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Kriging/Gaussian Process Regression

As nonparametric regression/interpolation methods, Kriging and Gaussian Process
regression (GPR) (Stein, 1999; Rasmussen and Williams, 2006) are widely used as
a (meta-)modeling tool in Design and Analysis of Computer Experiments (Sacks
et al., 1989; Santner et al., 2003), Surrogate-assisted Evolutionary Algorithms (Em-
merich, 2005; Jin, 2011), Global Optimization (Jones et al., 1998; Močkus, 2012)
and Algorithm Configuration (Hutter et al., 2011; Bartz-Beielstein et al., 2005).
Commonly, Kriging and GPR are used interchangeably in the literature due to the
fact that they represent exactly the same estimator. However, they are motivated
and derived differently and thus possess different assumptions and properties:
Kriging is originated in geostatistics (Krige, 1951) while GPR is usually discussed
in nonparametric Bayesian inference (van der Vaart and van Zanten, 2008). In this
chapter, we shall compare these two methods conceptually and discuss to which
extent they can be used interchangeably.

Moreover, it is well-known that Kriging/GPR suffers from the cubic time complexity
and quadratic space complexity as the number of the data points increases. Several
existing solutions to this issue are summarized and compared in this chapter. In
addition, a novel solution framework, Cluster Kriging (CK), is proposed, in which
the data set is divided into several folds and Kriging estimators constructed on
each fold are combined in multiple ways. Similar to our argument on Kriging/GPR
above, two parallel derivations of Cluster Kriging are presented: one approach
taking the properties of Gaussian process (section 3.2.3) and the other one built on
the theory of the best linear unbiased prediction (BLUP). In addition, the ability
of reducing the time complexity is validated through experimental studies. To
illustrate the usefulness of Cluster Kriging, it is then applied as the surrogate
model in the efficient global optimization (EGO), aiming at reducing the running
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

time of EGO without slowing down its convergence rate. The resulting CK-EGO
algorithm is tested on some benchmark functions in Section 3.3.

3.1 General Discussion

The discussion begins with assumptions that are common in both Kriging and
GPR. Consider a (noiseless) real-valued function of interest f : S ⊂ Rd → R.
It could serve as an objective function in optimization or a response variable
in meta-modeling. Without loss of generality, we assume space L2(S) for such
functions. A real-valued stochastic process Y = {Y (x) : x ∈ S} is a collection of
random variables indexed by a set S, where random variables

∀x ∈ S, Y (x) : Ω→ R,

are defined between the probability space (Ω,F ,P) and the measurable space
(R,B) (F is the σ-algebra on Ω and B is the Borel algebra on the real line). In
order to make clear arguments, it is convenient to define the stochastic process Y
as a measurable function of two variables (Øksendal, 2003),

Y : S× Ω→ R, (x, ω) 7→ Y (x, ω).

Using this notation, for every point x ∈ S, Y (x, ·) denotes the random variable
indexed by x and for every outcome ω ∈ Ω, Y (·, ω) : S→ R is a real-valued function
and is called sample path/sample function of process Y . In the following
discussion, when the outcome ω is not explicitly given, we shall abbreviate Y (x, ·)
as Y (x).

The general assumption of Kriging/GPR is: f is a sample function of Y .
Commonly, the stochastic process Y is specified by two components: a deterministic
trend function t and a centered stochastic process Z:

Y (x) = t(x) + Z(x). (3.1)

In general, instead of specifying the distribution for Z, only the mean and the
covariance structure are given: ∀x,x′ ∈ S,EZ(x) = 0,Cov{Z(x), Z(x′)} =
k(x,x′). Note that k : Rd × Rd → R is a positive-definite kernel, called co-
variance function. Suppose the target function f is evaluated at n points1: y =

1Those points are typically obtained via a design of experiment, e.g., Latin hypercube
sampling.
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3.1 General Discussion

(f(x1), f(x2), . . . , f(xn))>. According to the assumption of Kriging, y also repre-
sents the realization of the random vector ψ = (Y (x1), Y (x2), . . . , Y (xn))>:

∃ω ∈ Ω, y = ψ(ω) = (Y (x1, ω), Y (x2, ω), . . . , Y (xn, ω))>.

Then the task is to approximate the value f(x) at an unobserved location x using
vector y. In the following, each component of process Y is specified. Normally,
the trend function takes a parametric form. For example, it could be either a
constant

t(x) = β,

or the linear combination of a few basis functions,

t(x) =
p∑
i=0

βibi(x) = b(x)>β, b0 = 1, (3.2)

where p + 1 fixed basis functions bi, abbreviated as b = (b0, b2, . . . , bp)>, are
typically specified by the user. Typically, the first or second order polynomial
basis functions (Lophaven et al., 2002) are used. Depending on the form of
the trend function and whether the coefficients β are known, Kriging methods
are further categorized into Simple Kriging, Ordinary Kriging and Universal
Kriging (Zimmerman et al., 1999; Stein, 1999). For detailed discussions on the
history of Kriging variants, please see Cressie (2015, 1990). Those terms are
clarified in Tab. 3.1. Note that, it is unnecessary to distinguish the constant and

Table 3.1: Taxonomy of Kriging methods.

known β β to estimate
Constant trend Simple Ordinary
Basis functions None Universal

basis function because the former is special case of the latter when p = 0. Thus,
we shall always refer to Eq. (3.2) for the trend function. For brevity, the trend
component of all observations is denoted as:

t = (t(x1), t(x2), . . . , t(xn))> = Bβ, B = [b(x1),b(x2), . . . ,b(xn)]> .

The covariance function is required to be a positive-definite kernel. A symmetric
function k : Rd×Rd → R is positive definite (p.d.) if the following condition

n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0 (3.3)
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

holds for ∀n ∈ N,∀x1,x2, . . . ,xn ∈ S and ∀c1, c2, . . . , cn ∈ R. Some commonly used
kernels include: Gaussian kernel, also known as radial basis functions (RBF) (Buh-
mann, 2003):

k(x,x′) = σ2 exp
(
−

d∑
i=1

(xi − x′i)2

2θ2
i

)
, (3.4)

and the Matérn 3/2 kernel (Rasmussen and Williams, 2006):

k(x,x′) = σ2
d∏
i=1

(
1 +
√

3hi
θi

)
exp

(
−
√

3hi
θi

)
, hi = |xi − x′i|. (3.5)

Note that ∀x ∈ S, k(x,x) = σ2. The parameters σ2 and θ = (θ1, θ2, . . . , θd)> are
the so-called hyper-parameters and are usually estimated from the data (please
see the discussion on the likelihood function below). Throughout this thesis, the
Matérn 3/2 kernel is applied to Kriging modeling as the Matérn family of kernels
allows for accurate approximations of the local variation in the data (Stein, 1999).
Please see Rasmussen and Williams (2006) for more kernel functions. As the kernel
function governs the covariance structure, it is necessary to discuss the statistical
properties of Z, when choosing the Matérn 3/2 kernel:

• Stationary: a stochastic process Z is called weakly stationary if for all x,x′ in
its index set, the mean function is constant and the covariance only depends
on x − x′, namely Cov{Z(x), Z(x′)} = k(x − x′, 0). This is a common
assumption made on stochastic processes and it is assured by the Matérn
3/2 kernel.

• Isotropy: a stochastic process Z is called weakly isotropic if for all the
locations of its index set, its mean function is constant and its covariance of
Z(x), Z(x′) only depends on the Euclidean distance between the location,
namely Cov{Z(x), Z(x′)} = k(‖x− x′‖ , 0). Intuitively, isotropy indicates
that the process is rotation-invariant because ‖x− x′‖ = ‖R(x− x′)‖ holds
for any orthogonal matrix R. It is straightforward to check that Matérn 3/2
kernel does not imply this property. In practice, the isotropy is too strong to
assume on the data and thus non-isotropic kernels are suggested.

Lastly, some notations are introduced: the covariance matrix of y is written
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3.1 General Discussion

as:

K(σ2,θ) = E{(y− t)(y− t)>} =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)

 ,
and its covariances with Y (x) is denoted as k(x) = (k(x,x1), k(x,x2), . . . , k(x,xn))>.
The covariance matrix will be denoted as K for short in the following discussions.
In addition, from the definition of positive definite kernel (Eq. (3.3)), it is straight-
forward to verify that K is a positive semi-definite matrix. Moreover, the singular
case is ignored throughout this thesis and thus K is assumed to be a positive-definite
matrix.

3.1.1 Best Linear Unbiased Predictor

Consider a finite collection of random variables: ψ = (Y (x1), Y (x2), . . . , Y (xn))>.
The basic idea is to construct a nonparametric linear predictor Ŷ = α>ψ + α0 to
predict Y (x). The best predictor1 is chosen such that the following risk function
(expected quadratic loss/mean squared error) is minimized:

R(Ŷ , Y ) = E{α>ψ + α0 − Y (x)}2

=
(
E{α>ψ + α0 − Y (x)}

)2 + Var{α>ψ + α0 − Y (x)} (3.6)

Note that, in this risk function the expectation is taken w.r.t. the joint distribution
of ψ and Y (x). In addition, a linear unbiased predictor (LUP) (Stein, 1999) is
intended, which can be obtained by enforcing the following constraint:

(
E{α>ψ + α0 − Y (x)}

)2 = 0 ⇐⇒ ∀β ∈ Rp+1 (α>Bβ + α0 − b>β = 0
)

⇐⇒ α0 = 0 ∧B>α = b.

Therefore the existence of the LUP depends on the solution of the linear system
B>α = b. We suppose the solution to this system exists for now (b is in the
column space of B>). As the bias in Eq. (3.6) is restricted to zero, only the variance

1Note that, after obtaining the best predictor Ŷ , the best estimator f̂ for f can be given by
taking a sample function from Ŷ , namely f̂(·) = Ŷ (·, ω) for some ω ∈ Ω. Please see Section 3.1.2
for more details.

47



3. KRIGING/GAUSSIAN PROCESS REGRESSION

term remains. Then, the task of finding the best linear unbiased predictor
(BLUP) (Stein, 1999) becomes the minimization of the variance:

R(Ŷ , Y ) = Var{α>ψ + α0 − Y (x)} = σ2 +α>Kα− 2k>α.

