
Stochastic and deterministic algorithms for continuous black-box
optimization
Wang, H.

Citation
Wang, H. (2018, November 1). Stochastic and deterministic algorithms for continuous black-
box optimization. Retrieved from https://hdl.handle.net/1887/66671
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/66671
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/66671


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/66671 holds various files of this Leiden University 
dissertation. 
 
Author: Wang, H. 
Title: Stochastic and deterministic algorithms for continuous black-box optimization 
Issue Date: 2018-11-01 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66671
https://openaccess.leidenuniv.nl/handle/1887/1�


Stochastic and Deterministic
Algorithms for Continuous
Black-Box Optimization

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 1 november 2018

klokke 10.00 uur

door

Hao Wang

geboren te Baoji, China
in 1989

mailto:wangronin@gmail.com


Promotiecommissie

Promotor: Prof. Dr. T.H.W. Bäck
Co-promotor: Dr. M.T.M. Emmerich
Overige leden: Prof. Dr. A. Plaat (voorzitter)

Prof. Dr. H. Trautmann (WWU Münster and LIACS)
Dr. C. Dörr (CNRS and Sorbonne University, FR)
Prof. Dr. S. Manegold (secretaris, CWI and LIACS, NL)
Dr. W.A. Kosters
Prof. X. Liu (Brunel University, UK)

Copyright c© 2018 Hao Wang.

This research is financially supported by the Dutch funding agency NWO, under
project number 650.002.001 (the PROMIMOOC project), in collaboration with
Tata Steel IJmuiden, BMW Group Regensburg, Centrum voor Wiskunde en Infor-
matica (CWI) and MonetDB.

Figures and diagrams are generated using ggplot2, pgf/tikz and matplotlib.

mailto:wangronin@gmail.com


Abstract

Continuous optimization is never easy: the exact solution is always a luxury demand
and the theory of it is not always analytical and elegant. Continuous optimization,
in practice, is essentially about the efficiency: how to obtain the solution with
same quality using as minimal resources (e.g., CPU time or memory usage) as
possible? In this thesis, the number of function evaluations is considered as the
most important resource to save. To achieve this goal, various efforts have been
implemented and applied successfully. One research stream focuses on the so-called
stochastic variation (mutation) operator, which conducts an (local) exploration of
the search space. The efficiency of those operator has been investigated closely,
which shows a good stochastic variation should be able to generate a good coverage
of the local neighbourhood around the current search solution. The first part
(Chapter 2) of this thesis contributes on this issue by formulating a novel stochastic
variation that yields good space coverage.

Alternative research stream approaches the efficiency issue differently: we should
keep record of the evaluated solutions and re-use them as they carry partially
information about the objective function. This leads to studies on the so-called
surrogate modeling. Here, the second part (Chapter 3) of this thesis dives into
the one specific surrogate modeling technique, called Kriging/Gaussian Process
Regression (GPR). In addition, we try to keep a precise and theoretical treatment
on Kriging/GPR and several improvements over it. Closely related to the surrogate
modeling, it is crucial to exploit the surrogate model properly. A common approach
is to take the so-called infill criteria/acquisition function, which measures the
potential gain we could obtain by evaluate one candidate solution on the model.
Lastly, the efficiency issues can also be tackled by generalizing a well-performing
algorithm from a specific domain to a broader class of problems. One prominent
example is to extend the gradient-based optimization algorithms (that are devised

i



for single objective problems) to the multi-objective scenario. The last part of this
thesis (Chapter 5) is on this topic, where both the first- and second-order methods
are generalized for multi-objective optimization problems.

ii



Contents

Abstract i

List of Symbols

1 Introduction 1
1.1 Stochastic Optimization . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . . 6
1.3 Matrix Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 10

2 Stochastic Variation 15
2.1 Quasi-Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Mirroring and Orthogonalization . . . . . . . . . . . . . . . . . . . 18

2.2.1 Deterministic Orthogonal Sampling . . . . . . . . . . . . . . 19
2.2.2 Mirrored Orthogonal Sampling . . . . . . . . . . . . . . . . 21
2.2.3 Implementation of Random Orthogonal Sampling . . . . . . 24

2.3 Convergence Analysis of Mirroring and Orthogonalization . . . . . 26
2.3.1 Mirrored Sampling . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Mirrored Orthogonal Sampling . . . . . . . . . . . . . . . . 31

2.4 Empirical Results on Mirroring and Orthogonalization . . . . . . . 34
2.4.1 Experiments on BBOB . . . . . . . . . . . . . . . . . . . . 35

2.5 Efficient Global Optimization . . . . . . . . . . . . . . . . . . . . . 37
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Kriging/Gaussian Process Regression 43
3.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Best Linear Unbiased Predictor . . . . . . . . . . . . . . . . 47
3.1.2 Reproducing Kernel Hilbert Space . . . . . . . . . . . . . . 53



3.1.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.4 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Cluster Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3 Cluster Kriging Predictor . . . . . . . . . . . . . . . . . . . 69
3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Cluster Kriging and EGO . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Infill Criteria 87
4.1 Improvement-based Infill Criteria . . . . . . . . . . . . . . . . . . . 89
4.2 Balancing Risk and Gain . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Moment-Generating Function of Improvement . . . . . . . . . . . . 96
4.4 Cooling Strategies for MGFI . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Impact of Temperature Configurations . . . . . . . . . . . . 101
4.4.2 Benchmarking the Cooling Strategies . . . . . . . . . . . . . 103

4.5 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1 Multi-point Infill Criteria . . . . . . . . . . . . . . . . . . . 106
4.5.2 Multi-instance of Infill Criteria . . . . . . . . . . . . . . . . 106
4.5.3 Multi-objective Infill Criteria . . . . . . . . . . . . . . . . . 107
4.5.4 Niching-based Infill Criteria Maximization . . . . . . . . . . 107

4.6 Experimental Comparison . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Numerical Multi-objective Optimization 119
5.1 Mixed-Peak Test Problem . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1 Mixed-Peak Functions . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Mixed-Peak Bi-objective Problem . . . . . . . . . . . . . . . 124

5.2 Hypervolume Indicator Gradient . . . . . . . . . . . . . . . . . . . 127
5.2.1 Steering Dominated Points . . . . . . . . . . . . . . . . . . 129
5.2.2 Step-size adaptation . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3 Hypervolume Indicator Gradient Ascent Algorithm . . . . . 134
5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Hypervolume Indicator Hessian . . . . . . . . . . . . . . . . . . . . 139



CONTENTS

5.3.1 The Bi-objective Case . . . . . . . . . . . . . . . . . . . . . 142
5.3.2 Hypervolume Indicator Newton Method . . . . . . . . . . . 145

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Conclusion 151

Appendix A Gaussian Distribution 157

Appendix B Proof 159
B.1 Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 163

Index 181

Summary 185

Samenvatting 189

About the Author 193





List of Symbols

1 Vector of ones, whose dimension is implied in context

0 Vector of zeros, whose dimension is implied in context

I Identity matrix, whose shape is implied in context

N>0 Positive natural numbers

Rd d-dimensional Euclidean space

S Search space/decision space/domain of the objective function

X Pareto efficient set

PX Pareto front

H Hilbert space of functions f : S→ R

L2(S) Space of square-integrable functions on S

‖·‖ Euclidean norm

‖·‖Σ Mahalanobis norm with respect to a covariance matrix Σ

‖·‖H Norm in Hilbert space H

‖·‖∞ supremum norm

〈·, ·〉 Dot product in Euclidean spaces.

〈·, ·〉H Inner product in Hilbert space H

U(0, 1) Uniform distribution over [0, 1]

N (m,σ2) Gaussian random variable with mean m and variance σ2

N (m,K) Gaussian random vector with mean m and covariance matrix K



CONTENTS

GP(m(·), k(·, ·)) Gaussian process with mean function m(·) and kernel k(·, ·)

Pr(·) Probability of an event

p(·) Probability density function (p.d.f.)

P (·) Cumulative distribution function (c.d.f.)

P Probability measure

φ Probability density function of N (0, 1)

φm,σ2 Probability density function of N (m,σ2)

Φ Cumulative distribution function of N (0, 1)

Φm,σ2 Cumulative distribution function of N (m,σ2)

Φnm,K Cumulative distribution function of a multivariate Gaussian N (m,K)

E Expectation

Var Variance

Cov Covariance

⊥⊥ Statistical independence

σ2
n Variance of the white noise process

A Infill criteria/acquisition function

det Determinant of square matrices

κ Condition number of matrices



ch
ap

te
r

1
Introduction

Optimization problems are of fundamental importance in mathematics, statistics,
Machine Learning and real-world applications (e.g., optimization of a production
process). In most cases, we aim at searching for an element (called candidate
solution) in some pre-determined domain (called search space) of objective functions,
such that that this element “outperforms” the remaining elements according to
an (partial) order structure defined in the image of objective functions. Some
examples of optimization problems are: searching for the minimum of a given
function, the optimal linear predictor/estimator (statistics), the optimal linear
separation boundary for binary classification problems (Machine Learning) and
the optimal control parameters of an industrial production line. Prior to the
detailed discussions, we shall give a brief explanation on some important aspects
of optimization problems.

Domain It is also referred as the search space in the unconstrained optimization
problems. The most intuitive domain is the subset of Euclidean spaces Rd (d is
used as the dimensionality of the domain in this thesis). Some other important
ones are: Hilbert (or Banach) spaces of functions, and mixed spaces, e.g., Rd1 ×
{0, 1}d2×{Mon,Tue, . . .}d3 . In this thesis, the discussion is restricted to the subset
of Rd. In addition, the Euclidean metric (or the related Mahalanobis metric) is
always assumed on Rd. Under such assumptions, we shall adopt the convention
“continuous optimization” here1.

1The specification of the metric is mandatory here because Rd can become a discrete space if
any metric that yields isolated points is equipped to Rd.

1



1. INTRODUCTION

Objective function Although there are various types of objective functions
in practice, this thesis is limited to the real-valued functions. In addition, the
well-known black-box assumption is set on the objective function, meaning that
no additional analytical property (e.g., continuity, smoothness and differentiability)
is assumed on the objective function and the only available information is the
evaluation of points in its domain.

Algorithm There are many numerical algorithm for solving the optimization
problem. From the perspective of randomness, those algorithms can be categorized
into deterministic and stochastic optimization algorithms. The former usually
refers the classical mathematical optimization techniques (e.g., the Newton’s
method). The latter is mainly developed for the black-box optimization problems,
which relies heavily on the statistical properties of random variables. In this thesis,
both categories of algorithms are studies and improved.

1.1 Stochastic Optimization

In this thesis, the discussion is restricted to the real-valued objective function of
the form:

f : S ⊆ Rd → Rm, (1.1)

where its domain S is assumed to be a subset of the d-dimensional Euclidean space
and its image is Rm. The problem of minimizing (or maximizing) f is referred
as a single objective problem if m = 1. For m > 1, it is called a multi-objective
optimization problem and it is typically denoted by the boldface symbol f . Note
that, in the multi-objective scenario, it is usually not possible to define a total order
on Rm. The result of the multi-objective optimization is typically the “best” anti-
chain w.r.t. some partial order defined on Rm (see the next section). In practice,
domain S could represent the so-called “feasible region” in Rd, that is restricted by
a set of constraint functions. The subject of this thesis, the stochastic optimization
paradigm, targets the so-called black-box optimization problem.
Definition 1.1 (Black-Box Optimization). An objective function f as defined in
Eq. (1.1) is called black-box iff no prior knowledge is available on f and the only
accessible posterior information is the objective value f(x) for every point x on its
domain.

2



1.1 Stochastic Optimization

Remark. With no prior knowledge on f , many mathematical/numerical optimiza-
tion methods, e.g., gradient descent and Newton’s method, render inapplicable
because the common assumptions, e.g., analytical expressions, differentiability
as well as continuity no longer hold on f . In optimization, the domain S of f
is more commonly referred as search space or decision space. We shall use
those two terms interchangeably in this thesis. In the context of evolutionary
computation (Bäck, 1996), the so-called fitness value depends on f(x).

Throughout this thesis, the objective function f is assumed to beminimized, without
loss of generality. In the single objective case, the goal of global minimization is to
solve

x∗ = arg min
x∈S

f(x),

where the notion of global minimum is defined as follows.
Definition 1.2 (Global minimum). In the single objective case, point x∗ ∈ S is a
global minimum (or minimum for short) of f iff ∀x ∈ S, f(x∗) ≤ f(x).

Approaching a global minimum is generally a difficult task due to the so-called
multimodality of the objective function. Practically, it is only possible to guarantee
the convergence to the so-called local optima.
Definition 1.3 (Local minimum). In the single objective case, a point x ∈ S
is a local minimum of f if there exists a neighborhood Nx of x such that ∀x′ ∈
Nx, f(x) ≤ f(x′).
Remark. As the search space S is a subset of the metric space Rd, it is straight-
forward to use any metric on Rd to define the neighborhood. For example, when
taking the Euclidean norm ‖·‖, the neighborhood can be defined as a subset of S
that contains an open Euclidean ball around x: Bε(x) = {x′ ∈ S : ‖x− x′‖ < ε}
for some ε > 0.

For solving black-box optimization problems, a very common mechanism is to pro-
gressively refine a point x by evaluating other candidate points in the neighborhood
of x and moving to the point that improves f(x). This is called local search. This
mechanism requires two design choices: the determination of the neighborhood and
a selection method to pick points in the neighborhood. In numerical optimization,
this is usually achieved by directly using gradient increments (steps) or Newton
increments. However, none of those techniques is applicable under the black-box
assumption. Alternatively, in stochastic optimization, random perturbations are
used for the local search, where commonly a parametric distribution family centered
at x (e.g., Gaussian) is taken to generate candidate points in the neighborhood

3



1. INTRODUCTION

(typically S). More precisely, when discussing multivariate random variables in Rd,
it is common to assume the probability space (Ω,F ,P) and a measurable space
(Rd,Bd), where Bd is the Borel algebra on Rd. A Rd-valued random variable (or
random vector) x ∈ Rd is a F -measurable function, x : Ω→ Rd. Then, the formal
definition of stochastic optimization is given as follows.
Definition 1.4 (Stochastic Optimization). Taking the aforementioned probability
settings, Stochastic Optimization is the procedure of applying one or many op-
timization algorithms on a black-box function f , yielding a process of Rd-valued
random variables: {xt : t ∈ N>0}, such that

∀ε > 0, lim
t→∞

Pr (D(xt − x̃) > ε) = 0, (1.2)

where D is a metric on Rd and x̃ is a (local) minimum and the conditional density

p (xt | xt−1,xt−2, . . . ,x1)

can be specified using the probability measure P.
Remark. 1) The stochastic process {xt : t ∈ N>0} could stand for the current
best point or the best point found since the first iteration. 2) It is expressed
explicitly that “applying one or many optimization algorithms” because in practice
two or more stochastic optimizers can be combined for the task, e.g., in case of
memetic algorithms (Moscato et al., 1989). 3) In the single objective case, the
convergence criterion can be formulated equivalently:

∀ε > 0, lim
t→∞

Pr (|f(xt)− f(x̃)| > ε) = 0.

4) If the (local) minimum x̃ is forced to be the global minimum x∗, then the
stochastic optimization procedure is said to converge globally. Note that the
convergence in probability (Eq. 1.2) is taken for the convergence criterion because
stronger types of convergence (e.g., almost sure convergence) do not hold in some
cases and thus it is generally safe to use a weaker convergence notion. 5) In
the case where it is hard to verify the convergence criterion for some practically
well-performing algorithms, the criterion is relaxed to the following:

∀t ∈ N>0 ∃n ∈ N>0 s.t. E {f(xt+n) | f(xt+n−1), f(xt+n−2), . . . , f(x1)} ≤ f(xt).

Or equivalently there exists a subprocess of {f(xt) : t ∈ N>0}, being a supermartin-
gale1. 6) Markov property holds for some stochastic optimization algorithms, e.g.,
(1 + 1)-ES (Bäck, 1996), meaning that p (xt | xt−1,xt−2, . . . ,x1) = p(xt | xt−1).

1Loosely speaking, the discrete-time supermartingale indicates the situation where the
conditional expectation on the whole history at each step is not bigger than the random variable
at the last time step.

4



1.1 Stochastic Optimization

Many stochastic optimization algorithms has been proposed for single- (Kirkpatrick
et al., 1983; Schwefel, 1993; Bäck, 1996) and multi-objective (Deb et al., 2000; Em-
merich, 2005) black-box optimization problems. In the literature, some stochastic
optimization algorithms are often referred to metaheuristics (Luke, 2009; Talbi,
2009), e.g., Particle Swarm Optimization (Kennedy and Eberhart, 1995). Those
algorithms can be categorized according to different criteria:

• Local search/Global search: a well-known example of local search is the
stochastic hill-climbing algorithm. Some example of global search are evolu-
tionary algorithms (Bäck, 1996), Swarm Intelligence (Bonabeau et al., 1999)
and Efficient Global Optimization (Jones et al., 1998).

• Single-point based/Population-based algorithms: if a stochastic optimizer
employs only one point iteratively, it is called a single-point strategy, e.g.,
Simulated Annealing (Kirkpatrick et al., 1983). Otherwise, it is called a
population-based algorithm, e.g., (multi-membered) evolutionary algorithms.
It is worth mentioning that the so-called (1 + 1)-EAs that employ one parent
and one offspring fall into the single-point category.

• Nature-inspired algorithms: examples are evolution strategies (Bäck and
Schwefel, 1993; Bäck et al., 2013), genetic algorithms (Goldberg, 1989) and
Swarm Intelligence (Bonabeau et al., 1999).

In this thesis, instead of focusing on some specific optimization algorithms, we
illuminate and investigate several important aspects of this field, which underpin
many optimization algorithms:

• Stochastic variation is the algorithmic component where the (local) random
perturbation is generated to modify the current point. In evolutionary
computation, this is typically called themutation operator (Bäck and Schwefel,
1993). In Rd, the most common method is to apply the simple random
sampling method on the Gaussian distribution. Other stochastic variations
include: differential vector in the Differential Evolution (Storn and Price,
1997) and polynomial mutation (Agrawal et al., 1995). In Chapter 2, we
shall illustrate a drawback of the simple random sampling from a Gaussian
distribution and propose an improved sampling method, whose effectiveness
is validated when plugged into evolution strategies.

• Surrogate modeling: When the function evaluation is very expensive on f ,
e.g., due to the high time complexity, it is common to build models that are

5



1. INTRODUCTION

less computational expensive on the evaluated points, in order to partially
replace the actual function evaluation. The precision of the surrogate model
is of vital importance when assisting the stochastic optimizer. However, this
is usually a demanding requirement due to the lack of a sufficient number
of data points, or irreducible modeling error when the objective function is
noisy. In this scenario, it is helpful to quantify the uncertainty of the model
prediction, e.g., by computing a confidence interval. We study a widely used
surrogate model, Kriging/Gaussian process regression that it is naturally
equipped with an uncertainty quantification.

• Model utilization: taking the model imprecision and uncertainty quantifica-
tion into account, it is possible to determine the most trustworthy point, or
alternatively which point possesses the highest potential to help the optimiza-
tion procedure if the actual function evaluation were performed on it. Such
decisions are made through an utility function of the surrogate model, called
infill criterion. The infill criterion plays a vital role in many optimization
paradigms, including the Surrogate-assisted Evolutionary Algorithms (Em-
merich, 2005), Efficient Global Optimization (Močkus, 1975, 2012; Jones
et al., 1998), Multi-armed Bandits (Auer et al., 2002) and Monte-Carlo Tree
Search (Silver et al., 2016). In this thesis, we aim at summarizing the existing
infill criterion and proposing a novel infill criteria that is theoretically better
than the existing ones. Furthermore, the parallelization issue (Ginsbourger
et al., 2010) of infill criteria is also considered in detail and several new
parallelization methods are proposed and tested.

1.2 Multi-objective Optimization

In this section we introduce some definitions in the context of multi-objective
problems. Due to the possibility of incomparable solutions, the notation of modal-
ity/local optimality is also modified and extended to the multi-objective scenario.
The search space under consideration is S ⊆ Rd and the objective space is Rm.
Most of our definitions can also be generalized to other spaces, however, due to
space limitations, this will not be part of this section.

Now, let f : S→ Rm be a multi-objective function (which we want to “minimize”)
with component functions fi : S→ R, i = 1, . . . ,m and S ⊆ Rd. Given a totally

6



1.2 Multi-objective Optimization

ordered set (T,≤), with total order ≤, the Pareto order1 ≺ on T k for any k ∈ N
is defined as follows: Let t(1) = (t(1)

1 , . . . , t
(1)
k ), t(2) = (t(2)

1 , . . . , t
(2)
k ) ∈ T k. We say

t(1) ≺ t(2) if and only if (iff) t(1)
i ≤ t

(2)
i , i = 1, . . . , k and t(1) 6= t(2). Instantiating

≤ to the natural total order on the real numbers, we obtain the Pareto order
on Rm. A point x ∈ S is called Pareto efficient or global efficient or for short
efficient iff there does not exist x̃ ∈ S such that f(x̃) ≺ f(x). The set of all the
(global) efficient points in S is denoted by X and is called the (Pareto) efficient
set of f . The image of X under f is called the Pareto front of f , symbolically
PX = f [X ] = f(x) : x ∈ X .

Defining a locally efficient point in S (or of f) is as straightforward as defining
local minimizers (maximizers) for single-objective functions. This is in contrast to
defining local efficient sets, which are needed for the multi-criteria setting.
Definition 1.5 (Locally Efficient Point). A point x ∈ S is called locally efficient
point of f if there is an open set U ⊆ Rd such that there is no point x′ ∈ U ∩ X
such that f(x′) ≺ f(x). The set of all the local efficient points in S is denoted by
XL.
Definition 1.6 (Globally Efficient Point). A point x ∈ S is called globally efficient
point f if there is no point x′ ∈ Rd ∩ S such that f(x′) ≺ f(x). The set of all the
global efficient points in S is termed efficient set of f and denoted by X .

