
Stochastic and deterministic algorithms for continuous black-box
optimization
Wang, H.

Citation
Wang, H. (2018, November 1). Stochastic and deterministic algorithms for continuous black-
box optimization. Retrieved from https://hdl.handle.net/1887/66671
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/66671
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/66671


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/66671 holds various files of this Leiden University 
dissertation. 
 
Author: Wang, H. 
Title: Stochastic and deterministic algorithms for continuous black-box optimization 
Issue Date: 2018-11-01 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66671
https://openaccess.leidenuniv.nl/handle/1887/1�


ch
ap

te
r

4
Infill Criteria

When using surrogate modeling in combination with optimization techniques, it is
crucial to determine how the model should be explored/exploited properly due to
the fact that surrogate models give rise to errors in the prediction. Firstly, it is
possible to define a “gain” function G : S → R to assess the unknown locations
(S is again the search space), e.g., the potential improvement over the current
best fitness value. Secondly, considering the randomness from the surrogate model
M (usually a statistical model), the “gain” function becomes stochastic and it is
necessary to use some statistical features from it, e.g., the expectation:

A (x) = E {G(x) |M } .

Such a function A : S → R is the so-called infill criterion. Note that in some
literature, it is also called acquisition function (Snoek et al., 2012). The next
location to evaluate is simply the maximum of the infill criteria:

arg max
x∈S

A (x). (4.1)

This formalism depends on two design choices: the statistical model M and the
“gain” function G. As for the statistical model, Kriging/GPR is very commonly
applied as it provides a theoretical quantification for the modeling error, through
the Kriging MSE (cf. Eq. (3.11)). Some other popular models include random
forests (Hutter et al., 2011; Bartz-Beielstein et al., 2005) and support vector
regression (SVR) (Forrester et al., 2008). For those models, however, the theoretical
prediction error is typically not available and the empirical error is used instead.
Here, Kriging/GPR shall be assumed as the statistical model throughout all the
discussions.
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4. INFILL CRITERIA

As for the “gain” function, one common choice is the potential improvement over
the current best fitness value, achieved by evaluating an unobserved location.
Maximizing the expected improvement leads to a greedy, stepwise optimization
strategy. As an alternative, the so-called cumulative regret is considered in the
multi-armed bandit: the regret in iteration t is Rt = f(x∗)− f(xt), where x∗ =
arg minx∈S f(x) and xt is the location chosen in iteration t. In practice, as
f(x∗) is unknown, the regret Rt has to be estimated. It is possible to construct
a non-stepwise gain by summing up all the regrets since the beginning of the
optimization:

G = −
T∑
t=1

Rt.

Note that T stands for the current iteration and the minus sign is intended to
convert the regret values to a gain function. For this gain function, the Upper
Confidence Bound (UCB) criterion is proposed (Auer, 2002): given a surrogate
model f̂ (e.g., Kriging) of f and the MSE of the prediction s2(x), UCB is defined
as:

LCB(x;β) = f̂(x)−
√
βs2(x), (4.2)

where β is a carefully chosen learning rate that explicitly controls the trade-off
between exploitation and exploration. Note that this infill criterion is also known
as Lower Confidence Bound (LCB) in terms of minimization. Obviously, a high
value of β emphasizes more on the model uncertainty and thus tends to be more
explorative. When Kriging/GPR is chosen as the statistical model, this infill
criterion is called Gaussian Process Upper Confidence Bound (GP-UCB) (Srinivas
et al., 2010). In addition, criteria with free parameters such as β shall be called
parameterized infill criteria in this thesis. Other infill criteria have been proposed,
based on different types of the gain function, e.g., BayesGap (Hoffman et al., 2014)
and UGap (Gabillon et al., 2012), which are gap-based exploration approaches. For
a survey and conceptual comparison among those infill criteria, please see Jones
(2001); Forrester et al. (2008).

The infill criterion plays a vital role in many optimization paradigms, including
the Efficient Global Optimization, Multi-armed Bandits, Monte-Carlo Tree Search
(MCTS) and Multi-objective optimization (Emmerich, Yang, Deutz, Wang, and
Fonseca, 2016). In this thesis, we shall focus on the Efficient Global Optimization
algorithm, which is a sequential design strategy designed to solve expensive global
optimization problems (Močkus, 1975, 2012; Jones et al., 1998).
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4.1 Improvement-based Infill Criteria

It is important to point out that different infill criteria can give rise to conflicts
on the promising location to evaluate, e.g., the probability of improvement favors
low-risk locations while the expected improvement tends to find locations with a
high gain (see Section 4.2). Multiple conflicting infill criteria can be considered
as a multi-objective optimization problem (Bischl et al., 2014; Wang et al., 2016).
Such a multi-objective treatment gives the decision makers the flexibility to choose
among low-risk and/or high-gain solutions and possibly leads to parallelization of
the Bayesian optimization. An alternative approach is proposed by Hutter et al.
(2012), where multiple LCB criteria are created by sampling several β values from
an exponential distribution with the unit mean. Furthermore, it is proposed to use
portfolio strategies to select an infill criterion in each step of the Efficient Global
Optimization (Hoffman et al., 2011; Ursem, 2014).

As for the optimization of the infill criteria, derivative-free Evolutionary algo-
rithms (Bäck and Schwefel, 1993) and gradient-based method (e.g., quasi-Newton
method) are often used/combined to search for the global optimum. As an alter-
native, Wang et al. (2018) propose to diversify the search by adapting the niching
techniques to find multiple (local) optima of the acquisition function.

4.1 Improvement-based Infill Criteria

Over the last decades, much research has been put into finding a function A

that provides a good balance between exploration and exploitation for various
applications. One category of such functions, called Improvement-based infill
criteria, is of particular interest for the following reasons: this category of functions
has clear statistical meanings and those are widely applied in the field of efficient
global optimization. Formally, the improvement is a function1 defined on the
stochastic process model Y of the objective function f . In terms of minimization,
it is (Schonlau et al., 1998):

I(x) =
{
fmin − Y (x) if Y (x) < fmin,

0 otherwise.
(4.3)

Assume that we have observed the data set (X,y) on f and let fmin = min{y}
stand for the best function value found so far. When choosing the Gaussian prior
on Y , the posterior process Y (x) | y ∼ N (f̂(x), s2(x)) (cf. Eq. (3.29)) is taken

1Naturally, this function I is also a stochastic process over S.
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4. INFILL CRITERIA

in Eq. (4.3). In the following discussion, the posterior mean and variance shall
be abbreviated as f̂ and s2 if there is no ambiguity on the location x under the
consideration. The distribution of I(x) | y is known as Rectified Gaussian1, whose
density function is written as (cf. Eq. (A.5)):

pI(u; x) =


Φ
(
f̂ − fmin

s

)
δ(u) u < fmin,

s−1(2π)−1/2 exp
(
− (u− (fmin − f̂))2

2s2

)
otherwise.