This is a convex optimization task (K is positive definite) with equality con-
straints:

minimize
α∈Rn

σ2 +α>Kα− 2k>α

subject to B>α = b.
(3.7)

This optimization problem can be solved using Lagrange Multipliers. The first
order condition of optimality is (Boyd and Vandenberghe, 2004):[

K B
B> O

] [
α
λ

]
=
[
−k
b

]
,

where λ ∈ Rp+1 is the dual variable and O represents the matrix of zeros. Solving
this linear system, we have

α∗ = K−1(k−Bλ∗)

λ∗ =
(
B>K−1B

)−1 (B>K−1k− b
)
.

Due to the convexity of this problem, α∗ is also sufficient to be the minimizer
of Problem (3.7) (Nocedal and Wright, 2000). Plugging α∗ back, we have the
Kriging predictor:

Ŷ =
[
k−B

(
B>K−1B

)−1 (B>K−1k− b
)]>

K−1ψ. (3.8)

To approximate the target function f , it is straightforward to take a sample
function from Ŷ :

f̂ = b>
[(

B>K−1B
)−1 B>K−1y

]
+ k>K−1

{
y−B

[(
B>K−1B

)−1 B>K−1y
]}

,

which is achieved by substituting the realization y = ψ(ω) into Eq. (3.8) and re-
arranging the terms. It is important to observe that β̂ :=

(
B>K−1B

)−1 B>K−1y
is exactly the Generalized Least Squares (GLS) (Rao, Toutenburg, Shalabh,
and Heumann, Rao et al.) estimate of β in the following sense. The trend function
t = b>β is treated as the regression function and Z is the stationary error process,
whose second-order information (auto-covariance) is known. Then, the best linear
unbiased estimator (BLUE) of β is β̂. Note that, 1) compared to Kriging, GLS
considers b>β as the predictor while in Kriging the counterpart is b>β+Z and 2)
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3.1 General Discussion

the expression of f̂ can also be derived in a much simpler way by first estimating
β using the GLS formula and then predicting process Z on the residuals y−Bβ̂
(cf. Eq. (3.13)). However, this approach requires the complete specification of the
auto-covariance/kernel and thus is erroneous when hyper-parameters σ2 and θ of
the kernel function are subject to estimation. Taking the compact notation β̂, the
function approximation is re-written as:

f̂ = b>β̂ + k>K−1
(

y−Bβ̂
)
. (3.9)

In addition, it is also possible to give the covariance of the predictor:

Cov
{
Ŷ (x), Ŷ (x′)

}
=
[
k−B

(
B>K−1B

)−1 (B>K−1k− b
)]>

K−1 (K + BMB>
)

K−1[
k′ −B

(
B>K−1B

)−1 (B>K−1k′ − b′
)]
− b>Mb′, (3.10)

where M = ββ>,b′ = b(x′). Note that this covariance depends on the unknown
parameter β. When the kernel is completely specified, β can be substituted by its
GLS estimate β̂. The minimal MSE of Ŷ can be obtained by putting α∗ back to
Eq. (3.7) and it is called the Kriging MSE:

s2 = σ2 − k>K−1k +
(
b−B>K−1k

)> (B>K−1B
)−1 (b−B>K−1k

)
. (3.11)

Note that s2 is the not the variance of the predictor Ŷ . In addition, s =
√
s2 shall

be called Kriging Root Mean Squared Error (Kriging RMSE).
Remark. 1) In some literatures (den Hertog et al., 2006), s2 is also called Kriging
variance. When using this terminology, s2 should not be confused with the
stationary variance σ2 of the process Z or the variance of the Kriging predictor.
2) It is important to point out that the MSE s2 quantifies the uncertainty about
predicting the stochastic process Y . It, however, does not directly measure the
accuracy of the function approximation, namely to which degree f̂ is close to f .
To see how the approximation accuracy is related to s2, please check Section 3.1.2.

The prediction residuals at different locations are correlated. It is possible to
calculate the covariance among the residuals (please do not confuse with the
covariance of the predictor defined in Eq. (3.10)):

Cov
{(
Ŷ (x)− Y (x)

)(
Ŷ (x′)− Y (x′)

)}
= k(x,x′)− k>K−1k′ + (b−B>K−1k)>(B>K−1B)−1(b−B>K−1k′),

(3.12)
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

where k = k(x),k′ = k(x′). It is straightforward to verify this covariance function

is positive-definite.

Known trend function The discussion so far can be greatly simplified if the

trend function is completely provided prior to the modeling. In principle, the trend

effect can be subtracted from the random vector ψ:

ψ′ = ψ −Bβ = (Z(x1), Z(x2), . . . , Z(xn))>

And the latent1 realization of ψ′ is: z = y−Bβ. It is then sufficient to search for

the optimal linear predictor of Z. In addition, due to the stationarity assumption on

Z, any linear predictor α>ψ′ is unbiased. Therefore, the best linear predictor

(BLP) (Stein, 1999) suffices for our aim. It is the minimizer of the unconstrained

risk function (cf. Eq. (3.7)):

R(α>ψ′, Z) = σ2 +α>Kα− 2k>α.

The optimal coefficients are α∗ = K−1k and the BLP of process Z is α∗>ψ′. The

best linear predictor of Y is obtained by adding the trend function back to the

BLP of Z:

Ŷ = b>β + k>K−1 (ψ −Bβ) (3.13)

s2 = σ2 − k>K−1k (3.14)

Var
{
Ŷ (x)

}
= k>K−1k (3.15)

Cov
{
Ŷ (x), Ŷ (x′)

}
= k>K−1k′ (3.16)

The extreme of this treatment is to set β to zero and it is called Simple Kriging.

In this case, Ŷ = k>K−1ψ and its variance and MSE are the same as Eq. (3.15)

and (3.14).

1We use the term “latent” here as Z is not directly observable.
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3.1 General Discussion

Discussion 1. It seems a daunting task to select an appropriate trend
function. For local interpolations, theoretically it is known that BLPs
exhibit the same performance asymptotically with BLUPs, even if the trend
is zero (β = 0) (Stein, 1999). For such modeling tasks, it is sufficient to set
the trend function to zero. For the extrapolation, the Kriging estimator
regresses back to the trend when the location is weakly correlated to most
of the data points. Thus, choosing a proper trend function is necessary for
the extrapolation purpose (Journel and Rossi, 1989). Generally, Universal
Kriging is recommended for this scenario (Journel and Rossi, 1989) if
no prior knowledge is available. However, thorough empirical/theoretical
analyses are necessary before putting it as a conclusion. In addition, as
will be shown later, the predictor of Simple Kriging is an element of the
Hilbert space H induced by the kernel function. It would be interesting to
investigate if polynomial trend functions can be fully expressed in H. The
incorporation of the trend function would be unnecessary if it is also an
element of H.

Noisy observations and Kriging nugget In practice, it is very likely that
the observed response variable contains random measurement noises. Therefore it
is, in general, helpful to consider the following data generation process:

Ỹ = Y + ε, (3.17)

where {ε(x) : x ∈ S} is a white noise process (e.g., Gaussian white noise) that is
independent from Y and has stationary variance σ2

n <∞. Formally, ε is specified
as:

∀x,x′ ∈ S, Eε(x) = 0, Cov{ε(x), ε(x′)} = σ2
n1{x}(x′), ε(x) ⊥⊥ Y (x′).

Here 1{x} is the characteristic function (or indicator function) and ⊥⊥ denotes
the statistical independence. It is important to point out that the goal is still to
predict process Y . Under this setting, the task of predicting Y becomes a nonpara-
metric regression task, in which the regression function f̂ admits a nonparametric
form. Again, consider the random vector ψ̃ = (Ỹ (x1), Ỹ (x2), . . . , Ỹ (xn))> and its
realizations ỹ = ψ̃(ω), ω ∈ Ω. For the sake of brevity, only simple Kriging (β is
zero) is considered here. By minimizing the risk function (cf. Eq. (3.7)),

R(Ŷ , Y ) = Var{α>ψ̃ + α0 − Y (x)} = σ2 +α>
(
K + σ2

nI
)
α− 2k>α,
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

the Kriging estimator under noisy observations is:

Ŷ = k>
(
K + σ2

nI
)−1

ψ̃. (3.18)

s2 = σ2 − k>
(
K + σ2

nI
)−1 k. (3.19)

The noise variance σ2
n is also known as the Kriging nugget or nugget ef-

fect (Cressie, 2015). Historically, the Kriging nugget is introduced with the
so-called Semivariogram in the geostatistics literature. The semivariogram is de-
fined as half the variance of the differences between observations at two locations:
γ(x,x′) = 1

2E{Y (x) − Y (x′)}2. As with the kernel function, the semivariogram
is an alternative quantification of the auto-correlation (spatial dependency) on
process Y . The nugget effect is defined to be the amount of the jump of the

‖x− x′‖

γ(x,x′)

0

nugget

σ2

Figure 3.1: Illustration on the semivariogram and Kriging nugget.

semivariogram at the origin (Fig. 3.1) and can be attributed to measurement
errors due to the inherent imprecision in measurement devices. Consider the noisy
process Ỹ , its semivariogram is,

γ̃(x,x′) = 1
2E
{
Ỹ (x)− Ỹ (x′)

}2
= 1

2E {Y (x)− Y (x′)}2 + σ2
n

= γ(x,x′) + σ2
n.

The semivariogram γ̃ in the noisy case is translated upwards from the noiseless
case γ by an amount of σ2

n. The correspondence between the noise variance and
Kriging nugget is clearly seen. Moreover, the nugget effect is sometimes referred
as nugget variance (Webster and Oliver, 2007).
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3.1 General Discussion

Note that, the nugget effect is useful even when no measurement error is present,
e.g., in computer experiments. It can help relaxing the conditional number of
the covariance matrix K when it gets ill-conditioned (Andrianakis and Challenor,
2012). Let K̃ = K + σ2

nI be the covariance matrix under the noisy assumption. It
is then obvious that the eigenvalue λ̃ of K̃ admits the relation: λ̃ = λ+ σ2

n, where
λ is the eigenvalue of K. Consequently, the condition number κ of K̃ is smaller
than that of K:

κ(K̃) = |λmax + σ2
n|

|λmin + σ2
n|
<
|λmax|
|λmin|

= κ(K).

Numerically, as the condition number increases, the covariance matrix becomes
practically not invertible and therefore introducing the Kriging nugget can avoid
numerical issues that are frequently encountered in the hyper-parameter estima-
tion (Ababou et al., 1994).