In order to extend the definition of the local optimality to multi-objective problems,
it is necessary to first give a notation on the locality of (efficient) sets. It is defined
using the so-called connectedness.
Definition 1.7 (Connectedness and Connected Component). Let A ⊆ Rd. The
subset A is called connected if and only if there do not exist two open subsets U1

and U2 of Rd such that A ⊆ U1∪U2, U1∩A 6= ∅, U2∩A 6= ∅, and U1∩U2∩A = ∅;
or equivalently there do not exist two non-empty subsets A1 and A2 of A which
are open in the relative topology of A such that A1 ∪A2 = A and A1 ∩A2 = ∅. Let
B be a non-empty subset of Rd. A subset C of B is a connected component of
B iff C is non-empty, connected, and there exists no strict superset of C that is
connected.
Definition 1.8 (Locally Efficient Set). A subset A ⊆ S is a locally efficient set of
f if A is a connected component of XL (= set of the locally efficient points in S).
Definition 1.9 (Local Pareto Front). A subset P of the image of f is a local
Pareto front of f , if there exists a local efficient set E such that P = f [E].

1It gives rise to a partial order vector space (Tk,≺).

7



1. INTRODUCTION

Note that the (global) Pareto front of f is obtained by taking the image of the union
of connected components of X , under f . If X is connected and f is continuous on X ,
the Pareto front is also connected. In this thesis we use the notion of connectedness
to define the locally efficient sets. There still remains the task of extending the
notion of efficient set by looking at connectedness in the objective space. For
instance it could happen that two different local efficient sets are mapped onto
the same set in the objective space. This rises many questions, which need to be
addressed in future work.

With a view towards algorithms that numerically approximates (locally) efficient
sets and/or (local) Pareto fronts, it is necessary to generalize definition 1.8 to
determine whether a finite set belongs to a connected component (i.e., a finite
subset of XL is a set of some locally efficient set). Here the issue is: a finite subset
of Euclidean space is never a connected component (of some other subset) unless it
consists of one point. To reconcile with definition 1.8, the notion of connectedness
can be relaxed, using the ε neighborhood.
Definition 1.10 (ε-connectedness). Let ε ∈ R>0 and S ⊆ Rd. Set A is ε-
connected if and only if for any distinct points x, x′ ∈ A there is a finite set of
points {a1, . . . , ak} ⊆ A such that D(x, a1) ≤ ε,D(a1, a2) ≤ ε, . . . ,D(ak−1, ak) ≤
ε,D(ak, x′) ≤ ε, where D is a metric in Rd.

A finite set A ⊆ S is locally efficient, if it consists of local efficient points in S and
A is ε-connected: there exists ε > 0 on which definition 1.10 holds.
Definition 1.11 (finite ε-Local Efficient Set). Let A be a finite subset of XL.
Then A is an ε-local efficient set, if A 6= ∅, and A is ε-connected.

1.3 Matrix Calculus

In this thesis, the compact notation, called Matrix Calculus (Kollo and von Rosen,
2005) is extensively used for the derivations (e.g., Section 3.1.4, 5.2 and 5.3). For
the readability of the technical part, we shall specify this notation and give some
examples. Intuitively, the matrix differentiation is a collection of many partial
derivatives, e.g., the gradient vector of a real-valued function f : Rd → R:

∇f = ∂f

∂x =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)>
.

8



1.3 Matrix Calculus

The notation ∂f/∂x is called a scalar-by-vector derivative. Throughout this thesis,
the gradient is assumed to be a column vector and thus ∂f/∂x has a column-
wise layout. To avoid confusions, the layout of matrix derivatives like ∂f/∂x is
determined according to that of f> or x. This is called the denominator layout
convention. Some common layouts are given as follows:

• scalar-by-vector

∂f

∂x =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)>
, f : Rd → R, x ∈ Rd.

• vector-by-scalar

∂f
∂x

=
(
∂f1

∂x
,
∂f2

∂x
, . . . ,

∂fm
∂x

)
, f : R→ Rm, x ∈ R.

• vector-by-vector

∂f
∂x =



∂f1
∂x1

∂f2
∂x1

. . . ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fm
∂x2... ... . . . ...

∂f1
∂xd

∂f2
∂xd

. . . ∂fm
∂xd

, f : Rd → Rm, x ∈ Rd.

The major benefit of using such notations is that the common rules for derivatives,
e.g., chain rule, product rule and quotient rule still hold for the matrix notation.
For example, consider the following functions: f : Rd → Rm, g : Rm → R. The
composition g ◦ f : Rd → R can be differentiated using the chain rule:

∂(g ◦ f)
∂x = ∂f(x)

∂x
∂g(f)
∂f

For example, when differentiating a quadratic form w.r.t. a vector, we have:

∂u>Kv
∂x = ∂u

∂x Kv + ∂v
∂xK>u,

where u ∈ Rm,v ∈ Rn,K ∈ Rm×n,x ∈ Rd and K is not a function of x. One can
easily verify that the shape of the LHS (left-hand-side) admits that of the RHS
(right-hand-side), assuming the denominator layout.

9



1. INTRODUCTION

1.4 Outline of the Dissertation

The outline of this thesis is as follows. The motivation, content and research
questions of each chapter are briefly introduced, which is followed by a publication
list on each chapter.

Chapter 2 discusses several sampling methods designed to reduce the sampling
error from a multivariate Gaussian distribution. The proposed mirrored orthogonal
sampling method is applied to Evolution Strategies. The convergence property
of the resulting optimization algorithm is investigated both theoretically and
empirically. In addition, the stochastic variation behind the Efficient Global
Optimization algorithm is extracted and formulated as a stand-alone stochastic
variation method.

Wang, H., M. Emmerich, and T. Bäck (2014). Mirrored orthogonal sampling
with pairwise selection in evolution strategies. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, SAC ’14, New York, NY,
USA, pp. 154–156. ACM.

van Rijn, S., H. Wang, B. van Stein, and T. Bäck (2017). Algorithm
configuration data mining for CMA evolution strategies. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’17,
New York, NY, USA, pp. 737–744. ACM.

Wang, H., M. Emmerich, and T. Bäck (2018). Mirrored Orthogonal Sampling
for Covariance Matrix Adaptation Evolution Strategies. Evolutionary
computation (27), to appear.

Emmerich, M., O. M. Shir, and H. Wang (2018). Evolution Strategies, pp.
1–31. Cham: Springer International Publishing.

Chapter 3 aims at giving a precise and unified treatment of the commonly used
surrogate modeling method, Kriging/Gaussian process regression. This estimation
method is summarized and compared from many perspectives, including the
theory on the best linear predictor, reproducing kernel Hilbert Space and Bayesian
inference. In the second half of the chapter, a novel algorithmic framework called
Cluster Kriging is proposed to relax the high time/space complexity of the original
Kriging method, when applied to large data sets. Moreover, it is shown that Cluster
Kriging can effectively support the efficient global optimization algorithm.

10



1.4 Outline of the Dissertation

van Stein, B., H. Wang, W. Kowalczyk, T. Bäck, and M. Emmerich (2015).
Optimally weighted cluster kriging for big data regression. In E. Fromont,
T. De Bie, and M. van Leeuwen (Eds.), Advances in Intelligent Data
Analysis XIV: 14th International Symposium, IDA 2015, Saint Etienne.
France, October 22 -24, 2015. Proceedings, Cham, pp. 310–321. Springer
International Publishing.

van Stein, B., H. Wang, W. Kowalczyk, M. Emmerich, and T. Bäck (2016).
Fuzzy clustering for optimally weighted cluster kriging. In Proceedings of
the Conference on Evolutionary Computation, CEC ’16, pp. 154–163.

Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017b). Time com-
plexity reduction in efficient global optimization using cluster kriging. In
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’17, New York, NY, USA, pp. 889–896. ACM.

van Stein, B., H. Wang, W. Kowalczyk, and T. Bäck.
A Novel Uncertainty Quantification Method for Efficient Global Opti-
mization. In Proceedings of 17th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems,
IPMU 2018.

Chapter 4 focuses on the issue on how to use the surrogate model properly.
The utility of each location on a surrogate model is quantified by a well-defined
function, called Infill Criterion. Various infill criteria are compared in this chapter,
where the trade-offs between criterion are discovered. In addition, a novel infill
criterion, Moment-Generating Function of Improvement (MGFI) is proposed as the
extension of all improvement-based criteria. Lastly, we investigate the multi-point
generalization to the existing infill criteria, allowing for the parallel evaluation of
candidate solutions.

Wang, H., M. Emmerich, and T. Bäck (2016). Balancing risk and expected
gain in kriging-based global optimization. In Proceedings of the Conference
on Evolutionary Computation, CEC ’16, pp. 154–163.

Emmerich, M., K. Yang, A. Deutz, H. Wang, and C. M. Fonseca (2016). A
Multicriteria Generalization of Bayesian Global Optimization, pp. 229–242.
Cham: Springer International Publishing.

11



1. INTRODUCTION

Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017a, Oct). A New
Acquisition Function for Bayesian Optimization based on the Moment-
Generating Function. In 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 507–512.

Wang, H., T. Bäck, and M. T. M. Emmerich (2018). Multi-point efficient
global optimization using niching evolution strategy. In A.-A. Tantar,
E. Tantar, M. Emmerich, P. Legrand, L. Alboaie, and H. Luchian (Eds.),
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation VI, Cham, pp. 146–162. Springer International
Publishing.

Wang, H., M. Emmerich, and T. Bäck (2018). Cooling Strategies for
the Moment-Generating Function in Bayesian Global Optimization. In
Proceedings of the Conference on Evolutionary Computation, CEC ’18, to
appear.

Chapter 5 discusses numerical multi-objective optimization (MOO). The demand
on this topic originates from many numerical multi-objective tasks that arise
in the study of stochastic optimization, e.g., the multi-objective treatment of
infill criteria in Chapter 4. The contribution in this chapter is three-fold: firstly,
we mathematically analyze the so-called Mixed-Peak bi-objective test problem.
Secondly, the gradient field and Hessian matrix of the hypervolume indicator
are studied in depth. Thirdly, two novel numerical MOO algorithms, namely
the hypervolume-based first- (gradient) and second-order (Hessian) methods are
proposed and tested.

Kerschke, P., H. Wang, M. Preuss, C. Grimme, T. Heike, and E. Michael
(2016). Towards analyzing multimodality of multiobjective landscapes. In
International Conference on Parallel Problem Solving from Nature, pp.
206–215. Springer.

Wang, H., A. Deutz, T. Bäck, and M. Emmerich (2017). Hypervolume
indicator gradient ascent multi-objective optimization. In 9th International
Conference on Evolutionary Multi-Criterion Optimization - Volume 10173,
EMO 2017, New York, NY, USA, pp. 654–669. Springer-Verlag New York,
Inc.

12



1.4 Outline of the Dissertation

Wang, H., Y. Ren, A. Deutz, and M. Emmerich (2017). On Steering Domi-
nated Points in Hypervolume Indicator Gradient Ascent for Bi-Objective
Optimization, pp. 175–203. Cham: Springer International Publishing.

Kerschke, P., H. Wang, M. Preuss, C. Grimme, T. Heike, and E. Michael
(2018). Search Dynamics on Multimodal Multi-Objective Problems. Evo-
lutionary computation (30), to appear.

van der Blom, K., S. Boonstra, H. Wang, H. Hofmeyer, and M. Emmerich
Evaluating Memetic Building Spatial Design Optimisation Using Hypervol-
ume Indicator Gradient Ascent. Cham: Springer International Publishing,
to appear.

In addition to this description of the chapters, some closely linked sections are
shown in the dependence graph below.

Sec. 2.5 Sec. 3.1 Sec. 3.3 Sec. 4.1 Sec. 4.2 Sec. (5.2)
EGO Kriging CK-EGO Infill Criteria Balancing Criteria HIGA-MO

depend

depend

depend

depend

solve

Figure 1.1: Dependences between several sections.

13





ch
ap

te
r

2
Stochastic Variation

In the continuous search space S ⊆ Rd, the most common stochastic variation
operator is the multivariate Gaussian distribution. It is denoted as N (m,C)
where m is the mean vector and C is the covariance matrix. The definition and some
properties of the Gaussian distribution can be found in Appendix A. Generating
d-dimensional random vectors from a multivariate Gaussian distribution is the
key source of stochastic variations in many stochastic optimization algorithms,
e.g., evolution strategies (Bäck et al., 2013). The standard method to achieve this,
simple random sampling (or random sampling for short), samples pseudo-random
numbers directly from a certain distribution. However, it also results in a high
sampling error or sampling variation, which would lead to “bad” samples (explained
in the following). The sampling error occurs when we estimate the statistical
properties of a distribution from its realizations. By sampling error, we mean the
estimation errors of statistical properties (e.g., mean, covariance) of a distribution,
which are caused by unrepresentative or biased samples.

An example of biased samples is illustrated in Fig. 2.1, in which four i.i.d. mutation
vectors are sampled from a multivariate Gaussian distribution N (m,C). The
black solid ellipsoid represents the expectation of the mutations and reflects the
covariance matrix C. The diversity of the four samples is not satisfactory because
the minimal distance between samples is relatively small compared to the axis
length of the black solid ellipsoid. A strong sampling error incurs in this case
because if the mean and covariance of the distribution are estimated from these
four vectors, the results would deviate largely from m and C.

As a result of the biased samples, a large portion of space is not reached (at least half
the space in this case). Moreover, if the objective function is twice differentiable, the
contour lines should be locally convex near the optimum (the dashed ellipsoids). The

15



2. STOCHASTIC VARIATION

probability that a new search point represents an improvement can be very small,
shown by the area with vertical lines intersecting the solid ellipsoid. Therefore, if the
population size is small, an undesired sampling case can take place such that none
of the mutations represents an improvement, which renders the current generation
inefficient. The sampling error has an even bigger side effect in modern evolution
strategies (e.g., CMA-ES (Hansen, 2006)) because those algorithms tend to exploit
small populations to speed up their convergence. To overcome this problem, it is
proposed here to develop special sampling approaches for the reduction of sampling
error in a small population, such that the statistical properties estimated from
mutation samples are more similar to their underlying true distribution.

m

x∗

Figure 2.1: Illustration of a set of unsuccessful mutation samples. Four offspring
are generated here while none of them is an improvement. This phenomenon reduces
the convergence velocity of the algorithm.

The sampling method proposed in this chapter is plugged into evolution strategies
(ES) for testing. To make this chapter self-contained, the algorithmic structure
of (µ +, λ)-ES is given in Alg. 1. For the details on evolution strategies, please
see Emmerich, Shir, and Wang (2018).

2.1 Quasi-Random Sampling

There are some techniques proposed to reduce the sampling error as much as
possible and to enhance the diversity. The first method is called quasi-random
sampling or low-discrepancy sequences (Dick and Pillichshammer, 2010). Low-
discrepancy sequences are commonly used as a replacement of uniformly distributed

16



2.1 Quasi-Random Sampling

Algorithm 1 (µ +, λ) Evolution Strategy

1: procedure (µ +, λ)-es(µ, λ, f, σ0)
2: C← I, σ ← σ0 . initialization
3: while not terminated do
4: m← 1

µ

∑µ
i=1 xi . recombination

5: for i = 1→ λ do
6: x′i ←m + σC−1/2N (0, I) . mutation/stochastic variation
7: f ′i ← f(x′i) . function evaluation
8: end for
9: if comma selection is enabled then
10: select the best µ solutions from {x′i}λi=1.
11: else
12: select the best µ solutions from {x′i}λi=1 ∪ {xi}λi=1.
13: end if
14: Set the new population {xi}µi=1 to the selected points.
15: Control step-size σ and covariance matrix C.
16: end while
17: return the best solution found since the beginning.
18: end procedure

numbers. Intuitively, such sequences span the search space more “evenly” than the
pseudo-random numbers. It is widely used in numerical problems like the quasi-
Monte-Carlo method (Niederreiter, 1992) to achieve a faster rate of convergence.
The discrepancy of a random sequence can be viewed as a quantitative measure for
the deviation from the uniform distribution. Thus, the low-discrepancy sequence
is able to solve the same problem as the one treated here, namely to create more
evenly distributed samples.

Due to the advantages of quasi-random sampling, it is also applied in genetic
algorithms (Kimura and Matsumura, 2005) and evolution strategies (Teytaud and
Gelly, 2007). Specifically, it has already been applied to the well-known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001;
Hansen et al., 2003). Teytaud and Gelly (2007) propose to replace the independent
random Gaussian samples by a low-discrepancy sequence in the mutation operator.
The method for generating quasi-random samples according to the Gaussian
distribution is also proposed because the quasi-random samples are usually related
to a uniform distribution. It is also argued that the efficiency of CMA-ES is

17



2. STOCHASTIC VARIATION

improved due to the bigger diversity of quasi-random samples. However, when
applying the quasi-random sample and recombination operator, a systematic bias
on the step-size adaptation is induced: the quasi-random samples are no longer
independent from each other and thus for each highly anti-correlated samples, their
recombination is much smaller on average compared to the Gaussian mutation. As
the step-size adaptation mechanism typically depends on the expected size of the
recombinations, quasi-random samples causes a downward bias in step-sizes.

2.2 Mirroring and Orthogonalization

The mirrored sampling technique (Brockhoff et al., 2010) is another method for
obtaining “good” samples and it is successfully accelerating the convergence of
ESs (Auger et al., 2010). It is a quite simple and elegant idea in which a single
random mutation vector is used to create two search points. More specifically,
instead of generating λ i.i.d. search points, only half of the mutation vectors
are sampled during each ES generation, namely {z2i−1}1≤i≤λ/2, zi ∼ N (0, σ2C),
where σ is the current global step size and C is the current covariance matrix.
Each mutation vector z2i−1 is used to generate two offspring, the usual one
x2i−1 = m + z2i−1 and the mirrored offspring x2i = m − z2i−1. Those two
offspring are symmetric or mirrored to the parental point m.

In order to make the argument here clearer, the mutations sampled from the
distribution are denoted as realized mutations. The mirrored sampling method
is described in Algorithm 2, acting as an alternative to the random mutation
operator in evolution strategies. For odd λ, it begins by generating dλ/2e offspring
in the first generation, which results in dλ/2e mirrored offspring. Then, all of the
realized offspring and dλ/2e−1 mirrored ones are used immediately while the extra
one mirrored mutation is kept to the next iteration (Lines 18− 21). In the next
iteration, the extra mirrored offspring is used (Lines 3− 9) and only bλ/2c realized
mutations need to be drawn. The following generations repeat this procedure.
The static variable zlast in Algorithm 2 stores the extra realized mutation vector.
Here, the notation proposed in Brockhoff et al. (2010) is used such that any ES
algorithm with the mirrored sampling is denoted by (1 +, λm)-ES.

By using mirrored sampling, the mirrored mutations are entirely dependent on the
realized mutation samples and explore the reverse (or mirrored) directions such

18



2.2 Mirroring and Orthogonalization

that the mirrored counterpart of an unsuccessful mutation has a certain chance to
realize an improvement.

Algorithm 2 Mirrored Sampling
1: procedure mirrored(m, σ,C, λ)
2: B,D← eigen-decomposition(C)
3: if λ mod 2 6= 0 and zlast is set then
4: xλ ←m− σBDzlast . mutation zlast from the last iteration
5: λ′ ← λ− 1
6: Unset the static variable zlast . Unset zlast

7: else
8: λ′ ← λ

9: end if
10: for i = 1→ λ′ do
11: if i mod 2 = 0 then
12: xi ←m− σBDzi−1 . Mirroring
13: else
14: zi ← N (0, I)
15: xi ←m + σBDzi
16: end if
17: end for
18: if λ′ mod 2 6= 0 then . Odd number of mutations are created
19: Set the static variable zlast ← zλ . Save zλ for the next iteration
20: end if
21: return {x1,x2, . . . ,xλ}
22: end procedure

2.2.1 Deterministic Orthogonal Sampling

Orthogonal sampling, which denotes a the sampling approach utilizing orthogonal
search directions, is another solution to enhance the mutation diversity. This
sampling scheme can be found in Coordinate Descent (Schwefel, 1993), Adaptive
Coordinate Descent (ACiD) (Loshchilov et al., 2011) and Rosenbrock’s Local
Search (Rosenbrock, 1960). Intuitively, by sampling on the mutually orthogonal
directions, the samples spread quite diversely such that the search space would be

19



2. STOCHASTIC VARIATION

explored more evenly. This sampling method is not well suited for solving the prob-
lem discussed here, but gives a lot of inspiration for the proposed method.

Normally, in this approach, a set of orthogonal basis vectors Ξ = {ξ1, ξ2, . . . , ξn} are
maintained in each optimization iteration, determining the exploration directions.
In each iteration, only a line search is conducted along a basis vector, which is
achieved by sampling two trial points: one point is created by adding the basis to
the current search point m while the other one is mirrored. In the next iteration,
another basis vector in Ξ is picked for the exploration. The general framework of
the optimization algorithm using this method is summarized below:

1. Initialize the search point m, an orthonormal basis Ξ = {ξ1, ξ2, . . . , ξn} and
the step sizes {σ1, σ2, . . . , σn} for each vector in the basis.

2. If the termination condition is not satisfied, perform the following steps until
(e) for each iteration. Let g be the iteration counter:

(a) Choose vector ξi as the exploration direction where i = g mod n and
generate one trial point: x1 = m + σiξi.

(b) For Rosenbrock’s local search, goto (c). For the other methods, use
vector ξi to generate the other trial point: x2 = m− σiξi.

(c) Evaluate the trial points x1,x2 (if x2 exists). Set the search point m
to the one with the best fitness value.

(d) Update the step size σi according to a deterministic or stochastic rule
and increase the iteration counter g by one.

(e) If g mod n = 0, then update the basis Ξ according to the search points
of the most recent n iterations.

When all vectors in Ξ are tried, the orthogonal basis Ξ is either unchanged or
updated based on the successful vectors in the history. Note that the rules of the
update may be different in every optimization algorithm. In Coordinate Descent,
the basis is fixed to the standard basis in Rd during the process. In ACiD, the
basis is updated by Adaptive Encoding (Hansen, 2008), which is the generalization
of the covariance matrix update in CMA-ES. We deliberately term this sampling
method as deterministic orthogonal sampling due to the fact that the update of
the orthonormal basis is completely deterministic and it is easier to distinguish
this sampling method from the random orthogonal sampling proposed here.

