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Stochastic Variation

In the continuous search space S ⊆ Rd, the most common stochastic variation
operator is the multivariate Gaussian distribution. It is denoted as N (m,C)
where m is the mean vector and C is the covariance matrix. The definition and some
properties of the Gaussian distribution can be found in Appendix A. Generating
d-dimensional random vectors from a multivariate Gaussian distribution is the
key source of stochastic variations in many stochastic optimization algorithms,
e.g., evolution strategies (Bäck et al., 2013). The standard method to achieve this,
simple random sampling (or random sampling for short), samples pseudo-random
numbers directly from a certain distribution. However, it also results in a high
sampling error or sampling variation, which would lead to “bad” samples (explained
in the following). The sampling error occurs when we estimate the statistical
properties of a distribution from its realizations. By sampling error, we mean the
estimation errors of statistical properties (e.g., mean, covariance) of a distribution,
which are caused by unrepresentative or biased samples.

An example of biased samples is illustrated in Fig. 2.1, in which four i.i.d. mutation
vectors are sampled from a multivariate Gaussian distribution N (m,C). The
black solid ellipsoid represents the expectation of the mutations and reflects the
covariance matrix C. The diversity of the four samples is not satisfactory because
the minimal distance between samples is relatively small compared to the axis
length of the black solid ellipsoid. A strong sampling error incurs in this case
because if the mean and covariance of the distribution are estimated from these
four vectors, the results would deviate largely from m and C.

As a result of the biased samples, a large portion of space is not reached (at least half
the space in this case). Moreover, if the objective function is twice differentiable, the
contour lines should be locally convex near the optimum (the dashed ellipsoids). The
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2. STOCHASTIC VARIATION

probability that a new search point represents an improvement can be very small,
shown by the area with vertical lines intersecting the solid ellipsoid. Therefore, if the
population size is small, an undesired sampling case can take place such that none
of the mutations represents an improvement, which renders the current generation
inefficient. The sampling error has an even bigger side effect in modern evolution
strategies (e.g., CMA-ES (Hansen, 2006)) because those algorithms tend to exploit
small populations to speed up their convergence. To overcome this problem, it is
proposed here to develop special sampling approaches for the reduction of sampling
error in a small population, such that the statistical properties estimated from
mutation samples are more similar to their underlying true distribution.

m

x∗

Figure 2.1: Illustration of a set of unsuccessful mutation samples. Four offspring
are generated here while none of them is an improvement. This phenomenon reduces
the convergence velocity of the algorithm.

The sampling method proposed in this chapter is plugged into evolution strategies
(ES) for testing. To make this chapter self-contained, the algorithmic structure
of (µ +, λ)-ES is given in Alg. 1. For the details on evolution strategies, please
see Emmerich, Shir, and Wang (2018).

2.1 Quasi-Random Sampling

There are some techniques proposed to reduce the sampling error as much as
possible and to enhance the diversity. The first method is called quasi-random
sampling or low-discrepancy sequences (Dick and Pillichshammer, 2010). Low-
discrepancy sequences are commonly used as a replacement of uniformly distributed

16



2.1 Quasi-Random Sampling

Algorithm 1 (µ +, λ) Evolution Strategy

1: procedure (µ +, λ)-es(µ, λ, f, σ0)
2: C← I, σ ← σ0 . initialization
3: while not terminated do
4: m← 1

µ

∑µ
i=1 xi . recombination

5: for i = 1→ λ do
6: x′i ←m + σC−1/2N (0, I) . mutation/stochastic variation
7: f ′i ← f(x′i) . function evaluation
8: end for
9: if comma selection is enabled then
10: select the best µ solutions from {x′i}λi=1.
11: else
12: select the best µ solutions from {x′i}λi=1 ∪ {xi}λi=1.
13: end if
14: Set the new population {xi}µi=1 to the selected points.
15: Control step-size σ and covariance matrix C.
16: end while
17: return the best solution found since the beginning.
18: end procedure

numbers. Intuitively, such sequences span the search space more “evenly” than the
pseudo-random numbers. It is widely used in numerical problems like the quasi-
Monte-Carlo method (Niederreiter, 1992) to achieve a faster rate of convergence.
The discrepancy of a random sequence can be viewed as a quantitative measure for
the deviation from the uniform distribution. Thus, the low-discrepancy sequence
is able to solve the same problem as the one treated here, namely to create more
evenly distributed samples.

Due to the advantages of quasi-random sampling, it is also applied in genetic
algorithms (Kimura and Matsumura, 2005) and evolution strategies (Teytaud and
Gelly, 2007). Specifically, it has already been applied to the well-known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001;
Hansen et al., 2003). Teytaud and Gelly (2007) propose to replace the independent
random Gaussian samples by a low-discrepancy sequence in the mutation operator.
The method for generating quasi-random samples according to the Gaussian
distribution is also proposed because the quasi-random samples are usually related
to a uniform distribution. It is also argued that the efficiency of CMA-ES is
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2. STOCHASTIC VARIATION

improved due to the bigger diversity of quasi-random samples. However, when
applying the quasi-random sample and recombination operator, a systematic bias
on the step-size adaptation is induced: the quasi-random samples are no longer
independent from each other and thus for each highly anti-correlated samples, their
recombination is much smaller on average compared to the Gaussian mutation. As
the step-size adaptation mechanism typically depends on the expected size of the
recombinations, quasi-random samples causes a downward bias in step-sizes.

2.2 Mirroring and Orthogonalization

The mirrored sampling technique (Brockhoff et al., 2010) is another method for
obtaining “good” samples and it is successfully accelerating the convergence of
ESs (Auger et al., 2010). It is a quite simple and elegant idea in which a single
random mutation vector is used to create two search points. More specifically,
instead of generating λ i.i.d. search points, only half of the mutation vectors
are sampled during each ES generation, namely {z2i−1}1≤i≤λ/2, zi ∼ N (0, σ2C),
where σ is the current global step size and C is the current covariance matrix.
Each mutation vector z2i−1 is used to generate two offspring, the usual one
x2i−1 = m + z2i−1 and the mirrored offspring x2i = m − z2i−1. Those two
offspring are symmetric or mirrored to the parental point m.