3.1.2 Reproducing Kernel Hilbert Space

Here we shall take a different point of view on BLUP, namely from the Hilbert
space associated with stochastic process Y . To simplify our discussions here, Y
is assumed to have a zero mean and correspondingly the Kriging predictor is
Ŷ = k>K−1ψ (obtained by setting β to zero in Eq. (3.13)). Moreover, the index
set S is assumed to be a separable space. In addition, the covariance vector k is
treated as a function from S to Rn and is denoted as k(x). More precisely, the
approach posed in Section 3.1.1 is to predict a random variable Y (x, ·) using a
linear combination of some other random variables on the process:

Ŷ (x, ·) =
n∑
i=1

αi(x)Y (xi, ·), n ∈ N, x1,x2, . . . ,xn ∈ S.

The optimal coefficient α(x) = K−1k(x) is a function of x and is obtained by
minimizing the risk function (Eq. (3.6)) as before. Note that the same prediction
approach is applied for every x ∈ S, meaning that a predictor of the process Y is
obtained:

Ŷ =
{

n∑
i=1

αi(x)Y (xi, ·) : n ∈ N, x,x1,x2, . . . ,xn ∈ S
}
. (3.20)

We shall call Ŷ the Kriging predictor. The rationale is: Ŷ optimally predicts
an unknown process Y only using partial information of its own. If we observe a
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

sample function of Y partially1, namely y = (Y (x1, ω), Y (x2, ω), . . . , Y (xn, ω))>

for some ω ∈ Ω, it is possible to interpolate this sample function by plugging y
into Ŷ (Eq. (3.20)):

f̂(·) = Ŷ (·, ω) =
n∑
i=1

αi(·)Y (xi, ω) = y>K−1k(·)

=
n∑
i=1

ξik(·,xi), ξ = K−1y. (3.21)

Being a sample function from the predictor Ŷ , f̂ approximates f (cf. Eq. (3.9)). In
short, we shall show that the function form of Eq. (3.21) is in the Reproducing
Kernel Hilbert Space (RKHS) attached to process Y . Given a positive definite
kernel k(·, ·) on S, there is a unique Hilbert space of functions: S→ R for which k
is a reproducing kernel (Moore-Aronszajn theorem (Aronszajn, 1950)). This space
H is the completion of the following linear space H0:

H0 =
{

n∑
i=1

cik(·,xi) : n ∈ N, c1, c2, . . . , cn ∈ R, x1,x2, . . . ,xn ∈ S
}
.

The completion is conducted with respect to the RKHS norm ‖·‖H that is induced
by the inner product,〈

m∑
i=1

cik(·,xi),
n∑
j=1

c′jk(·,xj)
〉
H

=
m∑
i=1

n∑
j=1

cic
′
jk(xi,xj). (3.22)

The function in H has the form: f(·) =
∑∞
i=1 aik(·,xi), where

∑∞
i=1 a

2
i k(xi,xi) <

∞. It is then obvious to see that the Kriging estimator f̂(·) is an element of H.
Equivalently, the space of estimator f̂ is the set of all the sample functions of
Ŷ , namely

{
Ŷ (·, ω) : ω ∈ Ω

}
⊂ H. The natural question is: how does the target

function f related to f̂ and H in general? Recall the assumption of Kriging: f is a
realization of the process Y , or formally f ∈ F, F := {Y (·, ω) : ω ∈ Ω} (all sample
functions of Y ). Firstly, we will show that H is generally “smaller” than F. It is
possible to construct a surjection from F to H:

Y (·, ω) 7→
n∑
i=1

τiY (xi, ω)k(·,xi), τi ∈ R.

1It is important to note that even countably many observations are partial information about
the sample function because its domain S is separable.
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3.1 General Discussion

It is obvious that for every function
∑n
i=1 cik(·,xi) ∈ H, there always exist τi ∈ R

and ω ∈ Ω such that τiY (xi, ω) = ci. Thus, this mapping is surjective. However,
it does not admit an inverse: {Y (xi, ω)}i can be mapped back to infinitely many
sample functions in F. Secondly, it is possible to quantify the difference between f
and f̂ using the supremum norm,

∥∥∥f − f̂∥∥∥
∞

= supx∈S

{∣∣∣f(x)− f̂(x)
∣∣∣}. It is not

hard to verify the following condition,∥∥∥f − f̂∥∥∥
∞
≤ sup
ω∈Ω

{∣∣∣Y (·, ω)− Ŷ (·, ω)
∣∣∣} .

However, it is not straightforward to build a linkage between
∥∥∥f − f̂∥∥∥

∞
and the

Kriging MSE s2 (cf. Eq. (3.11)) based on this condition. Alternatively, such a
relation can be established point-wisely on f .
Theorem 3.1 (Approximation Error Bound). Let Ŷ be the BLUP of stochastic
process Y . The MSE of Ŷ is s2 = E{Y (x)− Ŷ (x)}2. Assume the target function
f : S→ R is a sample function of Y and it is approximated by a sample function
of the BLUP: f̂(·) = Ŷ (·, ω), ω ∈ Ω. Then for every point x ∈ S, the approximation
error is bounded from above: ∣∣∣f̂(x)− f(x)

∣∣∣ ≤√s2

C
,

where
C =

∫
R

Pr
(
|Y (x)| > |f(x)|

∣∣∣ Ŷ (x) = u
)
p
Ŷ (x)(u) du.

Proof. Define a random variable R = |Y (x) − Ŷ (x)|. r = |f(x) − f̂(x)| is a
realization of R. According to Markov’s inequality, we have,

Pr (R ≥ r) ≤ ER2

r2 . (3.23)

Note that s2 = ER2 and r2 = |f(x)− f̂(x)|2. Now, we expand the probability on
the left-hand-side of the inequality:

Pr (R ≥ r) =
∫
R

Pr
(
|Y (x)− f̂(x)| > |f(x)− f̂(x)|

∣∣∣ Ŷ (x) = u
)
p
Ŷ (x)(u) du

≥
∫
R

Pr
(
|Y (x)| > |f(x)|

∣∣∣ Ŷ (x) = u
)
p
Ŷ (x)(u) du.

Combining this inequality with Eq. (3.23), we have r2 ≤ s2/C.

Remark. The linkage between the approximation error on f and the MSE of
BLUPs is clearly seen from this theorem: reducing the MSE s2 leads to a more
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

precise function approximation, which is typically achieved by adding more data
points/observations. The other factor C can be interpreted as the conditional
probability Pr

(
|Y (x)| > |f(x)|

∣∣∣ Ŷ (x) = u
)
, averaged over all possible predictions.

Note that the smaller this conditional probability is (and thus the error bound is
higher), it is less likely that f(x) is a sample from Y (x). This means the stochastic
process Y tends to be mis-specified for f .

RKHS provides us another point of view on Kriging/GPR. In the following, it is
shown that the same result in Eq. (3.13) can be obtained using the well-known
representer theorem (Schölkopf et al., 2001), which gives the representer form of
the solution to the regularized optimization problem in H. We shall illustrate this
theorem first and then build an alternative derivation of f̂ based on it.
Theorem 3.2 (Representer Theorem). Let S be a nonempty set and k : S×S→ R
be a positive-definite kernel with corresponding reproducing kernel Hilbert space H.
The RKHS norm ‖·‖H is induced from the inner product in Eq. (3.22). Given a
training sample (x1, y1), . . . , (xn, yn) ∈ S× R, a strictly monotonically increasing
function g : [0,∞)→ R, and an arbitrary empirical risk function R of {h(xi), yi}ni=1
and let h∗ : S→ R be the optimum of the regularized minimization problem:

h∗ = arg min
h∈H

R ({h(xi), yi}ni=1) + g(‖h‖H),

then h∗ is represented as:

h∗(·) =
n∑
i=1

cik(·,xi), c1, c2, . . . , cn ∈ R.

Proof. See Schölkopf et al. (2001).

The representer form of h∗ is exactly as Eq. (3.13), suggesting that the Kriging
estimator can also be considered as the optimal function form that minimizes
empirical risk. Furthermore, we will illustrate that under certain specifications,
the Kriging coefficients in the noisy setting (Eq. (3.18)) can be obtained using this
theorem.
Corollary 3.1. Assume all the settings in Theorem 3.2, noisy observations ỹ
generated from Eq. (3.17) and the following specifications: the empirical risk
function R

(
{f̂(xi), ỹi}ni=1

)
=
∑n
i=1

(
f̂(xi)− ỹi

)2
and g(‖·‖H) = σ2

n ‖·‖
2
H, then

the coefficients ci in Theorem 3.2 are given by c =
(
K + σ2

nI
)−1 ỹ and

f̂(·) =
n∑
i=1

cik(·,xi) = ỹ>
(
K + σ2

nI
)−1 k(·).
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3.1 General Discussion

Proof. According to the representer theorem, f̂ takes the form f̂(·) =
∑n
i=1 cik(·,xi).

Then all predictions from f̂ can be denoted as (f̂(x1), . . . , f̂(xn))> = Kc. Then
the regularized minimization problem becomes:

minimize
c∈Rn

‖Kc− ỹ‖2 + σ2
nc>Kc. (3.24)

The optimality condition of this problem is:

∂

∂c

(
‖Kc− ỹ‖2 + σ2

nc>Kc
)

= 0. (3.25)

The solution of c results from this condition.

This result can be interpreted as follows. Firstly, note that Problem (3.24) is
equivalent to the following constrained convex optimization problem:

minimize
c∈Rn

‖Kc− ỹ‖2

subject to c>Kc ≤ t,
(3.26)

where t = ỹ>
(
K + σ2

nI
)−1 K

(
K + σ2

nI
)−1 ỹ. To see the equivalence, the Karush-

Kuhn-Tucker conditions (KKT) (Boyd and Vandenberghe, 2004) of Problem (3.26)
are,

∂

∂c

(
‖Kc− ỹ‖2

)
+ η

∂

∂c
(
c>Kc− t

)
= 0

η
(
c>Kc− t

)
= 0

c>Kc− t ≤ 0

η ≥ 0

(3.27)

The conditions above are also necessary because Slater’s condition (Slater, 2014)
obviously holds on Problem (3.26). It is not hard to verify that any solution of
condition (3.25) is also a solution of conditions (3.27) and vice versa. Consider
the convex constraint c>Kc ≤ t. The LHS of it is the RKHS norm

∥∥∥f̂∥∥∥
H
of the

estimator f̂(·) =
∑n
i=1 cik(·,xi). It means that “complexity” of the estimator

f̂ should be smaller than a threshold t when minimizing the empirical risk. To
understand the choice of threshold t, please consider the prediction of the data
generation process process Ỹ = Y + ε using observations ỹ (instead of predicting
Y ). The Kriging estimator f̃est ∈ H is obtained by applying Eq. (3.13) to the
overall process Ỹ , whose covariance function is k̃(·, ·) = k(·, ·) + σ2

n1{·}(·):

f̃est(·) =
n∑
i=1

α̃ik̃(·,xi), α̃ =
(
K + σ2

nI
)−1 ỹ.
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Note that f̃est is an element of the RKHS H̃ induced by kernel k̃ and its norm∥∥∥f̃est

∥∥∥
H̃

= ỹ>
(
K + σ2

nI
)−1 ỹ. It is clear that∥∥∥f̂∥∥∥

H
≤ t = ỹ>

(
K + σ2

nI
)−1 K

(
K + σ2

nI
)−1 ỹ

≤ ỹ>
(
K + σ2

nI
)−1 ỹ

=
∥∥∥f̃est

∥∥∥
H̃
,

which means the estimator of the component f from the noisy function f̃ should
not be more complex than the estimator of f̃ . In summary, the Kriging estimator
(Eq. (3.18)) under noisy observations is the solution to the following problem:

minimize
f̂∈H

n∑
i=1

(
f̂(xi)− ỹi

)2

subject to
∥∥∥f̂∥∥∥

H
≤
∥∥∥f̃est

∥∥∥
H̃
.