20



2.2 Mirroring and Orthogonalization

2.2.2 Mirrored Orthogonal Sampling

In this section, we propose a new sampling method based on the mirrored sampling
technique. The motivation, the algorithm and the implementation are provided.
This new method is motivated by the following observation: In mirrored sampling,
half of the mutation vectors (the mirrored or dependent ones) completely depend
on the other half (the realized or independent ones). Between these two sets of
mutations, mirrored sampling is able to guarantee a significant difference between a
realized mutation and its mirrored counterpart. In addition, the mirrored mutation
is anti-parallel to the realized one and thus a mirrored pair would span two half-
spaces almost surely, no matter how the search space is partitioned (such a pair
can stay on the partition boundary with zero probability). However, within the
realized half of mutations, everything is still purely random and not arranged
evenly in high-dimensional space. Thus, the mirrored sampling technique still
suffers from undesirable clustering of samples.

In order to improve the realized half of the mutations, we resort to the deterministic
orthogonal sampling method (Section 2.2.1), where the mutations (new search
points) are generated along a precomputed orthogonal basis and thus the minimal
distance between samples is greatly enlarged. The disadvantage is that it only
works in the single-parental evolutionary algorithm and only one of the orthogonal
samples can be used in one evolution cycle, which limits its usability for the
general (µ, λ)-ES. Instead of generating mutations along some orthogonal basis,
it is proposed here to create half the mutations as “uniform random orthogonal
vectors”, in the sense that each vector is stochastic instead of the deterministic
orthonormal basis and “uniform random” requires each vector to sample each
direction evenly (Wang et al., 2014).
Definition 2.1. The uniform random orthogonal vectors are defined as a
set of random vectors {O1,O2, . . . ,Ok} ⊂ Rd (k ≤ d), satisfying the following
three properties:

1. Orthogonality: ∀i 6= j ∈ {1, 2, . . . , k}, 〈Oi,Oj〉 = 0.

2. χ(d)-distributed norm: ∀i ∈ {1, 2, . . . , k}, ‖Oi‖ =
√
〈Oi,Oi〉 ∼ χ(d).

3. Uniformality: for each vector Oi, its normalization Oi/ ‖Oi‖ distributes
uniformly on the unit sphere.

Remark. 1) The norm of those vectors is restricted to χ(d)-distribution for
mimicking the behavior of the vector samples from the standard multivariate

21



2. STOCHASTIC VARIATION

Gaussian distribution. 2) The uniform distribution on the unit sphere is equivalent
to the rotation-invariant property with respect to an arbitrary rotation matrix1

R ∈ Rd×d: the random vector x and the rotated one x′ = Rx are identically
distributed. 3) Throughout this thesis, the dot product is taken for the inner
product, namely 〈x,y〉 = x>y.

The new mutation method is named random orthogonal sampling. For clarity, the
mutation operator (that takes i.i.d. normal samples) in the canonical CMA-ES is
called standard random sampling. In addition, the random orthogonal samples
are rescaled and rotated according to the covariance matrix C before they are
added to the parental point m, which follows the same as the procedures as for
the Gaussian mutations :

x2i−1 ←m + σC 1
2 Oi, 1 ≤ i ≤ λ/2. (2.1)

The x’s are the new search points and σ denotes the step size. The implementation
of the random orthogonal sampling algorithm and the validity of the implementation
are discussed in the following section. Consider two i.i.d. vectors x and y drawn
from a standard normal distribution. The expected value of the inner product of
these two vectors is given as:

E〈x,y〉 =
n∑
i=1

Exiyi = 0.

This indicates two independent standard normal vectors are orthogonal to each
other in expectation. Intuitively, by generating random orthogonal samples, the
mutations are derandomized such that the variance of the angle formed by a
pair of mutations vanishes. Therefore, the search directions are guaranteed to be
uncorrelated so that the mutation samples are spread over the space more evenly.
In the next step, we combine mirrored sampling with random orthogonal sampling
such that the remaining half of the search points are created by mirroring, which
reads as follows:

x2i ←m− σC 1
2 Oi, 1 ≤ i ≤ λ/2. (2.2)

Note that only using random orthogonal sampling is not sufficient for exploration
due to the fact that random orthogonal vectors are only capable of spanning
one orthant of the space, no matter how they are realized (just consider the

1A d-dimensional rotation matrix R satisfies conditions R−1 = R> and det(R) = 1. All
such matrices form so-called special orthogonal group SO(d).

22



2.2 Mirroring and Orthogonalization

Algorithm 3 Mirrored Orthogonal Sampling
1: procedure mirrored-orthogonal(m, σ,C, λ)
2: B,D← eigen-decomposition(C)
3: if λ mod 2 6= 0 and zlast is not set then
4: xλ ←m− σBDzlast . zlast: the unused mutation from the last

iteration
5: λ′ ← λ− 1 . One offspring is already created
6: Unset the static variable zlast. . Unset zlast once it is used
7: else
8: λ′ ← λ

9: end if
10: p← dλ′/2e
11: {zi}pi=1 ← orthogonal(p) . sub-procedure, see Alg. 5
12: for i = 1→ p do
13: x2i−1 ←m + σBDzi
14: x2i ←m− σBDzi . Mirroring
15: end for
16: if λ′ mod 2 6= 0 then . Save the unused mutation to the next iteration
17: Set the static variable zlast ← zp
18: end if
19: return {x1,x2, . . . ,xλ}
20: end procedure

canonical basis in 3-D). Combining Eq. (2.1) and (2.2), the new sampling approach
is completed and is called mirrored orthogonal sampling. In addition, any ES
algorithm exploiting it is denoted as (µ +, λo

m)-ES here. The detailed algorithm of
the mirrored orthogonal sampling method is given as Algorithm 3. Note that an
algorithm for generating random orthogonal Gaussian vectors (which is explained
in the following) is invoked in line 10 and replaces the direct sampling of the
Gaussian distribution. The remainder of this algorithm is basically the same as
mirrored sampling (Alg. 2).

The mirrored orthogonal sampling method is a variant of mirrored sampling.
In addition to mirroring, which ensures the difference within any mirrored pair,
the orthogonalization method is exploited to guarantee the significant differences
among realized mutations. Therefore, it is quite straightforward to compare the
performance of mirrored orthogonal sampling to that of mirrored sampling and to

23



2. STOCHASTIC VARIATION

that of standard sampling. Such a comparison is presented in the experimental
results (Section 2.4).

2.2.3 Implementation of Random Orthogonal Sampling

In order to implement random orthogonal sampling as introduced previously,
the well-known Gram-Schmidt process (Björck, 1994) is exploited to generate the
orthogonal samples. The Gram-Schmidt process is a method for orthogonormalizing
a set of vectors in an inner product space, most commonly the Euclidean space Rd.
It takes a finite, linearly independent set S = {v1, . . . ,vk} for k ≤ d and generates
an orthogonal set S ′ = {u1, . . . ,uk} that spans the same k-dimensional subspace
of Rn as S. The Gram-Schmidt process is shown in Alg. 4.

Algorithm 4 Gram-Schmidt orthonormalization
1: procedure gram-schmidt({v1,v2, . . . ,vk})
2: for i = 2→ k do
3: for j = 1→ i− 1 do
4: vi ← vi −

(
v>i vj/||vj ||2

)
vj . Othogonalizing vi to vj

5: end for
6: end for
7: for i = 1→ k do
8: vi ← vi/||vi|| . Normalization
9: end for
10: return {v1,v2, . . . ,vk}
11: end procedure

Let p equal λ/2 again. In the first step, we sample p i.i.d. vectors from the standard
normal distribution and record their norms (lengths), i.e.:

S = {s1, . . . , sp} , si ∼N (0, I), Li = ‖si‖ , i = 1, . . . , p. (2.3)

Note that the Gram-Schmidt process is an orthonormalization method, normalizing
the lengths of the i.i.d. samples. Therefore, the lengths have to be manually recorded
so that we can restore mutation lengths for the samples. Then, processing S by
the Gram-Schmidt process would give us a collection S ′ of random orthonormal
vectors,

S ′ =
{

s′1, . . . , s′p
}

= gram-schmidt(S). (2.4)

24



2.2 Mirroring and Orthogonalization

Note that each vector of s′1, . . . , s′p is of unit length and those vectors are orthogonal
to each other. It is not very hard to see from Algorithm 4 that among all the
resulting vectors, the direction of s′1 remains unchanged and the direction of s′i
depends on the set {sk}i−1

k=1. Therefore, intuitively, the output vectors of the Gram-
Schmidt process, {s′i}

p
i=1 are uniformly distributed on the unit sphere because the

input vectors {sk}pk=1 are independent and identically distributed. Finally, we
rescale all the s′i by their corresponding original length:

zi = Lis′i, i = 1, . . . , p. (2.5)

The resulting random vectors are orthogonal Gaussian samples, which completes
this process. A special situation takes place if p is greater than the dimensionality
d: it is simply not possible to generate more than d distinct orthogonal vectors in
Rd. In this case, only d mutation samples are created using Equations (2.3), (2.4)
and (2.5), and the remaining p − d samples are created using the standard ran-
dom sampling. The detailed procedure of orthogonal sampling is described in
Algorithm 5. Lines 3 − 6 correspond to Eq. (2.3). Through lines 7 − 17, the
Gram-Schmidt process is invoked and the number of samples p is handled properly.
The advantage of this implementation is that there is no additional parameter to
be considered. As for the time complexity, extra costs are spent in calling the
Gram-Schmidt process, which is O(k2d), k = min{p, d}.

To justify this implementation, it is possible to check the generated samples
according to Definition 2.1: the orthogonality and restriction on the vectors length
are immediately satisfied. The rotation-invariance of the vectors can be shown
as follows. Firstly, the standard normal vectors are rotation-invariant, meaning
that for every si ∼ N (0, I), it has the same distribution as Rsi, where R is the
rotation matrix taken from SO(d). Second, the orthogonalization formula of the
Gram-Schmidt process, which is encoded in Algorithm 4, reads as follows:

s′i = si −
i−1∑
j=1

〈si, sj〉
||sj ||2

sj , i = 1, . . . , p,

Now if an arbitrary rotation operator R ∈ SO(d) is applied on s′i, the resulting
vector is,

s′′i = Rs′i = Rsi −
i−1∑
j=1

〈Rsi,Rsj〉
||Rsj ||2

Rsj , i = 1, . . . , p, (2.6)

Note that it is valid to put R in the norm and the inner product (e.g., ||Rsj ||)
because such matrices preserve the inner product. Finally, Rsi is identically

25



2. STOCHASTIC VARIATION

Algorithm 5 Orthogonal sampling
1: procedure orthogonal(p)
2: for i = 1→ p do
3: si ←N (0, I) . generate standard normal vectors
4: Li ← ‖si‖ . store the length
5: end for
6: k ← min{p, n} . number of inputs for Gram-Schmidt
7: {s′1, . . . , s′k} ← gram-schmidt({s1, . . . , sk}) . sub-procedure, see Alg. 4
8: for i = 1→ k do
9: zi ← Lis′i . rescale the length
10: end for
11: if k < p then . more than n samples are needed
12: for i = 1→ p− k do
13: zk+i ← sk+i . copy the standard normal vectors
14: end for
15: end if
16: return {z1, z2, . . . , zp}
17: end procedure

distributed as si and it also holds for the remaining terms in the right-hand-side
of Eq. (2.6). Therefore, s′′i is identically distributed as s′i and therefore it is
rotation-invariant. A more rigorous proof can be found in Eaton (1983).

2.3 Convergence Analysis of Mirroring and Or-
thogonalization

The theoretical analysis is twofold. First, the progress rate analysis for (1, λ)-ES,
introduced in Beyer (1993), is applied to analyze mirrored sampling. In addition,
such analysis gives a straightforward explanation why mirrored orthogonal sampling
improves performance. There are no analytical results for mirrored orthogonal
sampling yet while its empirical results are compared to random and mirrored
sampling. Second, the progress rate analysis is applied again to provide an analytical
result about the worst case performance of mirrored orthogonal sampling. This will
(partially) explain the advantages of the new sampling method. For the analysis
in the following, we will only consider the (1, λ)-ES with isotropic mutations on

26



2.3 Convergence Analysis of Mirroring and Orthogonalization

the so-called sphere function1, which is defined as:

f(x) = (x− x∗)>(x− x∗), x ∈ Rd,

which has the global minimum x∗. In addition, for the simplicity of our deviation,
it is also assumed that the population size λ is even in the following analysis. In
practice, when λ is odd, the corresponding progress rate can be bounded from below
by using λ−1 in the analysis and also be bounded from above by using λ+1. Note
that although some results (e.g., Fig. 2.3b) can be equivalently obtained, using the
theoretical framework of convergence rate analysis (Brockhoff et al., 2010), we did
not adopt such an analysis approach because the progress rate analysis gives more
insight into why the proposed sampling method outperforms its counterparts. The
link between progress rate and convergence rate is elaborated in Auger and Hansen
(2011). For the convergence rate analysis on the mirrored sampling method, please
see Auger et al. (2011a,b).

2.3.1 Mirrored Sampling

We will begin with the analysis of the (1, λm)-ES in order to show the reason
why it outperforms random sampling and this analysis serves as a baseline for the
comparison to mirrored orthogonal sampling, which is investigated here by the
Monte Carlo simulation. The basics of the analysis are shown in Fig. 2.2a, following
the same treatment as in Bäck (1995). Let P be the current parent which is at a
distance R from the optimum O. Due to the spherical symmetry, only the distance
R is crucial, not the actual position of P. The hypersphere centered at P has a
radius of σ

√
d and represents the mean length of isotropic Gaussian mutations:

z = N (0, σ2I). The mirrored mutation is indicated as −z. The progress of each
mutation can be measured by the projection of z onto line PO, which is the
random variable z. Due to the invariance properties of isotropic Gaussian vectors,
z is found to be normally distributed as N (0, σ2), regardless of the actual direction
of PO. The progress made by mutation z is R − r. Furthermore, for a set of
mutations {zi}1≤i≤λ, the actual progress made by all the mutations is R − r1:λ,
where r1:λ is the smallest order statistic among {ri}1≤i≤λ. The progress rate is

1The sphere function is a standard function for theoretical analysis, reflecting local convergence
properties of ESs.

27



2. STOCHASTIC VARIATION

defined in Beyer (2013):

ϕ1,λ = E {R− r1:λ} ' E
{
R−

√
(R− zλ:λ)2 + σ2d

}
. (2.7)

The approximation in Eq. (2.7) takes place when we replace ||z|| by σ
√
d. Note

that zλ:λ, the largest order statistic among the projections of all the mutations
onto PO, determines the expectation above.

P
O

z

−z
z

r R

(a)

P1

P2

O

si
sj

(b)

Figure 2.2: (a). Schematic diagram for the progress rate analysis on the sphere
function. The mutations are centered at P, which is at distance R from the optimum
O. (b) In 2-D, the diagram shows the best case (P1) of progress and the worst case
(P2) for mirrored orthogonal sampling on the sphere function.

For the mirrored sampling, if zi is the projection of mutation zi onto PO, then
the projection of its mirrored mutation −zi is −zi by symmetry. Thus, the set
of the projections of all the mutations of mirrored sampling can be written as
{zi,−zi}1≤i≤λ/2. Let Pm

λ:λ(Z ≤ z) denote the cumulative probability distribution
(c.d.f.) of the largest order statistic among {zi,−zi}1≤i≤λ/2. Suppose for every
z ≥ 0, in order to facilitate the condition in Pm

λ:λ(Z ≤ z), namely the largest order
statistic is less than or equal to z, we must have zi ≤ z,−zi ≤ z for all the zi,
which implies −z ≤ zi ≤ z for all the zi. The intuition is that all random mutation
points are required to be sampled less than or equal to z. In addition, because
mirrored mutations are generated by reversing the signs of random mutations,
every random mutation also needs to be bigger than −z, otherwise the mirrored

28



2.3 Convergence Analysis of Mirroring and Orthogonalization

counterpart of an outlier would be larger than z and fails the condition. The
argument reads as follows:

Pm
λ:λ(Z ≤ z) = [Pr (−z < Z ≤ z)]λ/2

=
[
Φ
( z
σ

)
− Φ

(
− z
σ

)]λ/2
=
[
2Φ
( z
σ

)
− 1
]λ/2

, ∀z ≥ 0.

Note that Φ(·) stands for the c.d.f. of a standard normal random variable. Then,
in case of z < 0, the cumulative probability should be always 0. The reason is that
if a realized mutation is sampled negative, then its mirrored counterpart would be
positive. Therefore the largest order statistics could not be negative ever. In total,
the c.d.f. of the largest order statistic is summarized as:

Pm
λ:λ(Z ≤ z) =

{[
2Φ
(
z
σ

)
− 1
]λ/2 ∀z ≥ 0,

0 otherwise.

And its probability density function is:

pm
λ:λ(z) =

{
λp( zσ )

[
2Φ
(
z
σ

)
− 1
]λ/2−1 ∀z ≥ 0,

0 otherwise.
(2.8)

where p(·) denotes the probability density function (p.d.f.) of a standard normal
distribution. This density can be compared to the largest order statistic among
the same projections of random samples (Beyer, 1993):

pλ:λ(z) = λp
( z
σ

)
Φ
( z
σ

)λ−1
.

In 5-D with λ = 10, we plot the c.d.f. and p.d.f. of mirrored sampling and random
sampling in Fig. 2.3a. It is clear from the figure that the distribution of the largest
projection for mirrored sampling is shifted to the right, compared to that for the
Gaussian sampling and therefore the corresponding distribution of projections is
shifted towards larger values. This advantage would affect the progress rate (as
shown in the following) and is the main reason why mirrored sampling has a better
performance than random sampling. By using the normalized quantities,

ϕ∗ = ϕ
d

R
, σ∗ = σ

d

R
,

and applying the same derivation as in Beyer (1993), the progress rate of (1, λm)-ES
can be obtained by expanding the expectation in Eq. (2.7) (the details of the

29



2. STOCHASTIC VARIATION

simplification are not shown here):

ϕ∗1,λm
=
∫ ∞

0
zpm
λ:λ(z) dz − (σ∗)2

2

= λ

∫ ∞
0

zp
( z
σ

) [
2Φ
( z
σ

)
− 1
]λ/2−1

dz − (σ∗)2

2

= σ∗
(
λ

∫ ∞
0

z′p(z′) [2Φ (z′)− 1]λ/2−1 dz′
)
− (σ∗)2

2

= c1,λmσ
∗ − (σ∗)2

2 . (2.9)

In the equation above, the integral about the normalized largest projection z′ = z/σ

computes its expectation and it is known as the progress coefficient from (Beyer,
1993). We denote it by c1,λm here. It can be compared to the progress coefficient
of random sampling, which reads:

c1,λ = λ

∫ ∞
−∞

zp(z)Φ(z)λ−1 dz.

Note that the progress rate of random sampling can be easily obtained by replacing
c1,λm in Eq. (2.9) with c1,λ. Numerically, we plot the progress coefficients of
random sampling and mirrored sampling against population size in Fig. 2.3b. The
mirrored sampling (the curve marked by triangles) shows a small yet obvious
advantage compared to the random sampling for small population sizes. In larger
populations, these two converging curves imply that mirrored sampling provides
no speed-up compared to the standard ES algorithm. Thus, the application of
mirrored sampling should be limited to the small population setting.

For mirrored orthogonal sampling, we would like to use the same approach as
for the mirrored sampling analysis above. However, it is hard to analytically
obtain the c.d.f. and the density function of the largest projection onto PO of
the mirrored orthogonal sampling. Therefore, we compute its c.d.f. and density
function empirically by Monte-Carlo simulation. For the simulation, the population
size λ is set to 2d. The mirrored orthogonal samples are projected onto PO and the
largest projections are stored, from which the c.d.f. is estimated. The results are
also summarized in Fig 2.3. In Fig. 2.3a, the c.d.f. of mirrored orthogonal sampling
(the solid curve marked by stars) is more likely to distribute samples towards bigger
values compared to the c.d.f. of mirrored sampling. As a consequence, in Fig. 2.3b,
the progress coefficients of mirrored orthogonal sampling are significantly bigger
than those of mirrored sampling, even in a large population.

30



2.3 Convergence Analysis of Mirroring and Orthogonalization

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

zλ:λ/σ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

random sampling
mirrored sampling
mirrored orthogonal sampling

(a)

0 10 20 30 40 50
λ

0.5

1.0

1.5

2.0

2.5

pr
og

re
ss

co
ef

fic
ie

nt

c1,λ

c1,λm

c1,λo
m

ĉ1,λo
m

(b)

Figure 2.3: (a): The c.d.f. (solid) and p.d.f. (dashed) of the largest projection
(normalized) onto PO for random, mirrored and mirrored orthogonal sampling. The
dimension d is set to 5 and λ = 10 for all curves. There are 106 trials used in the
estimation for mirrored orthogonal sampling. For the other sampling methods, the
curves show the corresponding analytical results. (b): Progress coefficients against
population size λ for random sampling, mirrored sampling and mirrored orthogonal
sampling. The dimensionality d is set to λ/2 for all curves. The black dotted curve
is the lower bound on the progress coefficient of mirrored orthogonal sampling.

2.3.2 Mirrored Orthogonal Sampling

The worst case analysis of mirrored orthogonal sampling is conducted when the
population size is set to 2d. We will call such population setting as “full mutations”.
Under this condition, the progress rate is maximized (as will be explained later)
and it is possible to provide analytical results. The progress under the condition
λ < 2d will be also discussed later. In 2-D with λ = 4, the worst case (together with
best case) of progress for (1, λo

m) is shown in Fig. 2.2b. Suppose the step size σ = 1
here for simplification. In the mutations centered at P1, there is one mutation
pointing to the optimum O and therefore this mutation performs optimally. We
call this mutation scenario the best case of progresses. The progress coefficient in
this case is the expectation of the standard norm mutation length. It serves as the
upper bound of the progress coefficient and is the same for random, mirrored and
mirrored orthogonal sampling.

