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Abstract

Continuous optimization is never easy: the exact solution is always a luxury demand
and the theory of it is not always analytical and elegant. Continuous optimization,
in practice, is essentially about the efficiency: how to obtain the solution with
same quality using as minimal resources (e.g., CPU time or memory usage) as
possible? In this thesis, the number of function evaluations is considered as the
most important resource to save. To achieve this goal, various efforts have been
implemented and applied successfully. One research stream focuses on the so-called
stochastic variation (mutation) operator, which conducts an (local) exploration of
the search space. The efficiency of those operator has been investigated closely,
which shows a good stochastic variation should be able to generate a good coverage
of the local neighbourhood around the current search solution. The first part
(Chapter 2) of this thesis contributes on this issue by formulating a novel stochastic

variation that yields good space coverage.

Alternative research stream approaches the efficiency issue differently: we should
keep record of the evaluated solutions and re-use them as they carry partially
information about the objective function. This leads to studies on the so-called
surrogate modeling. Here, the second part (Chapter 3) of this thesis dives into
the one specific surrogate modeling technique, called Kriging/Gaussian Process
Regression (GPR). In addition, we try to keep a precise and theoretical treatment
on Kriging/GPR and several improvements over it. Closely related to the surrogate
modeling, it is crucial to exploit the surrogate model properly. A common approach
is to take the so-called infill criteria/acquisition function, which measures the
potential gain we could obtain by evaluate one candidate solution on the model.
Lastly, the efficiency issues can also be tackled by generalizing a well-performing
algorithm from a specific domain to a broader class of problems. One prominent

example is to extend the gradient-based optimization algorithms (that are devised



for single objective problems) to the multi-objective scenario. The last part of this
thesis (Chapter 5) is on this topic, where both the first- and second-order methods

are generalized for multi-objective optimization problems.
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