In order to make the argument here clearer, the mutations sampled from the
distribution are denoted as realized mutations. The mirrored sampling method
is described in Algorithm 2, acting as an alternative to the random mutation
operator in evolution strategies. For odd λ, it begins by generating dλ/2e offspring
in the first generation, which results in dλ/2e mirrored offspring. Then, all of the
realized offspring and dλ/2e−1 mirrored ones are used immediately while the extra
one mirrored mutation is kept to the next iteration (Lines 18− 21). In the next
iteration, the extra mirrored offspring is used (Lines 3− 9) and only bλ/2c realized
mutations need to be drawn. The following generations repeat this procedure.
The static variable zlast in Algorithm 2 stores the extra realized mutation vector.
Here, the notation proposed in Brockhoff et al. (2010) is used such that any ES
algorithm with the mirrored sampling is denoted by (1 +, λm)-ES.

By using mirrored sampling, the mirrored mutations are entirely dependent on the
realized mutation samples and explore the reverse (or mirrored) directions such
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2.2 Mirroring and Orthogonalization

that the mirrored counterpart of an unsuccessful mutation has a certain chance to
realize an improvement.

Algorithm 2 Mirrored Sampling
1: procedure mirrored(m, σ,C, λ)
2: B,D← eigen-decomposition(C)
3: if λ mod 2 6= 0 and zlast is set then
4: xλ ←m− σBDzlast . mutation zlast from the last iteration
5: λ′ ← λ− 1
6: Unset the static variable zlast . Unset zlast

7: else
8: λ′ ← λ

9: end if
10: for i = 1→ λ′ do
11: if i mod 2 = 0 then
12: xi ←m− σBDzi−1 . Mirroring
13: else
14: zi ← N (0, I)
15: xi ←m + σBDzi
16: end if
17: end for
18: if λ′ mod 2 6= 0 then . Odd number of mutations are created
19: Set the static variable zlast ← zλ . Save zλ for the next iteration
20: end if
21: return {x1,x2, . . . ,xλ}
22: end procedure

2.2.1 Deterministic Orthogonal Sampling

Orthogonal sampling, which denotes a the sampling approach utilizing orthogonal
search directions, is another solution to enhance the mutation diversity. This
sampling scheme can be found in Coordinate Descent (Schwefel, 1993), Adaptive
Coordinate Descent (ACiD) (Loshchilov et al., 2011) and Rosenbrock’s Local
Search (Rosenbrock, 1960). Intuitively, by sampling on the mutually orthogonal
directions, the samples spread quite diversely such that the search space would be
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2. STOCHASTIC VARIATION

explored more evenly. This sampling method is not well suited for solving the prob-
lem discussed here, but gives a lot of inspiration for the proposed method.

Normally, in this approach, a set of orthogonal basis vectors Ξ = {ξ1, ξ2, . . . , ξn} are
maintained in each optimization iteration, determining the exploration directions.
In each iteration, only a line search is conducted along a basis vector, which is
achieved by sampling two trial points: one point is created by adding the basis to
the current search point m while the other one is mirrored. In the next iteration,
another basis vector in Ξ is picked for the exploration. The general framework of
the optimization algorithm using this method is summarized below:

1. Initialize the search point m, an orthonormal basis Ξ = {ξ1, ξ2, . . . , ξn} and
the step sizes {σ1, σ2, . . . , σn} for each vector in the basis.

2. If the termination condition is not satisfied, perform the following steps until
(e) for each iteration. Let g be the iteration counter:

(a) Choose vector ξi as the exploration direction where i = g mod n and
generate one trial point: x1 = m + σiξi.

(b) For Rosenbrock’s local search, goto (c). For the other methods, use
vector ξi to generate the other trial point: x2 = m− σiξi.

(c) Evaluate the trial points x1,x2 (if x2 exists). Set the search point m
to the one with the best fitness value.

(d) Update the step size σi according to a deterministic or stochastic rule
and increase the iteration counter g by one.

(e) If g mod n = 0, then update the basis Ξ according to the search points
of the most recent n iterations.

When all vectors in Ξ are tried, the orthogonal basis Ξ is either unchanged or
updated based on the successful vectors in the history. Note that the rules of the
update may be different in every optimization algorithm. In Coordinate Descent,
the basis is fixed to the standard basis in Rd during the process. In ACiD, the
basis is updated by Adaptive Encoding (Hansen, 2008), which is the generalization
of the covariance matrix update in CMA-ES. We deliberately term this sampling
method as deterministic orthogonal sampling due to the fact that the update of
the orthonormal basis is completely deterministic and it is easier to distinguish
this sampling method from the random orthogonal sampling proposed here.
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2.2 Mirroring and Orthogonalization

2.2.2 Mirrored Orthogonal Sampling

In this section, we propose a new sampling method based on the mirrored sampling
technique. The motivation, the algorithm and the implementation are provided.
This new method is motivated by the following observation: In mirrored sampling,
half of the mutation vectors (the mirrored or dependent ones) completely depend
on the other half (the realized or independent ones). Between these two sets of
mutations, mirrored sampling is able to guarantee a significant difference between a
realized mutation and its mirrored counterpart. In addition, the mirrored mutation
is anti-parallel to the realized one and thus a mirrored pair would span two half-
spaces almost surely, no matter how the search space is partitioned (such a pair
can stay on the partition boundary with zero probability). However, within the
realized half of mutations, everything is still purely random and not arranged
evenly in high-dimensional space. Thus, the mirrored sampling technique still
suffers from undesirable clustering of samples.

In order to improve the realized half of the mutations, we resort to the deterministic
orthogonal sampling method (Section 2.2.1), where the mutations (new search
points) are generated along a precomputed orthogonal basis and thus the minimal
distance between samples is greatly enlarged. The disadvantage is that it only
works in the single-parental evolutionary algorithm and only one of the orthogonal
samples can be used in one evolution cycle, which limits its usability for the
general (µ, λ)-ES. Instead of generating mutations along some orthogonal basis,
it is proposed here to create half the mutations as “uniform random orthogonal
vectors”, in the sense that each vector is stochastic instead of the deterministic
orthonormal basis and “uniform random” requires each vector to sample each
direction evenly (Wang et al., 2014).
Definition 2.1. The uniform random orthogonal vectors are defined as a
set of random vectors {O1,O2, . . . ,Ok} ⊂ Rd (k ≤ d), satisfying the following
three properties:

1. Orthogonality: ∀i 6= j ∈ {1, 2, . . . , k}, 〈Oi,Oj〉 = 0.

2. χ(d)-distributed norm: ∀i ∈ {1, 2, . . . , k}, ‖Oi‖ =
√
〈Oi,Oi〉 ∼ χ(d).

