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Introduction

Optimization problems are of fundamental importance in mathematics, statistics,
Machine Learning and real-world applications (e.g., optimization of a production
process). In most cases, we aim at searching for an element (called candidate
solution) in some pre-determined domain (called search space) of objective functions,
such that that this element “outperforms” the remaining elements according to
an (partial) order structure defined in the image of objective functions. Some
examples of optimization problems are: searching for the minimum of a given
function, the optimal linear predictor/estimator (statistics), the optimal linear
separation boundary for binary classification problems (Machine Learning) and
the optimal control parameters of an industrial production line. Prior to the
detailed discussions, we shall give a brief explanation on some important aspects
of optimization problems.

Domain It is also referred as the search space in the unconstrained optimization
problems. The most intuitive domain is the subset of Euclidean spaces Rd (d is
used as the dimensionality of the domain in this thesis). Some other important
ones are: Hilbert (or Banach) spaces of functions, and mixed spaces, e.g., Rd1 ×
{0, 1}d2×{Mon,Tue, . . .}d3 . In this thesis, the discussion is restricted to the subset
of Rd. In addition, the Euclidean metric (or the related Mahalanobis metric) is
always assumed on Rd. Under such assumptions, we shall adopt the convention
“continuous optimization” here1.

1The specification of the metric is mandatory here because Rd can become a discrete space if
any metric that yields isolated points is equipped to Rd.
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1. INTRODUCTION

Objective function Although there are various types of objective functions
in practice, this thesis is limited to the real-valued functions. In addition, the
well-known black-box assumption is set on the objective function, meaning that
no additional analytical property (e.g., continuity, smoothness and differentiability)
is assumed on the objective function and the only available information is the
evaluation of points in its domain.

Algorithm There are many numerical algorithm for solving the optimization
problem. From the perspective of randomness, those algorithms can be categorized
into deterministic and stochastic optimization algorithms. The former usually
refers the classical mathematical optimization techniques (e.g., the Newton’s
method). The latter is mainly developed for the black-box optimization problems,
which relies heavily on the statistical properties of random variables. In this thesis,
both categories of algorithms are studies and improved.

1.1 Stochastic Optimization

In this thesis, the discussion is restricted to the real-valued objective function of
the form:

f : S ⊆ Rd → Rm, (1.1)

where its domain S is assumed to be a subset of the d-dimensional Euclidean space
and its image is Rm. The problem of minimizing (or maximizing) f is referred
as a single objective problem if m = 1. For m > 1, it is called a multi-objective
optimization problem and it is typically denoted by the boldface symbol f . Note
that, in the multi-objective scenario, it is usually not possible to define a total order
on Rm. The result of the multi-objective optimization is typically the “best” anti-
chain w.r.t. some partial order defined on Rm (see the next section). In practice,
domain S could represent the so-called “feasible region” in Rd, that is restricted by
a set of constraint functions. The subject of this thesis, the stochastic optimization
paradigm, targets the so-called black-box optimization problem.
Definition 1.1 (Black-Box Optimization). An objective function f as defined in
Eq. (1.1) is called black-box iff no prior knowledge is available on f and the only
accessible posterior information is the objective value f(x) for every point x on its
domain.
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1.1 Stochastic Optimization

Remark. With no prior knowledge on f , many mathematical/numerical optimiza-
tion methods, e.g., gradient descent and Newton’s method, render inapplicable
because the common assumptions, e.g., analytical expressions, differentiability
as well as continuity no longer hold on f . In optimization, the domain S of f
is more commonly referred as search space or decision space. We shall use
those two terms interchangeably in this thesis. In the context of evolutionary
computation (Bäck, 1996), the so-called fitness value depends on f(x).

Throughout this thesis, the objective function f is assumed to beminimized, without
loss of generality. In the single objective case, the goal of global minimization is to
solve

x∗ = arg min
x∈S

f(x),

where the notion of global minimum is defined as follows.
Definition 1.2 (Global minimum). In the single objective case, point x∗ ∈ S is a
global minimum (or minimum for short) of f iff ∀x ∈ S, f(x∗) ≤ f(x).