The worst case of progress is indicated by the mutations centered at P2 in which

31



2. STOCHASTIC VARIATION

the angle formed by the line segment P2O and mutation si is the same as the one
(π/4 as shown in the figure) formed by P2O and sj . In this scenario, the expected
projections of si and sj are the same. It is not possible to make the expected
projection of one mutation smaller without rendering the expected projection of
the other one larger. For example, if we rotate sj a little bit clockwise, then its
projection becomes smaller. However, in the meanwhile si is also rotated and its
projection gets larger. Consequently, the largest projection of all the mutations
becomes larger. Therefore, among all the possible mutation scenarios, P2 gives the
lower bound of the largest projection of mutations onto P2O. Recall from Eq. (2.7)
that the progress made by (1, λ)-ES is determined by the largest projection. Thus,
the scenario P2 is the worst case of progress. Under the “full” mutation condition,
we generalize the worst case for arbitrary dimensions. Let the mirrored orthogonal
samples be denoted as {Oi,−Oi}1≤i≤λ/2. The unit vectors along the orthogonal
mutations are defined as:

ui = Oi

‖Oi‖
. (2.10)

Combining the unit vectors for mirrored mutations, all the unit vectors are
{ui,−ui}1≤i≤λ/2. The worst case of progress is defined by the following con-
ditions: for all the unit vectors, the linear combination with equal weights (denoted
as d in the following) of λ/2 = n unit vectors points to the optimum O and also
to the reverse direction of the gradient of the sphere function, which reads:

d =
λ/2∑
k=1

akuk = −α∇f(x), α > 0, ak = ±1,

where ak is a sign operator to select among uk,−uk. Then the scalar projection
of mutation Oi onto d is expressed as:

projd(Oi) = 〈Oi,d〉
‖d‖ =

∑λ/2
k=1 ak 〈Oi,uk〉∥∥∥∑λ/2

k=1 akuk
∥∥∥ =

∑λ/2
k=1 ak 〈Oi,Ok〉 / ‖Ok‖∥∥∥∑λ/2

k=1 akuk
∥∥∥ = ak ‖Oi‖√

d
.

Note that we substitute the expression of ui (Eq. (2.10)) in the derivation above.
The projections of all the mutations onto d can be written:

projd =
{
‖Oi‖√
d
,−‖Oi‖√

d

}λ/2
i=1

.

The largest order statistic of all the projections is the maximum of projd:

max {projd} = max
1≤i≤λ/2

{
‖Oi‖√
d
,−‖Oi‖√

d

}
= 1√

d
max

1≤i≤λ/2
{‖Oi‖} = z√

d
.

32



2.3 Convergence Analysis of Mirroring and Orthogonalization

Here we denote the maximal mutation length by z. Note that the ‖Oi‖ are
independently distributed according to χ(n) (see Algorithm 5). Therefore, the
density function of the maximal mutation length among λ/2 mutations reads:

pλ
2 :λ2

(z) = λ

2 pχ(z) (Fχ(z))
λ
2−1

,

where pχ(·), Fχ(·) denote the density and c.d.f. of the χ(n) distribution, respectively.
The worst case progress coefficient of mirrored orthogonal sampling, which is the
expectation of z/

√
n, is denoted as ĉ1,λo

m
and derived as follows:

ĉ1,λo
m

=
∫ ∞

0

z√
d
pλ

2 :λ2
(z) dz

= λ

2
√
d

∫ ∞
0

zpχ(z) (Fχ(z))
λ
2−1 dz

=
√
d

∫ ∞
0

zpχ(z) (Fχ(z))n−1 dz. (2.11)

The last equation results from the fact that we picked the special population size
λ = 2d from the previous analysis setting. Eq. (2.11) is numerically evaluated and
plotted in Fig. 2.3b. The curve for the worst case is above 1 and roughly stays
constant when λ increases. It provides a non-zero lower bound of the progress
coefficient of mirrored orthogonal sampling with “full mutations”, which indicates
no matter in what scenario, the mirrored orthogonal sampling with “full mutations”
is going to guarantee positive progress on the sphere function. To compare, for
random sampling, the lower bound of the progress coefficient is zero because it is
possible to have all the mutations generated as in Fig. 2.1, where no mutation makes
progress. For mirrored sampling, the lower bound of the progress coefficient is also
zero because it is possible that all the mutations are generated in a tangent space
of the local gradient, in which all the vectors are orthogonal to the gradient. Thus,
the non-zero lower bound of mirrored orthogonal sampling with “full mutations”
is its main advantage over the random and mirrored sampling.

In the case that mirrored orthogonal sampling does not use “full mutations”, namely
λ < 2d, the progress rate would be reduced in contrast to the “full mutations” case.
This is because it can now happen that some subspace could not be covered when
λ < 2d. Therefore, it is possible that the subspace in which the progress can be
made is simply unexplored.

33



2. STOCHASTIC VARIATION

2.4 Empirical Results on Mirroring and Orthog-
onalization

For the multi-parental variants of ES, we only consider their empirical conver-
gence rates here. Similar to the convergence rate estimation in Loshchilov et al.
(2011), the effect of the mirrored orthogonal sampling technique on the sphere func-
tion is investigated empirically by incorporating it into the well-known CMA-ES
algorithm.

On the 20-D sphere function, the convergence rates of the (µ, λo
m)-CMA-ES and

other comparable ES variants are illustrated in Fig. 2.4a. The empirical convergence
rate is estimated as the average slope of the convergence curve over 200 runs. For

0 200 400 600 800 1000 1200 1400

function evaluations

10−6

10−5

10−4

10−3

10−2

10−1

100

di
st

an
ce

to
th

e
op

ti
m

un

Sphere 20-D

(µ/µw, λ)-CMA-ES
(µ/µw, λm)-CMA-ES
(µ/µw, λo

m)-CMA-ES
optimal dσ

(1 + 1)-ES
(1 + 1)-ES optimal

(a) Sphere 20-D

2 3 5 10 20 40 80 160
dimension

−0.4

−0.3

−0.2

−0.1

co
nv

er
ge

nc
e

ra
te

*
di

m
en

si
on

Sphere

(µ/µw, λ)-CMA-ES
(µ/µw, λm)-CMA-ES
(µ/µw, λo

m)-CMA-ES
optimal dσ

(1 + 1)-ES
(1 + 1)-ES optimal

(b) Convergence rate

Figure 2.4: The comparison of empirical convergence rates on the sphere func-
tion. All the results are estimated over 200 runs. The suggested λ setting
4 + b3 ln dc (Hansen, 2006) is used for all the CMA-ES variants (a): Plot of the
history of distance to the global optimum against the number of function evalua-
tions for four ES algorithms: (µ, λo

m)-CMA-ES with standard dσ and optimal dσ,
(µ, λm)-CMA-ES, standard (µ, λ)-CMA-ES and (1 + 1)-ES in dimension 20. (b):
Plot of convergence rate × dimensionality against the dimensionality for different
algorithms on the sphere function, using 1500 function evaluations.

all the CMA-ES variants tested here, the default settings of population size are
applied (Hansen, 2006): λ = 4 + b3 ln dc, µ = bλ/2c. The legend “(1 + 1)-ES”
represents the (1+1)-ES with 1/5 success rule step size control while the “(1+1)-ES
optimal” is for the (1 + 1)-ES with scale-invariant step size setting σ = 1.2

d ‖x
(k)‖,

34



2.4 Empirical Results on Mirroring and Orthogonalization

which proves to be the optimal step size setting on the sphere function (Loshchilov
et al., 2011).

The pairwise selection is always used if the mirroring operation is present in the
sampling procedure. The mirrored sampling CMA-ES is denoted as “(µ, λm)-CMA-
ES ”. The curve labeled by “(µ, λo

m)-CMA-ES ” stands for the mirrored orthogonal
CMA-ES. In addition, “optimal dσ” represents the mirrored orthogonal CMA-ES
using the optimal dσ1 tuning on the sphere function. Due to the empirical results,
the convergence of (µ, λo

m)-CMA-ES (marked by diamonds) is slower but close to
that of the (1 + 1)-ES (marked by upside-down triangles) while the (µ, λo

m)-CMA-
ES using the optimal parameter settings gradually catches the convergence rates
of the optimal (1 + 1)-ES in high dimensions.

The relation between the empirical convergence rate and the dimensionality is
shown in Fig. 2.4b. The algorithms tested here are the same as Fig. 2.4a. It
is obvious that there is a leap of convergence rates between the CMA-ES and
its mirrored orthogonal competitor. The advantages of the mirrored orthogonal
CMA-ES over the mirrored CMA-ES are significant and preserved even for large
dimensions. The upper limit of the (µ, λo

m)-CMA-ES on the sphere function is
shown by the convergence rates achieved under the optimal dσ tuning, which is
even better than (1 + 1)-ES for almost all the dimensions. However, the optimal
dσ setting on the sphere function turned out to be not robust when considering
other fitness functions and therefore is not used.

2.4.1 Experiments on BBOB

The mirrored orthogonal version of CMA-ES with pairwise selection has been tested
on the noiseless Black-Box Optimization Benchmark (BBOB) (Hansen et al., 2010).
By using the automatic comparison procedures provided in this benchmark, the
BBOB results of (µ, λo

m)-CMA-ES are compared to those of (µ, λm)-CMA-ES and
(µ, λ)-CMA-ES.

Experimental Settings The three algorithms, (µ, λo
m)-CMA-ES, (µ, λm)-CMA-

ES and (µ, λ)-CMA-ES are benchmarked on BBOB-2012 and their results are
compared and processed by the post-processing procedure of BBOB. The BBOB

1For the definition of the parameter dσ , please see Hansen et al. (2003).

35



2. STOCHASTIC VARIATION

parameter settings of the experiment are the same for all the tested ES variants.
The initial global step size σ is set to 1. The maximum number of function
evaluations is set to 104 × d. The initial solution (initial parent) is uniformly
sampled in the hyper-box [−4, 4]n. The dimensions tested in the experiment are
d ∈ {2, 3, 5, 10, 20, 40}. The experiment employs a relatively large population size,
namely 2d, the result of which is denoted as large population. In this experiment,
the strategy parameters used are exactly the same for the three ES variants. The
modified dσ is not used because it is tuned under the default population setting
instead of the large population setting.

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f 
tr

ia
ls

f1-24
+1

-1

-4

-8

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f 
tr

ia
ls

f1-24
+1

-1

-4

-8

Figure 2.5: Left: d = 5. Right: d = 20. For the large population, the em-
pirical cumulative distributions (ECDF) of run lengths (the number of function
evaluations divided by dimension) for (µ, λo

m)-CMA-ES (solid lines) and (µ, λm)-
CMA-ES (dashed lines) needed to reach a target value.

Results and Discussion The BBOB noiseless testbed (Hansen et al., 2009)
contains 24 test functions which are classified into several groups as separable,
ill-conditioned or multi-modal functions. The performance of tested algorithms
are compared using the aggregated empirical cumulative distribution functions
(ECDFs) of run length over all the test functions are presented here. The ECDF
of run length estimates the cumulative distribution of the function evaluations
consumed in ESs, with respect to a given precision target. The comparisons
between the mirrored orthogonal sampling and its mirrored sampling competitor
are illustrated in Fig. 2.5. From the comparisons between the ECDFs of 5-D (left
half) to that of 20-D (right half), it is obvious that the amount of the improvement
is still significant when the dimensionality increases. The experimental results

36



2.5 Efficient Global Optimization

for the large population suggest that the newly proposed mirrored orthogonal
sampling technique would be most suitable in the case where the population size
is about two times the dimensionality.

2.5 Efficient Global Optimization

Apart from the aforementioned mutation methods, that are directly defined by
the realization of some probability distributions, in this section we shall extract
and discuss the special method of creating new solutions from the Efficient Global
Optimization (EGO) (Jones et al., 1998; Močkus, 1975, 2012) algorithm. Briefly, in
this mutation method, the new candidate solution is obtained via the optimization
on a well-specified utility function, which quantifies the potential “gain” in fitness
value by evaluating this new solution. Therefore, we shall call this method
Mutation by Optimization. In general, the utility function depends on a
stochastic model (or statistical estimator) f̂ of the fitness function f and statistical
properties of this estimator f̂ , e.g., the mean squared error of the estimate: s2(x) =
E{f̂(x) − f(x)}2,∀x ∈ S. Note that f̂ is usually called predictor in machine
learning and we shall use these terminologies interchangeably here. Typically, the
estimator f̂ is a function of (random) sample X = {x1,x2, . . . ,xn} ⊂ S and its
corresponding fitness values y = (f(x1), f(x2), . . . , f(xn))>. The utility function
is then denoted as A : S → R. The new candidate solution x′ is proposed by
solving the following problem1:

x′ = arg max
x∈S

A (x; Θ), (2.12)

where Θ is a set of parameters that A might rely on (see Eq. (4.2) for example).
In the literature, A is termed as infill criterion (Jones, 2001) or acquisition func-
tion (Martinez-Cantin, 2014) and we shall adopt the former throughout this thesis.
Some commonly used infill criteria include: Expected Improvement, Probability of
Improvement and Lower Confidence Bound. Typically, infill criteria are designed
to make a balance between the model prediction f̂ and the MSE of prediction
(uncertainty) s2. The detailed discussion on infill criteria can be found in Chapter 4.
Built on the mutation by optimization mechanism, Efficient Global Optimization
(also referred as Bayesian optimization (Močkus, 2012)) is able to perform a direct

1Some of the infill criteria are subject to minimization by the original definition. However, it
can be equivalently transformed into the maximization task.

37



2. STOCHASTIC VARIATION

optimization efficiently on expensive objective functions. EGO is a sequential
design strategy and it is presented in Alg. 6.

Algorithm 6 Efficient Global Optimization
1: procedure ego(f,A , S) . f : objective function, A : infill criterion, S: search

space
2: Sample the initial design X ⊂ S
3: Evaluate y← (f(x1), f(x2), . . . , f(xn))>

4: Construct the fitness estimator f̂ on X,y.
5: while the stop criteria are not fulfilled do
6: x′ ← arg maxx∈S A (x; Θ)
7: Evaluate y′ ← f(x′)
8: X← X ∪ {x′},y← (y>, y′)>

9: Re-construct the estimator f̂ on X,y
10: end while
11: end procedure

Randomness It seems that the new location provided by solving Eq. (2.12) is
deterministic and thus mutation by optimization is, by definition, not a stochastic
variation method. However, although most of the infill criteria exhibit smooth
landscapes, they are also highly multi-modal (see Section 4.2). This causes a
practical difficulty in solving Eq. (2.12) globally. Although the exact solver, e.g.,
branch-and-bound (Jones et al., 1998) has been adapted for this task, such a solver
only works a few types of infill criteria/covariance functions (see the discussion on
the stochastic model below) and thus becomes inapplicable in practice. Instead,
a stochastic optimization algorithm, e.g., evolutionary algorithms, is frequently
applied for the infill criteria maximization, yielding random solutions. Thus,
mutation by optimization is indeed practically stochastic and its randomness is
determined by the underlying stochastic optimizer of the infill criterion A .

Stochastic model To approximate the unknown objective function, the Gaus-
sian process regression (GPR)/Kriging (Rasmussen and Williams, 2006;
Krige, 1951) is used in EGO. It is a stochastic interpolation approach, which
stems from earth science (Krige, 1951) and originally targets mining problems. It
has been widely used as a surrogate model in the design and analysis of computer

38



2.5 Efficient Global Optimization

experiments (Sacks et al., 1989; Santner et al., 2003), where the time-consuming
simulations (computer models) are replaced by predictions from a Kriging model.
In this technique, the objective function f is modeled as a realization of a Gaussian
process Y . Conditioning on the data set (X,y), the so-called posterior process is
obtained via Bayesian inference. The Gaussian Process Y is completely defined by
a prescribed mean (trend) function t(x) and a covariance function k(x,x′) (Ras-
mussen and Williams, 2006, Chapter 2.2):

t(x) = EY (x),

k(x,x′) = E{(Y (x)− t(x))(Y (x′)− t(x′))}.

When the mean function is assumed to be constant and unknown, the method is
called Ordinary Kriging (OK) and is typically used in EGO. Now we wish to predict
f(x) at an unknown location x ∈ S. Without giving the derivation, the conditional
distribution of Y on the observations y is a Gaussian distribution (Rasmussen and
Williams, 2006):

Y (x) | y ∼ N
(
f̂(x), s2(x)

)
. (2.13)

The conditional mean function f̂(·) is used as the predictor for f while s2(·) gives
the MSE of the predictor f̂ . For the detailed discussion on Kriging/GPR, please
see Chapter 3.

Step-wise risk Conceptually, EGO is a greedy step-wise search strategy. For
instance, the model prediction can be set as the infill criterion, namely A := f̂ ,
giving the complete “trust” on the stochastic model. However, this is a highly
risky action as the model is typically not accurate in the early stage of the
optimization. To quantify the risk of the step-wise maximization of infill criteria,
it is straightforward to calculate the rate of failure:

r = Pr(f(x) > fmin) = 1− Pr(f(x) < fmin),

where fmin := min{y} is the current minimal function value. Note that it is
not feasible to calculate this rate due to the fact that there is a lack of the
distribution information (e.g., which parametric family should be taken) about f ,
when assuming f is stochastic1. Thus, the typical approach is to approximate the

1Theoretically, this can be done by considering all the probabilistic models M (e.g., Gaus-
sian/Student’s t-process) for f and assuming a distribution over the models (e.g., a Dirichlet
process). Then r = E{Pr(f(x) > fmin |M )}.

39



2. STOCHASTIC VARIATION

rate of failure under a specific distribution on f . When choosing the Kriging/GPR
for f (Eq. (2.13)), the risk approximate is:

r̂ = 1− Pr(Y (x) < fmin | y).

Note that Pr(Y (x) < fmin | y) is also a commonly used infill criterion, called
probability of improvement (Eq. (4.6)). From the perspective of step-wise risks,
it is interesting to compare EGO with the well-known Simulated Annealing (SA)
algorithm (Agrawal et al., 1995):

• In SA, each candidate location x′ that is worse than its parent x is accepted
with the probability:

rsa = exp
(
−f(x′)− f(x)

t

)
,

where t ∈ R>0 is the current temperature of SA. In other words, the step-wise
risk of SA is rsa.

• In EGO, each mutation x′ obtained from Eq. (2.12) is always accepted and
the step-wise risk of this action is r̂.

From this conceptual comparison, it is obvious that EGO has no control over
the step-wise risk if the probability of improvement is not chosen as the infill
criterion. However, when using the probability of improvement, the resulting
algorithm behaves very exploitative (see Section 4.2). To make a trade-off between
exploitation and exploration, it is possible to enforce maximal risk (minimal
probability of improvement) on the infill criterion maximization:

arg max
x∈S

A (x; Θ)

subject to r̂ < υ,
(2.14)

where υ is the threshold of the step-wise risk. It can be either determined by
the user or controlled online as with rsa in the Simulated Annealing. Intuitively,
Eq. (2.14) pre-screens out highly risky regions in the search space. As will be
described in Section 4.2, an alternative approach is to consider the step-wise risk
and the other infill criterion as a bi-objective optimization task.

40



2.6 Summary

2.6 Summary

In this chapter, we discuss the stochastic variation operator, which is one of the
most important component of stochastic optimization algorithms. Specifically, the
so-called Gaussian sampling is re-visited: the sampling error of Gaussian random
sampling could be very large when the sample size is quite small. The large
sampling error could potentially reduce the efficiency of the stochastic variation.
As a remedy, the mirrored orthogonal sampling is proposed to reduce the sampling
error and therefore accelerate the convergence velocity for the small sample size.
Apart from improving the existing stochastic variation operator, we manage
to extract a stochastic variation operator from the well-known Efficient Global
Optimization algorithm. The resulting operator is called mutation by optimization.
In this manner, the EGO algorithm becomes conceptually similar to the canonical
stochastic optimization algorithm, e.g., the Simulated Annealing.

41





ch
ap

te
r

3
Kriging/Gaussian Process Regression

As nonparametric regression/interpolation methods, Kriging and Gaussian Process
regression (GPR) (Stein, 1999; Rasmussen and Williams, 2006) are widely used as
a (meta-)modeling tool in Design and Analysis of Computer Experiments (Sacks
et al., 1989; Santner et al., 2003), Surrogate-assisted Evolutionary Algorithms (Em-
merich, 2005; Jin, 2011), Global Optimization (Jones et al., 1998; Močkus, 2012)
and Algorithm Configuration (Hutter et al., 2011; Bartz-Beielstein et al., 2005).
Commonly, Kriging and GPR are used interchangeably in the literature due to the
fact that they represent exactly the same estimator. However, they are motivated
and derived differently and thus possess different assumptions and properties:
Kriging is originated in geostatistics (Krige, 1951) while GPR is usually discussed
in nonparametric Bayesian inference (van der Vaart and van Zanten, 2008). In this
chapter, we shall compare these two methods conceptually and discuss to which
extent they can be used interchangeably.

Moreover, it is well-known that Kriging/GPR suffers from the cubic time complexity
and quadratic space complexity as the number of the data points increases. Several
existing solutions to this issue are summarized and compared in this chapter. In
addition, a novel solution framework, Cluster Kriging (CK), is proposed, in which
the data set is divided into several folds and Kriging estimators constructed on
each fold are combined in multiple ways. Similar to our argument on Kriging/GPR
above, two parallel derivations of Cluster Kriging are presented: one approach
taking the properties of Gaussian process (section 3.2.3) and the other one built on
the theory of the best linear unbiased prediction (BLUP). In addition, the ability
of reducing the time complexity is validated through experimental studies. To
illustrate the usefulness of Cluster Kriging, it is then applied as the surrogate
model in the efficient global optimization (EGO), aiming at reducing the running

43



3. KRIGING/GAUSSIAN PROCESS REGRESSION

time of EGO without slowing down its convergence rate. The resulting CK-EGO
algorithm is tested on some benchmark functions in Section 3.3.

3.1 General Discussion

The discussion begins with assumptions that are common in both Kriging and
GPR. Consider a (noiseless) real-valued function of interest f : S ⊂ Rd → R.
It could serve as an objective function in optimization or a response variable
in meta-modeling. Without loss of generality, we assume space L2(S) for such
functions. A real-valued stochastic process Y = {Y (x) : x ∈ S} is a collection of
random variables indexed by a set S, where random variables

∀x ∈ S, Y (x) : Ω→ R,

are defined between the probability space (Ω,F ,P) and the measurable space
(R,B) (F is the σ-algebra on Ω and B is the Borel algebra on the real line). In
order to make clear arguments, it is convenient to define the stochastic process Y
as a measurable function of two variables (Øksendal, 2003),

Y : S× Ω→ R, (x, ω) 7→ Y (x, ω).

Using this notation, for every point x ∈ S, Y (x, ·) denotes the random variable
indexed by x and for every outcome ω ∈ Ω, Y (·, ω) : S→ R is a real-valued function
and is called sample path/sample function of process Y . In the following
discussion, when the outcome ω is not explicitly given, we shall abbreviate Y (x, ·)
as Y (x).