3. Uniformality: for each vector Oi, its normalization Oi/ ‖Oi‖ distributes
uniformly on the unit sphere.

Remark. 1) The norm of those vectors is restricted to χ(d)-distribution for
mimicking the behavior of the vector samples from the standard multivariate
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2. STOCHASTIC VARIATION

Gaussian distribution. 2) The uniform distribution on the unit sphere is equivalent
to the rotation-invariant property with respect to an arbitrary rotation matrix1

R ∈ Rd×d: the random vector x and the rotated one x′ = Rx are identically
distributed. 3) Throughout this thesis, the dot product is taken for the inner
product, namely 〈x,y〉 = x>y.

The new mutation method is named random orthogonal sampling. For clarity, the
mutation operator (that takes i.i.d. normal samples) in the canonical CMA-ES is
called standard random sampling. In addition, the random orthogonal samples
are rescaled and rotated according to the covariance matrix C before they are
added to the parental point m, which follows the same as the procedures as for
the Gaussian mutations :

x2i−1 ←m + σC 1
2 Oi, 1 ≤ i ≤ λ/2. (2.1)

The x’s are the new search points and σ denotes the step size. The implementation
of the random orthogonal sampling algorithm and the validity of the implementation
are discussed in the following section. Consider two i.i.d. vectors x and y drawn
from a standard normal distribution. The expected value of the inner product of
these two vectors is given as:

E〈x,y〉 =
n∑
i=1

Exiyi = 0.

This indicates two independent standard normal vectors are orthogonal to each
other in expectation. Intuitively, by generating random orthogonal samples, the
mutations are derandomized such that the variance of the angle formed by a
pair of mutations vanishes. Therefore, the search directions are guaranteed to be
uncorrelated so that the mutation samples are spread over the space more evenly.
In the next step, we combine mirrored sampling with random orthogonal sampling
such that the remaining half of the search points are created by mirroring, which
reads as follows:

x2i ←m− σC 1
2 Oi, 1 ≤ i ≤ λ/2. (2.2)

Note that only using random orthogonal sampling is not sufficient for exploration
due to the fact that random orthogonal vectors are only capable of spanning
one orthant of the space, no matter how they are realized (just consider the

1A d-dimensional rotation matrix R satisfies conditions R−1 = R> and det(R) = 1. All
such matrices form so-called special orthogonal group SO(d).
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2.2 Mirroring and Orthogonalization

Algorithm 3 Mirrored Orthogonal Sampling
1: procedure mirrored-orthogonal(m, σ,C, λ)
2: B,D← eigen-decomposition(C)
3: if λ mod 2 6= 0 and zlast is not set then
4: xλ ←m− σBDzlast . zlast: the unused mutation from the last

iteration
5: λ′ ← λ− 1 . One offspring is already created
6: Unset the static variable zlast. . Unset zlast once it is used
7: else
8: λ′ ← λ

9: end if
10: p← dλ′/2e
11: {zi}pi=1 ← orthogonal(p) . sub-procedure, see Alg. 5
12: for i = 1→ p do
13: x2i−1 ←m + σBDzi
14: x2i ←m− σBDzi . Mirroring
15: end for
16: if λ′ mod 2 6= 0 then . Save the unused mutation to the next iteration
17: Set the static variable zlast ← zp
18: end if
19: return {x1,x2, . . . ,xλ}
20: end procedure

canonical basis in 3-D). Combining Eq. (2.1) and (2.2), the new sampling approach
is completed and is called mirrored orthogonal sampling. In addition, any ES
algorithm exploiting it is denoted as (µ +, λo

m)-ES here. The detailed algorithm of
the mirrored orthogonal sampling method is given as Algorithm 3. Note that an
algorithm for generating random orthogonal Gaussian vectors (which is explained
in the following) is invoked in line 10 and replaces the direct sampling of the
Gaussian distribution. The remainder of this algorithm is basically the same as
mirrored sampling (Alg. 2).

The mirrored orthogonal sampling method is a variant of mirrored sampling.
In addition to mirroring, which ensures the difference within any mirrored pair,
the orthogonalization method is exploited to guarantee the significant differences
among realized mutations. Therefore, it is quite straightforward to compare the
performance of mirrored orthogonal sampling to that of mirrored sampling and to
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2. STOCHASTIC VARIATION

that of standard sampling. Such a comparison is presented in the experimental
results (Section 2.4).

2.2.3 Implementation of Random Orthogonal Sampling

In order to implement random orthogonal sampling as introduced previously,
the well-known Gram-Schmidt process (Björck, 1994) is exploited to generate the
orthogonal samples. The Gram-Schmidt process is a method for orthogonormalizing
a set of vectors in an inner product space, most commonly the Euclidean space Rd.
It takes a finite, linearly independent set S = {v1, . . . ,vk} for k ≤ d and generates
an orthogonal set S ′ = {u1, . . . ,uk} that spans the same k-dimensional subspace
of Rn as S. The Gram-Schmidt process is shown in Alg. 4.

Algorithm 4 Gram-Schmidt orthonormalization
1: procedure gram-schmidt({v1,v2, . . . ,vk})
2: for i = 2→ k do
3: for j = 1→ i− 1 do
4: vi ← vi −

(
v>i vj/||vj ||2

)
vj . Othogonalizing vi to vj

5: end for
6: end for
7: for i = 1→ k do
8: vi ← vi/||vi|| . Normalization
9: end for
10: return {v1,v2, . . . ,vk}
11: end procedure

Let p equal λ/2 again. In the first step, we sample p i.i.d. vectors from the standard
normal distribution and record their norms (lengths), i.e.:

S = {s1, . . . , sp} , si ∼N (0, I), Li = ‖si‖ , i = 1, . . . , p. (2.3)

Note that the Gram-Schmidt process is an orthonormalization method, normalizing
the lengths of the i.i.d. samples. Therefore, the lengths have to be manually recorded
so that we can restore mutation lengths for the samples. Then, processing S by
the Gram-Schmidt process would give us a collection S ′ of random orthonormal
vectors,

S ′ =
{

s′1, . . . , s′p
}

= gram-schmidt(S). (2.4)
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2.2 Mirroring and Orthogonalization

Note that each vector of s′1, . . . , s′p is of unit length and those vectors are orthogonal
to each other. It is not very hard to see from Algorithm 4 that among all the
resulting vectors, the direction of s′1 remains unchanged and the direction of s′i
depends on the set {sk}i−1

k=1. Therefore, intuitively, the output vectors of the Gram-
Schmidt process, {s′i}

p
i=1 are uniformly distributed on the unit sphere because the

input vectors {sk}pk=1 are independent and identically distributed. Finally, we
rescale all the s′i by their corresponding original length:

zi = Lis′i, i = 1, . . . , p. (2.5)

The resulting random vectors are orthogonal Gaussian samples, which completes
this process. A special situation takes place if p is greater than the dimensionality
d: it is simply not possible to generate more than d distinct orthogonal vectors in
Rd. In this case, only d mutation samples are created using Equations (2.3), (2.4)
and (2.5), and the remaining p − d samples are created using the standard ran-
dom sampling. The detailed procedure of orthogonal sampling is described in
Algorithm 5. Lines 3 − 6 correspond to Eq. (2.3). Through lines 7 − 17, the
Gram-Schmidt process is invoked and the number of samples p is handled properly.
The advantage of this implementation is that there is no additional parameter to
be considered. As for the time complexity, extra costs are spent in calling the
Gram-Schmidt process, which is O(k2d), k = min{p, d}.