Approaching a global minimum is generally a difficult task due to the so-called
multimodality of the objective function. Practically, it is only possible to guarantee
the convergence to the so-called local optima.
Definition 1.3 (Local minimum). In the single objective case, a point x ∈ S
is a local minimum of f if there exists a neighborhood Nx of x such that ∀x′ ∈
Nx, f(x) ≤ f(x′).
Remark. As the search space S is a subset of the metric space Rd, it is straight-
forward to use any metric on Rd to define the neighborhood. For example, when
taking the Euclidean norm ‖·‖, the neighborhood can be defined as a subset of S
that contains an open Euclidean ball around x: Bε(x) = {x′ ∈ S : ‖x− x′‖ < ε}
for some ε > 0.

For solving black-box optimization problems, a very common mechanism is to pro-
gressively refine a point x by evaluating other candidate points in the neighborhood
of x and moving to the point that improves f(x). This is called local search. This
mechanism requires two design choices: the determination of the neighborhood and
a selection method to pick points in the neighborhood. In numerical optimization,
this is usually achieved by directly using gradient increments (steps) or Newton
increments. However, none of those techniques is applicable under the black-box
assumption. Alternatively, in stochastic optimization, random perturbations are
used for the local search, where commonly a parametric distribution family centered
at x (e.g., Gaussian) is taken to generate candidate points in the neighborhood
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1. INTRODUCTION

(typically S). More precisely, when discussing multivariate random variables in Rd,
it is common to assume the probability space (Ω,F ,P) and a measurable space
(Rd,Bd), where Bd is the Borel algebra on Rd. A Rd-valued random variable (or
random vector) x ∈ Rd is a F -measurable function, x : Ω→ Rd. Then, the formal
definition of stochastic optimization is given as follows.
Definition 1.4 (Stochastic Optimization). Taking the aforementioned probability
settings, Stochastic Optimization is the procedure of applying one or many op-
timization algorithms on a black-box function f , yielding a process of Rd-valued
random variables: {xt : t ∈ N>0}, such that

∀ε > 0, lim
t→∞

Pr (D(xt − x̃) > ε) = 0, (1.2)

where D is a metric on Rd and x̃ is a (local) minimum and the conditional density

p (xt | xt−1,xt−2, . . . ,x1)

can be specified using the probability measure P.
Remark. 1) The stochastic process {xt : t ∈ N>0} could stand for the current
best point or the best point found since the first iteration. 2) It is expressed
explicitly that “applying one or many optimization algorithms” because in practice
two or more stochastic optimizers can be combined for the task, e.g., in case of
memetic algorithms (Moscato et al., 1989). 3) In the single objective case, the
convergence criterion can be formulated equivalently:

∀ε > 0, lim
t→∞

Pr (|f(xt)− f(x̃)| > ε) = 0.

4) If the (local) minimum x̃ is forced to be the global minimum x∗, then the
stochastic optimization procedure is said to converge globally. Note that the
convergence in probability (Eq. 1.2) is taken for the convergence criterion because
stronger types of convergence (e.g., almost sure convergence) do not hold in some
cases and thus it is generally safe to use a weaker convergence notion. 5) In
the case where it is hard to verify the convergence criterion for some practically
well-performing algorithms, the criterion is relaxed to the following:

∀t ∈ N>0 ∃n ∈ N>0 s.t. E {f(xt+n) | f(xt+n−1), f(xt+n−2), . . . , f(x1)} ≤ f(xt).

Or equivalently there exists a subprocess of {f(xt) : t ∈ N>0}, being a supermartin-
gale1. 6) Markov property holds for some stochastic optimization algorithms, e.g.,
(1 + 1)-ES (Bäck, 1996), meaning that p (xt | xt−1,xt−2, . . . ,x1) = p(xt | xt−1).

1Loosely speaking, the discrete-time supermartingale indicates the situation where the
conditional expectation on the whole history at each step is not bigger than the random variable
at the last time step.
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1.1 Stochastic Optimization

Many stochastic optimization algorithms has been proposed for single- (Kirkpatrick
et al., 1983; Schwefel, 1993; Bäck, 1996) and multi-objective (Deb et al., 2000; Em-
merich, 2005) black-box optimization problems. In the literature, some stochastic
optimization algorithms are often referred to metaheuristics (Luke, 2009; Talbi,
2009), e.g., Particle Swarm Optimization (Kennedy and Eberhart, 1995). Those
algorithms can be categorized according to different criteria:

• Local search/Global search: a well-known example of local search is the
stochastic hill-climbing algorithm. Some example of global search are evolu-
tionary algorithms (Bäck, 1996), Swarm Intelligence (Bonabeau et al., 1999)
and Efficient Global Optimization (Jones et al., 1998).

