem 5.2. If the objective functions are convex and the decision vector x(i)

does not belong to the efficient set X , the matrix Di is non-singular if and only if
the following condition holds:(

∇f (i)
2
>

B−1
ii ∇f

(i)
1 + 1

)2
6=
(
∇f (i)

2
>

B−1
ii ∇f

(i)
2

)(
∇f (i)

1
>

B−1
ii ∇f

(i)
1

)
.

Proof. We introduce the following notations:

Pi :=
(
∇f (i)

1 ,∇f (i)
2

)
, Qi :=

(
∇f(i)

2
>

∇f(i)
1
>

)
.

Then Di can be re-written as: Di = Bii+PiQi. Note that Bii =
(
f

(i)
2 − f

(i−1)
2

)
H(i)

1

+
(
f

(i)
1 − f

(i+1)
1

)
H(i)

2 is a combination of objective-wise Hessian matrices. Since

both of the objective function are convex, H(i)
1 and H(i)

2 are positive definite. In
addition, the coefficients

(
f

(i)
2 − f

(i−1)
2

)
and

(
f

(i)
1 − f

(i+1)
1

)
are negative in case

of minimization. Consequently, Bii is negative definite and thus non-singular. Ac-
cording to the matrix inversion lemma (Woodbury matrix identity), Ci is invertible
if and only if Ti = I2×2 + QiB−1

ii Pi is invertible:

Ti =

∇f (i)
2
>

B−1
ii ∇f

(i)
1 + 1 ∇f (i)

2
>

B−1
ii ∇f

(i)
2

∇f (i)
1
>

B−1
ii ∇f

(i)
1 ∇f (i)

1
>

B−1
ii ∇f

(i)
2 + 1

 .

As matrix Ti is always of size 2× 2, its determinant is much easier to compute
than that of Ci:

det(Ti) =
(
∇f (i)

2
>

B−1
ii ∇f

(i)
1 + 1

)2
−
(
∇f (i)

2
>

B−1
ii ∇f

(i)
2

)(
∇f (i)

1
>

B−1
ii ∇f

(i)
1

)
.

The matrix Di is non-singular if and only if the determinant above is non-zero.
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Note that the analysis of the convergence of a single point to the maximal hyper-
volume is structurally similar to the maximization of the hypervolume contribution
of a single point in a set. The only difference is that the reference point is provided
by coordinates of the neighboring non-dominated points in the objective space.
Therefore, Theorem 5.2 also holds for maximizing the hypervolume contribution of
a single point, as long as the neighboring points in the objective space are kept
fixed.

Two-point system In this case, the hypervolume Hessian matrix looks as
follows:

∇2HF(X) =
(

D1 Ã1
Ã>1 D2

)
.

Again, we assume that two decision points x(1) and x(2) are mutually non-
dominated. For this 2× 2 block matrix, its invertibility is given by the following
theorem.
Theorem 5.3. If the diagonal block matrices D1,D2 are non-singular, then the
hypervolume indicator Hessian matrix is non-singular if and only if:(

∇f (1)
1
>

D−1
1 ∇f

(1)
1

)(
∇f (2)

2
>

D−1
2 ∇f

(2)
2

)
6= 1.

Proof. See appendix B.1.

Note that the non-singularity condition above does not hold even when both of
the search points are in the efficient set. Such a situation can be depicted using a
simple bi-objective optimization problem with d = 1 and m = 2:

f1 = x2, f2 = (1− x)2, x ∈ R.

To illustrate the singularity scenario, only two decision points are used, namely
x(1) and x(2). For such a problem, the efficient set is the interval [0, 1] and thus
the box [0, 1]2 is the region where x(1) and x(2) are both efficient. In Fig. 5.4, the
set where the Hessian matrix is singular is depicted by the curved boundary of
the shaded area. As shown in this example, in the two-point system, the Hessian
matrix is not always invertible, even if all the search points belong to the Pareto
efficient set. Moreover, in the shaded area (in [0, 1]2), the hypervolume Hessian
matrix is even indefinite, which would make it more difficult for Newton method
to converge to the optimum.
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Figure 5.4: An example of two-point case in bi-objective optimization problem: The
box [0, 1]2 is the region where x(1), x(2) are both Pareto efficient. The hypervolume
Hessian matrix is singular when (x(1), x(2)) is on the blue curve.

Remark. As illustrated in this example, the hypervolume Hessian matrix is only
singular on a set of zero measure and therefore the applicability of the Newton
method is not affected by the singularity because the probability of entering into
such a set is zero. However, in general additional caution is needed if the set where
the hypervolume Hessian is singular has nonzero measure, or in case there are
regions where the Hessian is indefinite (which happens in our example).

5.3.2 Hypervolume Indicator Newton Method

After having stated the hypervolume gradient and Hessian matrix for a µ ·n-vector
X for a given MOP, we are now in the position to address the population based
Newton method for hypervolume maximization. For this, we will first consider
the unconstrained case and later on discuss first attempts to treat constrained
problems. Given an unconstrained MOP and a population of µ points, the Newton
step (or Newton function) is defined as follows:

∆X := −σ
[
∇2HF(X)

]−1∇HF(X). (5.20)

In practice, a small step size σ ∈ (0, 1] is introduced to ensure the so-called Wolfe
conditions (Wright and Nocedal, 1999) are met after each Newton step. As with
the treatment in Section 5.2, the Newton step for decision point x(i) is denoted by
∆X(i) ∈ Rd, i = 1, . . . , µ. Since the hypervolume indicator sub-gradient (Eq. (5.9))
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for the strictly dominated point x(i) of X is zero, its corresponding Newton direction
is also zero. Consequently, such a point will remain stationary when applying the
set-based Newton method. For the sake of simplicity, it is assumed that all the
points contained in X are mutually non-dominated by each other. In case any point
is dominated, it is always possible to apply the non-dominated-sorting approach
proposed in Section 5.2.1. The Hypervolume Newton Method (HNM) is thus
defined as

X0 ∈ Rµ·d, Xi+1 = Xi + ∆X, i = 0, 1, 2, . . . . (5.21)

The pseudo code for HNM is shown in Alg. 11. For the step size control, we suggest
to choose the initial step size σ0 = 1 and adjust it online using the backtracking
line search. If automatic differentiation is used to evaluate the (exact) hypervolume
indicator gradient and the Hessian matrix at each iteration, the cost for each
Newton step is given by 5µ+ (4 + 6d)µ function evaluations.