To justify this implementation, it is possible to check the generated samples
according to Definition 2.1: the orthogonality and restriction on the vectors length
are immediately satisfied. The rotation-invariance of the vectors can be shown
as follows. Firstly, the standard normal vectors are rotation-invariant, meaning
that for every si ∼ N (0, I), it has the same distribution as Rsi, where R is the
rotation matrix taken from SO(d). Second, the orthogonalization formula of the
Gram-Schmidt process, which is encoded in Algorithm 4, reads as follows:

s′i = si −
i−1∑
j=1

〈si, sj〉
||sj ||2

sj , i = 1, . . . , p,

Now if an arbitrary rotation operator R ∈ SO(d) is applied on s′i, the resulting
vector is,

s′′i = Rs′i = Rsi −
i−1∑
j=1

〈Rsi,Rsj〉
||Rsj ||2

Rsj , i = 1, . . . , p, (2.6)

Note that it is valid to put R in the norm and the inner product (e.g., ||Rsj ||)
because such matrices preserve the inner product. Finally, Rsi is identically
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2. STOCHASTIC VARIATION

Algorithm 5 Orthogonal sampling
1: procedure orthogonal(p)
2: for i = 1→ p do
3: si ←N (0, I) . generate standard normal vectors
4: Li ← ‖si‖ . store the length
5: end for
6: k ← min{p, n} . number of inputs for Gram-Schmidt
7: {s′1, . . . , s′k} ← gram-schmidt({s1, . . . , sk}) . sub-procedure, see Alg. 4
8: for i = 1→ k do
9: zi ← Lis′i . rescale the length
10: end for
11: if k < p then . more than n samples are needed
12: for i = 1→ p− k do
13: zk+i ← sk+i . copy the standard normal vectors
14: end for
15: end if
16: return {z1, z2, . . . , zp}
17: end procedure

distributed as si and it also holds for the remaining terms in the right-hand-side
of Eq. (2.6). Therefore, s′′i is identically distributed as s′i and therefore it is
rotation-invariant. A more rigorous proof can be found in Eaton (1983).

2.3 Convergence Analysis of Mirroring and Or-
thogonalization

The theoretical analysis is twofold. First, the progress rate analysis for (1, λ)-ES,
introduced in Beyer (1993), is applied to analyze mirrored sampling. In addition,
such analysis gives a straightforward explanation why mirrored orthogonal sampling
improves performance. There are no analytical results for mirrored orthogonal
sampling yet while its empirical results are compared to random and mirrored
sampling. Second, the progress rate analysis is applied again to provide an analytical
result about the worst case performance of mirrored orthogonal sampling. This will
(partially) explain the advantages of the new sampling method. For the analysis
in the following, we will only consider the (1, λ)-ES with isotropic mutations on
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2.3 Convergence Analysis of Mirroring and Orthogonalization

the so-called sphere function1, which is defined as:

f(x) = (x− x∗)>(x− x∗), x ∈ Rd,

which has the global minimum x∗. In addition, for the simplicity of our deviation,
it is also assumed that the population size λ is even in the following analysis. In
practice, when λ is odd, the corresponding progress rate can be bounded from below
by using λ−1 in the analysis and also be bounded from above by using λ+1. Note
that although some results (e.g., Fig. 2.3b) can be equivalently obtained, using the
theoretical framework of convergence rate analysis (Brockhoff et al., 2010), we did
not adopt such an analysis approach because the progress rate analysis gives more
insight into why the proposed sampling method outperforms its counterparts. The
link between progress rate and convergence rate is elaborated in Auger and Hansen
(2011). For the convergence rate analysis on the mirrored sampling method, please
see Auger et al. (2011a,b).

2.3.1 Mirrored Sampling

We will begin with the analysis of the (1, λm)-ES in order to show the reason
why it outperforms random sampling and this analysis serves as a baseline for the
comparison to mirrored orthogonal sampling, which is investigated here by the
Monte Carlo simulation. The basics of the analysis are shown in Fig. 2.2a, following
the same treatment as in Bäck (1995). Let P be the current parent which is at a
distance R from the optimum O. Due to the spherical symmetry, only the distance
R is crucial, not the actual position of P. The hypersphere centered at P has a
radius of σ

√
d and represents the mean length of isotropic Gaussian mutations:

z = N (0, σ2I). The mirrored mutation is indicated as −z. The progress of each
mutation can be measured by the projection of z onto line PO, which is the
random variable z. Due to the invariance properties of isotropic Gaussian vectors,
z is found to be normally distributed as N (0, σ2), regardless of the actual direction
of PO. The progress made by mutation z is R − r. Furthermore, for a set of
mutations {zi}1≤i≤λ, the actual progress made by all the mutations is R − r1:λ,
where r1:λ is the smallest order statistic among {ri}1≤i≤λ. The progress rate is

1The sphere function is a standard function for theoretical analysis, reflecting local convergence
properties of ESs.
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2. STOCHASTIC VARIATION

defined in Beyer (2013):

ϕ1,λ = E {R− r1:λ} ' E
{
R−

√
(R− zλ:λ)2 + σ2d

}
. (2.7)

The approximation in Eq. (2.7) takes place when we replace ||z|| by σ
√
d. Note

that zλ:λ, the largest order statistic among the projections of all the mutations
onto PO, determines the expectation above.

P
O

z

−z
z

r R

(a)

P1

P2

O

si
sj

(b)

Figure 2.2: (a). Schematic diagram for the progress rate analysis on the sphere
function. The mutations are centered at P, which is at distance R from the optimum
O. (b) In 2-D, the diagram shows the best case (P1) of progress and the worst case
(P2) for mirrored orthogonal sampling on the sphere function.