(4.4)

Here δ(·) is the Dirac delta. Most of the improvement-based infill criteria are
constructed to summarize the statistical properties of the improvement. A short
review of the improvement-based infill criteria is given as follows.

• Expected Improvement (EI) is originally proposed by Močkus (1975) and
utilized as the infill criterion in the standard Efficient Global Optimization
(EGO) algorithm (Jones et al., 1998). It is defined as the first moment of
the improvement:

EI(x) = E {I(x) | y} =
(
fmin − f̂

)
Φ
(
fmin − f̂

s

)
+sφ

(
fmin − f̂

s

)
. (4.5)

Here Φ(·) and φ(·) are the cumulative distribution function (c.d.f.) and
probability density function (p.d.f.) of the standard normal random variable.
As will be shown in the next section, the EI criterion is highly multi-modal
and tries to balance between exploration and exploitation.

• Bootstrapped Expected Improvement (BEI) (Kleijnen et al., 2012) tries to
correct the bias in EI due to the fact that the Kriging MSE derived in
Eq. (3.11) is an underestimate of the true Kriging MSE when the hyper-
parameters are estimated (den Hertog et al., 2006). Bootstrapped EI uses
parametric bootstrapping to approximate the real Kriging MSE. Although
BEI is shown as a more reliable alternative to EI, it also brings a large
amount of computational cost.

• Probability of Improvement (PI) gives the probability of realizing an improve-
ment (Žilinskas, 1992; Jones, 2001). This criterion is more biased towards
exploitation than exploration since it rewards the solutions that are more

1Do not confuse the rectified Gaussian with the so-called truncated Gaussian distribution.
See Appendix A for the clarification.
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4.1 Improvement-based Infill Criteria

certain to yield an improvement over the current best solution, without
taking the amount of the actual improvement into account:

PI(x) = Pr(Y (x) < fmin | y) = Φ
(
fmin − f̂

s

)
. (4.6)

Loosely speaking, PI rewards low risk solutions that typically come with
a relatively small amount of improvement while EI rewards solutions that
give high improvement on average but could be risky to realize such an
improvement. Therefore, the maximization of PI is considered as a risk
minimization strategy and in contrast, the maximization of EI is considered
as a gain maximization strategy. In Section 4.2, the trade-off between these
two criteria is investigated by treating them as a bi-objective optimization
problem.

• Weighted Expected Improvement (WEI) is an alternative approach to explicitly
control the balance between exploration and exploitation. Consider Eq. (4.5):
the first term calculates the difference between the current best fmin and the
prediction f̂ , penalized by the probability of improvement. The second term
is large when the RMSE s is large, meaning a large uncertainty about the
prediction is preferred. Therefore, it is also straightforward to balance those
two terms within EI (Sóbester et al., 2005):

WEI(x;w) = w
(
fmin − f̂

)
Φ
(
fmin − f̂

s

)
+ (1−w)sφ

(
fmin − f̂

s

)
, (4.7)

where w ∈ [0, 1] is the balancing weight. Sóbester et al. (2005) argues that
this additional parameter is problem-dependent.

• Generalized Expected Improvement (GEI) (Schonlau et al., 1998) is a gener-
alization of the EI criterion where an additional parameter, g, is introduced
to compute the gth-order moment of the improvement. The larger the value
of g, the more explorative locations will be awarded by the criterion and vice
versa. GEI is defined as follows:

GEI(x; g) = E {I(x)g | y} = sg
g∑
k=0

(−1)k
(
g

k

)
f̂g−kTk, (4.8)

where Tk is defined recursively for k > 1:

Tk = −uk−1φ(u) + (k − 1)Tk−2, (4.9)
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4. INFILL CRITERIA

with

u = fmin − f̂
s

, T0 = Φ(u), T1 = −φ(u)

Note that as GEI is expressed recursively, additional computational costs are
attached to it and moreover it becomes very difficult to differentiate GEI.
The setting of the additional integer parameter g is entirely empirical. Sasena
et al. (2002) propose a “Simulated Annealing”-like approach to decrease the
value of g gradually, resulting in highly explorative behavior in the beginning
of the optimization and more exploitative behavior after several iterations.
The settings for g proposed are in the form of a look-up table where g starts
at 20 and quickly goes down to 0 after iteration 35.

• Multiple Generalized Expected Improvement (MGEI) (Ponweiser et al., 2008)
instantiates multiple normalized GEI criteria, using different g settings in
parallel. They obtain k best local optima which are evaluated for the next
iteration. The main disadvantage of this approach is the need of a large
number of evaluations.

4.2 Balancing Risk and Gain

In either efficient global optimization or experimental design, a single infill criterion
is maximized to generate the next promising location (solution) to evaluate. The
choice of criteria has a significant impact on the performance because each criterion
represents a different optimization strategy. When considering PI and EI, on the
one hand, a low PI value can be viewed as risky evaluation and the maximization
of PI can be seen as a risk minimization strategy. However, the risk minimization
strategy can still lead to small improvement. On the other hand, the maximization
of EI leads to high gains on average and thus it is a strategy of expected gain
maximization. However, it does not minimize the rate of failure (no improvement is
found). In Wang et al. (2016), we propose to consider the maximization of PI and
EI simultaneously to find the trade-off between them, which naturally forms a bi-
objective optimization problem. In this manner, it is possible to search for the best
set of trade-off locations, namely the Pareto efficient set and candidate locations
can be selected from the Pareto efficient set according to human preferences on
risk/expected gain, or some pre-defined decision-making rules. Formally, the
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4.2 Balancing Risk and Gain

following vector-valued infill criterion is considered:

AAA : S→ R2, x 7→ (PI(x),EI(x))>. (4.10)

The set of candidate locations is the Pareto efficient set of AAA , namely:

X = arg max
x∈S

AAA (x). (4.11)