3.1.3 Bayesian Inference

Known trend function It is possible to give an alternative derivation of the
Kriging estimator, using Bayesian statistics. Consider again the random vector ψ =
(Y (x1), Y (x2), . . . , Y (xn))>,x1,x2, . . . ,xn ∈ S and its realization y = ψ(ω), ω ∈ Ω.
Bayesian inference requires the specification of the prior distribution on Y and
the likelihood p(ψ | Y (x)). When the trend function is assumed to be known, the
posterior of Y (x) is

p(Y (x) | ψ) = p(ψ | Y (x))p(Y (x))
p(ψ) . (3.28)

Note that, this posterior probability is the conditional probability p(Y (x) | ψ) due
to the fact that Y (x) and ψ are taken from the same stochastic process Y in our
setting. In some other processes, this conditional probability is even given in their
definitions (e.g., Markov process). However, Eq. (3.28) gives a plausible rationale
on using the conditional probability for the prediction and attaches a Bayesian
interpretation to the Kriging predictor. The most common choice (and perhaps
the most natural) on the prior distribution is Gaussian: the stochastic process
Y is assumed to be a Gaussian Process. In addition to the first- (mean) and
second-order (covariance) specifications (Section 3.1), the Gaussian process prior
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3.1 General Discussion

on Y prescribes that random vector ψ is a multivariate Gaussian (See Appendix A
for its definition). The following notation is used for a Gaussian process prior with
kernel function k:

Y ∼ t+ GP(0, k(·, ·)),

where t is the trend function defined in Eq. (3.2) and it is called the prior mean
function in this section. Note that, trend t is deliberately separated from the
centered Gaussian Process GP(0, k(·, ·)) because t could admit a stochastic form and
the addition of those two terms might not be Gaussian. Recall the basis expansion
trend t = b>β and β is known. It is then straightforward that Y (x) ∼ N (b>β, σ2)
and ψ ∼N (Bβ,K). Moreover, Y (x) and ψ are jointly Gaussian:[

Y (x)
ψ

]
∼N

([
b>β
Bβ

]
,

[
σ2 k>
k K

])
.

Recall the definition of the covariance vector k in Section 3.1. Directly applying
the conditioning formula (Eq. (A.4)), the conditional distribution p(Y (x) | ψ) can
be specified

Y (x) | ψ ∼ b>β + k>K−1 (ψ −Bβ) + N
(
0, σ2 − k>K−1k

)
. (3.29)

Given this conditional distribution, it is obvious that the best unbiased predictor
of Y is the conditional mean, i.e., Ŷ = b>β + k>K−1 (ψ −Bβ). The MSE of Ŷ
is s2 = E{Ŷ − Y }2 = σ2 − k>K−1k, which is also the conditional variance. Now,
as the target function f is assumed to be a sample function of Y and we have
observed some values on the target function, the approximation f̂ is obtained by
replacing ψ by its realization in Ŷ (cf. Eq. (3.21)):

f̂(·) = Ŷ (·, ω) = b>β + k>K−1 (y−Bβ) , ω ∈ Ω.

Note that those terms are exactly the same as the Kriging BLP estimator (cf.
Eq. (3.13)). Note that, in terms of Bayesian statistics, the posterior mean in
Eq. (3.29) can also be considered as a Maximum a Posterior Probability (MAP)
estimate because the mode coincides with the mean in Gaussian distributions.
This result is commonly referred to as Gaussian Process Regression (GPR) in
the machine learning field (Rasmussen and Williams, 2006). Consequently, the
Kriging MSE s2 is also called GPR variance in this thesis.
Remark. In the standard treatment of GPR, there is no need to use the stochastic
process Y because the prior Gaussian process is directly imposed on the target
function f . In this section, process Y is taken to keep the consistence with the
discussion on BLUP/BLP (Section 3.1.1).
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

Moreover, a posterior Gaussian process is implied by Eq. (3.29), whose mean
function is Ŷ . To see the covariance structure of the posterior process, consider
two locations x1,x2 ∈ S in the query:Y (x1)

Y (x2)
ψ

 ∼N

b>1 β
b>2 β
Bβ

 ,
 σ2 k(x1,x2) k>1
k(x2,x1) σ2 k>2

k1 k2 K

 ,

in which b1 = b(x1),b2 = b(x2) and k1 = k(x1),k2 = k(x2). Conditioning on ψ
again, we obtain:[
Y (x1)
Y (x2)

] ∣∣∣∣∣ ψ ∼
[
b>1 β + k>1 K−1 (ψ −Bβ)
b>2 β + k>2 K−1 (ψ −Bβ)

]

+ N
([

0
0

]
,

[
σ2 − k>1 K−1k1 k(x1,x2)− k>1 K−1k2

k(x2,x1)− k>2 K−1k1 σ2 − k>2 K−1k2

])
.

In this posterior formulation, it is clear to see that the covariance at two arbi-
trary locations is expressed in the cross-term of the posterior covariance matrix.
Consequently, we give the posterior mean (trend) Ŷ and posterior kernel k′:

Ŷ (x) := E{Y (x) | ψ} = b>β + k>K−1 (ψ −Bβ) (3.30)

k′(x,x′) := Cov{Y (x), Y (x′) | ψ} = k(x,x′)− k>K−1k′ (3.31)

It is straightforward to show that k′ is a stationary positive-definite kernel.

Unknown trend function When β ∈ Rp+1 is subject to estimation, the most
common approach is to use hierarchical Bayesian inference by providing a prior on
β. For example, the Gaussian prior is assumed again β ∼N (ζ,Σ), with β ⊥⊥ Y .
It is important to note that when randomness on β is introduced the process Y is
not necessarily Gaussian any longer. However, the conditional distribution/process
on β, e.g., p(Y (x) | β,ψ) is still Gaussian. The posterior distribution of β is (Stein,
1999),

p(β | ψ) = p(ψ | β)p(β)∫
Rp+1 p(ψ | β)p(β) dβ

= (2π)−
p+1

2 det (Σ′)
1
2 exp

(
−1

2 (β − ζ′)>Σ′
−1 (β − ζ′)

)
,

where the posterior mean ζ′ and covariance Σ′ are give below:

ζ′ = Σ′
(
B>K−1ψ + Σ−1) , Σ′ =

(
B>K−1B + Σ−1)−1

.
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Note that the conditional distribution p(Y (x) | ψ) is obtained by marginalizing β
out,

p(Y (x) | ψ) =
∫
Rp+1

p(Y (x) | β,ψ)p(β | ψ) dβ.

This marginalization can be interpreted as averaging p(Y (x) | β,ψ) over the
posterior of β. Without giving the details on the derivation, the posterior mean and
kernel are expressed as follows (Omre, 1987; O’Hagan and Kingman, 1978):

Ŷ (x) =
(
b−B>K−1k

)>
ζ′ + k>K−1ψ (3.32)

k′(x,x′) = k(x,x′)− k>K−1k′ +
(
b−B>K−1k

)>
Σ′
(
b−B>K−1k′

)
(3.33)

The formula above depends on the choice of prior parameter ζ,Σ. Consider
the limit Σ → O (matrix of zeros), meaning β becomes more and more non-
informative because the prior is increasingly flat everywhere. Then posterior mean
and covariance matrix of β have the following convergence,

ζ′ →
(
B>K−1B

)−1 B>K−1ψ, Σ′ →
(
B>K−1B

)−1
.

Consequently, the posterior mean and kernel converges to the Kriging predictor
(BLUP) and covariance (cf. Eq (3.9) and (3.12)):

Ŷ (x)→
[
k−B

(
B>K−1B

)−1 (B>K−1k− b
)]>

K−1ψ

k′(x,x′)→ k(x,x′)− k>K−1k′ +
(
b−B>K−1k

)> (B>K−1B
)−1 (b−B>K−1k′

)
Because limiting the posterior mean results in the same expression as the Kriging
predictor, we shall treat the Kriging predictor and the posterior mean interchange-
ably in this thesis.

3.1.4 Differentiation

The Kriging predictor and MSE play a central role in Efficient Global Optimization
and their derivatives are frequently used in such algorithms. Thus, the gradients
of the Kriging predictor (Eq. (3.9)) and MSE (Eq. (3.11)) w.r.t. the index variable
are given below (using the denominator layout):

∂f̂

∂x = ∂b
∂x β̂ + ∂k

∂xK−1(y−Bβ̂) (3.34)

∂s2

∂x = 2
[(∂k

∂xK−1B− ∂b
∂x

)
(B>K−1B)−1 (B>K−1k− b

)
− ∂k
∂xK−1k

]
,

(3.35)
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Figure 3.2: On the 2-D Schwefel function (top-left), several gradient fields
and contour lines are depicted for the Kriging/GPR prediction (bottom-left),
the Kriging/GPR MSE (bottom-right) and the so-called Expected Improvement
criterion (top-right) defined on the Kriging prediction and MSE (cf. Eq. (4.5)).
Ordinary Kriging with the Matérn 3/2 kernel is chosen for this illustration, which is
trained on 15 uniformly generated locations (black dots in the top-left plot).
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where
∂k
∂x =

[
∂k(x,x1)

∂x ,
∂k(x,x2)

∂x , . . . ,
∂k(x,xn)

∂x

]
.