• Single-point based/Population-based algorithms: if a stochastic optimizer
employs only one point iteratively, it is called a single-point strategy, e.g.,
Simulated Annealing (Kirkpatrick et al., 1983). Otherwise, it is called a
population-based algorithm, e.g., (multi-membered) evolutionary algorithms.
It is worth mentioning that the so-called (1 + 1)-EAs that employ one parent
and one offspring fall into the single-point category.

• Nature-inspired algorithms: examples are evolution strategies (Bäck and
Schwefel, 1993; Bäck et al., 2013), genetic algorithms (Goldberg, 1989) and
Swarm Intelligence (Bonabeau et al., 1999).

In this thesis, instead of focusing on some specific optimization algorithms, we
illuminate and investigate several important aspects of this field, which underpin
many optimization algorithms:

• Stochastic variation is the algorithmic component where the (local) random
perturbation is generated to modify the current point. In evolutionary
computation, this is typically called themutation operator (Bäck and Schwefel,
1993). In Rd, the most common method is to apply the simple random
sampling method on the Gaussian distribution. Other stochastic variations
include: differential vector in the Differential Evolution (Storn and Price,
1997) and polynomial mutation (Agrawal et al., 1995). In Chapter 2, we
shall illustrate a drawback of the simple random sampling from a Gaussian
distribution and propose an improved sampling method, whose effectiveness
is validated when plugged into evolution strategies.

• Surrogate modeling: When the function evaluation is very expensive on f ,
e.g., due to the high time complexity, it is common to build models that are

5



1. INTRODUCTION

less computational expensive on the evaluated points, in order to partially
replace the actual function evaluation. The precision of the surrogate model
is of vital importance when assisting the stochastic optimizer. However, this
is usually a demanding requirement due to the lack of a sufficient number
of data points, or irreducible modeling error when the objective function is
noisy. In this scenario, it is helpful to quantify the uncertainty of the model
prediction, e.g., by computing a confidence interval. We study a widely used
surrogate model, Kriging/Gaussian process regression that it is naturally
equipped with an uncertainty quantification.

• Model utilization: taking the model imprecision and uncertainty quantifica-
tion into account, it is possible to determine the most trustworthy point, or
alternatively which point possesses the highest potential to help the optimiza-
tion procedure if the actual function evaluation were performed on it. Such
decisions are made through an utility function of the surrogate model, called
infill criterion. The infill criterion plays a vital role in many optimization
paradigms, including the Surrogate-assisted Evolutionary Algorithms (Em-
merich, 2005), Efficient Global Optimization (Močkus, 1975, 2012; Jones
et al., 1998), Multi-armed Bandits (Auer et al., 2002) and Monte-Carlo Tree
Search (Silver et al., 2016). In this thesis, we aim at summarizing the existing
infill criterion and proposing a novel infill criteria that is theoretically better
than the existing ones. Furthermore, the parallelization issue (Ginsbourger
et al., 2010) of infill criteria is also considered in detail and several new
parallelization methods are proposed and tested.

1.2 Multi-objective Optimization

In this section we introduce some definitions in the context of multi-objective
problems. Due to the possibility of incomparable solutions, the notation of modal-
ity/local optimality is also modified and extended to the multi-objective scenario.
The search space under consideration is S ⊆ Rd and the objective space is Rm.
Most of our definitions can also be generalized to other spaces, however, due to
space limitations, this will not be part of this section.

Now, let f : S→ Rm be a multi-objective function (which we want to “minimize”)
with component functions fi : S→ R, i = 1, . . . ,m and S ⊆ Rd. Given a totally
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1.2 Multi-objective Optimization

ordered set (T,≤), with total order ≤, the Pareto order1 ≺ on T k for any k ∈ N
is defined as follows: Let t(1) = (t(1)

1 , . . . , t
(1)
k ), t(2) = (t(2)

1 , . . . , t
(2)
k ) ∈ T k. We say

t(1) ≺ t(2) if and only if (iff) t(1)
i ≤ t

(2)
i , i = 1, . . . , k and t(1) 6= t(2). Instantiating

≤ to the natural total order on the real numbers, we obtain the Pareto order
on Rm. A point x ∈ S is called Pareto efficient or global efficient or for short
efficient iff there does not exist x̃ ∈ S such that f(x̃) ≺ f(x). The set of all the
(global) efficient points in S is denoted by X and is called the (Pareto) efficient
set of f . The image of X under f is called the Pareto front of f , symbolically
PX = f [X ] = f(x) : x ∈ X .