Note that such a vector-valued infill criteria can be easily generalized to many
objectives. Before solving Eq. (4.11) numerically, the following observations are
seen in the objective space, i.e., the space formed by PI and EI values. As shown
in the definition of PI and EI (Eq. (4.6) and (4.5)), both of them can be expressed
completely by the Kriging predictor f̂ and root mean squared error (RMSE) s.
Therefore, both PI and EI can be considered in the space formed by f̂ and s. Some
properties of PI and EI can be inferred by investigating their behavior in such space
with the benefit that such approach is independent of a specific Kriging model.
The contour lines of two criteria are shown in Fig. 4.1. Without loss of generality,
we put the current best function value fmin to zero and normalize f̂ , s to [−1, 1]
and [0, 1], respectively. In the figure, the maximum of PI and EI is illustrated by

−0.10 −0.06 −0.02 0.02 0.06 0.10

f̂

0.0

0.1

0.2

0.3

0.4

0.5

s

−0.10 −0.06 −0.02 0.02 0.06 0.10

f̂

0.00 0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.96
Probability of Improvement

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24
Expected Improvement

Figure 4.1: The contour lines of Probability of Improvement (Left) and Expected
Improvement (Right) in the space of Kriging prediction and RMSE. The red points
indicate the maximum of PI and EI, respectively.
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4. INFILL CRITERIA

the red point. Furthermore, f̂ < 0 indicates predictions that are smaller (better)
than fmin. In this case, PI tends to find the point with the minimal RMSE.
According to the Kriging MSE expression (Eq. (3.11)), the RMSE s decreases to
zero when approaching any observed location. Therefore, when better predictions
exist in the Kriging model, PI prefers locations “next to” the observed ones. When
Kriging predictions are worse than fmin, PI prefers the point with the largest
RMSE and thus is of high risk. In contrast, EI always increases with increasing
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Figure 4.2: On the Branin function (top-left), 10 data points (black dots) are
generated uniformly, on which an Ordinary Kriging model (with Matérn 3/2 kernel)
is trained. Contour lines of the prediction (top-right), Expected Improvement
(bottom-left) and Probability of Improvement (bottom-right) are depicted.
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4.2 Balancing Risk and Gain

RMSE and decreases with increasing Kriging predictions. Note that, although it
seems possible to compute the Pareto front directly from Fig. 4.1 (by looking for
the points that satisfy the Karush-Kuhn-Tucker (KKT) conditions based on the
contour line of PI and EI), the resulting Pareto front is not feasible due to the
fact that not every point in the objective space is attainable: depending on the
underlying Kriging/GPR model, the pre-image of a point (f̂ , s) ∈ [−1, 1]× [0, 1]
does not necessarily exist in the search/decision space S.
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Figure 4.3: Pareto approximation sets of the bi-objective infill criterion formed by
the PI and EI landscape (Fig. 4.2). The results are obtained from the HIGA-MO
with population size 20. Left: Pareto efficient sets (blue dots) between PI (red
contours) and EI (black contours). Right: The corresponding Pareto fronts.

In Wang et al. (2016), it is proposed to solve this problem numerically by a
gradient-based multi-objective optimization algorithm, called Hypervolume Indica-
tor Gradient Ascent Multi-objective Optimization (HIGA-MO) (Wang et al., 2017).
The gradients of PI and EI are required for this algorithm, which are given as
follows. By introducing the auxiliary variable u = (fmin − f̂)/s, the gradients
are:

∂ PI
∂x = −φ(u)

s

(
∂f̂

∂x + u
∂s

∂x

)
,

∂ EI
∂x = φ(u) ∂s

∂x − Φ(u)∂f̂
∂x .

By plugging those gradients into HIGA-MO (Alg. 10 in Section 5.2), the Pareto
front/efficient set of A can be obtained. We illustrate the result of the bi-objective
optimization on the well-known 2-D Branin function. Here 10 design locations are
generated and evaluated on the Branin function using Latin Hypercube Sampling
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4. INFILL CRITERIA

and an Ordinary Kriging is built on those locations. The landscapes of PI and
EI are shown in Fig. 4.2: the global structures of the landscapes are quite similar
while the local landscape differs subtly. The following setting of HIGA-MO is used
for this problem: the population size is set to 40 and the step-size is set to 0.004
multiplied by the maximal range of the search space. HIGA-MO is terminated
after finishing 2000 generations. The results from the gradient-based algorithm
are shown in Fig. 4.3, where the efficient set and the Pareto front are indicated by
the blue points.

4.3 Moment-Generating Function of Improvement

Following the intuition on using the higher moments of the improvement, an
novel infill criterion based on the Moment-Generating Function (MGF) of the
improvement is introduced in (Wang et al., 2017), where all the moments are
combined. Loosely speaking, given the existence of the moment-generating function,
it can be expanded as a Taylor series, whose terms are proportional to all the
moments (to the infinite order) of the improvement. Therefore, such a function
is considered as combination of all the moments. Formally, the MGF of the
improvement I(x) is an alternative way to give its probability distribution and it
is defined as:

∀t ∈ R, M(x, t) := E exp (tI(x)) =
∫ ∞
−∞

etupI(u; x) du.

Moreover, the moment-generating function can be calculated using the density
function of I(x):

M(x, t) = 1 + Φ
(
fmin − f̂ ′

s

)
exp

((
fmin − f̂

)
t+ s2t2

2

)
− Φ

(
fmin − f̂

s

)
,

f̂ ′ = f̂ − s2t. (4.12)

This function has a closed form and is well-defined for all t ∈ R. From a different
perspective, the Taylor expansion of the MGF is:

M(x, t) = 1 + tEI(x) + t2

2!EI
2(x) + t3

3!EI
3(x) + · · · =

∞∑
n=0

tn

n!EI
n(x). (4.13)

Note that, for an arbitrary distribution, the above series might not converge for
all the t ∈ R, even if all the moments exist. When treating tn/n! as the weight for
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4.3 Moment-Generating Function of Improvement

each moment EIn, this function can also be considered as a linear combination
of the moments, where the weights are controlled by variable t. In addition, it
is possible to normalize the weights by observing the fact that:

∑∞
n=0

tn

n! = et,

which converges for all t ∈ R. Thus, the normalized MFG function1 is obtained
by dividing it by et. The additional parameter t controls the trade-off between
exploration and exploitation of the search. To visualize this, multiple sets of
weights are plotted in Fig. 4.4 by varying t. According to the figure, a low value
of t (e.g., t < 1) assigns more weights to the lower moments (e.g., the expected
improvement), rendering the search process mainly exploitative. As for the higher
values of t, the “center” (mean) of the weight distribution is t and dispersion
(variance) is also increasing with respect to t. This indicates that more higher
moments of the improvement are taken into account when t increases and therefore
the search tends to be more explorative.
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Figure 4.4: Distribution of the combination weights in the normalized moment-
generating function by varying the t value from 0.5 to 21.