The general assumption of Kriging/GPR is: f is a sample function of Y .
Commonly, the stochastic process Y is specified by two components: a deterministic
trend function t and a centered stochastic process Z:

Y (x) = t(x) + Z(x). (3.1)

In general, instead of specifying the distribution for Z, only the mean and the
covariance structure are given: ∀x,x′ ∈ S,EZ(x) = 0,Cov{Z(x), Z(x′)} =
k(x,x′). Note that k : Rd × Rd → R is a positive-definite kernel, called co-
variance function. Suppose the target function f is evaluated at n points1: y =

1Those points are typically obtained via a design of experiment, e.g., Latin hypercube
sampling.

44



3.1 General Discussion

(f(x1), f(x2), . . . , f(xn))>. According to the assumption of Kriging, y also repre-
sents the realization of the random vector ψ = (Y (x1), Y (x2), . . . , Y (xn))>:

∃ω ∈ Ω, y = ψ(ω) = (Y (x1, ω), Y (x2, ω), . . . , Y (xn, ω))>.

Then the task is to approximate the value f(x) at an unobserved location x using
vector y. In the following, each component of process Y is specified. Normally,
the trend function takes a parametric form. For example, it could be either a
constant

t(x) = β,

or the linear combination of a few basis functions,

t(x) =
p∑
i=0

βibi(x) = b(x)>β, b0 = 1, (3.2)

where p + 1 fixed basis functions bi, abbreviated as b = (b0, b2, . . . , bp)>, are
typically specified by the user. Typically, the first or second order polynomial
basis functions (Lophaven et al., 2002) are used. Depending on the form of
the trend function and whether the coefficients β are known, Kriging methods
are further categorized into Simple Kriging, Ordinary Kriging and Universal
Kriging (Zimmerman et al., 1999; Stein, 1999). For detailed discussions on the
history of Kriging variants, please see Cressie (2015, 1990). Those terms are
clarified in Tab. 3.1. Note that, it is unnecessary to distinguish the constant and

Table 3.1: Taxonomy of Kriging methods.

known β β to estimate
Constant trend Simple Ordinary
Basis functions None Universal

basis function because the former is special case of the latter when p = 0. Thus,
we shall always refer to Eq. (3.2) for the trend function. For brevity, the trend
component of all observations is denoted as:

t = (t(x1), t(x2), . . . , t(xn))> = Bβ, B = [b(x1),b(x2), . . . ,b(xn)]> .

The covariance function is required to be a positive-definite kernel. A symmetric
function k : Rd×Rd → R is positive definite (p.d.) if the following condition

n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0 (3.3)

45



3. KRIGING/GAUSSIAN PROCESS REGRESSION

holds for ∀n ∈ N,∀x1,x2, . . . ,xn ∈ S and ∀c1, c2, . . . , cn ∈ R. Some commonly used
kernels include: Gaussian kernel, also known as radial basis functions (RBF) (Buh-
mann, 2003):

k(x,x′) = σ2 exp
(
−

d∑
i=1

(xi − x′i)2

2θ2
i

)
, (3.4)

and the Matérn 3/2 kernel (Rasmussen and Williams, 2006):

k(x,x′) = σ2
d∏
i=1

(
1 +
√

3hi
θi

)
exp

(
−
√

3hi
θi

)
, hi = |xi − x′i|. (3.5)

Note that ∀x ∈ S, k(x,x) = σ2. The parameters σ2 and θ = (θ1, θ2, . . . , θd)> are
the so-called hyper-parameters and are usually estimated from the data (please
see the discussion on the likelihood function below). Throughout this thesis, the
Matérn 3/2 kernel is applied to Kriging modeling as the Matérn family of kernels
allows for accurate approximations of the local variation in the data (Stein, 1999).
Please see Rasmussen and Williams (2006) for more kernel functions. As the kernel
function governs the covariance structure, it is necessary to discuss the statistical
properties of Z, when choosing the Matérn 3/2 kernel:

• Stationary: a stochastic process Z is called weakly stationary if for all x,x′ in
its index set, the mean function is constant and the covariance only depends
on x − x′, namely Cov{Z(x), Z(x′)} = k(x − x′, 0). This is a common
assumption made on stochastic processes and it is assured by the Matérn
3/2 kernel.

• Isotropy: a stochastic process Z is called weakly isotropic if for all the
locations of its index set, its mean function is constant and its covariance of
Z(x), Z(x′) only depends on the Euclidean distance between the location,
namely Cov{Z(x), Z(x′)} = k(‖x− x′‖ , 0). Intuitively, isotropy indicates
that the process is rotation-invariant because ‖x− x′‖ = ‖R(x− x′)‖ holds
for any orthogonal matrix R. It is straightforward to check that Matérn 3/2
kernel does not imply this property. In practice, the isotropy is too strong to
assume on the data and thus non-isotropic kernels are suggested.

Lastly, some notations are introduced: the covariance matrix of y is written

46



3.1 General Discussion

as:

K(σ2,θ) = E{(y− t)(y− t)>} =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)

 ,
and its covariances with Y (x) is denoted as k(x) = (k(x,x1), k(x,x2), . . . , k(x,xn))>.
The covariance matrix will be denoted as K for short in the following discussions.
In addition, from the definition of positive definite kernel (Eq. (3.3)), it is straight-
forward to verify that K is a positive semi-definite matrix. Moreover, the singular
case is ignored throughout this thesis and thus K is assumed to be a positive-definite
matrix.

3.1.1 Best Linear Unbiased Predictor

Consider a finite collection of random variables: ψ = (Y (x1), Y (x2), . . . , Y (xn))>.
The basic idea is to construct a nonparametric linear predictor Ŷ = α>ψ + α0 to
predict Y (x). The best predictor1 is chosen such that the following risk function
(expected quadratic loss/mean squared error) is minimized:

R(Ŷ , Y ) = E{α>ψ + α0 − Y (x)}2

=
(
E{α>ψ + α0 − Y (x)}

)2 + Var{α>ψ + α0 − Y (x)} (3.6)

Note that, in this risk function the expectation is taken w.r.t. the joint distribution
of ψ and Y (x). In addition, a linear unbiased predictor (LUP) (Stein, 1999) is
intended, which can be obtained by enforcing the following constraint:

(
E{α>ψ + α0 − Y (x)}

)2 = 0 ⇐⇒ ∀β ∈ Rp+1 (α>Bβ + α0 − b>β = 0
)

⇐⇒ α0 = 0 ∧B>α = b.

Therefore the existence of the LUP depends on the solution of the linear system
B>α = b. We suppose the solution to this system exists for now (b is in the
column space of B>). As the bias in Eq. (3.6) is restricted to zero, only the variance

1Note that, after obtaining the best predictor Ŷ , the best estimator f̂ for f can be given by
taking a sample function from Ŷ , namely f̂(·) = Ŷ (·, ω) for some ω ∈ Ω. Please see Section 3.1.2
for more details.

47



3. KRIGING/GAUSSIAN PROCESS REGRESSION

term remains. Then, the task of finding the best linear unbiased predictor
(BLUP) (Stein, 1999) becomes the minimization of the variance:

R(Ŷ , Y ) = Var{α>ψ + α0 − Y (x)} = σ2 +α>Kα− 2k>α.

This is a convex optimization task (K is positive definite) with equality con-
straints:

minimize
α∈Rn

σ2 +α>Kα− 2k>α

subject to B>α = b.
(3.7)

This optimization problem can be solved using Lagrange Multipliers. The first
order condition of optimality is (Boyd and Vandenberghe, 2004):[

K B
B> O

] [
α
λ

]
=
[
−k
b

]
,

where λ ∈ Rp+1 is the dual variable and O represents the matrix of zeros. Solving
this linear system, we have

α∗ = K−1(k−Bλ∗)

λ∗ =
(
B>K−1B

)−1 (B>K−1k− b
)
.

Due to the convexity of this problem, α∗ is also sufficient to be the minimizer
of Problem (3.7) (Nocedal and Wright, 2000). Plugging α∗ back, we have the
Kriging predictor:

Ŷ =
[
k−B

(
B>K−1B

)−1 (B>K−1k− b
)]>

K−1ψ. (3.8)

To approximate the target function f , it is straightforward to take a sample
function from Ŷ :

f̂ = b>
[(

B>K−1B
)−1 B>K−1y

]
+ k>K−1

{
y−B

[(
B>K−1B

)−1 B>K−1y
]}

,

which is achieved by substituting the realization y = ψ(ω) into Eq. (3.8) and re-
arranging the terms. It is important to observe that β̂ :=

(
B>K−1B

)−1 B>K−1y
is exactly the Generalized Least Squares (GLS) (Rao, Toutenburg, Shalabh,
and Heumann, Rao et al.) estimate of β in the following sense. The trend function
t = b>β is treated as the regression function and Z is the stationary error process,
whose second-order information (auto-covariance) is known. Then, the best linear
unbiased estimator (BLUE) of β is β̂. Note that, 1) compared to Kriging, GLS
considers b>β as the predictor while in Kriging the counterpart is b>β+Z and 2)

48



3.1 General Discussion

the expression of f̂ can also be derived in a much simpler way by first estimating
β using the GLS formula and then predicting process Z on the residuals y−Bβ̂
(cf. Eq. (3.13)). However, this approach requires the complete specification of the
auto-covariance/kernel and thus is erroneous when hyper-parameters σ2 and θ of
the kernel function are subject to estimation. Taking the compact notation β̂, the
function approximation is re-written as:

f̂ = b>β̂ + k>K−1
(

y−Bβ̂
)
. (3.9)

In addition, it is also possible to give the covariance of the predictor:

Cov
{
Ŷ (x), Ŷ (x′)

}
=
[
k−B

(
B>K−1B

)−1 (B>K−1k− b
)]>

K−1 (K + BMB>
)

K−1[
k′ −B

(
B>K−1B

)−1 (B>K−1k′ − b′
)]
− b>Mb′, (3.10)

where M = ββ>,b′ = b(x′). Note that this covariance depends on the unknown
parameter β. When the kernel is completely specified, β can be substituted by its
GLS estimate β̂. The minimal MSE of Ŷ can be obtained by putting α∗ back to
Eq. (3.7) and it is called the Kriging MSE:

s2 = σ2 − k>K−1k +
(
b−B>K−1k

)> (B>K−1B
)−1 (b−B>K−1k

)
. (3.11)

Note that s2 is the not the variance of the predictor Ŷ . In addition, s =
√
s2 shall

be called Kriging Root Mean Squared Error (Kriging RMSE).
Remark. 1) In some literatures (den Hertog et al., 2006), s2 is also called Kriging
variance. When using this terminology, s2 should not be confused with the
stationary variance σ2 of the process Z or the variance of the Kriging predictor.
2) It is important to point out that the MSE s2 quantifies the uncertainty about
predicting the stochastic process Y . It, however, does not directly measure the
accuracy of the function approximation, namely to which degree f̂ is close to f .
To see how the approximation accuracy is related to s2, please check Section 3.1.2.

The prediction residuals at different locations are correlated. It is possible to
calculate the covariance among the residuals (please do not confuse with the
covariance of the predictor defined in Eq. (3.10)):

Cov
{(
Ŷ (x)− Y (x)

)(
Ŷ (x′)− Y (x′)

)}
= k(x,x′)− k>K−1k′ + (b−B>K−1k)>(B>K−1B)−1(b−B>K−1k′),

(3.12)

49



3. KRIGING/GAUSSIAN PROCESS REGRESSION

where k = k(x),k′ = k(x′). It is straightforward to verify this covariance function

is positive-definite.

Known trend function The discussion so far can be greatly simplified if the

trend function is completely provided prior to the modeling. In principle, the trend

effect can be subtracted from the random vector ψ:

ψ′ = ψ −Bβ = (Z(x1), Z(x2), . . . , Z(xn))>

And the latent1 realization of ψ′ is: z = y−Bβ. It is then sufficient to search for

the optimal linear predictor of Z. In addition, due to the stationarity assumption on

Z, any linear predictor α>ψ′ is unbiased. Therefore, the best linear predictor

(BLP) (Stein, 1999) suffices for our aim. It is the minimizer of the unconstrained

risk function (cf. Eq. (3.7)):

R(α>ψ′, Z) = σ2 +α>Kα− 2k>α.

The optimal coefficients are α∗ = K−1k and the BLP of process Z is α∗>ψ′. The

best linear predictor of Y is obtained by adding the trend function back to the

BLP of Z:

Ŷ = b>β + k>K−1 (ψ −Bβ) (3.13)

s2 = σ2 − k>K−1k (3.14)

Var
{
Ŷ (x)

}
= k>K−1k (3.15)

Cov
{
Ŷ (x), Ŷ (x′)

}
= k>K−1k′ (3.16)

The extreme of this treatment is to set β to zero and it is called Simple Kriging.

In this case, Ŷ = k>K−1ψ and its variance and MSE are the same as Eq. (3.15)

and (3.14).

1We use the term “latent” here as Z is not directly observable.

50



3.1 General Discussion

Discussion 1. It seems a daunting task to select an appropriate trend
function. For local interpolations, theoretically it is known that BLPs
exhibit the same performance asymptotically with BLUPs, even if the trend
is zero (β = 0) (Stein, 1999). For such modeling tasks, it is sufficient to set
the trend function to zero. For the extrapolation, the Kriging estimator
regresses back to the trend when the location is weakly correlated to most
of the data points. Thus, choosing a proper trend function is necessary for
the extrapolation purpose (Journel and Rossi, 1989). Generally, Universal
Kriging is recommended for this scenario (Journel and Rossi, 1989) if
no prior knowledge is available. However, thorough empirical/theoretical
analyses are necessary before putting it as a conclusion. In addition, as
will be shown later, the predictor of Simple Kriging is an element of the
Hilbert space H induced by the kernel function. It would be interesting to
investigate if polynomial trend functions can be fully expressed in H. The
incorporation of the trend function would be unnecessary if it is also an
element of H.

Noisy observations and Kriging nugget In practice, it is very likely that
the observed response variable contains random measurement noises. Therefore it
is, in general, helpful to consider the following data generation process:

Ỹ = Y + ε, (3.17)

where {ε(x) : x ∈ S} is a white noise process (e.g., Gaussian white noise) that is
independent from Y and has stationary variance σ2

n <∞. Formally, ε is specified
as:

∀x,x′ ∈ S, Eε(x) = 0, Cov{ε(x), ε(x′)} = σ2
n1{x}(x′), ε(x) ⊥⊥ Y (x′).

Here 1{x} is the characteristic function (or indicator function) and ⊥⊥ denotes
the statistical independence. It is important to point out that the goal is still to
predict process Y . Under this setting, the task of predicting Y becomes a nonpara-
metric regression task, in which the regression function f̂ admits a nonparametric
form. Again, consider the random vector ψ̃ = (Ỹ (x1), Ỹ (x2), . . . , Ỹ (xn))> and its
realizations ỹ = ψ̃(ω), ω ∈ Ω. For the sake of brevity, only simple Kriging (β is
zero) is considered here. By minimizing the risk function (cf. Eq. (3.7)),

R(Ŷ , Y ) = Var{α>ψ̃ + α0 − Y (x)} = σ2 +α>
(
K + σ2

nI
)
α− 2k>α,

51



3. KRIGING/GAUSSIAN PROCESS REGRESSION

the Kriging estimator under noisy observations is:

Ŷ = k>
(
K + σ2

nI
)−1

ψ̃. (3.18)

s2 = σ2 − k>
(
K + σ2

nI
)−1 k. (3.19)

The noise variance σ2
n is also known as the Kriging nugget or nugget ef-

fect (Cressie, 2015). Historically, the Kriging nugget is introduced with the
so-called Semivariogram in the geostatistics literature. The semivariogram is de-
fined as half the variance of the differences between observations at two locations:
γ(x,x′) = 1

2E{Y (x) − Y (x′)}2. As with the kernel function, the semivariogram
is an alternative quantification of the auto-correlation (spatial dependency) on
process Y . The nugget effect is defined to be the amount of the jump of the

‖x− x′‖

γ(x,x′)

0

nugget

σ2

Figure 3.1: Illustration on the semivariogram and Kriging nugget.

semivariogram at the origin (Fig. 3.1) and can be attributed to measurement
errors due to the inherent imprecision in measurement devices. Consider the noisy
process Ỹ , its semivariogram is,

γ̃(x,x′) = 1
2E
{
Ỹ (x)− Ỹ (x′)

}2
= 1

2E {Y (x)− Y (x′)}2 + σ2
n

= γ(x,x′) + σ2
n.

The semivariogram γ̃ in the noisy case is translated upwards from the noiseless
case γ by an amount of σ2

n. The correspondence between the noise variance and
Kriging nugget is clearly seen. Moreover, the nugget effect is sometimes referred
as nugget variance (Webster and Oliver, 2007).

52



3.1 General Discussion

Note that, the nugget effect is useful even when no measurement error is present,
e.g., in computer experiments. It can help relaxing the conditional number of
the covariance matrix K when it gets ill-conditioned (Andrianakis and Challenor,
2012). Let K̃ = K + σ2

nI be the covariance matrix under the noisy assumption. It
is then obvious that the eigenvalue λ̃ of K̃ admits the relation: λ̃ = λ+ σ2

n, where
λ is the eigenvalue of K. Consequently, the condition number κ of K̃ is smaller
than that of K:

κ(K̃) = |λmax + σ2
n|

|λmin + σ2
n|
<
|λmax|
|λmin|

= κ(K).

Numerically, as the condition number increases, the covariance matrix becomes
practically not invertible and therefore introducing the Kriging nugget can avoid
numerical issues that are frequently encountered in the hyper-parameter estima-
tion (Ababou et al., 1994).

3.1.2 Reproducing Kernel Hilbert Space

Here we shall take a different point of view on BLUP, namely from the Hilbert
space associated with stochastic process Y . To simplify our discussions here, Y
is assumed to have a zero mean and correspondingly the Kriging predictor is
Ŷ = k>K−1ψ (obtained by setting β to zero in Eq. (3.13)). Moreover, the index
set S is assumed to be a separable space. In addition, the covariance vector k is
treated as a function from S to Rn and is denoted as k(x). More precisely, the
approach posed in Section 3.1.1 is to predict a random variable Y (x, ·) using a
linear combination of some other random variables on the process:

Ŷ (x, ·) =
n∑
i=1

αi(x)Y (xi, ·), n ∈ N, x1,x2, . . . ,xn ∈ S.

The optimal coefficient α(x) = K−1k(x) is a function of x and is obtained by
minimizing the risk function (Eq. (3.6)) as before. Note that the same prediction
approach is applied for every x ∈ S, meaning that a predictor of the process Y is
obtained:

Ŷ =
{

n∑
i=1

αi(x)Y (xi, ·) : n ∈ N, x,x1,x2, . . . ,xn ∈ S
}
. (3.20)

We shall call Ŷ the Kriging predictor. The rationale is: Ŷ optimally predicts
an unknown process Y only using partial information of its own. If we observe a

53



3. KRIGING/GAUSSIAN PROCESS REGRESSION

sample function of Y partially1, namely y = (Y (x1, ω), Y (x2, ω), . . . , Y (xn, ω))>

for some ω ∈ Ω, it is possible to interpolate this sample function by plugging y
into Ŷ (Eq. (3.20)):

f̂(·) = Ŷ (·, ω) =
n∑
i=1

αi(·)Y (xi, ω) = y>K−1k(·)

=
n∑
i=1

ξik(·,xi), ξ = K−1y. (3.21)

Being a sample function from the predictor Ŷ , f̂ approximates f (cf. Eq. (3.9)). In
short, we shall show that the function form of Eq. (3.21) is in the Reproducing
Kernel Hilbert Space (RKHS) attached to process Y . Given a positive definite
kernel k(·, ·) on S, there is a unique Hilbert space of functions: S→ R for which k
is a reproducing kernel (Moore-Aronszajn theorem (Aronszajn, 1950)). This space
H is the completion of the following linear space H0:

H0 =
{

n∑
i=1

cik(·,xi) : n ∈ N, c1, c2, . . . , cn ∈ R, x1,x2, . . . ,xn ∈ S
}
.

The completion is conducted with respect to the RKHS norm ‖·‖H that is induced
by the inner product,〈

m∑
i=1

cik(·,xi),
n∑
j=1

c′jk(·,xj)
〉
H

=
m∑
i=1

n∑
j=1

cic
′
jk(xi,xj). (3.22)

The function in H has the form: f(·) =
∑∞
i=1 aik(·,xi), where

∑∞
i=1 a

2
i k(xi,xi) <

∞. It is then obvious to see that the Kriging estimator f̂(·) is an element of H.
Equivalently, the space of estimator f̂ is the set of all the sample functions of
Ŷ , namely

{
Ŷ (·, ω) : ω ∈ Ω

}
⊂ H. The natural question is: how does the target

function f related to f̂ and H in general? Recall the assumption of Kriging: f is a
realization of the process Y , or formally f ∈ F, F := {Y (·, ω) : ω ∈ Ω} (all sample
functions of Y ). Firstly, we will show that H is generally “smaller” than F. It is
possible to construct a surjection from F to H:

Y (·, ω) 7→
n∑
i=1

τiY (xi, ω)k(·,xi), τi ∈ R.

1It is important to note that even countably many observations are partial information about
the sample function because its domain S is separable.

54



3.1 General Discussion

It is obvious that for every function
∑n
i=1 cik(·,xi) ∈ H, there always exist τi ∈ R

and ω ∈ Ω such that τiY (xi, ω) = ci. Thus, this mapping is surjective. However,
it does not admit an inverse: {Y (xi, ω)}i can be mapped back to infinitely many
sample functions in F. Secondly, it is possible to quantify the difference between f
and f̂ using the supremum norm,

∥∥∥f − f̂∥∥∥
∞

= supx∈S

{∣∣∣f(x)− f̂(x)
∣∣∣}. It is not

hard to verify the following condition,∥∥∥f − f̂∥∥∥
∞
≤ sup
ω∈Ω

{∣∣∣Y (·, ω)− Ŷ (·, ω)
∣∣∣} .