For the mirrored sampling, if zi is the projection of mutation zi onto PO, then
the projection of its mirrored mutation −zi is −zi by symmetry. Thus, the set
of the projections of all the mutations of mirrored sampling can be written as
{zi,−zi}1≤i≤λ/2. Let Pm

λ:λ(Z ≤ z) denote the cumulative probability distribution
(c.d.f.) of the largest order statistic among {zi,−zi}1≤i≤λ/2. Suppose for every
z ≥ 0, in order to facilitate the condition in Pm

λ:λ(Z ≤ z), namely the largest order
statistic is less than or equal to z, we must have zi ≤ z,−zi ≤ z for all the zi,
which implies −z ≤ zi ≤ z for all the zi. The intuition is that all random mutation
points are required to be sampled less than or equal to z. In addition, because
mirrored mutations are generated by reversing the signs of random mutations,
every random mutation also needs to be bigger than −z, otherwise the mirrored
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2.3 Convergence Analysis of Mirroring and Orthogonalization

counterpart of an outlier would be larger than z and fails the condition. The
argument reads as follows:

Pm
λ:λ(Z ≤ z) = [Pr (−z < Z ≤ z)]λ/2

=
[
Φ
( z
σ

)
− Φ

(
− z
σ

)]λ/2
=
[
2Φ
( z
σ

)
− 1
]λ/2

, ∀z ≥ 0.

Note that Φ(·) stands for the c.d.f. of a standard normal random variable. Then,
in case of z < 0, the cumulative probability should be always 0. The reason is that
if a realized mutation is sampled negative, then its mirrored counterpart would be
positive. Therefore the largest order statistics could not be negative ever. In total,
the c.d.f. of the largest order statistic is summarized as:

Pm
λ:λ(Z ≤ z) =

{[
2Φ
(
z
σ

)
− 1
]λ/2 ∀z ≥ 0,

0 otherwise.

And its probability density function is:

pm
λ:λ(z) =

{
λp( zσ )

[
2Φ
(
z
σ

)
− 1
]λ/2−1 ∀z ≥ 0,

0 otherwise.
(2.8)

where p(·) denotes the probability density function (p.d.f.) of a standard normal
distribution. This density can be compared to the largest order statistic among
the same projections of random samples (Beyer, 1993):

pλ:λ(z) = λp
( z
σ

)
Φ
( z
σ

)λ−1
.

In 5-D with λ = 10, we plot the c.d.f. and p.d.f. of mirrored sampling and random
sampling in Fig. 2.3a. It is clear from the figure that the distribution of the largest
projection for mirrored sampling is shifted to the right, compared to that for the
Gaussian sampling and therefore the corresponding distribution of projections is
shifted towards larger values. This advantage would affect the progress rate (as
shown in the following) and is the main reason why mirrored sampling has a better
performance than random sampling. By using the normalized quantities,

ϕ∗ = ϕ
d

R
, σ∗ = σ

d

R
,

and applying the same derivation as in Beyer (1993), the progress rate of (1, λm)-ES
can be obtained by expanding the expectation in Eq. (2.7) (the details of the
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simplification are not shown here):

ϕ∗1,λm
=
∫ ∞

0
zpm
λ:λ(z) dz − (σ∗)2

2

= λ

∫ ∞
0

zp
( z
σ

) [
2Φ
( z
σ

)
− 1
]λ/2−1

dz − (σ∗)2

2

= σ∗
(
λ

∫ ∞
0

z′p(z′) [2Φ (z′)− 1]λ/2−1 dz′
)
− (σ∗)2

2

= c1,λmσ
∗ − (σ∗)2

2 . (2.9)

In the equation above, the integral about the normalized largest projection z′ = z/σ

computes its expectation and it is known as the progress coefficient from (Beyer,
1993). We denote it by c1,λm here. It can be compared to the progress coefficient
of random sampling, which reads:

c1,λ = λ

∫ ∞
−∞

zp(z)Φ(z)λ−1 dz.

Note that the progress rate of random sampling can be easily obtained by replacing
c1,λm in Eq. (2.9) with c1,λ. Numerically, we plot the progress coefficients of
random sampling and mirrored sampling against population size in Fig. 2.3b. The
mirrored sampling (the curve marked by triangles) shows a small yet obvious
advantage compared to the random sampling for small population sizes. In larger
populations, these two converging curves imply that mirrored sampling provides
no speed-up compared to the standard ES algorithm. Thus, the application of
mirrored sampling should be limited to the small population setting.

For mirrored orthogonal sampling, we would like to use the same approach as
for the mirrored sampling analysis above. However, it is hard to analytically
obtain the c.d.f. and the density function of the largest projection onto PO of
the mirrored orthogonal sampling. Therefore, we compute its c.d.f. and density
function empirically by Monte-Carlo simulation. For the simulation, the population
size λ is set to 2d. The mirrored orthogonal samples are projected onto PO and the
largest projections are stored, from which the c.d.f. is estimated. The results are
also summarized in Fig 2.3. In Fig. 2.3a, the c.d.f. of mirrored orthogonal sampling
(the solid curve marked by stars) is more likely to distribute samples towards bigger
values compared to the c.d.f. of mirrored sampling. As a consequence, in Fig. 2.3b,
the progress coefficients of mirrored orthogonal sampling are significantly bigger
than those of mirrored sampling, even in a large population.
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Figure 2.3: (a): The c.d.f. (solid) and p.d.f. (dashed) of the largest projection
(normalized) onto PO for random, mirrored and mirrored orthogonal sampling. The
dimension d is set to 5 and λ = 10 for all curves. There are 106 trials used in the
estimation for mirrored orthogonal sampling. For the other sampling methods, the
curves show the corresponding analytical results. (b): Progress coefficients against
population size λ for random sampling, mirrored sampling and mirrored orthogonal
sampling. The dimensionality d is set to λ/2 for all curves. The black dotted curve
is the lower bound on the progress coefficient of mirrored orthogonal sampling.