Finally, it is proposed to incorporate the Probability of Improvement (PI) in
the proposed acquisition function. This is achieved by treating PI as the “zero-
order” moment of I(x) and replacing the constant 1 in Eq. (4.13). Putting all

1In fact, the normalized weight, tn/etn! is exactly the probability mass function of the Poisson
distribution.
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the considerations together, the proposed Moment-Generating Function of
Improvement M (MGFI) is defined as:

M(x; t) = M(x, t)− 1 + PI(x)
et

= PI(x) + t

et
EI(x) + t2

2!etEI
2(x) + t3

3!etEI
3(x) + · · ·

= Φ
(
fmin − f̂ ′

s

)
exp

((
fmin − f̂ − 1

)
t+ s2t2

2

)
(4.14)

where f̂ ′ is defined in Eq. (4.12). In order to align with existing work (Wang
et al., 2016) on using gradient-based optimization techniques for infill criteria, the
gradient of MGFI is given as well:

∂M(x; t)
∂x = C

[
Φ
(
fmin − f̂ ′

s

)(
t2s

∂s

∂x − t
∂f̂

∂x

)

− φ

(
fmin − f̂ ′

s

)(
1
s

∂f̂ ′

∂x + fmin − f̂ ′

s2
∂s

∂x

)]
,

where
∂f̂ ′

∂x = ∂f̂

∂x − 2ts ∂s
∂x , C = exp

((
fmin − f̂ − 1

)
t+ s2t2

2

)
.

The gradients ∂f̂/∂x and ∂s/∂x are expressed in Eq. (3.34) and (3.35).

Comparison to GEI As with the Generalized Expected Improvement, MGFI
is designed to exploit the higher moments of the improvement. Compared to GEI,
the main advantages ofM are:

1. M combines all the moments using a weight distribution instead of using
one moment each time in GEI. This leads to a much smaller “change” in the
acquisition function when tuning the addition parameter t.

2. It has a simple closed-form expression, in contrast to a recursive formula
(Eq. (4.9)) for GEI. As a result, it is obvious to see thatM is computationally
less expensive than GEI. The gradient ofM can also be easily calculated.

3. The extra parameter t that balances the exploration and exploitation, takes
continuous values while the parameter g in GEI is an integer variable. Con-
sequently, when tuning this additional parameter, the effect can be more
smooth: cooling schedules such as, e.g., the exponential decay, can be applied.
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Figure 4.5: On the 1-D Ackley function (dashed curve), a GPR model (solid curve)
is built on the black dots. MGFI and GEI (both normalized and rescaled to [0, 10])
are plotted by varying parameters t and g, whose maxima are indicated by black
crosses. The shaded area shows the 95% confidence interval of the prediction.
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The difference between MGFI and GEI is illustrated in Fig. 4.5. On the 1-D Ackley
function, a GPR model is built on 6 uniformly distributed samples (black dots)
in [−5, 7]. In addition, 11 MFGI functions are created using a log-scaled t value
from roughly 0.1 to 3 while 11 GEI functions are depicted with g from 0 to 10.
The maximum of the infill criteria (the black crosses) is evaluated in the next
iteration. Comparing the spread of those maximum points, it is obvious that when
g increases in GEI, those maxima of infill criteria are getting close to each other
and thus become indistinguishable. This means the GEI functions are, in fact,
indifferent when the parameter g increases. However, for MGFI, those maxima
still show significant differences when t increases. Therefore, the effective range of
the parameter g is much narrower than that of t.

4.4 Cooling Strategies for MGFI

As discussed in the last section, the functionality of parameter t is analogous
to that of temperature in simulated annealing (Nourani and Andresen, 1998).
Consequently it is straightforward to use the temperature cooling strategies to
improve the optimization procedure. In Wang et al. (2018), we propose to adopt two
most commonly applied cooling strategies in simulated annealing, namely (Nourani
and Andresen, 1998):

• Exponential strategy: ti+1 = αti, 0 < α < 1.

• Linear strategy: ti+1 = ti − η, η > 0.

In each cooling strategy, naturally, there are two parameters to set: the initial
temperature t0 and the cooling speed (α for exponential strategy and η for the
linear one). As shown in the next subsection, the initial temperature t0 is a
free parameter, whose setting should be highly problem-dependent. As for the
cooling speed, it should be determined with respect to the prescribed function
evaluation budget. For example, a fast cooling speed for a short run length can
be hazardous because the search will quickly become very exploitative and even
ends up with stagnation. However, instead of setting the cooling speed directly,
the temperature tf at the final iteration of the algorithm1 is of interest here due
to the fact that the moment whose order is the closest to the current temperature

1Note that the algorithm might terminate before consuming all the budget if other termination
criteria are implemented and satisfied.
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4.4 Cooling Strategies for MGFI

has the biggest weight in MGFI (see Fig. 4.4). Therefore, tf determines the major
functioning order of moment in the final stage of the search. Let Nmax be the
maximal number of iterations. The cooling speed parameters are determined as
follows: α = (tf/t0)1/Nmax , η = (t0 − tf )/Nmax.

4.4.1 Impact of Temperature Configurations

Intuitively, the optimal settings for the initial and final temperature t0, tf should
depend on the specific problem. An experiment is performed to investigate how
large the impact of temperature configurations can be on test problems. Here
10 different temperature configurations (shown in Tab. 4.1) are generated from
the Latin hypercube sampling with design ranges: t0 ∈ [1, 5] and tf ∈ [10−3, 0.5].

Table 4.1: Latin hypercube design of the temperature configuration.