For the Matérn 3/2 kernel (Eq. (3.5)), this derivative is given as:

∂k(x,x′)
∂xi

= (−1)s 3σ2hi
θ2
i

exp
(
−
√

3hi
θi

)
, hi = |xi − x′i|, s = 1[x′

i
,∞)(xi).

In addition, in Fig. 3.2, the gradient calculation here is visualized on a 2-D Schwefel
function.

3.2 Cluster Kriging

Despite the theoretically sound development of the Kriging model, it suffers from
several issues when applied to large data sets. The major bottleneck is the high
time and memory complexity of the model fitting process: The inverse of the
covariance matrix K−1 needs to be computed for both the posterior mean and
variance (Eq. (3.9) and (3.11)), which has roughly O(n3) time complexity (n is the
number of data points)1. In addition, the likelihood function of hyper-parameters
σ,θ is expressed through K−1(σ2,θ). In the Maximum Likelihood Estimation
(MLE), K−1 needs to be calculated for each likelihood value, resulting in a O(n3)
computational cost per hyper-parameter evaluation. Even if efficient numerical
optimizers are used in MLE, e.g., the quasi-Newton method (Bonnans et al., 2006),
this computational overhead is still extremely high for a large data set. This
bottleneck hinders the practical usage of Kriging/GPR. Various attempts have
been made to relax the computational complexity issue of Kriging (Rasmussen
and Williams, 2006). The historical approaches on this topic are categorized as
follows.

Subset Methods The first category of approximation algorithms uses only a
subset of the complete data set to approximate a full Kriging model. The idea
behind these methods is to get a realistic representation of the complete data set
by taking only a small portion of the data points. The main issue with the subset
approximation approach is to select a representative subset of the data set. Two
major subset approximation algorithms are:

1There are asymptotically faster algorithms for matrix inversion, e.g., Strassen algorithm
O(n2.807) and Stothers O(d2.373), but their practical performance is worse than some methods
with O(n3) time complexity.
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• Subset of Data (SoD) (Lawrence, 2004) is a naive approach in reducing
complexity by taking a subset of m < n data points. The points are usually
taken at random. The obvious disadvantage of such an approach is that
possible valuable information is lost in the process. Taking a representative
subset of data points is a non-trivial task.

• Subset of Regressors (SoR) (Silverman, 1985) approximates Kriging by a
linear combination of kernel functions on a set of basis points. The basis
points are linearly weighted to construct the predictor. The choice of the
basis points does influence the final outcome significantly. As noted also
in Quiñonero-Candela and Rasmussen (2005), there are only m (number of
basis points) degrees of freedom in the model because the model degenerates,
which might be too restrictive.

Approximation using Sparsity In the second category, the sparsity of the
covariance kernel is exploited for the approximation. Most of algorithms in this
category also use a subset of the data as in the subset approximation method.

• Sparse On-Line Gaussian Processes (OGP) (Csató and Opper, 2002) uses
a Bayesian on-line algorithm, together with a sequential construction of a
subsample of the data that specifies the prediction of the GP model. The
idea behind constructing a subsample of basis vectors is very similar to the
Fully Independent Training Conditional mentioned below. The advantage of
OGP is that additional data points can be added to the OGP model without
always completely retraining the model.

• Gaussian Markov Random Fields (Hartman and Hössjer, 2008) uses an
approximation of the covariance matrix with a sparse precision matrix. It
uses Gaussian Markov Random Fields (GMRF) on a reasonably dense grid
to exploit the computational benefits of a Markov field while keeping the
formula of Kriging weights. This method reduces the complexity for simple
and ordinary Kriging, but might not always be efficient with universal Kriging.

• Fully Independent Training Conditional (FITC) (Naish-Guzman and Holden,
2007; Snelson and Ghahramani, 2005) uses a more sophisticated likelihood
approximation with a richer covariance structure. It is a non-degenerate
version of the SoR algorithm. By providing a set of basis points (Pseudo
inputs), the model is fitted and validated on the training data. As with SoR
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the choice of basis points is a problem and it is usually either a subset of the
training data or a uniform distribution over the input space.

Divide and Conquer Methods In this category, the time complexity issue is
relaxed by partitioning a big data set into several smaller subsets (or clusters)
and then constructing a Kriging/GPR model on each subset. Because such a
partitioning is usually obtained via clustering techniques, the subset and the model
trained on them only capture local properties of the target function. Despite of the
construction of local models, typically a global predictor is obtained by combining
the local Kriging/GPR models. In this thesis, a novel divide and conquer method,
called Cluster Kriging is proposed.

• Bayesian Committee Machines (BCM) (Tresp, 2000) is an algorithm similar
to the ones we propose, but developed from a completely different perspective.
The basic motivation is to divide a huge training set into several relatively
small subsets and then construct GPR models on each subset. The benefit
of this approach is that the training time on each subset is satisfactory and
the training task can be easily parallelized. After training, the prediction is
made by a weighted combination of estimations from all the GPR models.
In addition, the batch prediction is enabled to speed up the computation
even further. However, when using independent hyper-parameters for each
GPR model or some GPR models are badly fitted, BCM yields unsatisfactory
performance in terms of accuracy.

• Cluster Kriging (CK) (van Stein, Wang, Kowalczyk, Emmerich, and Bäck,
2016) combines multiple local Kriging/GPR predictors that are constructed
on several partitions of the data set, where the partitions are obtained from
clustering algorithms. Loosely speaking, if the whole data set is partitioned
into clusters of similar sizes, Cluster Kriging will reduce the time complexity
by a factor of q2 (where q is the number of clusters), resulting in n3/q2,
if Kriging estimators are fitted sequentially. When exploiting q CPUs in
parallel, the time complexity will be further reduced to n3/q3. Ideally, when
scaling up q to be a linear function of n, the time complexity is reduced
to a linear term of n and even becomes a constant in the parallelization
mode. However, in practice, such a setting on q is not suggested because it
is necessary to keep enough data points in each cluster, to ensure each local
Kriging model is well-fitted. To estimate f(x) at an unobserved data point x,
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each Kriging estimator provides a (local) estimation f̂ and it is proposed to
either combine all the Kriging estimations or select the most proper Kriging
estimations for f(x). There are many options for the data partitioning, e.g.,
K-means (MacQueen et al., 1967) and Gaussian mixture models (Reynolds,
2009) (GMM), and the Kriging model on clusters can also be combined in
different manners. By varying the options in each step of the Cluster Kriging,
many algorithms can be generated. Four of them will be explained in the
next section. In this section, the options in each step of the algorithms are
introduced step-by-step.

Several other attempts have been made to divide the Kriging model in sub-
models (Chen and Ren, 2009; Nguyen-Tuong et al., 2009). In Chen and Ren
(2009), a Bagging (Breiman, 1996) method is proposed to increase the robustness
of the Kriging algorithm, rather than speeding up the algorithm’s training time.
In Nguyen-Tuong et al. (2009), a partitioning method is introduced to separate
the data points into local Kriging models and combine the different models using
a distance metric.

All of these approximation algorithms have their advantages and disadvantages
and they are compared to our newly proposed Cluster Kriging algorithms. For the
empirical study, three commonly applied algorithms: SoD, FITC and BCM are
selected to compare with the proposed approaches in this thesis.

3.2.1 Clustering

Given some data points X = {x1,x2, . . . ,xn} ⊂ S and corresponding response
values y = (f(x1), f(x2), . . . , f(xn))>, the first step in Cluster Kriging is to cluster
the data set (X,y) into several smaller subsets. In general, the goal is to obtain a
set P containing q clusters on the input data set X.

P = {X1,X2, . . . ,Xq} , where
q⋃
i=1

Xi = X. (3.36)

As with the partition on X, the response values y are also grouped: y =
(y>1 ,y>2 , . . . ,y>q )>. The clustering can be done in many ways, with the most
simple and feasible approach being random clustering. For our framework, how-
ever, we introduce three more sophisticated partitioning methods that are used in
the experiments later on.
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3.2 Cluster Kriging

Hard Clustering Hard clustering splits the data into k smaller disjoint data
sets: Xi

⋂
Xj = ∅ (i 6= j). This can be achieved by various methods, for instance

the K-means algorithm (MacQueen et al., 1967). K-means clustering minimizes
the within-cluster sum of squares, that is expressed as:

arg min
P

q∑
i=1

∑
x∈Xi

‖x− µi‖2 , (3.37)

where µi ∈ Rd is the centroid of cluster i and is calculated as the mean of the
points in Xi. The evaluation of the within-cluster sum of squares takes O(nqd)
execution time.

Soft Clustering Instead of using a hard clustering approach, a fuzzy clustering
algorithm can be used to introduce slight overlap between the various smaller
data sets, which might increase the final model accuracy. To incorporate fuzzy
clustering, instead of directly applying cluster labels, the probabilities that a point
belongs to a cluster are calculated (Eq. (3.39)). This probability is called the
membership value of a point to a cluster. With ν a user defined setting that defines
the overlap, dνn/qe number of points with the highest membership values are
assigned for each cluster. Here ν is set between 1 (no overlap) and 2 (completely
overlapping clusters).

In principle, any fuzzy clustering algorithm can be used for the partitioning. In
this thesis the Fuzzy C-means (FCM) (Dunn, 1973) clustering algorithm and the
Gaussian Mixture Models (GMM) (Reynolds, 2009) are used. FCM is a clustering
algorithm very similar to the well known K-means. The algorithm differs from
K-means in that it has additional membership coefficients and a fuzzifier. The
membership coefficients of a given point give the degrees that this point belongs
to each cluster. These coefficients are normalized so they sum up to one. The
algorithm can be fitted on a given data set and returns the coefficients for each
data point to each cluster. The number of clusters is a user defined parameter.
Fuzzy C-means optimizes the objective function given in Eq. (3.38) iteratively.
In each iteration, the membership coefficients of each point being in the clusters
are computed using Eq. (3.39). Subsequently, the centroid of each cluster µj
is computed as the center of mass of all data points, taking the membership
coefficients as weights. The objective of fuzzy C-means is to find a set of centroids
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that minimizes the following function:

n∑
i=1

q∑
j=1

wmij ‖xi − µj‖
2
, (3.38)

where wij are the membership values (see Eq. 3.39) and m is the so-called fuzzifier
(m = 2 in this thesis). The fuzzifier determines the level of cluster fuzziness as
follows:

wmij = 1
q∑

k=1

(
‖xi − µj‖
‖xi − µk‖

) 2
m−1

(3.39)

The other fuzzy clustering procedure used is the Gaussian Mixture Models. GMM
are used together with the expectation-maximization (EM) (Sundberg, 1974) al-
gorithm for fitting the Gaussian models. The mixture models are fitted on the
training data and later used in the weighted combination of the Kriging models
by estimating cluster membership probabilities of the unseen data points. The
advantage of this clustering technique is that it is fairly robust and that the number
of clusters can be specified by the user. For the GMM method one could use
the full covariance matrix whenever the dimensionality of the input data is small.
However, when working with high dimensional data a diagonal covariance matrix
can be used instead. The time complexity of GMM depends on the underlying
EM algorithm. In each iteration of EM, it takes O(nq) operations to re-estimate
the model parameters.