2.3.2 Mirrored Orthogonal Sampling

The worst case analysis of mirrored orthogonal sampling is conducted when the
population size is set to 2d. We will call such population setting as “full mutations”.
Under this condition, the progress rate is maximized (as will be explained later)
and it is possible to provide analytical results. The progress under the condition
λ < 2d will be also discussed later. In 2-D with λ = 4, the worst case (together with
best case) of progress for (1, λo

m) is shown in Fig. 2.2b. Suppose the step size σ = 1
here for simplification. In the mutations centered at P1, there is one mutation
pointing to the optimum O and therefore this mutation performs optimally. We
call this mutation scenario the best case of progresses. The progress coefficient in
this case is the expectation of the standard norm mutation length. It serves as the
upper bound of the progress coefficient and is the same for random, mirrored and
mirrored orthogonal sampling.

The worst case of progress is indicated by the mutations centered at P2 in which
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the angle formed by the line segment P2O and mutation si is the same as the one
(π/4 as shown in the figure) formed by P2O and sj . In this scenario, the expected
projections of si and sj are the same. It is not possible to make the expected
projection of one mutation smaller without rendering the expected projection of
the other one larger. For example, if we rotate sj a little bit clockwise, then its
projection becomes smaller. However, in the meanwhile si is also rotated and its
projection gets larger. Consequently, the largest projection of all the mutations
becomes larger. Therefore, among all the possible mutation scenarios, P2 gives the
lower bound of the largest projection of mutations onto P2O. Recall from Eq. (2.7)
that the progress made by (1, λ)-ES is determined by the largest projection. Thus,
the scenario P2 is the worst case of progress. Under the “full” mutation condition,
we generalize the worst case for arbitrary dimensions. Let the mirrored orthogonal
samples be denoted as {Oi,−Oi}1≤i≤λ/2. The unit vectors along the orthogonal
mutations are defined as:

ui = Oi

‖Oi‖
. (2.10)

Combining the unit vectors for mirrored mutations, all the unit vectors are
{ui,−ui}1≤i≤λ/2. The worst case of progress is defined by the following con-
ditions: for all the unit vectors, the linear combination with equal weights (denoted
as d in the following) of λ/2 = n unit vectors points to the optimum O and also
to the reverse direction of the gradient of the sphere function, which reads:

d =
λ/2∑
k=1

akuk = −α∇f(x), α > 0, ak = ±1,

where ak is a sign operator to select among uk,−uk. Then the scalar projection
of mutation Oi onto d is expressed as:

projd(Oi) = 〈Oi,d〉
‖d‖ =

∑λ/2
k=1 ak 〈Oi,uk〉∥∥∥∑λ/2

k=1 akuk
∥∥∥ =

∑λ/2
k=1 ak 〈Oi,Ok〉 / ‖Ok‖∥∥∥∑λ/2

k=1 akuk
∥∥∥ = ak ‖Oi‖√

d
.

Note that we substitute the expression of ui (Eq. (2.10)) in the derivation above.
The projections of all the mutations onto d can be written:

projd =
{
‖Oi‖√
d
,−‖Oi‖√

d

}λ/2
i=1

.

The largest order statistic of all the projections is the maximum of projd:

max {projd} = max
1≤i≤λ/2

{
‖Oi‖√
d
,−‖Oi‖√

d

}
= 1√

d
max

1≤i≤λ/2
{‖Oi‖} = z√

d
.
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Here we denote the maximal mutation length by z. Note that the ‖Oi‖ are
independently distributed according to χ(n) (see Algorithm 5). Therefore, the
density function of the maximal mutation length among λ/2 mutations reads:

pλ
2 :λ2

(z) = λ

2 pχ(z) (Fχ(z))
λ
2−1

,

where pχ(·), Fχ(·) denote the density and c.d.f. of the χ(n) distribution, respectively.
The worst case progress coefficient of mirrored orthogonal sampling, which is the
expectation of z/

√
n, is denoted as ĉ1,λo

m
and derived as follows:

ĉ1,λo
m

=
∫ ∞

0

z√
d
pλ

2 :λ2
(z) dz

= λ

2
√
d

∫ ∞
0

zpχ(z) (Fχ(z))
λ
2−1 dz

=
√
d

∫ ∞
0

zpχ(z) (Fχ(z))n−1 dz. (2.11)

The last equation results from the fact that we picked the special population size
λ = 2d from the previous analysis setting. Eq. (2.11) is numerically evaluated and
plotted in Fig. 2.3b. The curve for the worst case is above 1 and roughly stays
constant when λ increases. It provides a non-zero lower bound of the progress
coefficient of mirrored orthogonal sampling with “full mutations”, which indicates
no matter in what scenario, the mirrored orthogonal sampling with “full mutations”
is going to guarantee positive progress on the sphere function. To compare, for
random sampling, the lower bound of the progress coefficient is zero because it is
possible to have all the mutations generated as in Fig. 2.1, where no mutation makes
progress. For mirrored sampling, the lower bound of the progress coefficient is also
zero because it is possible that all the mutations are generated in a tangent space
of the local gradient, in which all the vectors are orthogonal to the gradient. Thus,
the non-zero lower bound of mirrored orthogonal sampling with “full mutations”
is its main advantage over the random and mirrored sampling.

In the case that mirrored orthogonal sampling does not use “full mutations”, namely
λ < 2d, the progress rate would be reduced in contrast to the “full mutations” case.
This is because it can now happen that some subspace could not be covered when
λ < 2d. Therefore, it is possible that the subspace in which the progress can be
made is simply unexplored.
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2.4 Empirical Results on Mirroring and Orthog-
onalization

For the multi-parental variants of ES, we only consider their empirical conver-
gence rates here. Similar to the convergence rate estimation in Loshchilov et al.
(2011), the effect of the mirrored orthogonal sampling technique on the sphere func-
tion is investigated empirically by incorporating it into the well-known CMA-ES
algorithm.

On the 20-D sphere function, the convergence rates of the (µ, λo
m)-CMA-ES and

other comparable ES variants are illustrated in Fig. 2.4a. The empirical convergence
rate is estimated as the average slope of the convergence curve over 200 runs. For
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Figure 2.4: The comparison of empirical convergence rates on the sphere func-
tion. All the results are estimated over 200 runs. The suggested λ setting
4 + b3 ln dc (Hansen, 2006) is used for all the CMA-ES variants (a): Plot of the
history of distance to the global optimum against the number of function evalua-
tions for four ES algorithms: (µ, λo

m)-CMA-ES with standard dσ and optimal dσ,
(µ, λm)-CMA-ES, standard (µ, λ)-CMA-ES and (1 + 1)-ES in dimension 20. (b):
Plot of convergence rate × dimensionality against the dimensionality for different
algorithms on the sphere function, using 1500 function evaluations.

all the CMA-ES variants tested here, the default settings of population size are
applied (Hansen, 2006): λ = 4 + b3 ln dc, µ = bλ/2c. The legend “(1 + 1)-ES”
represents the (1+1)-ES with 1/5 success rule step size control while the “(1+1)-ES
optimal” is for the (1 + 1)-ES with scale-invariant step size setting σ = 1.2

d ‖x
(k)‖,
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2.4 Empirical Results on Mirroring and Orthogonalization

which proves to be the optimal step size setting on the sphere function (Loshchilov
et al., 2011).