No. 1 2 3 4 5 6 7 8 9 10
t0 1.084 1.273 1.495 1.756 2.063 2.423 2.847 3.344 3.928 4.613
tf 0.366 0.197 0.005 0.009 0.016 0.001 0.031 0.106 0.057 0.003

The following experiment is carried out on noiseless functions of the BBOB
benchmark (Hansen et al., 2010, 2009) for the exponential cooling strategy. We
only select the 10 multi-modal functions f15-f24 from BBOB. The unimodal
functions are skipped because efficient global optimization is designed for multi-
modal functions and using a high temperature (high explorative effect) usually
leads to inefficient convergence on a unimodal one. In addition, 30 independent
runs are conducted on each test function. The function evaluation budget is
set to 50 × D and the size of the initial LHS design is fixed to 10 × D. For
D = 2, the performance of each temperature configuration is reported in Fig. 4.6,
where empirical cumulative distribution functions of the running length (ECDFs)
are shown. ECDF measures the success probability (if the algorithm reaches a
given target fitness f∗ + ∆f in one run) as a function of maximal number of
function evaluations allowed. On some functions, ECDFs from all the temperature
configurations differ largely, e.g., f19 and f23. However, on f17, ECDFs are quite
similar to each other, implying the temperature configuration has relatively small
impact for f17. Moreover, by checking the winning configuration on each function,
it is obvious that there is no global winner for this multi-modal function class. This
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Figure 4.6: Bootstrapped empirical cumulative distribution of the number of
function evaluations divided by dimension for all functions in 2-D. The targets are
chosen from 10[−8..2] such that the bestGECCO2009 artificial algorithm just did not
reach them within a given budget of k × DIM, with k ∈ {0.5, 1.2, 3, 10, 50}.
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4.4 Cooling Strategies for MGFI

observation suggests that the temperature settings are highly problem-dependent
and should indeed be configured in practice.

4.4.2 Benchmarking the Cooling Strategies

For the experiments, only the multi-modal test functions f15 − f24 are picked
for the same reason. Both exponential and linear cooling strategies are tested.
Note that the temperature configuration is not investigated here due to the high
computational time it takes. Instead, the following setting is used: t0 = 2, tf = 0.1.
A relatively small function budget is chosen because it is the scenario on which
Bayesian optimization should perform well: the size of the initial design is set to
10 × D and the totally function evaluation is limited to 50 × D. The maximal
function evaluation is set as the only termination criterion in the experiment.
Therefore, 40×D iterations are executed in each run. For each test function, 30
instances are created for independent runs. For the settings of the Gaussian process,
the Matérn 3/2 kernel is used throughout the experiment. The model is fitted via
the maximum likelihood method, which is solved by the Limited-memory BFGS
(L-BFGS) algorithm with the restarting heuristic. In addition, a small number of
function evaluations 8 + b40 logDc is set for L-BFGS because the computational
overhead on the likelihood function explodes quickly as the number of evaluations
goes up.

On D = 10, the benchmark results are shown in Fig. 4.7. In the plot, “MGFI”
indicates the application of MGFI criterion with a constant temperature setting of
1 (no cooling strategy in this case). “MGFI-exp” stands for MGFI with exponential
cooling strategy while “MGFI-linear” is for the linear cooling. Note that all the
infill-criteria fail completely on f19, indicating many more function evaluations
are needed to solve this function. Using a linear or exponential cooling strategy,
MGFI outperforms the commonly applied expected improvement criterion on seven
functions out of f15− f24. This comparison suggests that MGFI with a cooling
strategy is preferable for BBOB multi-modal functions. In addition, there is no
clear winner between the linear and exponential cooling strategies. However, on
function f21, EI wins the competition. This situation might be caused by a very
poor setting of the cooling temperature and requires further investigation.
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Figure 4.7: Bootstrapped empirical cumulative distribution of the number of
function evaluations divided by dimension for all functions in 10-D. The targets are
chosen from 10[−8..2] such that the bestGECCO2009 artificial algorithm just did not
reach them within a given budget of k × DIM, with k ∈ {0.5, 1.2, 3, 10, 50}.
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4.5 Parallelization

In some applications, the target function f to optimize is actually represented by a
time-consuming simulator run. Multiple simulators can be distributed over many
CPUs or a grid of machines, allowing for the parallelization of function evaluations.
In order to take advantage of this parallelism, several promising candidate locations
are needed from infill criteria A , in addition to the maximum of A . For instance,
naively, this can be done by randomly sampling q points (q > 1) in addition to A ’s
maximum (Hutter et al., 2010). However, this method might be inefficient because
many random samples would never be chosen for the evaluation if a sequential
q-step maximization of infill criteria were performed. Although parallelization
methods for infill criteria have been discussed extensively in the literature, there is
a lack of a clear definition of the problem itself. Here the following formulation
is introduced. Rigorously, considering a GP prior Y on f and the initial data set
(X,y), each step in the sequential maximization of infill criteria is:

x′i = arg max
x∈S

A

(
x | y,

{
f(x′k) | x′k = arg max

x∈S
A
(

x | y, {f(x′n) | . . .}k−1
n=1

)}i−1

k=1

)
.

Note that the infill criterion is denoted as A (x | y, {f(x′k)}k), to emphasize its
dependence (from the underlying GP posterior) on evaluations {f(x′k)}k from all
previous steps as well as the initial observations y. In addition, the expression
above is written in a recursive manner on purpose to show that it is not possible
to decompose the maximization of infill criteria at a certain step from all previous
function evaluations. Here, the goal of infill criteria parallelization is formulated
as to obtain q points {xi}qi=1 ⊂ S from an infill criterion A without any function
evaluation, such that when comparing to points {x′i}

q
i=1 from the sequential q-step

maximization of A , the following condition holds:

E {min (Y (x1), . . . , Y (xq)) | y} ≈ min
{
E {Y (x′1) | y} ,

E {Y (x′2) | y, f(x′1)} ,

. . . ,

E
{
Y (x′q) | y, {f(x′i)}

q−1
i=1

}}
.

This condition regulates that the expectation of the best fitness from q locations is
roughly the same as the minimal expected fitness value obtained from sequential
q-step maximization of A , or shortly the parallelization exhibits the same effect as
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the sequential approach on average. Note that, although this condition gives a clear
target when designing the parallelization method for infill criteria, it is difficult to
validate parallelization methods on it. Thus, in the following, the approaches shall
be discussed regardless of this condition.