However, it is not straightforward to build a linkage between
∥∥∥f − f̂∥∥∥

∞
and the

Kriging MSE s2 (cf. Eq. (3.11)) based on this condition. Alternatively, such a
relation can be established point-wisely on f .
Theorem 3.1 (Approximation Error Bound). Let Ŷ be the BLUP of stochastic
process Y . The MSE of Ŷ is s2 = E{Y (x)− Ŷ (x)}2. Assume the target function
f : S→ R is a sample function of Y and it is approximated by a sample function
of the BLUP: f̂(·) = Ŷ (·, ω), ω ∈ Ω. Then for every point x ∈ S, the approximation
error is bounded from above: ∣∣∣f̂(x)− f(x)

∣∣∣ ≤√s2

C
,

where
C =

∫
R

Pr
(
|Y (x)| > |f(x)|

∣∣∣ Ŷ (x) = u
)
p
Ŷ (x)(u) du.

Proof. Define a random variable R = |Y (x) − Ŷ (x)|. r = |f(x) − f̂(x)| is a
realization of R. According to Markov’s inequality, we have,

Pr (R ≥ r) ≤ ER2

r2 . (3.23)

Note that s2 = ER2 and r2 = |f(x)− f̂(x)|2. Now, we expand the probability on
the left-hand-side of the inequality:

Pr (R ≥ r) =
∫
R

Pr
(
|Y (x)− f̂(x)| > |f(x)− f̂(x)|

∣∣∣ Ŷ (x) = u
)
p
Ŷ (x)(u) du

≥
∫
R

Pr
(
|Y (x)| > |f(x)|

∣∣∣ Ŷ (x) = u
)
p
Ŷ (x)(u) du.

Combining this inequality with Eq. (3.23), we have r2 ≤ s2/C.

Remark. The linkage between the approximation error on f and the MSE of
BLUPs is clearly seen from this theorem: reducing the MSE s2 leads to a more

55



3. KRIGING/GAUSSIAN PROCESS REGRESSION

precise function approximation, which is typically achieved by adding more data
points/observations. The other factor C can be interpreted as the conditional
probability Pr

(
|Y (x)| > |f(x)|

∣∣∣ Ŷ (x) = u
)
, averaged over all possible predictions.

Note that the smaller this conditional probability is (and thus the error bound is
higher), it is less likely that f(x) is a sample from Y (x). This means the stochastic
process Y tends to be mis-specified for f .

RKHS provides us another point of view on Kriging/GPR. In the following, it is
shown that the same result in Eq. (3.13) can be obtained using the well-known
representer theorem (Schölkopf et al., 2001), which gives the representer form of
the solution to the regularized optimization problem in H. We shall illustrate this
theorem first and then build an alternative derivation of f̂ based on it.
Theorem 3.2 (Representer Theorem). Let S be a nonempty set and k : S×S→ R
be a positive-definite kernel with corresponding reproducing kernel Hilbert space H.
The RKHS norm ‖·‖H is induced from the inner product in Eq. (3.22). Given a
training sample (x1, y1), . . . , (xn, yn) ∈ S× R, a strictly monotonically increasing
function g : [0,∞)→ R, and an arbitrary empirical risk function R of {h(xi), yi}ni=1
and let h∗ : S→ R be the optimum of the regularized minimization problem:

h∗ = arg min
h∈H

R ({h(xi), yi}ni=1) + g(‖h‖H),

then h∗ is represented as:

h∗(·) =
n∑
i=1

cik(·,xi), c1, c2, . . . , cn ∈ R.

Proof. See Schölkopf et al. (2001).

The representer form of h∗ is exactly as Eq. (3.13), suggesting that the Kriging
estimator can also be considered as the optimal function form that minimizes
empirical risk. Furthermore, we will illustrate that under certain specifications,
the Kriging coefficients in the noisy setting (Eq. (3.18)) can be obtained using this
theorem.
Corollary 3.1. Assume all the settings in Theorem 3.2, noisy observations ỹ
generated from Eq. (3.17) and the following specifications: the empirical risk
function R

(
{f̂(xi), ỹi}ni=1

)
=
∑n
i=1

(
f̂(xi)− ỹi

)2
and g(‖·‖H) = σ2

n ‖·‖
2
H, then

the coefficients ci in Theorem 3.2 are given by c =
(
K + σ2

nI
)−1 ỹ and

f̂(·) =
n∑
i=1

cik(·,xi) = ỹ>
(
K + σ2

nI
)−1 k(·).

56



3.1 General Discussion

Proof. According to the representer theorem, f̂ takes the form f̂(·) =
∑n
i=1 cik(·,xi).

Then all predictions from f̂ can be denoted as (f̂(x1), . . . , f̂(xn))> = Kc. Then
the regularized minimization problem becomes:

minimize
c∈Rn

‖Kc− ỹ‖2 + σ2
nc>Kc. (3.24)

The optimality condition of this problem is:

∂

∂c

(
‖Kc− ỹ‖2 + σ2

nc>Kc
)

= 0. (3.25)

The solution of c results from this condition.

This result can be interpreted as follows. Firstly, note that Problem (3.24) is
equivalent to the following constrained convex optimization problem:

minimize
c∈Rn

‖Kc− ỹ‖2

subject to c>Kc ≤ t,
(3.26)

where t = ỹ>
(
K + σ2

nI
)−1 K

(
K + σ2

nI
)−1 ỹ. To see the equivalence, the Karush-

Kuhn-Tucker conditions (KKT) (Boyd and Vandenberghe, 2004) of Problem (3.26)
are,

∂

∂c

(
‖Kc− ỹ‖2

)
+ η

∂

∂c
(
c>Kc− t

)
= 0

η
(
c>Kc− t

)
= 0

c>Kc− t ≤ 0

η ≥ 0

(3.27)

The conditions above are also necessary because Slater’s condition (Slater, 2014)
obviously holds on Problem (3.26). It is not hard to verify that any solution of
condition (3.25) is also a solution of conditions (3.27) and vice versa. Consider
the convex constraint c>Kc ≤ t. The LHS of it is the RKHS norm

∥∥∥f̂∥∥∥
H
of the

estimator f̂(·) =
∑n
i=1 cik(·,xi). It means that “complexity” of the estimator

f̂ should be smaller than a threshold t when minimizing the empirical risk. To
understand the choice of threshold t, please consider the prediction of the data
generation process process Ỹ = Y + ε using observations ỹ (instead of predicting
Y ). The Kriging estimator f̃est ∈ H is obtained by applying Eq. (3.13) to the
overall process Ỹ , whose covariance function is k̃(·, ·) = k(·, ·) + σ2

n1{·}(·):

f̃est(·) =
n∑
i=1

α̃ik̃(·,xi), α̃ =
(
K + σ2

nI
)−1 ỹ.

57



3. KRIGING/GAUSSIAN PROCESS REGRESSION

Note that f̃est is an element of the RKHS H̃ induced by kernel k̃ and its norm∥∥∥f̃est

∥∥∥
H̃

= ỹ>
(
K + σ2

nI
)−1 ỹ. It is clear that∥∥∥f̂∥∥∥

H
≤ t = ỹ>

(
K + σ2

nI
)−1 K

(
K + σ2

nI
)−1 ỹ

≤ ỹ>
(
K + σ2

nI
)−1 ỹ

=
∥∥∥f̃est

∥∥∥
H̃
,

which means the estimator of the component f from the noisy function f̃ should
not be more complex than the estimator of f̃ . In summary, the Kriging estimator
(Eq. (3.18)) under noisy observations is the solution to the following problem:

minimize
f̂∈H

n∑
i=1

(
f̂(xi)− ỹi

)2

subject to
∥∥∥f̂∥∥∥

H
≤
∥∥∥f̃est

∥∥∥
H̃
.

3.1.3 Bayesian Inference

Known trend function It is possible to give an alternative derivation of the
Kriging estimator, using Bayesian statistics. Consider again the random vector ψ =
(Y (x1), Y (x2), . . . , Y (xn))>,x1,x2, . . . ,xn ∈ S and its realization y = ψ(ω), ω ∈ Ω.
Bayesian inference requires the specification of the prior distribution on Y and
the likelihood p(ψ | Y (x)). When the trend function is assumed to be known, the
posterior of Y (x) is

p(Y (x) | ψ) = p(ψ | Y (x))p(Y (x))
p(ψ) . (3.28)

Note that, this posterior probability is the conditional probability p(Y (x) | ψ) due
to the fact that Y (x) and ψ are taken from the same stochastic process Y in our
setting. In some other processes, this conditional probability is even given in their
definitions (e.g., Markov process). However, Eq. (3.28) gives a plausible rationale
on using the conditional probability for the prediction and attaches a Bayesian
interpretation to the Kriging predictor. The most common choice (and perhaps
the most natural) on the prior distribution is Gaussian: the stochastic process
Y is assumed to be a Gaussian Process. In addition to the first- (mean) and
second-order (covariance) specifications (Section 3.1), the Gaussian process prior

58



3.1 General Discussion

on Y prescribes that random vector ψ is a multivariate Gaussian (See Appendix A
for its definition). The following notation is used for a Gaussian process prior with
kernel function k:

Y ∼ t+ GP(0, k(·, ·)),

where t is the trend function defined in Eq. (3.2) and it is called the prior mean
function in this section. Note that, trend t is deliberately separated from the
centered Gaussian Process GP(0, k(·, ·)) because t could admit a stochastic form and
the addition of those two terms might not be Gaussian. Recall the basis expansion
trend t = b>β and β is known. It is then straightforward that Y (x) ∼ N (b>β, σ2)
and ψ ∼N (Bβ,K). Moreover, Y (x) and ψ are jointly Gaussian:[

Y (x)
ψ

]
∼N

([
b>β
Bβ

]
,

[
σ2 k>
k K

])
.

Recall the definition of the covariance vector k in Section 3.1. Directly applying
the conditioning formula (Eq. (A.4)), the conditional distribution p(Y (x) | ψ) can
be specified

Y (x) | ψ ∼ b>β + k>K−1 (ψ −Bβ) + N
(
0, σ2 − k>K−1k

)
. (3.29)

Given this conditional distribution, it is obvious that the best unbiased predictor
of Y is the conditional mean, i.e., Ŷ = b>β + k>K−1 (ψ −Bβ). The MSE of Ŷ
is s2 = E{Ŷ − Y }2 = σ2 − k>K−1k, which is also the conditional variance. Now,
as the target function f is assumed to be a sample function of Y and we have
observed some values on the target function, the approximation f̂ is obtained by
replacing ψ by its realization in Ŷ (cf. Eq. (3.21)):

f̂(·) = Ŷ (·, ω) = b>β + k>K−1 (y−Bβ) , ω ∈ Ω.

Note that those terms are exactly the same as the Kriging BLP estimator (cf.
Eq. (3.13)). Note that, in terms of Bayesian statistics, the posterior mean in
Eq. (3.29) can also be considered as a Maximum a Posterior Probability (MAP)
estimate because the mode coincides with the mean in Gaussian distributions.
This result is commonly referred to as Gaussian Process Regression (GPR) in
the machine learning field (Rasmussen and Williams, 2006). Consequently, the
Kriging MSE s2 is also called GPR variance in this thesis.
Remark. In the standard treatment of GPR, there is no need to use the stochastic
process Y because the prior Gaussian process is directly imposed on the target
function f . In this section, process Y is taken to keep the consistence with the
discussion on BLUP/BLP (Section 3.1.1).

59



3. KRIGING/GAUSSIAN PROCESS REGRESSION

Moreover, a posterior Gaussian process is implied by Eq. (3.29), whose mean
function is Ŷ . To see the covariance structure of the posterior process, consider
two locations x1,x2 ∈ S in the query:Y (x1)

Y (x2)
ψ

 ∼N

b>1 β
b>2 β
Bβ

 ,
 σ2 k(x1,x2) k>1
k(x2,x1) σ2 k>2

k1 k2 K

 ,

in which b1 = b(x1),b2 = b(x2) and k1 = k(x1),k2 = k(x2). Conditioning on ψ
again, we obtain:[
Y (x1)
Y (x2)

] ∣∣∣∣∣ ψ ∼
[
b>1 β + k>1 K−1 (ψ −Bβ)
b>2 β + k>2 K−1 (ψ −Bβ)

]

+ N
([

0
0

]
,

[
σ2 − k>1 K−1k1 k(x1,x2)− k>1 K−1k2

k(x2,x1)− k>2 K−1k1 σ2 − k>2 K−1k2

])
.

In this posterior formulation, it is clear to see that the covariance at two arbi-
trary locations is expressed in the cross-term of the posterior covariance matrix.
Consequently, we give the posterior mean (trend) Ŷ and posterior kernel k′:

Ŷ (x) := E{Y (x) | ψ} = b>β + k>K−1 (ψ −Bβ) (3.30)

k′(x,x′) := Cov{Y (x), Y (x′) | ψ} = k(x,x′)− k>K−1k′ (3.31)

It is straightforward to show that k′ is a stationary positive-definite kernel.

Unknown trend function When β ∈ Rp+1 is subject to estimation, the most
common approach is to use hierarchical Bayesian inference by providing a prior on
β. For example, the Gaussian prior is assumed again β ∼N (ζ,Σ), with β ⊥⊥ Y .
It is important to note that when randomness on β is introduced the process Y is
not necessarily Gaussian any longer. However, the conditional distribution/process
on β, e.g., p(Y (x) | β,ψ) is still Gaussian. The posterior distribution of β is (Stein,
1999),

p(β | ψ) = p(ψ | β)p(β)∫
Rp+1 p(ψ | β)p(β) dβ

= (2π)−
p+1

2 det (Σ′)
1
2 exp

(
−1

2 (β − ζ′)>Σ′
−1 (β − ζ′)

)
,

where the posterior mean ζ′ and covariance Σ′ are give below:

ζ′ = Σ′
(
B>K−1ψ + Σ−1) , Σ′ =

(
B>K−1B + Σ−1)−1

.

60



3.1 General Discussion

Note that the conditional distribution p(Y (x) | ψ) is obtained by marginalizing β
out,

p(Y (x) | ψ) =
∫
Rp+1

p(Y (x) | β,ψ)p(β | ψ) dβ.

This marginalization can be interpreted as averaging p(Y (x) | β,ψ) over the
posterior of β. Without giving the details on the derivation, the posterior mean and
kernel are expressed as follows (Omre, 1987; O’Hagan and Kingman, 1978):

Ŷ (x) =
(
b−B>K−1k

)>
ζ′ + k>K−1ψ (3.32)

k′(x,x′) = k(x,x′)− k>K−1k′ +
(
b−B>K−1k

)>
Σ′
(
b−B>K−1k′

)
(3.33)

The formula above depends on the choice of prior parameter ζ,Σ. Consider
the limit Σ → O (matrix of zeros), meaning β becomes more and more non-
informative because the prior is increasingly flat everywhere. Then posterior mean
and covariance matrix of β have the following convergence,

ζ′ →
(
B>K−1B

)−1 B>K−1ψ, Σ′ →
(
B>K−1B

)−1
.

Consequently, the posterior mean and kernel converges to the Kriging predictor
(BLUP) and covariance (cf. Eq (3.9) and (3.12)):

Ŷ (x)→
[
k−B

(
B>K−1B

)−1 (B>K−1k− b
)]>

K−1ψ

k′(x,x′)→ k(x,x′)− k>K−1k′ +
(
b−B>K−1k

)> (B>K−1B
)−1 (b−B>K−1k′

)
Because limiting the posterior mean results in the same expression as the Kriging
predictor, we shall treat the Kriging predictor and the posterior mean interchange-
ably in this thesis.

3.1.4 Differentiation

The Kriging predictor and MSE play a central role in Efficient Global Optimization
and their derivatives are frequently used in such algorithms. Thus, the gradients
of the Kriging predictor (Eq. (3.9)) and MSE (Eq. (3.11)) w.r.t. the index variable
are given below (using the denominator layout):

∂f̂

∂x = ∂b
∂x β̂ + ∂k

∂xK−1(y−Bβ̂) (3.34)

∂s2

∂x = 2
[(∂k

∂xK−1B− ∂b
∂x

)
(B>K−1B)−1 (B>K−1k− b

)
− ∂k
∂xK−1k

]
,

(3.35)

61



3. KRIGING/GAUSSIAN PROCESS REGRESSION

−4

−2

0

2

4

x
2

831.000

832.000

833.000

834.000
835.000

836.000

837.000

838.000

839.000

840.000

841.000

842.000

843.000

844.000

845.000

Target function

-700.000

-700.000

-650.000

-650.000

-600.000

-600.000-550.000

-5
50

.0
00

-500.000

-500.000

-450.000

-400.000-350.000-300.000-250.000-200.000-150.000
-100.000

-50.000

log(Expected Improvement)

−4 −2 0 2 4
x1

−4

−2

0

2

4

x
2

831.000

832.500

834.000

835.500

837.000

838.500

840.000

841.500

843.000

844.500

GPR prediction

−4 −2 0 2 4
x1

-7
.2

00

-6
.4

00 -6
.4

00

-5.600

-5.600

-5
.6

00

-4.800

-4
.8

00

-4
.8

00

-4.000

-4.000

-4.000

-4.000

-3.200
-3.200

-3.200

-3
.2

00

-3.200

-2.400

-2.400

-1
.6

00

-1.600

log(GPR MSE)

Figure 3.2: On the 2-D Schwefel function (top-left), several gradient fields
and contour lines are depicted for the Kriging/GPR prediction (bottom-left),
the Kriging/GPR MSE (bottom-right) and the so-called Expected Improvement
criterion (top-right) defined on the Kriging prediction and MSE (cf. Eq. (4.5)).
Ordinary Kriging with the Matérn 3/2 kernel is chosen for this illustration, which is
trained on 15 uniformly generated locations (black dots in the top-left plot).

62



3.2 Cluster Kriging

where
∂k
∂x =

[
∂k(x,x1)

∂x ,
∂k(x,x2)

∂x , . . . ,
∂k(x,xn)

∂x

]
.

For the Matérn 3/2 kernel (Eq. (3.5)), this derivative is given as:

∂k(x,x′)
∂xi

= (−1)s 3σ2hi
θ2
i

exp
(
−
√

3hi
θi

)
, hi = |xi − x′i|, s = 1[x′

i
,∞)(xi).

In addition, in Fig. 3.2, the gradient calculation here is visualized on a 2-D Schwefel
function.

3.2 Cluster Kriging

Despite the theoretically sound development of the Kriging model, it suffers from
several issues when applied to large data sets. The major bottleneck is the high
time and memory complexity of the model fitting process: The inverse of the
covariance matrix K−1 needs to be computed for both the posterior mean and
variance (Eq. (3.9) and (3.11)), which has roughly O(n3) time complexity (n is the
number of data points)1. In addition, the likelihood function of hyper-parameters
σ,θ is expressed through K−1(σ2,θ). In the Maximum Likelihood Estimation
(MLE), K−1 needs to be calculated for each likelihood value, resulting in a O(n3)
computational cost per hyper-parameter evaluation. Even if efficient numerical
optimizers are used in MLE, e.g., the quasi-Newton method (Bonnans et al., 2006),
this computational overhead is still extremely high for a large data set. This
bottleneck hinders the practical usage of Kriging/GPR. Various attempts have
been made to relax the computational complexity issue of Kriging (Rasmussen
and Williams, 2006). The historical approaches on this topic are categorized as
follows.

Subset Methods The first category of approximation algorithms uses only a
subset of the complete data set to approximate a full Kriging model. The idea
behind these methods is to get a realistic representation of the complete data set
by taking only a small portion of the data points. The main issue with the subset
approximation approach is to select a representative subset of the data set. Two
major subset approximation algorithms are:

1There are asymptotically faster algorithms for matrix inversion, e.g., Strassen algorithm
O(n2.807) and Stothers O(d2.373), but their practical performance is worse than some methods
with O(n3) time complexity.

63



3. KRIGING/GAUSSIAN PROCESS REGRESSION

• Subset of Data (SoD) (Lawrence, 2004) is a naive approach in reducing
complexity by taking a subset of m < n data points. The points are usually
taken at random. The obvious disadvantage of such an approach is that
possible valuable information is lost in the process. Taking a representative
subset of data points is a non-trivial task.

• Subset of Regressors (SoR) (Silverman, 1985) approximates Kriging by a
linear combination of kernel functions on a set of basis points. The basis
points are linearly weighted to construct the predictor. The choice of the
basis points does influence the final outcome significantly. As noted also
in Quiñonero-Candela and Rasmussen (2005), there are only m (number of
basis points) degrees of freedom in the model because the model degenerates,
which might be too restrictive.

Approximation using Sparsity In the second category, the sparsity of the
covariance kernel is exploited for the approximation. Most of algorithms in this
category also use a subset of the data as in the subset approximation method.

• Sparse On-Line Gaussian Processes (OGP) (Csató and Opper, 2002) uses
a Bayesian on-line algorithm, together with a sequential construction of a
subsample of the data that specifies the prediction of the GP model. The
idea behind constructing a subsample of basis vectors is very similar to the
Fully Independent Training Conditional mentioned below. The advantage of
OGP is that additional data points can be added to the OGP model without
always completely retraining the model.

• Gaussian Markov Random Fields (Hartman and Hössjer, 2008) uses an
approximation of the covariance matrix with a sparse precision matrix. It
uses Gaussian Markov Random Fields (GMRF) on a reasonably dense grid
to exploit the computational benefits of a Markov field while keeping the
formula of Kriging weights. This method reduces the complexity for simple
and ordinary Kriging, but might not always be efficient with universal Kriging.

• Fully Independent Training Conditional (FITC) (Naish-Guzman and Holden,
2007; Snelson and Ghahramani, 2005) uses a more sophisticated likelihood
approximation with a richer covariance structure. It is a non-degenerate
version of the SoR algorithm. By providing a set of basis points (Pseudo
inputs), the model is fitted and validated on the training data. As with SoR

64



3.2 Cluster Kriging

the choice of basis points is a problem and it is usually either a subset of the
training data or a uniform distribution over the input space.

Divide and Conquer Methods In this category, the time complexity issue is
relaxed by partitioning a big data set into several smaller subsets (or clusters)
and then constructing a Kriging/GPR model on each subset. Because such a
partitioning is usually obtained via clustering techniques, the subset and the model
trained on them only capture local properties of the target function. Despite of the
construction of local models, typically a global predictor is obtained by combining
the local Kriging/GPR models. In this thesis, a novel divide and conquer method,
called Cluster Kriging is proposed.