Defining a locally efficient point in S (or of f) is as straightforward as defining
local minimizers (maximizers) for single-objective functions. This is in contrast to
defining local efficient sets, which are needed for the multi-criteria setting.
Definition 1.5 (Locally Efficient Point). A point x ∈ S is called locally efficient
point of f if there is an open set U ⊆ Rd such that there is no point x′ ∈ U ∩ X
such that f(x′) ≺ f(x). The set of all the local efficient points in S is denoted by
XL.
Definition 1.6 (Globally Efficient Point). A point x ∈ S is called globally efficient
point f if there is no point x′ ∈ Rd ∩ S such that f(x′) ≺ f(x). The set of all the
global efficient points in S is termed efficient set of f and denoted by X .

In order to extend the definition of the local optimality to multi-objective problems,
it is necessary to first give a notation on the locality of (efficient) sets. It is defined
using the so-called connectedness.
Definition 1.7 (Connectedness and Connected Component). Let A ⊆ Rd. The
subset A is called connected if and only if there do not exist two open subsets U1

and U2 of Rd such that A ⊆ U1∪U2, U1∩A 6= ∅, U2∩A 6= ∅, and U1∩U2∩A = ∅;
or equivalently there do not exist two non-empty subsets A1 and A2 of A which
are open in the relative topology of A such that A1 ∪A2 = A and A1 ∩A2 = ∅. Let
B be a non-empty subset of Rd. A subset C of B is a connected component of
B iff C is non-empty, connected, and there exists no strict superset of C that is
connected.
Definition 1.8 (Locally Efficient Set). A subset A ⊆ S is a locally efficient set of
f if A is a connected component of XL (= set of the locally efficient points in S).
Definition 1.9 (Local Pareto Front). A subset P of the image of f is a local
Pareto front of f , if there exists a local efficient set E such that P = f [E].

1It gives rise to a partial order vector space (Tk,≺).
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Note that the (global) Pareto front of f is obtained by taking the image of the union
of connected components of X , under f . If X is connected and f is continuous on X ,
the Pareto front is also connected. In this thesis we use the notion of connectedness
to define the locally efficient sets. There still remains the task of extending the
notion of efficient set by looking at connectedness in the objective space. For
instance it could happen that two different local efficient sets are mapped onto
the same set in the objective space. This rises many questions, which need to be
addressed in future work.

With a view towards algorithms that numerically approximates (locally) efficient
sets and/or (local) Pareto fronts, it is necessary to generalize definition 1.8 to
determine whether a finite set belongs to a connected component (i.e., a finite
subset of XL is a set of some locally efficient set). Here the issue is: a finite subset
of Euclidean space is never a connected component (of some other subset) unless it
consists of one point. To reconcile with definition 1.8, the notion of connectedness
can be relaxed, using the ε neighborhood.
Definition 1.10 (ε-connectedness). Let ε ∈ R>0 and S ⊆ Rd. Set A is ε-
connected if and only if for any distinct points x, x′ ∈ A there is a finite set of
points {a1, . . . , ak} ⊆ A such that D(x, a1) ≤ ε,D(a1, a2) ≤ ε, . . . ,D(ak−1, ak) ≤
ε,D(ak, x′) ≤ ε, where D is a metric in Rd.

A finite set A ⊆ S is locally efficient, if it consists of local efficient points in S and
A is ε-connected: there exists ε > 0 on which definition 1.10 holds.
Definition 1.11 (finite ε-Local Efficient Set). Let A be a finite subset of XL.
Then A is an ε-local efficient set, if A 6= ∅, and A is ε-connected.

1.3 Matrix Calculus

In this thesis, the compact notation, called Matrix Calculus (Kollo and von Rosen,
2005) is extensively used for the derivations (e.g., Section 3.1.4, 5.2 and 5.3). For
the readability of the technical part, we shall specify this notation and give some
examples. Intuitively, the matrix differentiation is a collection of many partial
derivatives, e.g., the gradient vector of a real-valued function f : Rd → R:

∇f = ∂f

∂x =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)>
.
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1.3 Matrix Calculus

The notation ∂f/∂x is called a scalar-by-vector derivative. Throughout this thesis,
the gradient is assumed to be a column vector and thus ∂f/∂x has a column-
wise layout. To avoid confusions, the layout of matrix derivatives like ∂f/∂x is
determined according to that of f> or x. This is called the denominator layout
convention. Some common layouts are given as follows:

• scalar-by-vector

∂f

∂x =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)>
, f : Rd → R, x ∈ Rd.