4.5.1 Multi-point Infill Criteria

Multi-point Expected Improvement (q-EI) is proposed by Schonlau (1998) and
computes the expectation of the smallest improvement among a set of correlated
locations:

EIq = E {fmin −min(Y (x1), Y (x2), . . . , Y (xq)) | y} . (4.15)

To give the exact formula of q-EI, it requires to integrate the smallest order
statistic from q-correlated Gaussian random variables. The exact formula of 2-EI
is derived in Ginsbourger et al. (2010). For an arbitrary number of points, the
formula is given in Chevalier and Ginsbourger (2013). There are two heuristics,
Kriging Believer and Constant Liar, proposed to approximate q-EI with fewer
computations (Ginsbourger et al., 2010). In Kriging Believer, q points are obtained
via the sequential q-step maximization of A , where the real evaluation f(x) is
replaced by the Kriging prediction. In Constant Liar, a pre-defined fixed value is
used for f(x) and thus is called a “lie”.

4.5.2 Multi-instance of Infill Criteria

Using the additional parameter β in LCB (Eq. (4.2)), Hutter et al. (2012) propose
an alternative parallelization method, where q different β-values are sampled from
the log-normal distribution Lognormal(0, 1) and subsequently q different LCB
criteria are instantiated using β samples:

βi ∼ Lognormal(0, 1), xi = arg min
x∈S

LCB(x;βi), i = 1, 2, . . . , q. (4.16)

Compared to q-EI, this method brings no additional computational cost and it
serves as reasonable between exploration and exploitation. On one hand, as the
probability mass of the standard log-normal distribution concentrates around small
values, most of the β samples will be relatively small and the corresponding LCB
criteria are of low risk. On the other hand, the standard log-normal also possesses
a long tail, meaning that it is possible to obtain a few large β samples with a small
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probability. Note that such a trade-off is controlled by the mean and standard
deviation of the log-normal distribution. At the time of writing, to the best of
our knowledge, there is no theoretical work on investigating the impact of those
parameters in the log-normal distribution, or a proof to show that the log-normal
distribution is the optimal probability law for this purpose, in the first place.
Regardless of this theoretical concern, this method can be easily applied to other
parameterized infill criteria, e.g., MGFI and GEI, although its performance needs
to be tested systematically.

4.5.3 Multi-objective Infill Criteria

The multi-objective treatment of the infill criteria (Section 4.2) also allows for the
parallelization. As a natural extension to the bi-objective formulation in Eq. (4.10),
the general vector-valued infill criteria is considered:

AAA : S→ Rm, x 7→ (A1(x),A2(x), . . . ,Am(x))> ,

where A1,A2, . . . ,Am : S→ R are real-valued infill criteria (subject to maximiza-
tion) that are either selected from some well-defined infill criteria or generated from
a parameterized one, e.g., using Eq. (4.16). To select q points based on this prob-
lem, for instance, we could adopt the so-called decomposition-based multi-objective
optimization (Zhang and Li, 2007), in which q different linear scalarizations on
infill criteria are generated uniformly and q points are obtained as the maximum
of the linear scalarization, namely

xk = arg max
x∈S

m∑
i=1

wiAi(x), w1, w2, . . . , wm ∼ U(0, 1), k = 1, . . . , q.

Note that U(0, 1) stands for the uniform distribution over [0, 1]. Although this
multi-objective proposal seems plausible, it remains untested as of the time of
writing.

4.5.4 Niching-based Infill Criteria Maximization

Considering the landscape of EI, this approach is motivated by the observation
that its landscape is usually highly multi-modal (Jones et al., 1998; Wang et al.,
2018) (also see Fig. 4.2). The original EGO algorithm aims at finding the global
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optimum of the EI landscape, which is another global optimization task and
therefore is difficult to solve (the exhaustive branch-and-bound method has been
proposed initially). Suppose x∗ is the global maximum of EI and x′ is a local
optimum. After incorporating the fitness f(x∗), the Kriging formula are updated
such that the Kriging MSE are largely reduced at x∗ and a neighborhood around
it. Consequently, the EI value drops locally in this neighborhood due the fact that
EI decreases with deceasing Kriging MSE. As this is only a local change of the EI
landscape, EI values around x′ are normally not affected. Then, x′ would possibly
become new global maximum if EI is maximized again. Instead of using the
sequential maximization of EI to “expose” local maxima, it is proposed to combine
EGO with a so-called niching evolution strategy (Shir and Bäck, 2005b), where the
niching method is intended to find multiple distinct local maxima simultaneously.
In the evolutionary computation, niching refers to a collection of methods that
aims at locating multiple distinct local optima, in order to improve the exploration
on highly multi-modal function. In this manner, within one iteration, it is possible
to locate the global maximum of EI as well as some local maxima, which would
be explored using a few iterations, if the sequential maximization were performed.
The resulting parallelization method is called Niching-q-EI (Wang et al., 2018).
Interestingly, from the niching perspective, niching-q-EI can also be considered as a
meta-model assisted niching algorithm where the niche formation is performed on
the EI landscape instead of the real objective function. The niching-q-EI algorithm
is summarized in Alg. 8.

Niching Evolution Strategies Herein the niching evolution strategy is briefly
introduced. In general, Evolutionary Algorithms (EAs) have the tendency to
converge quickly into a single solution in the search space. However, in many
problem solving scenarios (e.g., global optimization), locating and maintaining
multiple solutions/optima is required. Niching is developed to achieve this goal by
forming sub-populations in order to maintain the population diversity of EAs. The
most successful techniques are fitness sharing (Goldberg and Richardson, 1987)
and Crowding (De Jong, 1975).

Although the niching technique is initially proposed mainly for Genetic Algorithms
(GAs), it has also been introduced to classic (1 +, λ) self-adaptive Evolution Strate-
gies by Shir and Bäck (2005b). Later, it is further developed for the derandomized
ES (Shir and Bäck, 2005a) including the well-known Covariance Matrix Adaptation
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Algorithm 8 Niching-based Efficient Global Optimization
1: procedure niching-q-ei(q,S, f)
2: Given: the number of points q for parallelization
3: Sample the initial design X = {x1, . . . ,xn} ⊂ S
4: Evaluate y← (f(x1), f(x2), . . . , f(xn))>

5: Construct the Kriging/GPR model f̂ on X,y.
6: while the stop criteria are not fulfilled do
7: {x′1, . . . ,x′q} ← (1 +, λ)-niching-es(q,S,EI(x; f̂)) . Alg. 9
8: Parallel evaluation y1, . . . , yq ← f(x′1), . . . , f(x′q)
9: X← X ∪ {x′1, . . . ,x′q}
10: y← (y>, y1, . . . , yq)>

11: Re-construct the Gaussian process model f̂ on X,y
12: end while
13: end procedure

Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001) and finally evolved
into a self-adaptive approach which allows for the niche radius and the niche shape
adaptation (Shir et al., 2007). The (1 +, λ)-niching evolution strategy with fixed
niche radius and spherical niche shape (Alg. 9) is chosen for our purpose and it
works as follows: given q optima expected to investigate, the niching procedure
initializes q + p so-called “D-sets” (Shir et al., 2008) which are evolution strat-
egy kernels containing all the adapted strategy parameters (step-size, covariance
matrix) as well as decision parameters (current search point/solution, mutation vec-
tors). Each D-set defines the current search point and all the internal information
regarding an evolution strategy in a given time during the evolution.