Regression Tree Partitioning The third method used is the partitioning by
use of a Regression Tree (Breiman et al., 1984) on the complete training set. The
regression tree splits the data set recursively at the best splitting point using the
variance reduction criterion. Each leaf node of the Regression Tree represents a
cluster of data points. The number of leaves (or the number of records per leave)
can be set by the user. By reducing the variance in each leaf node and therefore
the variance in each data set, the Kriging models can be fitted to the local data
sets much better as will be presented later on. The time complexity of using a
Regression Tree for the partitioning is O(n), given that the depth of the tree or
the number of leaf nodes is set by the user.

The partitioning done by the regression tree depends on the splitting criterion.
For a faster execution of the Cluster Kriging algorithm we could choose to use
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3.2 Cluster Kriging

a splitting criterion that splits the data set in each node evenly, balancing the
load for each of the local Kriging models attached to the leafs. From emprical
experience we know that splitting using the standard variance reduction function
generally results in better performing models than using such an evenly splitting
criterion. This is likely due to the fact that data sets with a lower variance can be
more easily fitted by a Kriging model.

3.2.2 Modeling

Technically, modeling the function f using Kriging/GPR implies using the stochas-
tic process {Y (x) : x ∈ S} (cf. Eq. (3.1)) as the statistical model of f . Under this
setting, the response values y are treated as the observations from Y . After parti-
tioning the data set into several clusters, Kriging/GPR models are fitted on each of
the smaller data sets. Consider the random vectorψ = (Y (x1), Y (x2), . . . , Y (xn))>.
It is also partitioned according to the clustering on X: ψ = (ψ>1 ,ψ>2 , . . . ,ψ>q )>.
For simplicity we assume the kernel functions used on each cluster to be the same
and Ordinary Kriging is used in each cluster. Typically, each cluster only captures
the local information about f and thus the Kriging model on each cluster shall be
called local Kriging/GPR model. On each cluster, the (local) posterior distribution
of the Y (x) is:

Y (x) | ψi = yi ∼N
(
f̂i(x), s2

i (x)
)
, i = 1, 2, . . . , q, (3.40)

where f̂i and s2
i are the Kriging estimator and MSE in Eq. (3.9) and (3.11) except

that the observations yi is now only a fraction of the whole observations y. Note
that training the Kriging estimator can be easily parallelized, which gives an
additional speedup to Cluster Kriging. Another benefit of building each model
separately, is that each model has usually a much better local fit than a single
global Kriging model would obtain.

3.2.3 Cluster Kriging Predictor

For the prediction, several approaches are proposed in the following. Depending
on the partitioning method used before, the simplest approach to predict the
unseen data point is by using a single local model. When the partitions are
overlapping a combination of the different local models into one global model is
then required.
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Single Cluster Predictor The simplest method is to pick just one local Kriging
model for each data point and use this local model for the prediction. This does
require the partitioning used to create partitions based on locality like K-means
clustering or a regression tree. First the partitioning method is used to predict
which cluster the new data point belongs to, then the Kriging model trained using
this particular cluster is used to predict the mean and variance at the new data
point. In case of the Regression Tree procedure, the targets are predicted from
new unseen data points by first deciding which model needs to be used, using the
Regression Tree. The target is then predicted using the specific Kriging model
assigned to the leaf node. The main advantage of this method is that there is no
combination of different predictions and only one of the local Kriging models needs
to provide a prediction. This results in a significant speed-up for the prediction
task. Disadvantages of this method are 1) a potential inability of capturing the
global trend of the target function and 2) artificial discontinuities at the boundary
of partitions. In Fig. 3.3 (top row), we visualize a Cluster Kriging model using
regression trees, in which the intersections between the different local models are
marked by black dashed lines. It can be observed that the edges of the local
models are not completely matching, meaning that the predictions near the border
are not as smooth as they would be in a global Kriging model. It can also be
observed that the area covered by each cluster is not the same, which is due to
the splitting criterion of the regression tree. While the splitting criterion could be
chosen in such a way that it balances the cluster sizes, using variance reduction as
the splitting criterion generally gives better fitted local models.

Superposition of Posterior Processes Instead of using single model predic-
tions, the multiple local models can be combined into one global model using
various combination procedures. Some additional assumptions are necessary to
give the following derivation. Assume an independent Gaussian process prior on
each cluster:

∀i 6= j ∈ {1, 2, . . . , q}, Yi ⊥⊥ Yj , Yi ∼ t+ GP(0, k(·, ·)).

After clustering (e.g., K-means) the data set (X,y), independent posterior Gaussian
processes Y ′i are obtained on each cluster:

Y ′i := Yi | ψi ∼ GP(f̂i, k′i(·, ·)),

70



3.2 Cluster Kriging

where the posterior mean f̂i and kernel k′i are defined in Eq. (3.32) and (3.33). In
this sense, it is possible to construct a “global” Gaussian process as the superposition
of all posterior Gaussian processes. In addition, a weighting scheme {wi}i is used
to model how much “belief” should be put on each posterior process. Using positive
weights whose sum is one, the posterior process is:

Y :=
q∑
i=1

wiY
′
i ∼ GP

(
q∑
i=1

wif̂i,

q∑
i=1

w2
i k
′
i(·, ·)

)
,

The posterior kernel is derived as follows: consider the covariance between Y(x1)
and Y(x2):

Cov


q∑
i=1

wiY
′
i (x1),

q∑
j=1

wjY
′
j (x2)

 =
q∑
i=1

q∑
j=1

wiwj Cov
{
Y ′i (x1), Y ′j (x2)

}
=

q∑
i=1

w2
i k
′
i(x1,x2).

At an unobserved point x, the following predictive distribution is obtained,

Y(x) ∼ N
(

q∑
i=1

wif̂i(x),
q∑
i=1

w2
i s

2
i (x)

)
, (3.41)

where s2
i (x) = k′i(x,x). The best linear unbiased predictor of Y is its mean

function: Ŷ =
∑q
i=1 wif̂i and its MSE is the variance

∑q
i=1 w

2
i s

2
i . Note that the

predictor and its MSE depend on the choice of weights. The optimal predictor is
defined in the sense that the MSE is minimized with respect to the weight (van
Stein, Wang, Kowalczyk, Bäck, and Emmerich, 2015):

minimize
{w1,...,wq}

q∑
i=1

w2
i s

2
i (x)

subject to
q∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , q.

This convex optimization problem can be solved by using Lagrange Multipliers,
resulting in:

w∗i (x) = 1/s2
i (x)

q∑
j=1

1/s2
j (x)

. (3.42)

The optimal weights are then used to construct the optimal predictor, which is the
inner product of the model predictions with the optimal weights.
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Mixture of Posterior Processes As an alternative to the linear predictor

given in Eq. (3.41) that arises from the superposition of posterior processes, we

formulate another linear predictor here, resulting from the mixture of posterior

processes. Firstly, the combination weights are motivated a bit differently: for the

GMM and other soft clustering approaches, the membership probabilities can be

used for unseen records to define the weights for the combination of predictions.

For instance, given a point x, the weights are defined as,

wi := Pr(C = i | x), i = 1, . . . , q, (3.43)

where C is the cluster indicator variable ranging from 1 to q. Note that those

weights can be given by the clustering algorithm or obtained by an optimization

procedure (see below). Secondly, instead of considering an independent Gaussian

process prior for each cluster, a single and global Gaussian process prior is assumed

for all clusters. By applying the total probability with respect to the cluster

indicator variable C, the conditional density of Y over ψ is (van Stein, Wang,

Kowalczyk, Emmerich, and Bäck, 2016):

p(Y (x) | ψ = y) =
q∑
i=1

p(Y (x), C = i | ψ = y,x)

=
q∑
i=1

p(Y (x) | C = i,ψ = y) Pr(C = i | x)

≈
q∑
i=1

p(Y (x) | ψi = yi) Pr(C = i | x). (3.44)

Note that we approximate the density p(Y (x) | C = i,ψ = y) by p(Y (x) | ψi = yi).

Such an approximation is accurate when the amount of the overlap between clusters

is small. In Eq. (3.44), the first term within the summation is the posterior density

obtained from cluster i. The second term represents the probability that data

point x belonging to a cluster, which is the weight in Eq. (3.43). Consequently,

the overall predictive density p(Y (x) | ψ = y) comes from the mixture of posterior

processes. According to statistical decision theory (Hastie et al., 2009), the best

predictor of Y when knowing the conditional density of Y on y is the conditional
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expectation, i.e.,

E {Y (x) | ψ = y} =
∫ ∞
−∞

y

q∑
i=1

p(Y (y) | ψi = yi) Pr(C = i | x) dy

=
q∑
i=1

Pr(C = i | x)E {Y (x) | ψi = yi}

=
q∑
i=1

wif̂i(x). (3.45)

In contrast to Eq. (3.41), the predictor above is also a linear combination of Kriging
predictors from all clusters. However, the differences are 1) the predictive density
p(Y (x) | ψ = y) is no longer Gaussian, 2) the weights in Eq. (3.41) are resulted
from an optimization procedure while the weights in Eq. (3.45) are either given
directly by the clustering algorithm or obtained from the optimization. To optimize
the weights, please consider the MSE of this predictor, which is the variance of the
mixture of posterior processes:

Var {Y (x) | ψ = y}

= E
{
Y (x)2 | ψ = y

}
− (E {Y (x) | ψ = y})2

=
q∑
i=1

wi

(
Var{Y (x) | ψi = yi}+ (E{Y (x) | ψi = yi})2

)
− (E{Y (x) | ψ = y})2

=
q∑
i=1

wi

(
s2
i (x) + f̂2

i (x)
)
−

(
q∑
i=1

wif̂i(x)
)2

. (3.46)

Again, the weights are considered optimal in the sense that the MSE is mini-
mized:

minimize
{w1,...,wq}

Var {Y (x) | ψ = y}

subject to
q∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , q.