• Bayesian Committee Machines (BCM) (Tresp, 2000) is an algorithm similar
to the ones we propose, but developed from a completely different perspective.
The basic motivation is to divide a huge training set into several relatively
small subsets and then construct GPR models on each subset. The benefit
of this approach is that the training time on each subset is satisfactory and
the training task can be easily parallelized. After training, the prediction is
made by a weighted combination of estimations from all the GPR models.
In addition, the batch prediction is enabled to speed up the computation
even further. However, when using independent hyper-parameters for each
GPR model or some GPR models are badly fitted, BCM yields unsatisfactory
performance in terms of accuracy.

• Cluster Kriging (CK) (van Stein, Wang, Kowalczyk, Emmerich, and Bäck,
2016) combines multiple local Kriging/GPR predictors that are constructed
on several partitions of the data set, where the partitions are obtained from
clustering algorithms. Loosely speaking, if the whole data set is partitioned
into clusters of similar sizes, Cluster Kriging will reduce the time complexity
by a factor of q2 (where q is the number of clusters), resulting in n3/q2,
if Kriging estimators are fitted sequentially. When exploiting q CPUs in
parallel, the time complexity will be further reduced to n3/q3. Ideally, when
scaling up q to be a linear function of n, the time complexity is reduced
to a linear term of n and even becomes a constant in the parallelization
mode. However, in practice, such a setting on q is not suggested because it
is necessary to keep enough data points in each cluster, to ensure each local
Kriging model is well-fitted. To estimate f(x) at an unobserved data point x,

65



3. KRIGING/GAUSSIAN PROCESS REGRESSION

each Kriging estimator provides a (local) estimation f̂ and it is proposed to
either combine all the Kriging estimations or select the most proper Kriging
estimations for f(x). There are many options for the data partitioning, e.g.,
K-means (MacQueen et al., 1967) and Gaussian mixture models (Reynolds,
2009) (GMM), and the Kriging model on clusters can also be combined in
different manners. By varying the options in each step of the Cluster Kriging,
many algorithms can be generated. Four of them will be explained in the
next section. In this section, the options in each step of the algorithms are
introduced step-by-step.

Several other attempts have been made to divide the Kriging model in sub-
models (Chen and Ren, 2009; Nguyen-Tuong et al., 2009). In Chen and Ren
(2009), a Bagging (Breiman, 1996) method is proposed to increase the robustness
of the Kriging algorithm, rather than speeding up the algorithm’s training time.
In Nguyen-Tuong et al. (2009), a partitioning method is introduced to separate
the data points into local Kriging models and combine the different models using
a distance metric.

All of these approximation algorithms have their advantages and disadvantages
and they are compared to our newly proposed Cluster Kriging algorithms. For the
empirical study, three commonly applied algorithms: SoD, FITC and BCM are
selected to compare with the proposed approaches in this thesis.

3.2.1 Clustering

Given some data points X = {x1,x2, . . . ,xn} ⊂ S and corresponding response
values y = (f(x1), f(x2), . . . , f(xn))>, the first step in Cluster Kriging is to cluster
the data set (X,y) into several smaller subsets. In general, the goal is to obtain a
set P containing q clusters on the input data set X.

P = {X1,X2, . . . ,Xq} , where
q⋃
i=1

Xi = X. (3.36)

As with the partition on X, the response values y are also grouped: y =
(y>1 ,y>2 , . . . ,y>q )>. The clustering can be done in many ways, with the most
simple and feasible approach being random clustering. For our framework, how-
ever, we introduce three more sophisticated partitioning methods that are used in
the experiments later on.

66



3.2 Cluster Kriging

Hard Clustering Hard clustering splits the data into k smaller disjoint data
sets: Xi

⋂
Xj = ∅ (i 6= j). This can be achieved by various methods, for instance

the K-means algorithm (MacQueen et al., 1967). K-means clustering minimizes
the within-cluster sum of squares, that is expressed as:

arg min
P

q∑
i=1

∑
x∈Xi

‖x− µi‖2 , (3.37)

where µi ∈ Rd is the centroid of cluster i and is calculated as the mean of the
points in Xi. The evaluation of the within-cluster sum of squares takes O(nqd)
execution time.

Soft Clustering Instead of using a hard clustering approach, a fuzzy clustering
algorithm can be used to introduce slight overlap between the various smaller
data sets, which might increase the final model accuracy. To incorporate fuzzy
clustering, instead of directly applying cluster labels, the probabilities that a point
belongs to a cluster are calculated (Eq. (3.39)). This probability is called the
membership value of a point to a cluster. With ν a user defined setting that defines
the overlap, dνn/qe number of points with the highest membership values are
assigned for each cluster. Here ν is set between 1 (no overlap) and 2 (completely
overlapping clusters).

In principle, any fuzzy clustering algorithm can be used for the partitioning. In
this thesis the Fuzzy C-means (FCM) (Dunn, 1973) clustering algorithm and the
Gaussian Mixture Models (GMM) (Reynolds, 2009) are used. FCM is a clustering
algorithm very similar to the well known K-means. The algorithm differs from
K-means in that it has additional membership coefficients and a fuzzifier. The
membership coefficients of a given point give the degrees that this point belongs
to each cluster. These coefficients are normalized so they sum up to one. The
algorithm can be fitted on a given data set and returns the coefficients for each
data point to each cluster. The number of clusters is a user defined parameter.
Fuzzy C-means optimizes the objective function given in Eq. (3.38) iteratively.
In each iteration, the membership coefficients of each point being in the clusters
are computed using Eq. (3.39). Subsequently, the centroid of each cluster µj
is computed as the center of mass of all data points, taking the membership
coefficients as weights. The objective of fuzzy C-means is to find a set of centroids

67



3. KRIGING/GAUSSIAN PROCESS REGRESSION

that minimizes the following function:

n∑
i=1

q∑
j=1

wmij ‖xi − µj‖
2
, (3.38)

where wij are the membership values (see Eq. 3.39) and m is the so-called fuzzifier
(m = 2 in this thesis). The fuzzifier determines the level of cluster fuzziness as
follows:

wmij = 1
q∑

k=1

(
‖xi − µj‖
‖xi − µk‖

) 2
m−1

(3.39)

The other fuzzy clustering procedure used is the Gaussian Mixture Models. GMM
are used together with the expectation-maximization (EM) (Sundberg, 1974) al-
gorithm for fitting the Gaussian models. The mixture models are fitted on the
training data and later used in the weighted combination of the Kriging models
by estimating cluster membership probabilities of the unseen data points. The
advantage of this clustering technique is that it is fairly robust and that the number
of clusters can be specified by the user. For the GMM method one could use
the full covariance matrix whenever the dimensionality of the input data is small.
However, when working with high dimensional data a diagonal covariance matrix
can be used instead. The time complexity of GMM depends on the underlying
EM algorithm. In each iteration of EM, it takes O(nq) operations to re-estimate
the model parameters.

Regression Tree Partitioning The third method used is the partitioning by
use of a Regression Tree (Breiman et al., 1984) on the complete training set. The
regression tree splits the data set recursively at the best splitting point using the
variance reduction criterion. Each leaf node of the Regression Tree represents a
cluster of data points. The number of leaves (or the number of records per leave)
can be set by the user. By reducing the variance in each leaf node and therefore
the variance in each data set, the Kriging models can be fitted to the local data
sets much better as will be presented later on. The time complexity of using a
Regression Tree for the partitioning is O(n), given that the depth of the tree or
the number of leaf nodes is set by the user.

The partitioning done by the regression tree depends on the splitting criterion.
For a faster execution of the Cluster Kriging algorithm we could choose to use

68



3.2 Cluster Kriging

a splitting criterion that splits the data set in each node evenly, balancing the
load for each of the local Kriging models attached to the leafs. From emprical
experience we know that splitting using the standard variance reduction function
generally results in better performing models than using such an evenly splitting
criterion. This is likely due to the fact that data sets with a lower variance can be
more easily fitted by a Kriging model.

3.2.2 Modeling

Technically, modeling the function f using Kriging/GPR implies using the stochas-
tic process {Y (x) : x ∈ S} (cf. Eq. (3.1)) as the statistical model of f . Under this
setting, the response values y are treated as the observations from Y . After parti-
tioning the data set into several clusters, Kriging/GPR models are fitted on each of
the smaller data sets. Consider the random vectorψ = (Y (x1), Y (x2), . . . , Y (xn))>.
It is also partitioned according to the clustering on X: ψ = (ψ>1 ,ψ>2 , . . . ,ψ>q )>.
For simplicity we assume the kernel functions used on each cluster to be the same
and Ordinary Kriging is used in each cluster. Typically, each cluster only captures
the local information about f and thus the Kriging model on each cluster shall be
called local Kriging/GPR model. On each cluster, the (local) posterior distribution
of the Y (x) is:

Y (x) | ψi = yi ∼N
(
f̂i(x), s2

i (x)
)
, i = 1, 2, . . . , q, (3.40)

where f̂i and s2
i are the Kriging estimator and MSE in Eq. (3.9) and (3.11) except

that the observations yi is now only a fraction of the whole observations y. Note
that training the Kriging estimator can be easily parallelized, which gives an
additional speedup to Cluster Kriging. Another benefit of building each model
separately, is that each model has usually a much better local fit than a single
global Kriging model would obtain.

3.2.3 Cluster Kriging Predictor

For the prediction, several approaches are proposed in the following. Depending
on the partitioning method used before, the simplest approach to predict the
unseen data point is by using a single local model. When the partitions are
overlapping a combination of the different local models into one global model is
then required.

69



3. KRIGING/GAUSSIAN PROCESS REGRESSION

Single Cluster Predictor The simplest method is to pick just one local Kriging
model for each data point and use this local model for the prediction. This does
require the partitioning used to create partitions based on locality like K-means
clustering or a regression tree. First the partitioning method is used to predict
which cluster the new data point belongs to, then the Kriging model trained using
this particular cluster is used to predict the mean and variance at the new data
point. In case of the Regression Tree procedure, the targets are predicted from
new unseen data points by first deciding which model needs to be used, using the
Regression Tree. The target is then predicted using the specific Kriging model
assigned to the leaf node. The main advantage of this method is that there is no
combination of different predictions and only one of the local Kriging models needs
to provide a prediction. This results in a significant speed-up for the prediction
task. Disadvantages of this method are 1) a potential inability of capturing the
global trend of the target function and 2) artificial discontinuities at the boundary
of partitions. In Fig. 3.3 (top row), we visualize a Cluster Kriging model using
regression trees, in which the intersections between the different local models are
marked by black dashed lines. It can be observed that the edges of the local
models are not completely matching, meaning that the predictions near the border
are not as smooth as they would be in a global Kriging model. It can also be
observed that the area covered by each cluster is not the same, which is due to
the splitting criterion of the regression tree. While the splitting criterion could be
chosen in such a way that it balances the cluster sizes, using variance reduction as
the splitting criterion generally gives better fitted local models.

Superposition of Posterior Processes Instead of using single model predic-
tions, the multiple local models can be combined into one global model using
various combination procedures. Some additional assumptions are necessary to
give the following derivation. Assume an independent Gaussian process prior on
each cluster:

∀i 6= j ∈ {1, 2, . . . , q}, Yi ⊥⊥ Yj , Yi ∼ t+ GP(0, k(·, ·)).

After clustering (e.g., K-means) the data set (X,y), independent posterior Gaussian
processes Y ′i are obtained on each cluster:

Y ′i := Yi | ψi ∼ GP(f̂i, k′i(·, ·)),

70



3.2 Cluster Kriging

where the posterior mean f̂i and kernel k′i are defined in Eq. (3.32) and (3.33). In
this sense, it is possible to construct a “global” Gaussian process as the superposition
of all posterior Gaussian processes. In addition, a weighting scheme {wi}i is used
to model how much “belief” should be put on each posterior process. Using positive
weights whose sum is one, the posterior process is:

Y :=
q∑
i=1

wiY
′
i ∼ GP

(
q∑
i=1

wif̂i,

q∑
i=1

w2
i k
′
i(·, ·)

)
,

The posterior kernel is derived as follows: consider the covariance between Y(x1)
and Y(x2):

Cov


q∑
i=1

wiY
′
i (x1),

q∑
j=1

wjY
′
j (x2)

 =
q∑
i=1

q∑
j=1

wiwj Cov
{
Y ′i (x1), Y ′j (x2)

}
=

q∑
i=1

w2
i k
′
i(x1,x2).

At an unobserved point x, the following predictive distribution is obtained,

Y(x) ∼ N
(

q∑
i=1

wif̂i(x),
q∑
i=1

w2
i s

2
i (x)

)
, (3.41)

where s2
i (x) = k′i(x,x). The best linear unbiased predictor of Y is its mean

function: Ŷ =
∑q
i=1 wif̂i and its MSE is the variance

∑q
i=1 w

2
i s

2
i . Note that the

predictor and its MSE depend on the choice of weights. The optimal predictor is
defined in the sense that the MSE is minimized with respect to the weight (van
Stein, Wang, Kowalczyk, Bäck, and Emmerich, 2015):

minimize
{w1,...,wq}

q∑
i=1

w2
i s

2
i (x)

subject to
q∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , q.

This convex optimization problem can be solved by using Lagrange Multipliers,
resulting in:

w∗i (x) = 1/s2
i (x)

q∑
j=1

1/s2
j (x)

. (3.42)

The optimal weights are then used to construct the optimal predictor, which is the
inner product of the model predictions with the optimal weights.

71



3. KRIGING/GAUSSIAN PROCESS REGRESSION

Mixture of Posterior Processes As an alternative to the linear predictor

given in Eq. (3.41) that arises from the superposition of posterior processes, we

formulate another linear predictor here, resulting from the mixture of posterior

processes. Firstly, the combination weights are motivated a bit differently: for the

GMM and other soft clustering approaches, the membership probabilities can be

used for unseen records to define the weights for the combination of predictions.

For instance, given a point x, the weights are defined as,

wi := Pr(C = i | x), i = 1, . . . , q, (3.43)

where C is the cluster indicator variable ranging from 1 to q. Note that those

weights can be given by the clustering algorithm or obtained by an optimization

procedure (see below). Secondly, instead of considering an independent Gaussian

process prior for each cluster, a single and global Gaussian process prior is assumed

for all clusters. By applying the total probability with respect to the cluster

indicator variable C, the conditional density of Y over ψ is (van Stein, Wang,

Kowalczyk, Emmerich, and Bäck, 2016):

p(Y (x) | ψ = y) =
q∑
i=1

p(Y (x), C = i | ψ = y,x)

=
q∑
i=1

p(Y (x) | C = i,ψ = y) Pr(C = i | x)

≈
q∑
i=1

p(Y (x) | ψi = yi) Pr(C = i | x). (3.44)

Note that we approximate the density p(Y (x) | C = i,ψ = y) by p(Y (x) | ψi = yi).

Such an approximation is accurate when the amount of the overlap between clusters

is small. In Eq. (3.44), the first term within the summation is the posterior density

obtained from cluster i. The second term represents the probability that data

point x belonging to a cluster, which is the weight in Eq. (3.43). Consequently,

the overall predictive density p(Y (x) | ψ = y) comes from the mixture of posterior

processes. According to statistical decision theory (Hastie et al., 2009), the best

predictor of Y when knowing the conditional density of Y on y is the conditional

72



3.2 Cluster Kriging

expectation, i.e.,

E {Y (x) | ψ = y} =
∫ ∞
−∞

y

q∑
i=1

p(Y (y) | ψi = yi) Pr(C = i | x) dy

=
q∑
i=1

Pr(C = i | x)E {Y (x) | ψi = yi}

=
q∑
i=1

wif̂i(x). (3.45)

In contrast to Eq. (3.41), the predictor above is also a linear combination of Kriging
predictors from all clusters. However, the differences are 1) the predictive density
p(Y (x) | ψ = y) is no longer Gaussian, 2) the weights in Eq. (3.41) are resulted
from an optimization procedure while the weights in Eq. (3.45) are either given
directly by the clustering algorithm or obtained from the optimization. To optimize
the weights, please consider the MSE of this predictor, which is the variance of the
mixture of posterior processes:

Var {Y (x) | ψ = y}

= E
{
Y (x)2 | ψ = y

}
− (E {Y (x) | ψ = y})2

=
q∑
i=1

wi

(
Var{Y (x) | ψi = yi}+ (E{Y (x) | ψi = yi})2

)
− (E{Y (x) | ψ = y})2

=
q∑
i=1

wi

(
s2
i (x) + f̂2

i (x)
)
−

(
q∑
i=1

wif̂i(x)
)2

. (3.46)

Again, the weights are considered optimal in the sense that the MSE is mini-
mized:

minimize
{w1,...,wq}

Var {Y (x) | ψ = y}

subject to
q∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , q.

Cluster Kriging Variants By choosing different methods for the clustering
and prediction, various Cluster Kriging variants are instantiated:

• Optimally Weighted Cluster Kriging (OWCK) uses a K-means clustering
algorithm for the partitioning and the superposition of posterior processes to
construct the predictor.

73



3. KRIGING/GAUSSIAN PROCESS REGRESSION

• Optimally Weighted Fuzzy Cluster Kriging (OWFCK) is similar to OWCK
except that K-means is replaced by Fuzzy C-means.

• Gaussian Mixture Model Cluster Kriging (GMMCK) uses Gaussian Mixture
Models to partition the data into q overlapping clusters and the membership
probabilities are used as the combination weights. The mixture of posterior
Gaussian processes (Eq. (3.45)) is used for the prediction.

• Model Tree Cluster Kriging (MTCK) uses a regression tree to partition
the data in the objective space. The tree is generated from the root node
by recursively splitting the training data using the target variable and the
variance reduction criterion. Once a node contains less than the minimum
samples needed to split or the node contains only one record, the splitting
stops and the node is called a leaf. To control the number of clusters, the
user can set the maximum number of leaves or the minimum leaf size. Next,
each leaf node is assigned a unique index and each record belonging to the
leaf is assigned to this index. For each leaf, a Kriging predictor is built using
only those records assigned to this leaf. For the prediction, the regression
tree decides which Kriging predictor should be used.

3.2.4 Experiments

A broad variety of experiments is conducted to compare Optimally Weighted Cluster
Kriging and its Fuzzy and Model Tree variants, to a wide set of other Kriging
approximation algorithms. The algorithms included in the test are: Bayesian
Committee Machines, both with shared parameters (BCM sh.) and with individual
parameters (BCM), Subset of Data (SoD), Fully Independent Training Conditional
(FITC), Optimally Weighted Cluster Kriging (OWCK) using K-means clustering,
Fuzzy Cluster Kriging using Fuzzy C-means (OWFCK), Fuzzy Cluster Kriging
with Gaussian Mixture Models (GMMCK) and finally Model Tree Cluster Kriging
(MTCK). The algorithms are evaluated on three different data sets from the UCI
machine learning repository (Bache and Lichman, 2013):

• Concrete Strength (Yeh, 1998) is a data set with 1030 records, 8 attributes
and one target attribute. The task is to predict the strength of concrete.

74



3.2 Cluster Kriging

• Combined Cycle Power Plant (CCPP) (Kaya et al., 2012) is a data set of
9568 records, 3 attributes and one target attribute. The target is the hourly
electrical energy output and the task is to predict this target.

• SARCOS (Vijayakumar et al., 2005) is a data set from gaussianprocess.org
with a training set of 44484 records, 21 attributes and 7 target attributes.
The task is to predict the joint torques of an anthropomorphic robot arm.
All 21 attributes are used as training data but only the 1st target attribute is
used as target. The data set comes with a predefined test set of 4449 records.

For the Concrete Strength data set and all synthetic data sets: FITC is set to a
range of inducing points starting from 32 and increasing in powers of 2 to 512.
SoD is set to the same range as FITC but for SoD this means the number of
data points. BCM, both shared and non-shared versions and all Cluster Kriging
variants are set to a range from 2 to 32 clusters, increasing with powers of 2. For
the Combined Cycle Power Plant data set: FITC is set to a range of inducing
points starting from 64 and increasing in powers of 2 to 1024. SoD is set to a
range from 256 to 4092 data points. BCM, both shared and non-shared versions
and all Cluster Kriging variants are set to a range from 4 to 64 clusters. Finally,
for the SARCOS data set, the range of FITC’s inducing points stays the same as
for the CCPP data set, for SoD the range is from 512 to 8184 data points, and for
all cluster based algorithms and the model tree variant, the range is set from 8 to
128 clusters.

In addition, 8 synthetic data sets with each 10000 records, 20 attributes and one
target attribute are used. The synthetic data sets are generated on common bench-
mark functions: Ackley, Schaffer, Schwefel, Rastrigin, H1, Rosenbrock, Himmelblau
and Diffpow. The implementations of those functions are taken from the Deap
Python Package (Fortin et al., 2012).

Hyper-parameter Optimization As mentioned before, Ordinary Kriging is
chosen for all the clusters throughout this thesis. For each local Ordinary Kriging
model, its constant trend β is estimated using the GLS (Generalized Least Squares)
formula (Eq. (3.9)). Consequently, the so-called profile log-likelihood is adopted to
estimate the hyper-parameter. In each local Kriging model, hyper-parameters σ2,θ

of the kernel function are optimized using the Maximum Likelihood Estimation
(MLE) method. As for the choice of numerical optimization algorithm, we use a
quasi-Newton method (BFGS) (Fletcher, 2013) with restarting heuristic.