The q D-sets are meant for identifying q possible local optima/peaks while p
D-sets are for a “non-peak” domain, which are randomly regenerated every κ

generations. The purpose of p “non-peak” D-sets is to explore the search space so
that new niches would emerge and the probability of finding undiscovered optima
is increased. The niching procedure then proceeds to generate λ offspring for each
D-set. The population of λ(q + p) offspring is evaluated according to the fitness
function. Using their corresponding fitness values, the selection of p search points
is conducted based on the dynamic peak identification (DPI) algorithm (Miller and
Shaw, 1996), using a prescribed niche radius ρ.

The functionality of DPI is to select a subset from the population in which each
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search point has a good fitness value and is not within the radius of the remaining
points. The selected p search points are considered as parental points for the next
generation and their D-sets are inherited from their parents. Finally, the D-sets
are updated based on the selected points. The process above is repeated until the
termination criteria are satisfied.

Algorithm 9 Niching Evolution Strategy
1: procedure (1 +, λ)-niching-es(q, S, f). q: number of niches, S: search space,
f : fitness function

2: Initialize D-set {Di}q+pi=1 in search space S
3: Set generation counter c← 0
4: while the stop criteria are not fulfilled do
5: for i = 1→ (q + p) do
6: Generate λ mutations according to Di

7: end for
8: Evaluate the population using fitness function f .
9: Obtain the dynamic peaks set DPS by performing Dynamic Peak

Identification.
10: for p in DPS do
11: Set p as a new search point
12: Inherit the D-set from the parent of p and update the D-set accord-

ingly.
13: end for
14: if N = size of DPS < q then
15: Generate N − q new search points and reset corresponding D-sets.
16: end if
17: c← c+ 1
18: if c mod κ = 0 then
19: Randomly re-generate (q + 1)th . . . (q + p)th D-sets.
20: end if
21: end while
22: end procedure

For implementation details, we choose the niching-DR2 (Shir and Bäck, 2005b)
among many other niching evolution strategies which could be introduced into
EGO. It is the niching version of a so-called “second derandomized evolution
strategy” (DR2) (Ostermeier et al., 1994). We choose niching-DR2 because it is
both simple to implement and converges fast. The parameters of niching-dr2,
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which are listed in Alg. 9, are set as following: the function evaluation budget is
set the be 103(q + p). The parameter κ controls the frequency of sub-population
resampling and is set to 10. The niche radius ρ required by DPI procedure is
computed as (Shir and Bäck, 2005b):

ρ = r
n
√
q
, r = 1

2

√√√√ n∑
k=1

(xk,max − xk,min)2,

where n is the dimensionality and xk,max, xk,min are the upper and lower bound
of each coordinate in the search space. The termination criterion for the niching
ES is currently given by the function evaluation budget.

Example As with the Constant Liar (CL) strategy (Ginsbourger et al., 2010),
the niching approach is also expected to have a repulsive behavior between the
points, due to the niching formation. The CL repulsive behavior is controlled with
increasing lie value L. The setting L = max{y} and L = mean{y} leads to a space
filling behavior (Ginsbourger et al., 2010). The behavior of the niching approach
and the CL strategy are further compared and visualized on the Himmelblau’s
function:

yH(x1, x2) = (x2
1 + x2 + 11)2 + (x1 + x2

2 − 7)2

Himmelblau’s function has four global optima located at (3, 2), (−2.81, 3.13),
(−3.78,−3.23) and (3.58,−1.85) with global minimal value 0. In order to show
that the niching approach can maintain multiple distinct points, we choose four
points to be generated in each iteration, which are expected to identify four global
optima on Himmelblau’s function.

In Fig. 4.8, we compare the CL strategy with L = min{y} (CL min) to niching-q-EI
in four consecutive iterations (from top to bottom). Both of the two approaches
locate the four basins of attraction. They also explore the search space while
keeping track of all the points found, showing a trade-off between exploitation and
exploration. The difference is that the niching approach is not likely to sample two
points in one high performance region while the CL min strategy would result in
two (or even more) points explore the same region (see step 3 and 4 in the figure).
In addition, we also estimate the q-EI values of points found from a 4-point EGO
with niching on Himmelblau’s function. The estimation is conducted by Monte
Carlo simulations of the q-EI formula (Ginsbourger et al., 2010).
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Figure 4.8: On Himmelblau’s function: 4-point EGO in four iterations. The white
circles indicates the current sites found in each iteration while black stars show
the sites sampled in history. Left: Constant Liar Strategy using min{y}. Right:
niching-q-EI.
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4.6 Experimental Comparison

In this section, we test the niching-q-EI and three Constant Liar variants: CL min,
CL max and CL mix on a collection of test functions. The CL mix strategy (Cheva-
lier and Ginsbourger, 2013) is a mixture of the CL min and CL max in which two
batches of points are generated from the CL min/max and the batch of better q-EI
value is provided to the Kriging model. For all the tests we use the DiceKriging

and DiceOptim packages (Roustant et al., 2012). The experiment is presented in
three parts: First we list the test functions selected. Then, the global convergence
is compared among all the tested algorithms and finally the q-EI values of the
point found are compared. All the algorithms are tested in 10 iterations and all
the results are averaged over 100 runs. The reason to choose a small number of
iterations as test run length is simple: on one hand, the classic EGO algorithm
is capable of locating all the optima on several test functions (Jones et al., 1998)
using 10 to 20 iterations. Thus, longer runs are not necessary. On the other hand,
due to our observations, most of the space explorations and the Kriging model
updates happen in the first 10 to 15 iterations on the 2-D functions, in which the
EGO algorithm makes large progress.