Cluster Kriging Variants By choosing different methods for the clustering
and prediction, various Cluster Kriging variants are instantiated:

• Optimally Weighted Cluster Kriging (OWCK) uses a K-means clustering
algorithm for the partitioning and the superposition of posterior processes to
construct the predictor.
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• Optimally Weighted Fuzzy Cluster Kriging (OWFCK) is similar to OWCK
except that K-means is replaced by Fuzzy C-means.

• Gaussian Mixture Model Cluster Kriging (GMMCK) uses Gaussian Mixture
Models to partition the data into q overlapping clusters and the membership
probabilities are used as the combination weights. The mixture of posterior
Gaussian processes (Eq. (3.45)) is used for the prediction.

• Model Tree Cluster Kriging (MTCK) uses a regression tree to partition
the data in the objective space. The tree is generated from the root node
by recursively splitting the training data using the target variable and the
variance reduction criterion. Once a node contains less than the minimum
samples needed to split or the node contains only one record, the splitting
stops and the node is called a leaf. To control the number of clusters, the
user can set the maximum number of leaves or the minimum leaf size. Next,
each leaf node is assigned a unique index and each record belonging to the
leaf is assigned to this index. For each leaf, a Kriging predictor is built using
only those records assigned to this leaf. For the prediction, the regression
tree decides which Kriging predictor should be used.

3.2.4 Experiments

A broad variety of experiments is conducted to compare Optimally Weighted Cluster
Kriging and its Fuzzy and Model Tree variants, to a wide set of other Kriging
approximation algorithms. The algorithms included in the test are: Bayesian
Committee Machines, both with shared parameters (BCM sh.) and with individual
parameters (BCM), Subset of Data (SoD), Fully Independent Training Conditional
(FITC), Optimally Weighted Cluster Kriging (OWCK) using K-means clustering,
Fuzzy Cluster Kriging using Fuzzy C-means (OWFCK), Fuzzy Cluster Kriging
with Gaussian Mixture Models (GMMCK) and finally Model Tree Cluster Kriging
(MTCK). The algorithms are evaluated on three different data sets from the UCI
machine learning repository (Bache and Lichman, 2013):

• Concrete Strength (Yeh, 1998) is a data set with 1030 records, 8 attributes
and one target attribute. The task is to predict the strength of concrete.
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• Combined Cycle Power Plant (CCPP) (Kaya et al., 2012) is a data set of
9568 records, 3 attributes and one target attribute. The target is the hourly
electrical energy output and the task is to predict this target.

• SARCOS (Vijayakumar et al., 2005) is a data set from gaussianprocess.org
with a training set of 44484 records, 21 attributes and 7 target attributes.
The task is to predict the joint torques of an anthropomorphic robot arm.
All 21 attributes are used as training data but only the 1st target attribute is
used as target. The data set comes with a predefined test set of 4449 records.

For the Concrete Strength data set and all synthetic data sets: FITC is set to a
range of inducing points starting from 32 and increasing in powers of 2 to 512.
SoD is set to the same range as FITC but for SoD this means the number of
data points. BCM, both shared and non-shared versions and all Cluster Kriging
variants are set to a range from 2 to 32 clusters, increasing with powers of 2. For
the Combined Cycle Power Plant data set: FITC is set to a range of inducing
points starting from 64 and increasing in powers of 2 to 1024. SoD is set to a
range from 256 to 4092 data points. BCM, both shared and non-shared versions
and all Cluster Kriging variants are set to a range from 4 to 64 clusters. Finally,
for the SARCOS data set, the range of FITC’s inducing points stays the same as
for the CCPP data set, for SoD the range is from 512 to 8184 data points, and for
all cluster based algorithms and the model tree variant, the range is set from 8 to
128 clusters.

In addition, 8 synthetic data sets with each 10000 records, 20 attributes and one
target attribute are used. The synthetic data sets are generated on common bench-
mark functions: Ackley, Schaffer, Schwefel, Rastrigin, H1, Rosenbrock, Himmelblau
and Diffpow. The implementations of those functions are taken from the Deap
Python Package (Fortin et al., 2012).

Hyper-parameter Optimization As mentioned before, Ordinary Kriging is
chosen for all the clusters throughout this thesis. For each local Ordinary Kriging
model, its constant trend β is estimated using the GLS (Generalized Least Squares)
formula (Eq. (3.9)). Consequently, the so-called profile log-likelihood is adopted to
estimate the hyper-parameter. In each local Kriging model, hyper-parameters σ2,θ

of the kernel function are optimized using the Maximum Likelihood Estimation
(MLE) method. As for the choice of numerical optimization algorithm, we use a
quasi-Newton method (BFGS) (Fletcher, 2013) with restarting heuristic.
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Table 3.2: Average R2 score per data set for each algorithm

Data set SOD OWCK GMMCK OWFCK FITC BCM BCM sh. MTCK
concrete 0.784 0.826 0.839 0.696 0.675 −81.888 −242.459 0.851
CCPP 0.948 0.937 0.968 0.916 0.890 0.220 −24.602 0.968
sarcos 0.964 0.894 0.996 0.570 0.941 −627.280 0.448 0.999
ackley 0.952 0.957 0.951 0.954 0.260 0.921 −0.039 0.981
schaffer 0.321 0.388 0.369 0.406 0.208 0.452 −0.050 0.672
schwefel 0.990 0.973 0.977 0.947 0.006 0.969 −0.043 0.999
rast 0.973 0.947 0.948 0.932 0.322 0.914 −0.043 0.998
h1 0.676 −0.082 0.527 −1.125 0.165 0.657 −0.046 0.977
rosenbrock 0.999 0.997 0.997 0.981 0.000 0.994 −0.050 1.000
himmelblau 0.997 0.995 0.995 0.981 0.291 0.994 −0.044 1.000
diffpow 0.995 0.991 0.991 0.975 0.001 −0.001 −0.001 1.000

Table 3.3: Average MSLL score per data set for each algorithm

Data set SOD OWCK GMMCK OWFCK FITC BCM BCM sh. MTCK
concrete −0.837 −0.946 −1.100 −0.692 −0.629 18.590 68.013 −1.140
CCPP −0.089 −1.438 −1.525 −1.109 −1.165 7.826 69.346 −1.193
sarcos −1.926 −1.371 −3.147 −0.302 −1.463 780.090 507.721 −3.429
ackley −1.622 −1.516 −1.517 −1.462 −0.104 7.352 13.010 −2.012
schaffer 0.477 −0.073 0.081 −0.091 −0.107 16.872 11.707 −0.514
schwefel −2.554 −2.013 −2.162 −1.944 −0.002 −0.144 12.034 −3.278
rast −2.179 −1.686 −1.807 −1.642 −0.193 4.554 11.590 −2.901
h1 −0.766 −0.276 −0.540 −0.060 −0.059 9.018 17.393 −1.967
rosenbrock −3.479 −2.915 −3.074 −2.738 high* 0.612 18.575 −4.054
himmelblau −3.204 −2.646 −2.790 −2.553 −0.193 −1.422 12.826 −3.739
diffpow −3.020 −2.548 −2.666 −2.438 high* high* high* −3.744

Table 3.4: Average SMSE score per data set for each algorithm

Data set SOD OWCK GMM-CK FCM-CK FITC BCM BCM sh. MTCK
concrete 0.216 0.174 0.161 0.304 0.325 82.888 243.459 0.149
CCPP 0.052 0.063 0.032 0.084 0.110 0.780 25.602 0.032
sarcos 0.036 0.106 0.004 0.430 0.059 628.280 0.552 0.001
ackley 0.048 0.043 0.049 0.046 0.740 0.079 1.039 0.019
schaffer 0.679 0.612 0.631 0.594 0.792 0.548 1.050 0.328
schwefel 0.010 0.027 0.023 0.053 0.994 0.031 1.043 0.001
rast 0.027 0.053 0.052 0.068 0.678 0.086 1.043 0.002
h1 0.324 1.082 0.473 2.125 0.835 0.343 1.046 0.023
rosenbrock 0.001 0.003 0.003 0.019 1.000 0.006 1.050 0.000
himmelblau 0.003 0.005 0.005 0.019 0.709 0.006 1.044 0.000
diffpow 0.005 0.009 0.009 0.025 0.999 1.001 1.001 0.000
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Whenever the fuzzy clustering algorithm is applied, the overlap rate ν is set to
10%, which is chosen based empirical investigations: although higher percentages
(above 10%) usually increase the accuracy marginally, it also brings additional
computational costs as each cluster becomes larger. For the Model Tree variant,
the number of leaves is enforced by setting a minimum number of data points per
leaf and an optional maximum number of leaves.

Quality Measurements The quality of the experiments is estimated with the
help of 5-fold cross validation, except for the SARCOS data set, which uses its
predefined test set. The experiments are performed in a test framework similar to
the framework proposed in (Chalupka et al., 2013), i.e., several quality measure-
ments are used to evaluate the performance of each algorithm. The Coefficient
of determination R2 score, Mean Standardized Log Loss (MSLL) (Rasmussen and
Williams, 2006) and the Standardized Mean Squared Error (SMSE) are measured
for each test run. The Mean Standardized Log Loss is a measurement that takes
both the prediction and MSE (estimated by the model) into account, penalizing
inaccurate predictions that have small estimated MSEs. For MSLL and SMSE
lower scores are better, for R2, 1.0 is the best possible score meaning a perfect fit
and everything lower is worse.

Results On real-world data sets Concrete Strength, CCPP and SARCOS, the
experiment results are summarized in the following tables. Two performance
measures, time and accuracy (x and y axis respectively) are shown. The R2 scores
of each data set per algorithm, averaged over all folds, are shown in Table 3.2. The
MSLL scores are provided in Tab. 3.3 and the SMSE scores in Tab. 3.4. The best
results for each data set are indicated in bold face.