Algorithm 11 Hypervolume Newton Method
1: procedure hnm(X, N, ε) . X: initial approximation set, N : maximal

iteration, ε: tolerance on the length of hypervolume gradient
2: for i = 1→ N do
3: Compute ∇HF(X), ∇2HF(X)
4: Compute step size σ by backtracking line search
5: X← X− σ

[
∇2HF(X)

]−1∇HF(X) . Newton step
6: if ‖∇HF(X)‖ < ε then
7: return X
8: end if
9: end for

10: return X
11: end procedure

Example. In order to demonstrate the performance of the HNM we consider the
following bi-objective optimization problem (also known as the MOP1 problem):

f1 = (x1 − 1)2 + (x2 − 1)2

f2 = (x1 + 1)2 + (x2 + 1)2,
(5.22)

where we choose as reference point r = (20, 20)>.
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(a) We choose µ = 5 and the initial approximation set X as{
x(1),x(2),x(3),x(4),x(5)

}
=
{(

0
−2

)
,

(
0.5
−1.5

)
,

(
1
−1

)
,

(
1.5
−0.5

)
,

(
2
2

)}
.

(5.23)

Fig. 5.5 shows the performance of HNM both in the decision and objective
space. As it can be seen, the iterations quickly approach the optimal solution
for µ = 5 and a given reference point. This observation is confirmed in
Tab. 5.3a, where the hypervolume values, the norm of the gradients, and
the error measured in terms of the Hausdorff distance (Schütze et al., 2012)
of X and the optimal solution are displayed for each iteration. The values
indicate quadratic convergence.

(b) Next, we consider the same setting but using a different initial approximation
set: {

x(1),x(2),x(3),x(4),x(5)
}

=
{(
−0.12
−1.57

)
,

(
0.48
−1.24

)
,

(
1
−1

)
,

(
1.32
−0.26

)
,

(
1.89
−0.11

)}
.

(5.24)

Fig. 5.6 and Tab. 5.3b show the numerical results of HNM. In step 2, x(1)

gets dominated by x(3). The iteration thus continues with the remaining
4 point excluding x(1). HNM converges (again quadratically) toward the
optimal hypervolume population, albeit for population size µ = 4.

5.4 Summary

The multi-objective optimization problem is investigated in this chapter. The
general goal here is to generalize the first- and second-order optimization method
from the single-objective scenario to the multi-objective scenario. In order to
achieve this goal, the notion on the gradient is extended to the multi-objective
problem: the partial derivatives of the hypervolume indicator is taken w.r.t. to
the decision points and the so-called hypervolume indicator gradient is defined
as the concatenation of such partial derivatives at all decision points. Based on
this extension, a gradient ascent algorithm, called hypervolume indicator gradient
ascent multi-objective optimization (HIGA-MO) is proposed to maximize the
hypervolume in the steepest manner. Following this treatment, the second-order
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Table 5.3: On the MOP1 Problem (Eq. (5.22)), Alg. 11 is executed for seven
iterations and the following values are listed iteratively: the hypervolume value, the
size of the approximation set µ, the error in the Hausdorff distance to the optimal
approximation set and the norm of the hypervolume indicator gradient.

(a) Using Eq. (5.23) for X0 (cf. Fig. 5.5).

Iter µ HF Error ‖∇HF‖

0 5 306.5000 76.5695 48.8262

1 5 369.5622 13.5072 21.0628

2 5 379.0652 4.0042 13.9973

3 5 382.7340 0.3355 2.8800

4 5 383.0680 0.0015 0.2000

5 5 383.0695 0.0000 0.0013

6 5 383.0695 0.0000 0.0000

7 5 383.0695 0.0000 0.0000

(b) Using Eq. (5.24) for X0 (cf. Fig. 5.6)

Iter µ HF Error ‖∇HF‖

0 5 321.5483 61.5212 52.9006

1 5 376.6161 6.4534 14.6855

2 4 373.5446 9.5249 2.0132

3 4 380.6982 2.3713 0.1104

4 4 380.6985 2.3710 0.0002

5 4 380.6985 2.3710 0.0000

6 4 380.6985 2.3710 0.0000

7 4 380.6985 2.3710 0.0000

derivatives of the hypervolume indicator is formulated. In addition, we investigate
the condition on which the resulting Hessian matrix is regular (non-singular). This
is an essential prerequisite for using the hypervolume indicator Hessian matrix
correctly. In addition, to investigate the proposed algorithms, a bi-objective
problem class, called Mixed-Peak problems are introduced. This problem class
allows for directly controlling the problem difficulty of its instance.
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Figure 5.5: Numerical result of HNM on the MOP1 problem using Eq. (5.23) as
the initial approximation set. Top: the iterations in decision and objective space.
Bottom: the optimal solution and its image for µ = 5 and r = (20, 20)>.
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Figure 5.6: Numerical result of HNM on the MOP1 problem using Eq. (5.24) as
the initial approximation set. Top: the iterations in decision and objective space.
Bottom: the optimal solution and its image for µ = 4 and r = (20, 20)>.
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