The pairwise selection is always used if the mirroring operation is present in the
sampling procedure. The mirrored sampling CMA-ES is denoted as “(µ, λm)-CMA-
ES ”. The curve labeled by “(µ, λo

m)-CMA-ES ” stands for the mirrored orthogonal
CMA-ES. In addition, “optimal dσ” represents the mirrored orthogonal CMA-ES
using the optimal dσ1 tuning on the sphere function. Due to the empirical results,
the convergence of (µ, λo

m)-CMA-ES (marked by diamonds) is slower but close to
that of the (1 + 1)-ES (marked by upside-down triangles) while the (µ, λo

m)-CMA-
ES using the optimal parameter settings gradually catches the convergence rates
of the optimal (1 + 1)-ES in high dimensions.

The relation between the empirical convergence rate and the dimensionality is
shown in Fig. 2.4b. The algorithms tested here are the same as Fig. 2.4a. It
is obvious that there is a leap of convergence rates between the CMA-ES and
its mirrored orthogonal competitor. The advantages of the mirrored orthogonal
CMA-ES over the mirrored CMA-ES are significant and preserved even for large
dimensions. The upper limit of the (µ, λo

m)-CMA-ES on the sphere function is
shown by the convergence rates achieved under the optimal dσ tuning, which is
even better than (1 + 1)-ES for almost all the dimensions. However, the optimal
dσ setting on the sphere function turned out to be not robust when considering
other fitness functions and therefore is not used.

2.4.1 Experiments on BBOB

The mirrored orthogonal version of CMA-ES with pairwise selection has been tested
on the noiseless Black-Box Optimization Benchmark (BBOB) (Hansen et al., 2010).
By using the automatic comparison procedures provided in this benchmark, the
BBOB results of (µ, λo

m)-CMA-ES are compared to those of (µ, λm)-CMA-ES and
(µ, λ)-CMA-ES.

Experimental Settings The three algorithms, (µ, λo
m)-CMA-ES, (µ, λm)-CMA-

ES and (µ, λ)-CMA-ES are benchmarked on BBOB-2012 and their results are
compared and processed by the post-processing procedure of BBOB. The BBOB

1For the definition of the parameter dσ , please see Hansen et al. (2003).
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parameter settings of the experiment are the same for all the tested ES variants.
The initial global step size σ is set to 1. The maximum number of function
evaluations is set to 104 × d. The initial solution (initial parent) is uniformly
sampled in the hyper-box [−4, 4]n. The dimensions tested in the experiment are
d ∈ {2, 3, 5, 10, 20, 40}. The experiment employs a relatively large population size,
namely 2d, the result of which is denoted as large population. In this experiment,
the strategy parameters used are exactly the same for the three ES variants. The
modified dσ is not used because it is tuned under the default population setting
instead of the large population setting.
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Figure 2.5: Left: d = 5. Right: d = 20. For the large population, the em-
pirical cumulative distributions (ECDF) of run lengths (the number of function
evaluations divided by dimension) for (µ, λo

m)-CMA-ES (solid lines) and (µ, λm)-
CMA-ES (dashed lines) needed to reach a target value.

Results and Discussion The BBOB noiseless testbed (Hansen et al., 2009)
contains 24 test functions which are classified into several groups as separable,
ill-conditioned or multi-modal functions. The performance of tested algorithms
are compared using the aggregated empirical cumulative distribution functions
(ECDFs) of run length over all the test functions are presented here. The ECDF
of run length estimates the cumulative distribution of the function evaluations
consumed in ESs, with respect to a given precision target. The comparisons
between the mirrored orthogonal sampling and its mirrored sampling competitor
are illustrated in Fig. 2.5. From the comparisons between the ECDFs of 5-D (left
half) to that of 20-D (right half), it is obvious that the amount of the improvement
is still significant when the dimensionality increases. The experimental results
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for the large population suggest that the newly proposed mirrored orthogonal
sampling technique would be most suitable in the case where the population size
is about two times the dimensionality.

2.5 Efficient Global Optimization

Apart from the aforementioned mutation methods, that are directly defined by
the realization of some probability distributions, in this section we shall extract
and discuss the special method of creating new solutions from the Efficient Global
Optimization (EGO) (Jones et al., 1998; Močkus, 1975, 2012) algorithm. Briefly, in
this mutation method, the new candidate solution is obtained via the optimization
on a well-specified utility function, which quantifies the potential “gain” in fitness
value by evaluating this new solution. Therefore, we shall call this method
Mutation by Optimization. In general, the utility function depends on a
stochastic model (or statistical estimator) f̂ of the fitness function f and statistical
properties of this estimator f̂ , e.g., the mean squared error of the estimate: s2(x) =
E{f̂(x) − f(x)}2,∀x ∈ S. Note that f̂ is usually called predictor in machine
learning and we shall use these terminologies interchangeably here. Typically, the
estimator f̂ is a function of (random) sample X = {x1,x2, . . . ,xn} ⊂ S and its
corresponding fitness values y = (f(x1), f(x2), . . . , f(xn))>. The utility function
is then denoted as A : S → R. The new candidate solution x′ is proposed by
solving the following problem1:

x′ = arg max
x∈S

A (x; Θ), (2.12)

where Θ is a set of parameters that A might rely on (see Eq. (4.2) for example).
In the literature, A is termed as infill criterion (Jones, 2001) or acquisition func-
tion (Martinez-Cantin, 2014) and we shall adopt the former throughout this thesis.
Some commonly used infill criteria include: Expected Improvement, Probability of
Improvement and Lower Confidence Bound. Typically, infill criteria are designed
to make a balance between the model prediction f̂ and the MSE of prediction
(uncertainty) s2. The detailed discussion on infill criteria can be found in Chapter 4.
Built on the mutation by optimization mechanism, Efficient Global Optimization
(also referred as Bayesian optimization (Močkus, 2012)) is able to perform a direct

1Some of the infill criteria are subject to minimization by the original definition. However, it
can be equivalently transformed into the maximization task.
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optimization efficiently on expensive objective functions. EGO is a sequential
design strategy and it is presented in Alg. 6.