Test Functions We select 6 artificial multi-modal continuous functions:

• The transformed Hartman6 function is defined on [0, 1]6 and is a unimodal
function. The original function is transformed by − log(−Hartman6(x)).
This is the test-case where niching-q-EI is expected to perform badly. We
set q = 3 on this function.

• M is a hyper-grid multi-global function. Its global optima are uniformly
distributed and have optimal value −1. The function expression is listed
below. We test the algorithms in 2-D where 10 minima are located in [0, 1]2.

M(x) = −1
d

d∑
i=1

sinα(5πxi).

Note that d is the dimensionality and we choose α = 6.

• The Branin function is a multi-global function and a classical test-case in
global optimization (Jones et al., 1998; Schonlau, 1998). It is defined in 2-D
with three global optima. The global minimal value is roughly 0.4.
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• The Rastrigin function (Torn and Zilinskas, 1989) is a multi-modal function,
which has only one global optimum, surrounded by a number of local minima.
The test is performed on 2-D. It has 6 optima in the space [0, 1.5]2.

• Himmelblau’s function is a multi-global function which is introduced previ-
ously in this thesis. The search space is [−5, 5]2.

• The Ackley function is a multi-modal function and has only one global
optimum. The global optimum has a much lower value than the local optima.

We choose the number of points generated in each iteration equal to the number
of minima with two exceptions: on Hartman6, which is a unimodal function,
we choose q = 3 and on the Ackley function where the local optima increases
exponentially with the increasing distance to the global optimum, we choose q = 9.
For Hartman6 function, it is intended to show that the niching-q-EI could perform
quite badly with q > 1 setting. We thus choose a moderate value q = 3. For
the Ackley function with range [−5, 5]2, there are 8 sub-optimal locations whose
function values are the same, inferior to the global optimal but superior to the
remaining local optima. We would like to locate such sub-optima as well as the
global one and thus choose q = 9.

Convergence results The relative mean squared error (Chevalier and Gins-
bourger, 2013) is used to measure the convergence rate to the global optimum. It
is defined as:

rMSEi = 1
p

p∑
k=1

(
fki − f∗

f∗

)2

.

Here rMSEi denotes the relative mean squared error at iteration i (rMSE should
not be confuse the Kriging RMSE in Section 3.1.1). Furthermore, p is the number
of runs performed while fki is the minimum value observed at iteration i in run
number k. Note that we translate optimal values of some test functions to prevent 0
when calculating the rMSE. The relative mean squared error on each test function is
shown in Fig. 4.9. Note that the rMSE is scaled by log 10. On the unimodal function
Hartman6, the results of 3-points EGO show that the niching-q-EI performs much
worse than any variants of CL strategy. This is the expected behavior because the
niches formed on the EI landscape of Hartman6 do not map to any local optima
and the niching method is performing space-filling using all three niches.
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Figure 4.9: The relative mean squared error to the global optimal (y axis in
log 10) against iterations (x axis). Legend: ◼: CL max, ⚫: CL min, ˛: CL mix, Ĳ:
niching-q-EI.

On the multi-modal Rastrigin function, niching-q-EI actually outperforms all the
CL variants. On the Branin function, niching-q-EI performs equally to the CL
max in the first three iterations and makes a large acceleration from the fourth
iteration. On the M function, the niching approach works much worse in the
first 6 iterations and accelerates again in the later iterations. On the Rastrigin
function, the same behavior is observed. We think that the reason is that initially
the Kriging prediction response surface differs from the real landscapes drastically
so that the niches formed on the EI landscape do not map to any high performance
region. After updating the Kriging model, local optima on the objective function
would possibly create local optima in the EI landscape. On Himmelblau’s function,
niching-q-EI is the worst method initially and finally catches up with the CL
mix from iteration 8. On the Ackley function, niching-q-EI performs roughly the
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same as the CL min strategy and outperforms both the CL min and CL mix
after iteration 5. In general, convergence plots suggest that initially niching-q-EI
performs worse than or equally to the CL variants and accelerates the convergence
after updating the Kriging model for some iterations. Furthermore, such behavior
may even suggest a possible mixture approach where the CL strategy is applied in
the beginning and then the algorithm is switched to the niching method to gain
from the acceleration.
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Figure 4.10: Average q-EI value of points from tested algorithms. Legend: ◼: CL
max, ⚫: CL min, ˛: CL mix, Ĳ: niching-q-EI. The x axis represents the iteration
while the y axis is the averaged q-EI measured.

q-EI of search points The average q-EI values of the points generated in each
iteration are computed by Monte Carlo simulations (Ginsbourger et al., 2010),
which are shown in Fig. 4.10. The plotted values are scaled by log 10. All the
average q-EI values decrease with respect to increasing iterations. It is not clear
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which method is the winner in general. Focusing on the first 4 iterations, q-EI
values of the search points found by the niching approach are roughly smaller than
q-values from the CL variants on the Hartman6,M and Ackley function. On the
Rastrigin and Himmelblau’s function, the proposed algorithm gives higher q-EI
values in the middle (iteration 4, 5, 6) of the test. On the Branin function, the
differences are not significant. In general, niching-q-EI shows a much faster q-EI
value reduction when the iteration goes upper than 8.

4.7 Summary

Infill criteria control the exploration-exploitation trade-off in the Efficient Global
Optimization algorithm. In this chapter, we focus on the improvement-based infill
criteria, that is a class of functions that calculates the potential improvement over
the current best objective value. It is shown that the exploration-exploitation
trade-off can be explicitly controlled by considering the risk and return of the
infill criterion, resulting in a multi-objective infill criterion. Alternatively, such an
exploration-exploitation control can also be realized by the novel infill-criterion,
called Moment-Generating Function of Improvement (MGFI). MGFI introduces a
real parameter, called “temperature” that tunes the exploration-exploitation trade-
off smoothly. Furthermore, the cooling strategies, that are originally introduced in
the Simulated Annealing, are applied to the temperature parameter of MGFI. The
resulting infill criterion exhibits high exploration behaviors in the beginning (high
temperature) and evolves towards exploitative behaviors as the temperature cools
down. Finally, the parallelization problem of infill-criteria is investigated. The
challenge here is how to obtain several well-performing candidate solutions based
on the infill criterion. Several new methods are proposed for this purpose, including
multi-objective infill criteria and niching-assisted infill criteria maximization.
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