3.3 Cluster Kriging and EGO

When applying the EGO algorithm to a large initial data set (e.g., in the experi-
ment design), typically the Kriging model is re-trained in every iteration and the
CPU time spent on the hyper-parameter re-estimation becomes computationally
infeasible. To relax this bottleneck, it is proposed to use the Cluster Kriging
algorithm in an EGO algorithm. Specifically, the following three Cluster Kriging
variants shall be used:

77



3. KRIGING/GAUSSIAN PROCESS REGRESSION

• Cluster Kriging (OWCK)

• Gaussian Mixture Model Cluster Kriging (GMMCK)

• Model Tree Cluster Kriging (MTCK)

When choosing the MTCK variant, it brings several other advantages than the
time complexity reduction. 1) The search space is recursively divided into smaller
hypercubes, in a manner that the variance of the target value on each node is
greedily reduced. Such a reduced the variance of target values in each cluster
potentially facilitates the numerical stability in the model training, because the
covariance matrix K tends to become singular when the target value varies abruptly
in the local scale. 2) For the infill criterion, multi-modality is artificially created
as a by-product of applying the MTCK variant. Intuitively, as independent
Kriging/GPR models are trained on each tree partitions, the prediction MSE
increases rapidly around the boundary of the partition. Potentially, this behavior
results in local optimality of the infill criterion on each partition. Using this
artefact, multiple distinct and potentially well-performing points can be proposed
for the evaluation. Essentially, this is an alternative approach to the infill criterion
parallelization problem stated in Section 4.5. Our argument is visually validated in
Fig. 3.3. Here 500 data points are sampled on the 2-D Ackley function using the
Halton sequence (Niederreiter, 1992). It is important to observe that the prediction
MSE shows basins of attraction on each partition. Consequently, the expected
improvement criterion also exhibits basins of attraction on each partition and thus
is highly multi-modal. For each partition, the local maximum of EI is indicated by
the red star symbol.

3.3.1 The algorithm

Although various complexity reduction (or approximation) methods exist for Krig-
ing (for instance, FITC (Naish-Guzman and Holden, 2007; Snelson and Ghahramani,
2005) and Bayesian Committee Machines (Tresp, 2000)), we state that Cluster
Kriging is more suitable for the EGO algorithm for the following reasons (Wang
et al., 2017):

1. Kriging predictors (posterior processes in Eq. (3.40)) on each cluster can be
trained in parallel, which yields an additional linear speedup in practice.
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Figure 3.3: On the 2-D Ackley function (top-left), 500 random points (black
dots in the top-left plot) are generated using the Halton sequence (Niederreiter,
1992). A Model Tree Cluster Kriging (mtck) with the Gaussian kernel is trained
on the data point, where the underlying tree clusters are indicated by dashed lines
(except the top-left plot). Contour lines are depicted for the Kriging/GPR prediction
(top-right), the Kriging/GPR MSE (bottom-left) and the so-called Expected
Improvement (EI) criterion (bottom-right) defined on the Kriging prediction and
MSE (cf. Eq. (4.5)). Multiple local maxima (9 in the bottom-right plot) of EI are
obtained by conducting the quasi-Newton search on each cluster.
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3. KRIGING/GAUSSIAN PROCESS REGRESSION

2. After a new candidate solution is found via the optimization on the infill
criterion, the hyper-parameters of Kriging need to be re-estimated. Taking
the cluster information into account, it is proposed to only re-estimate the
hyper-parameters on the clusters that this new solution belongs to. This
operation leads to additional speedup in model training, as in the best
scenario, only one local Kriging predictor is re-trained.

3. The infill criterion, e.g., the expected improvement is still well-defined over
the Cluster Kriging because either the Gaussian posterior process (Eq. (3.41))
or the mean and variance function (Eq. (3.45) and (3.46)) are available.

The resulting algorithm is presented in Alg. 7. Note that, the training of the initial
Kriging models can be parallelized (line 4). The counter c is used to keep track of
the number of the recently evaluated data points. When c is bigger than 10% of
the size of the data set, the clustering procedure is performed again to balance the
size of clusters.

The commonly used infill criteria, e.g., Expected Improvement (Eq. (4.5)) remain
well-defined on all the variants of Cluster Kriging in the following sense. Usu-
ally infill criteria are defined over the posterior process and take the Gaussian
assumption on it. Some Cluster Kriging variants, e.g., superposition of posterior
processes (Eq. (3.41)) admit a Gaussian posterior. For the others, e.g., mixture
of the posterior processes (Eq. (3.45)), we argue that although the posterior is
not Gaussian any longer, it is accurate enough to use the first- and second-order
structure of the posterior for infill criteria.

For the optimization of the infill criterion (line 8 in Alg. 7), it is possible to exploit
fast black-box optimization algorithms, for instance the well-known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2006; Hansen and
Ostermeier, 2001), because the evaluation of the infill criterion is not expensive
compared to the Kriging fitting procedure. However, as most of infill criteria have
a closed-form, it is straightforward to explore the gradient field of infill criteria.
And the global optimization can be conducted by applying a quasi-Newton method
with random restarts. To align with existing work (Roustant et al., 2012) on using
gradient-based optimization techniques for the infill criteria, we give the gradient
of the predictor and MSE in Cluster Kriging, as they are required to differentiate
most of infill criteria. For the superposition of posterior processes (Eq. (3.41)), the

80



3.3 Cluster Kriging and EGO

Algorithm 7 Cluster Kriging assisted Efficient Global Optimization
1: procedure ck-ego(X,y, f, q,A ) . q: number of clusters
2: {Xi,yi}qi=1 ← clustering(X,y, q)
3: for i = 1→ q do
4: Y | yi ∼ N

(
f̂i, s

2
i

)
. Train the Kriging predictor on each cluster

5: end for
6: c← 0
7: while the stop criteria are not fulfilled do
8: x∗ ← arg maxx∈S A (x) . Maximize the infill criterion
9: y∗ ← f(x∗) . Evaluation
10: c← c+ 1
11: if c/|X| > 10% then . |X|: cardinality of X
12: X,y← merge({Xi,yi}qi=1)
13: {Xi,yi}qi=1 ← clustering(X,y, q) . Re-clustering
14: for i = 1→ q do
15: Y | yi ∼ N

(
f̂i, s

2
i

)
16: end for
17: c← 0
18: else
19: for every cluster i that x∗ belongs to do
20: Xi ← Xi ∪ {x∗}, yi ← (y>i , y∗)> . Extend the data set
21: Y | yi ∼ N

(
f̂i, s

2
i

)
. Re-train the predictor on cluster i

22: end for
23: end if
24: end while
25: return x∗

26: end procedure
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gradients of its predictor and MSE are (cf. Eq. (3.41) and (3.42)):

∂f̂

∂x =
q∑
i=1

(
wi
∂f̂i
∂x + f̂i

∂wi
∂x

)
∂s2

∂x =
q∑
i=1

(
w2
i

∂s2
i

∂x + 2wis2
i

∂wi
∂x

)
∂wi
∂x =

q∑
i=1

(
1

s4
iM

∂s2
i

∂x + 1
s2
iM

2

q∑
i=1

1
s4
i

∂s2
i

∂x

)
, M =

q∑
j=1

(
s2
j

)−1

The gradient of the Kriging predictor and MSE on each cluster, ∂f̂i/∂x, ∂s2
i /∂x,

are given in Eq. (3.34) and (3.35). For the mixture of posterior processes, its
gradient can be obtained in a similar way. This is omitted here for the sake of
simplicity.

In addition, for the Tree-based local Kriging models (MTCK), it is shown (Fig. ??)
that each cluster (leaf node) can be treated as a sub-problem in the infill criteria
optimization. Therefore, it might be more efficient to conduct independent searches
in each leaf region of the Regression Tree and choose the best point from all these
sub-problems.

3.3.2 Experiments

Several experiments are conducted to show both the empirical time complexity
and convergence rate of the proposed Cluster Kriging based EGO, including all
the variants of Cluster Kriging discussed in Section 3.2.3. The performance of
the proposed algorithm is compared to the original EGO that uses Ordinary
Kriging (OK). For our experiments, the benchmark functions chosen are Ackley,
Rastrigin and Schaffer. These functions are chosen because they are used often
in optimization experiments, are highly multi modal, and are of a relatively high
complexity.

The algorithms under comparisons are: EGO with Ordinary Kriging (OK), Tree-
based local Kriging models (MTCK), Superposition of Kriging models (OWCK)
and the mixture of Kriging models (GMMCK). Each of the Cluster Kriging variants
uses 5 clusters. Both execution time and convergence rate are being measured
with a fixed set of EGO iterations and optimization budget. The convergence is
measured by taking the absolute error between the real optimum of the benchmark
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functions and the found optimum for each iteration of EGO. Each EGO run
performs 10 iterations for the three benchmark functions in two dimensions. Three
different initial sample sizes (500, 1000 and 5000) are used to train the surrogate
models, in order to illustrate the growth of CPU time required per algorithm, when
the size of the data available increases. For each different experimental setup, the
average time and distance to the optimum is recorded over 20 runs with different
random seed ([0, 20]).

Results In Fig. 3.5 it can be observed that the Cluster Kriging based EGO
variants perform very similar to OK, depending on the target function; a specific
variant even outperforms Ordinary Kriging. Due to the relative large variance in
the results it is difficult to judge which algorithm performs better. However, in
terms of the CPU time (Fig. 3.4), it can be observed that Cluster Kriging and in
particular MTCK takes only a fraction of the time that Ordinary Kriging requires.
Using a sample size of 500 points this difference is mainly due to the re-fitting
of only one local model at a time. This can be seen by comparing MTCK with
GMMCK and OWCK, since all three Cluster Kriging variants use the same number
of local models and only MTCK uses an adaptive local model strategy. When
the number of points increases to 1000 and even 5000, the difference between the
three Cluster Kriging variants decreases but the difference with Ordinary Kriging
becomes enormous. This shows that using EGO with Ordinary Kriging quickly
becomes infeasible when the number of data points grows.

3.4 Summary

This chapter addresses three aspects of the Kriging/GPR method. Firstly, a
unified view of Kriging/GPR is provided: the same formulation can be derived
independently from the theory of optimal linear predictors, Bayesian statistics and
the optimization in Reproducing Kernel Hilbert Spaces (RKHS). We try to link
those three approaches together and give a conceptual comparison among them.
Secondly, the time complexity bottleneck of Kriging is discussed in detail, where
several novel methods (Cluster Kriging variants) are derived, aiming at reducing
the training time and increase the model quality. Finally, the proposed Cluster
Kriging method is combined with the EGO algorithm to demonstrate its usefulness
in improving the existing optimization algorithm.
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(a) CPU time, sample size 1000

(b) CPU time, sample size 5000

Figure 3.4: Average CPU time in seconds per benchmark function for varying
sample sizes.
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Figure 3.5: Average convergence of the absolute error of three benchmark functions
in two dimensions, with varying training sample sizes n and 10 iterations of EGO.
Shown is the average over 20 runs (lines) and one standard deviation (shaded areas).
Legend: ˛: Ordinary Kriging, Ĳ: OWCK, F: MTCK, −: GMMCK.
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