• vector-by-scalar

∂f
∂x

=
(
∂f1

∂x
,
∂f2

∂x
, . . . ,

∂fm
∂x

)
, f : R→ Rm, x ∈ R.

• vector-by-vector

∂f
∂x =



∂f1
∂x1

∂f2
∂x1

. . . ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fm
∂x2... ... . . . ...

∂f1
∂xd

∂f2
∂xd

. . . ∂fm
∂xd

, f : Rd → Rm, x ∈ Rd.

The major benefit of using such notations is that the common rules for derivatives,
e.g., chain rule, product rule and quotient rule still hold for the matrix notation.
For example, consider the following functions: f : Rd → Rm, g : Rm → R. The
composition g ◦ f : Rd → R can be differentiated using the chain rule:

∂(g ◦ f)
∂x = ∂f(x)

∂x
∂g(f)
∂f

For example, when differentiating a quadratic form w.r.t. a vector, we have:

∂u>Kv
∂x = ∂u

∂x Kv + ∂v
∂xK>u,

where u ∈ Rm,v ∈ Rn,K ∈ Rm×n,x ∈ Rd and K is not a function of x. One can
easily verify that the shape of the LHS (left-hand-side) admits that of the RHS
(right-hand-side), assuming the denominator layout.
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1.4 Outline of the Dissertation

The outline of this thesis is as follows. The motivation, content and research
questions of each chapter are briefly introduced, which is followed by a publication
list on each chapter.

Chapter 2 discusses several sampling methods designed to reduce the sampling
error from a multivariate Gaussian distribution. The proposed mirrored orthogonal
sampling method is applied to Evolution Strategies. The convergence property
of the resulting optimization algorithm is investigated both theoretically and
empirically. In addition, the stochastic variation behind the Efficient Global
Optimization algorithm is extracted and formulated as a stand-alone stochastic
variation method.

Wang, H., M. Emmerich, and T. Bäck (2014). Mirrored orthogonal sampling
with pairwise selection in evolution strategies. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, SAC ’14, New York, NY,
USA, pp. 154–156. ACM.

van Rijn, S., H. Wang, B. van Stein, and T. Bäck (2017). Algorithm
configuration data mining for CMA evolution strategies. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’17,
New York, NY, USA, pp. 737–744. ACM.

Wang, H., M. Emmerich, and T. Bäck (2018). Mirrored Orthogonal Sampling
for Covariance Matrix Adaptation Evolution Strategies. Evolutionary
computation (27), to appear.

Emmerich, M., O. M. Shir, and H. Wang (2018). Evolution Strategies, pp.
1–31. Cham: Springer International Publishing.

Chapter 3 aims at giving a precise and unified treatment of the commonly used
surrogate modeling method, Kriging/Gaussian process regression. This estimation
method is summarized and compared from many perspectives, including the
theory on the best linear predictor, reproducing kernel Hilbert Space and Bayesian
inference. In the second half of the chapter, a novel algorithmic framework called
Cluster Kriging is proposed to relax the high time/space complexity of the original
Kriging method, when applied to large data sets. Moreover, it is shown that Cluster
Kriging can effectively support the efficient global optimization algorithm.

10



1.4 Outline of the Dissertation

van Stein, B., H. Wang, W. Kowalczyk, T. Bäck, and M. Emmerich (2015).
Optimally weighted cluster kriging for big data regression. In E. Fromont,
T. De Bie, and M. van Leeuwen (Eds.), Advances in Intelligent Data
Analysis XIV: 14th International Symposium, IDA 2015, Saint Etienne.
France, October 22 -24, 2015. Proceedings, Cham, pp. 310–321. Springer
International Publishing.

van Stein, B., H. Wang, W. Kowalczyk, M. Emmerich, and T. Bäck (2016).
Fuzzy clustering for optimally weighted cluster kriging. In Proceedings of
the Conference on Evolutionary Computation, CEC ’16, pp. 154–163.

Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017b). Time com-
plexity reduction in efficient global optimization using cluster kriging. In
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’17, New York, NY, USA, pp. 889–896. ACM.

van Stein, B., H. Wang, W. Kowalczyk, and T. Bäck.
A Novel Uncertainty Quantification Method for Efficient Global Opti-
mization. In Proceedings of 17th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems,
IPMU 2018.

Chapter 4 focuses on the issue on how to use the surrogate model properly.
The utility of each location on a surrogate model is quantified by a well-defined
function, called Infill Criterion. Various infill criteria are compared in this chapter,
where the trade-offs between criterion are discovered. In addition, a novel infill
criterion, Moment-Generating Function of Improvement (MGFI) is proposed as the
extension of all improvement-based criteria. Lastly, we investigate the multi-point
generalization to the existing infill criteria, allowing for the parallel evaluation of
candidate solutions.

Wang, H., M. Emmerich, and T. Bäck (2016). Balancing risk and expected
gain in kriging-based global optimization. In Proceedings of the Conference
on Evolutionary Computation, CEC ’16, pp. 154–163.

Emmerich, M., K. Yang, A. Deutz, H. Wang, and C. M. Fonseca (2016). A
Multicriteria Generalization of Bayesian Global Optimization, pp. 229–242.
Cham: Springer International Publishing.
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Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017a, Oct). A New
Acquisition Function for Bayesian Optimization based on the Moment-
Generating Function. In 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 507–512.

Wang, H., T. Bäck, and M. T. M. Emmerich (2018). Multi-point efficient
global optimization using niching evolution strategy. In A.-A. Tantar,
E. Tantar, M. Emmerich, P. Legrand, L. Alboaie, and H. Luchian (Eds.),
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation VI, Cham, pp. 146–162. Springer International
Publishing.

Wang, H., M. Emmerich, and T. Bäck (2018). Cooling Strategies for
the Moment-Generating Function in Bayesian Global Optimization. In
Proceedings of the Conference on Evolutionary Computation, CEC ’18, to
appear.

Chapter 5 discusses numerical multi-objective optimization (MOO). The demand
on this topic originates from many numerical multi-objective tasks that arise
in the study of stochastic optimization, e.g., the multi-objective treatment of
infill criteria in Chapter 4. The contribution in this chapter is three-fold: firstly,
we mathematically analyze the so-called Mixed-Peak bi-objective test problem.
Secondly, the gradient field and Hessian matrix of the hypervolume indicator
are studied in depth. Thirdly, two novel numerical MOO algorithms, namely
the hypervolume-based first- (gradient) and second-order (Hessian) methods are
proposed and tested.

Kerschke, P., H. Wang, M. Preuss, C. Grimme, T. Heike, and E. Michael
(2016). Towards analyzing multimodality of multiobjective landscapes. In
International Conference on Parallel Problem Solving from Nature, pp.
206–215. Springer.

Wang, H., A. Deutz, T. Bäck, and M. Emmerich (2017). Hypervolume
indicator gradient ascent multi-objective optimization. In 9th International
Conference on Evolutionary Multi-Criterion Optimization - Volume 10173,
EMO 2017, New York, NY, USA, pp. 654–669. Springer-Verlag New York,
Inc.
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1.4 Outline of the Dissertation

Wang, H., Y. Ren, A. Deutz, and M. Emmerich (2017). On Steering Domi-
nated Points in Hypervolume Indicator Gradient Ascent for Bi-Objective
Optimization, pp. 175–203. Cham: Springer International Publishing.

Kerschke, P., H. Wang, M. Preuss, C. Grimme, T. Heike, and E. Michael
(2018). Search Dynamics on Multimodal Multi-Objective Problems. Evo-
lutionary computation (30), to appear.

van der Blom, K., S. Boonstra, H. Wang, H. Hofmeyer, and M. Emmerich
Evaluating Memetic Building Spatial Design Optimisation Using Hypervol-
ume Indicator Gradient Ascent. Cham: Springer International Publishing,
to appear.

In addition to this description of the chapters, some closely linked sections are
shown in the dependence graph below.

Sec. 2.5 Sec. 3.1 Sec. 3.3 Sec. 4.1 Sec. 4.2 Sec. (5.2)
EGO Kriging CK-EGO Infill Criteria Balancing Criteria HIGA-MO

depend

depend

depend

depend

solve

Figure 1.1: Dependences between several sections.
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