Algorithm 6 Efficient Global Optimization
1: procedure ego(f,A , S) . f : objective function, A : infill criterion, S: search

space
2: Sample the initial design X ⊂ S
3: Evaluate y← (f(x1), f(x2), . . . , f(xn))>

4: Construct the fitness estimator f̂ on X,y.
5: while the stop criteria are not fulfilled do
6: x′ ← arg maxx∈S A (x; Θ)
7: Evaluate y′ ← f(x′)
8: X← X ∪ {x′},y← (y>, y′)>

9: Re-construct the estimator f̂ on X,y
10: end while
11: end procedure

Randomness It seems that the new location provided by solving Eq. (2.12) is
deterministic and thus mutation by optimization is, by definition, not a stochastic
variation method. However, although most of the infill criteria exhibit smooth
landscapes, they are also highly multi-modal (see Section 4.2). This causes a
practical difficulty in solving Eq. (2.12) globally. Although the exact solver, e.g.,
branch-and-bound (Jones et al., 1998) has been adapted for this task, such a solver
only works a few types of infill criteria/covariance functions (see the discussion on
the stochastic model below) and thus becomes inapplicable in practice. Instead,
a stochastic optimization algorithm, e.g., evolutionary algorithms, is frequently
applied for the infill criteria maximization, yielding random solutions. Thus,
mutation by optimization is indeed practically stochastic and its randomness is
determined by the underlying stochastic optimizer of the infill criterion A .

Stochastic model To approximate the unknown objective function, the Gaus-
sian process regression (GPR)/Kriging (Rasmussen and Williams, 2006;
Krige, 1951) is used in EGO. It is a stochastic interpolation approach, which
stems from earth science (Krige, 1951) and originally targets mining problems. It
has been widely used as a surrogate model in the design and analysis of computer
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experiments (Sacks et al., 1989; Santner et al., 2003), where the time-consuming
simulations (computer models) are replaced by predictions from a Kriging model.
In this technique, the objective function f is modeled as a realization of a Gaussian
process Y . Conditioning on the data set (X,y), the so-called posterior process is
obtained via Bayesian inference. The Gaussian Process Y is completely defined by
a prescribed mean (trend) function t(x) and a covariance function k(x,x′) (Ras-
mussen and Williams, 2006, Chapter 2.2):

t(x) = EY (x),

k(x,x′) = E{(Y (x)− t(x))(Y (x′)− t(x′))}.

When the mean function is assumed to be constant and unknown, the method is
called Ordinary Kriging (OK) and is typically used in EGO. Now we wish to predict
f(x) at an unknown location x ∈ S. Without giving the derivation, the conditional
distribution of Y on the observations y is a Gaussian distribution (Rasmussen and
Williams, 2006):

Y (x) | y ∼ N
(
f̂(x), s2(x)

)
. (2.13)

The conditional mean function f̂(·) is used as the predictor for f while s2(·) gives
the MSE of the predictor f̂ . For the detailed discussion on Kriging/GPR, please
see Chapter 3.

Step-wise risk Conceptually, EGO is a greedy step-wise search strategy. For
instance, the model prediction can be set as the infill criterion, namely A := f̂ ,
giving the complete “trust” on the stochastic model. However, this is a highly
risky action as the model is typically not accurate in the early stage of the
optimization. To quantify the risk of the step-wise maximization of infill criteria,
it is straightforward to calculate the rate of failure:

r = Pr(f(x) > fmin) = 1− Pr(f(x) < fmin),

where fmin := min{y} is the current minimal function value. Note that it is
not feasible to calculate this rate due to the fact that there is a lack of the
distribution information (e.g., which parametric family should be taken) about f ,
when assuming f is stochastic1. Thus, the typical approach is to approximate the

1Theoretically, this can be done by considering all the probabilistic models M (e.g., Gaus-
sian/Student’s t-process) for f and assuming a distribution over the models (e.g., a Dirichlet
process). Then r = E{Pr(f(x) > fmin |M )}.
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rate of failure under a specific distribution on f . When choosing the Kriging/GPR
for f (Eq. (2.13)), the risk approximate is:

r̂ = 1− Pr(Y (x) < fmin | y).

Note that Pr(Y (x) < fmin | y) is also a commonly used infill criterion, called
probability of improvement (Eq. (4.6)). From the perspective of step-wise risks,
it is interesting to compare EGO with the well-known Simulated Annealing (SA)
algorithm (Agrawal et al., 1995):

• In SA, each candidate location x′ that is worse than its parent x is accepted
with the probability:

rsa = exp
(
−f(x′)− f(x)

t

)
,

where t ∈ R>0 is the current temperature of SA. In other words, the step-wise
risk of SA is rsa.

• In EGO, each mutation x′ obtained from Eq. (2.12) is always accepted and
the step-wise risk of this action is r̂.

From this conceptual comparison, it is obvious that EGO has no control over
the step-wise risk if the probability of improvement is not chosen as the infill
criterion. However, when using the probability of improvement, the resulting
algorithm behaves very exploitative (see Section 4.2). To make a trade-off between
exploitation and exploration, it is possible to enforce maximal risk (minimal
probability of improvement) on the infill criterion maximization:

arg max
x∈S

A (x; Θ)

subject to r̂ < υ,
(2.14)

where υ is the threshold of the step-wise risk. It can be either determined by
the user or controlled online as with rsa in the Simulated Annealing. Intuitively,
Eq. (2.14) pre-screens out highly risky regions in the search space. As will be
described in Section 4.2, an alternative approach is to consider the step-wise risk
and the other infill criterion as a bi-objective optimization task.
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2.6 Summary

In this chapter, we discuss the stochastic variation operator, which is one of the
most important component of stochastic optimization algorithms. Specifically, the
so-called Gaussian sampling is re-visited: the sampling error of Gaussian random
sampling could be very large when the sample size is quite small. The large
sampling error could potentially reduce the efficiency of the stochastic variation.
As a remedy, the mirrored orthogonal sampling is proposed to reduce the sampling
error and therefore accelerate the convergence velocity for the small sample size.
Apart from improving the existing stochastic variation operator, we manage
to extract a stochastic variation operator from the well-known Efficient Global
Optimization algorithm. The resulting operator is called mutation by optimization.
In this manner, the EGO algorithm becomes conceptually similar to the canonical
stochastic optimization algorithm, e.g., the Simulated Annealing.
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