75



3. KRIGING/GAUSSIAN PROCESS REGRESSION

Table 3.2: Average R2 score per data set for each algorithm

Data set SOD OWCK GMMCK OWFCK FITC BCM BCM sh. MTCK
concrete 0.784 0.826 0.839 0.696 0.675 −81.888 −242.459 0.851
CCPP 0.948 0.937 0.968 0.916 0.890 0.220 −24.602 0.968
sarcos 0.964 0.894 0.996 0.570 0.941 −627.280 0.448 0.999
ackley 0.952 0.957 0.951 0.954 0.260 0.921 −0.039 0.981
schaffer 0.321 0.388 0.369 0.406 0.208 0.452 −0.050 0.672
schwefel 0.990 0.973 0.977 0.947 0.006 0.969 −0.043 0.999
rast 0.973 0.947 0.948 0.932 0.322 0.914 −0.043 0.998
h1 0.676 −0.082 0.527 −1.125 0.165 0.657 −0.046 0.977
rosenbrock 0.999 0.997 0.997 0.981 0.000 0.994 −0.050 1.000
himmelblau 0.997 0.995 0.995 0.981 0.291 0.994 −0.044 1.000
diffpow 0.995 0.991 0.991 0.975 0.001 −0.001 −0.001 1.000

Table 3.3: Average MSLL score per data set for each algorithm

Data set SOD OWCK GMMCK OWFCK FITC BCM BCM sh. MTCK
concrete −0.837 −0.946 −1.100 −0.692 −0.629 18.590 68.013 −1.140
CCPP −0.089 −1.438 −1.525 −1.109 −1.165 7.826 69.346 −1.193
sarcos −1.926 −1.371 −3.147 −0.302 −1.463 780.090 507.721 −3.429
ackley −1.622 −1.516 −1.517 −1.462 −0.104 7.352 13.010 −2.012
schaffer 0.477 −0.073 0.081 −0.091 −0.107 16.872 11.707 −0.514
schwefel −2.554 −2.013 −2.162 −1.944 −0.002 −0.144 12.034 −3.278
rast −2.179 −1.686 −1.807 −1.642 −0.193 4.554 11.590 −2.901
h1 −0.766 −0.276 −0.540 −0.060 −0.059 9.018 17.393 −1.967
rosenbrock −3.479 −2.915 −3.074 −2.738 high* 0.612 18.575 −4.054
himmelblau −3.204 −2.646 −2.790 −2.553 −0.193 −1.422 12.826 −3.739
diffpow −3.020 −2.548 −2.666 −2.438 high* high* high* −3.744

Table 3.4: Average SMSE score per data set for each algorithm

Data set SOD OWCK GMM-CK FCM-CK FITC BCM BCM sh. MTCK
concrete 0.216 0.174 0.161 0.304 0.325 82.888 243.459 0.149
CCPP 0.052 0.063 0.032 0.084 0.110 0.780 25.602 0.032
sarcos 0.036 0.106 0.004 0.430 0.059 628.280 0.552 0.001
ackley 0.048 0.043 0.049 0.046 0.740 0.079 1.039 0.019
schaffer 0.679 0.612 0.631 0.594 0.792 0.548 1.050 0.328
schwefel 0.010 0.027 0.023 0.053 0.994 0.031 1.043 0.001
rast 0.027 0.053 0.052 0.068 0.678 0.086 1.043 0.002
h1 0.324 1.082 0.473 2.125 0.835 0.343 1.046 0.023
rosenbrock 0.001 0.003 0.003 0.019 1.000 0.006 1.050 0.000
himmelblau 0.003 0.005 0.005 0.019 0.709 0.006 1.044 0.000
diffpow 0.005 0.009 0.009 0.025 0.999 1.001 1.001 0.000

76



3.3 Cluster Kriging and EGO

Whenever the fuzzy clustering algorithm is applied, the overlap rate ν is set to
10%, which is chosen based empirical investigations: although higher percentages
(above 10%) usually increase the accuracy marginally, it also brings additional
computational costs as each cluster becomes larger. For the Model Tree variant,
the number of leaves is enforced by setting a minimum number of data points per
leaf and an optional maximum number of leaves.

Quality Measurements The quality of the experiments is estimated with the
help of 5-fold cross validation, except for the SARCOS data set, which uses its
predefined test set. The experiments are performed in a test framework similar to
the framework proposed in (Chalupka et al., 2013), i.e., several quality measure-
ments are used to evaluate the performance of each algorithm. The Coefficient
of determination R2 score, Mean Standardized Log Loss (MSLL) (Rasmussen and
Williams, 2006) and the Standardized Mean Squared Error (SMSE) are measured
for each test run. The Mean Standardized Log Loss is a measurement that takes
both the prediction and MSE (estimated by the model) into account, penalizing
inaccurate predictions that have small estimated MSEs. For MSLL and SMSE
lower scores are better, for R2, 1.0 is the best possible score meaning a perfect fit
and everything lower is worse.

Results On real-world data sets Concrete Strength, CCPP and SARCOS, the
experiment results are summarized in the following tables. Two performance
measures, time and accuracy (x and y axis respectively) are shown. The R2 scores
of each data set per algorithm, averaged over all folds, are shown in Table 3.2. The
MSLL scores are provided in Tab. 3.3 and the SMSE scores in Tab. 3.4. The best
results for each data set are indicated in bold face.

3.3 Cluster Kriging and EGO

When applying the EGO algorithm to a large initial data set (e.g., in the experi-
ment design), typically the Kriging model is re-trained in every iteration and the
CPU time spent on the hyper-parameter re-estimation becomes computationally
infeasible. To relax this bottleneck, it is proposed to use the Cluster Kriging
algorithm in an EGO algorithm. Specifically, the following three Cluster Kriging
variants shall be used:

77



3. KRIGING/GAUSSIAN PROCESS REGRESSION

• Cluster Kriging (OWCK)

• Gaussian Mixture Model Cluster Kriging (GMMCK)

• Model Tree Cluster Kriging (MTCK)

When choosing the MTCK variant, it brings several other advantages than the
time complexity reduction. 1) The search space is recursively divided into smaller
hypercubes, in a manner that the variance of the target value on each node is
greedily reduced. Such a reduced the variance of target values in each cluster
potentially facilitates the numerical stability in the model training, because the
covariance matrix K tends to become singular when the target value varies abruptly
in the local scale. 2) For the infill criterion, multi-modality is artificially created
as a by-product of applying the MTCK variant. Intuitively, as independent
Kriging/GPR models are trained on each tree partitions, the prediction MSE
increases rapidly around the boundary of the partition. Potentially, this behavior
results in local optimality of the infill criterion on each partition. Using this
artefact, multiple distinct and potentially well-performing points can be proposed
for the evaluation. Essentially, this is an alternative approach to the infill criterion
parallelization problem stated in Section 4.5. Our argument is visually validated in
Fig. 3.3. Here 500 data points are sampled on the 2-D Ackley function using the
Halton sequence (Niederreiter, 1992). It is important to observe that the prediction
MSE shows basins of attraction on each partition. Consequently, the expected
improvement criterion also exhibits basins of attraction on each partition and thus
is highly multi-modal. For each partition, the local maximum of EI is indicated by
the red star symbol.

3.3.1 The algorithm

Although various complexity reduction (or approximation) methods exist for Krig-
ing (for instance, FITC (Naish-Guzman and Holden, 2007; Snelson and Ghahramani,
2005) and Bayesian Committee Machines (Tresp, 2000)), we state that Cluster
Kriging is more suitable for the EGO algorithm for the following reasons (Wang
et al., 2017):

1. Kriging predictors (posterior processes in Eq. (3.40)) on each cluster can be
trained in parallel, which yields an additional linear speedup in practice.

78



3.3 Cluster Kriging and EGO

−15

−10

−5

0

5

10

15

x
2

Target function

1 2

3

4 5

6

7 8

0.120

0.180

0.240

0.300
0.360

0.4200.480

0.540

0.
60

0

0.660

0.
72

0

0.
78

0

0.840

0.900

0.
90

0

0.900

0.960

0.
96

0

GPR prediction

−15 −10 −5 0 5 10 15
x1

−15

−10

−5

0

5

10

15

x
2 1 2

3

4 5

6

7 8

0.
28

0
0.280

0.280

0.320

0.320

0.320 0.
36

0

0.360

0.
40

0

0.400

0.
40

0

0.400

0.
44

0

0.440

0.
44

0

0.
48

0

0.
48

0

0.
48

00.480

0.520

0.
52

0

0.520

0.
52

0

0.520 0.520

0.
56

0

0.
56

0

0.560

0.
56

0

0.560

0.
60

0

0.
60

0

0.6
00 0.600

0.600

0.600

0.
64

0

0.
64

0

0.
64

0

0.640

0.
64

0

0.680

0.680

0.680

0.680

0.
72

0

0.720

0.720

0.
76

00.
76

0

0.
80

0

GPR MSE

−15 −10 −5 0 5 10 15
x1

1 2

3

4 5

6

7 8

-7
20

.0
00

-680.000
-640.000

-6
00

.0
00

-560.000
-520.000

-480.000

-440.000

-4
40

.0
00

-400.000

-400.000

-400.000

-360.000

-360.000

-3
20

.0
00

-320.000
-2

80
.0

00

-2
40

.0
00

-240.000

-2
00

.0
00

-200.000

-160.000

-120.000

-8
0.

00
0

-40.000

log(Expected Improvement)

Figure 3.3: On the 2-D Ackley function (top-left), 500 random points (black
dots in the top-left plot) are generated using the Halton sequence (Niederreiter,
1992). A Model Tree Cluster Kriging (mtck) with the Gaussian kernel is trained
on the data point, where the underlying tree clusters are indicated by dashed lines
(except the top-left plot). Contour lines are depicted for the Kriging/GPR prediction
(top-right), the Kriging/GPR MSE (bottom-left) and the so-called Expected
Improvement (EI) criterion (bottom-right) defined on the Kriging prediction and
MSE (cf. Eq. (4.5)). Multiple local maxima (9 in the bottom-right plot) of EI are
obtained by conducting the quasi-Newton search on each cluster.

79



3. KRIGING/GAUSSIAN PROCESS REGRESSION

2. After a new candidate solution is found via the optimization on the infill
criterion, the hyper-parameters of Kriging need to be re-estimated. Taking
the cluster information into account, it is proposed to only re-estimate the
hyper-parameters on the clusters that this new solution belongs to. This
operation leads to additional speedup in model training, as in the best
scenario, only one local Kriging predictor is re-trained.

3. The infill criterion, e.g., the expected improvement is still well-defined over
the Cluster Kriging because either the Gaussian posterior process (Eq. (3.41))
or the mean and variance function (Eq. (3.45) and (3.46)) are available.

The resulting algorithm is presented in Alg. 7. Note that, the training of the initial
Kriging models can be parallelized (line 4). The counter c is used to keep track of
the number of the recently evaluated data points. When c is bigger than 10% of
the size of the data set, the clustering procedure is performed again to balance the
size of clusters.

The commonly used infill criteria, e.g., Expected Improvement (Eq. (4.5)) remain
well-defined on all the variants of Cluster Kriging in the following sense. Usu-
ally infill criteria are defined over the posterior process and take the Gaussian
assumption on it. Some Cluster Kriging variants, e.g., superposition of posterior
processes (Eq. (3.41)) admit a Gaussian posterior. For the others, e.g., mixture
of the posterior processes (Eq. (3.45)), we argue that although the posterior is
not Gaussian any longer, it is accurate enough to use the first- and second-order
structure of the posterior for infill criteria.

For the optimization of the infill criterion (line 8 in Alg. 7), it is possible to exploit
fast black-box optimization algorithms, for instance the well-known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2006; Hansen and
Ostermeier, 2001), because the evaluation of the infill criterion is not expensive
compared to the Kriging fitting procedure. However, as most of infill criteria have
a closed-form, it is straightforward to explore the gradient field of infill criteria.
And the global optimization can be conducted by applying a quasi-Newton method
with random restarts. To align with existing work (Roustant et al., 2012) on using
gradient-based optimization techniques for the infill criteria, we give the gradient
of the predictor and MSE in Cluster Kriging, as they are required to differentiate
most of infill criteria. For the superposition of posterior processes (Eq. (3.41)), the

80



3.3 Cluster Kriging and EGO

Algorithm 7 Cluster Kriging assisted Efficient Global Optimization
1: procedure ck-ego(X,y, f, q,A ) . q: number of clusters
2: {Xi,yi}qi=1 ← clustering(X,y, q)
3: for i = 1→ q do
4: Y | yi ∼ N

(
f̂i, s

2
i

)
. Train the Kriging predictor on each cluster

5: end for
6: c← 0
7: while the stop criteria are not fulfilled do
8: x∗ ← arg maxx∈S A (x) . Maximize the infill criterion
9: y∗ ← f(x∗) . Evaluation
10: c← c+ 1
11: if c/|X| > 10% then . |X|: cardinality of X
12: X,y← merge({Xi,yi}qi=1)
13: {Xi,yi}qi=1 ← clustering(X,y, q) . Re-clustering
14: for i = 1→ q do
15: Y | yi ∼ N

(
f̂i, s

2
i

)
16: end for
17: c← 0
18: else
19: for every cluster i that x∗ belongs to do
20: Xi ← Xi ∪ {x∗}, yi ← (y>i , y∗)> . Extend the data set
21: Y | yi ∼ N

(
f̂i, s

2
i

)
. Re-train the predictor on cluster i

22: end for
23: end if
24: end while
25: return x∗

26: end procedure

81



3. KRIGING/GAUSSIAN PROCESS REGRESSION

gradients of its predictor and MSE are (cf. Eq. (3.41) and (3.42)):

∂f̂

∂x =
q∑
i=1

(
wi
∂f̂i
∂x + f̂i

∂wi
∂x

)
∂s2

∂x =
q∑
i=1

(
w2
i

∂s2
i

∂x + 2wis2
i

∂wi
∂x

)
∂wi
∂x =

q∑
i=1

(
1

s4
iM

∂s2
i

∂x + 1
s2
iM

2

q∑
i=1

1
s4
i

∂s2
i

∂x

)
, M =

q∑
j=1

(
s2
j

)−1

The gradient of the Kriging predictor and MSE on each cluster, ∂f̂i/∂x, ∂s2
i /∂x,

are given in Eq. (3.34) and (3.35). For the mixture of posterior processes, its
gradient can be obtained in a similar way. This is omitted here for the sake of
simplicity.

In addition, for the Tree-based local Kriging models (MTCK), it is shown (Fig. ??)
that each cluster (leaf node) can be treated as a sub-problem in the infill criteria
optimization. Therefore, it might be more efficient to conduct independent searches
in each leaf region of the Regression Tree and choose the best point from all these
sub-problems.

3.3.2 Experiments

Several experiments are conducted to show both the empirical time complexity
and convergence rate of the proposed Cluster Kriging based EGO, including all
the variants of Cluster Kriging discussed in Section 3.2.3. The performance of
the proposed algorithm is compared to the original EGO that uses Ordinary
Kriging (OK). For our experiments, the benchmark functions chosen are Ackley,
Rastrigin and Schaffer. These functions are chosen because they are used often
in optimization experiments, are highly multi modal, and are of a relatively high
complexity.

The algorithms under comparisons are: EGO with Ordinary Kriging (OK), Tree-
based local Kriging models (MTCK), Superposition of Kriging models (OWCK)
and the mixture of Kriging models (GMMCK). Each of the Cluster Kriging variants
uses 5 clusters. Both execution time and convergence rate are being measured
with a fixed set of EGO iterations and optimization budget. The convergence is
measured by taking the absolute error between the real optimum of the benchmark

82



3.4 Summary

functions and the found optimum for each iteration of EGO. Each EGO run
performs 10 iterations for the three benchmark functions in two dimensions. Three
different initial sample sizes (500, 1000 and 5000) are used to train the surrogate
models, in order to illustrate the growth of CPU time required per algorithm, when
the size of the data available increases. For each different experimental setup, the
average time and distance to the optimum is recorded over 20 runs with different
random seed ([0, 20]).

Results In Fig. 3.5 it can be observed that the Cluster Kriging based EGO
variants perform very similar to OK, depending on the target function; a specific
variant even outperforms Ordinary Kriging. Due to the relative large variance in
the results it is difficult to judge which algorithm performs better. However, in
terms of the CPU time (Fig. 3.4), it can be observed that Cluster Kriging and in
particular MTCK takes only a fraction of the time that Ordinary Kriging requires.
Using a sample size of 500 points this difference is mainly due to the re-fitting
of only one local model at a time. This can be seen by comparing MTCK with
GMMCK and OWCK, since all three Cluster Kriging variants use the same number
of local models and only MTCK uses an adaptive local model strategy. When
the number of points increases to 1000 and even 5000, the difference between the
three Cluster Kriging variants decreases but the difference with Ordinary Kriging
becomes enormous. This shows that using EGO with Ordinary Kriging quickly
becomes infeasible when the number of data points grows.

3.4 Summary

This chapter addresses three aspects of the Kriging/GPR method. Firstly, a
unified view of Kriging/GPR is provided: the same formulation can be derived
independently from the theory of optimal linear predictors, Bayesian statistics and
the optimization in Reproducing Kernel Hilbert Spaces (RKHS). We try to link
those three approaches together and give a conceptual comparison among them.
Secondly, the time complexity bottleneck of Kriging is discussed in detail, where
several novel methods (Cluster Kriging variants) are derived, aiming at reducing
the training time and increase the model quality. Finally, the proposed Cluster
Kriging method is combined with the EGO algorithm to demonstrate its usefulness
in improving the existing optimization algorithm.

83



3. KRIGING/GAUSSIAN PROCESS REGRESSION

(a) CPU time, sample size 1000

(b) CPU time, sample size 5000

Figure 3.4: Average CPU time in seconds per benchmark function for varying
sample sizes.

84



3.4 Summary

500 1000 5000
ac

kl
ey

ra
st

ri
gi

n
sc

ha
ff

er

Figure 3.5: Average convergence of the absolute error of three benchmark functions
in two dimensions, with varying training sample sizes n and 10 iterations of EGO.
Shown is the average over 20 runs (lines) and one standard deviation (shaded areas).
Legend: ˛: Ordinary Kriging, Ĳ: OWCK, F: MTCK, −: GMMCK.

85





ch
ap

te
r

4
Infill Criteria

When using surrogate modeling in combination with optimization techniques, it is
crucial to determine how the model should be explored/exploited properly due to
the fact that surrogate models give rise to errors in the prediction. Firstly, it is
possible to define a “gain” function G : S → R to assess the unknown locations
(S is again the search space), e.g., the potential improvement over the current
best fitness value. Secondly, considering the randomness from the surrogate model
M (usually a statistical model), the “gain” function becomes stochastic and it is
necessary to use some statistical features from it, e.g., the expectation:

A (x) = E {G(x) |M } .

Such a function A : S → R is the so-called infill criterion. Note that in some
literature, it is also called acquisition function (Snoek et al., 2012). The next
location to evaluate is simply the maximum of the infill criteria:

arg max
x∈S

A (x). (4.1)

This formalism depends on two design choices: the statistical model M and the
“gain” function G. As for the statistical model, Kriging/GPR is very commonly
applied as it provides a theoretical quantification for the modeling error, through
the Kriging MSE (cf. Eq. (3.11)). Some other popular models include random
forests (Hutter et al., 2011; Bartz-Beielstein et al., 2005) and support vector
regression (SVR) (Forrester et al., 2008). For those models, however, the theoretical
prediction error is typically not available and the empirical error is used instead.
Here, Kriging/GPR shall be assumed as the statistical model throughout all the
discussions.

87



4. INFILL CRITERIA

As for the “gain” function, one common choice is the potential improvement over
the current best fitness value, achieved by evaluating an unobserved location.
Maximizing the expected improvement leads to a greedy, stepwise optimization
strategy. As an alternative, the so-called cumulative regret is considered in the
multi-armed bandit: the regret in iteration t is Rt = f(x∗)− f(xt), where x∗ =
arg minx∈S f(x) and xt is the location chosen in iteration t. In practice, as
f(x∗) is unknown, the regret Rt has to be estimated. It is possible to construct
a non-stepwise gain by summing up all the regrets since the beginning of the
optimization:

G = −
T∑
t=1

Rt.

Note that T stands for the current iteration and the minus sign is intended to
convert the regret values to a gain function. For this gain function, the Upper
Confidence Bound (UCB) criterion is proposed (Auer, 2002): given a surrogate
model f̂ (e.g., Kriging) of f and the MSE of the prediction s2(x), UCB is defined
as:

LCB(x;β) = f̂(x)−
√
βs2(x), (4.2)

where β is a carefully chosen learning rate that explicitly controls the trade-off
between exploitation and exploration. Note that this infill criterion is also known
as Lower Confidence Bound (LCB) in terms of minimization. Obviously, a high
value of β emphasizes more on the model uncertainty and thus tends to be more
explorative. When Kriging/GPR is chosen as the statistical model, this infill
criterion is called Gaussian Process Upper Confidence Bound (GP-UCB) (Srinivas
et al., 2010). In addition, criteria with free parameters such as β shall be called
parameterized infill criteria in this thesis. Other infill criteria have been proposed,
based on different types of the gain function, e.g., BayesGap (Hoffman et al., 2014)
and UGap (Gabillon et al., 2012), which are gap-based exploration approaches. For
a survey and conceptual comparison among those infill criteria, please see Jones
(2001); Forrester et al. (2008).

The infill criterion plays a vital role in many optimization paradigms, including
the Efficient Global Optimization, Multi-armed Bandits, Monte-Carlo Tree Search
(MCTS) and Multi-objective optimization (Emmerich, Yang, Deutz, Wang, and
Fonseca, 2016). In this thesis, we shall focus on the Efficient Global Optimization
algorithm, which is a sequential design strategy designed to solve expensive global
optimization problems (Močkus, 1975, 2012; Jones et al., 1998).

88



4.1 Improvement-based Infill Criteria

It is important to point out that different infill criteria can give rise to conflicts
on the promising location to evaluate, e.g., the probability of improvement favors
low-risk locations while the expected improvement tends to find locations with a
high gain (see Section 4.2). Multiple conflicting infill criteria can be considered
as a multi-objective optimization problem (Bischl et al., 2014; Wang et al., 2016).
Such a multi-objective treatment gives the decision makers the flexibility to choose
among low-risk and/or high-gain solutions and possibly leads to parallelization of
the Bayesian optimization. An alternative approach is proposed by Hutter et al.
(2012), where multiple LCB criteria are created by sampling several β values from
an exponential distribution with the unit mean. Furthermore, it is proposed to use
portfolio strategies to select an infill criterion in each step of the Efficient Global
Optimization (Hoffman et al., 2011; Ursem, 2014).

As for the optimization of the infill criteria, derivative-free Evolutionary algo-
rithms (Bäck and Schwefel, 1993) and gradient-based method (e.g., quasi-Newton
method) are often used/combined to search for the global optimum. As an alter-
native, Wang et al. (2018) propose to diversify the search by adapting the niching
techniques to find multiple (local) optima of the acquisition function.

4.1 Improvement-based Infill Criteria

Over the last decades, much research has been put into finding a function A

that provides a good balance between exploration and exploitation for various
applications. One category of such functions, called Improvement-based infill
criteria, is of particular interest for the following reasons: this category of functions
has clear statistical meanings and those are widely applied in the field of efficient
global optimization. Formally, the improvement is a function1 defined on the
stochastic process model Y of the objective function f . In terms of minimization,
it is (Schonlau et al., 1998):

I(x) =
{
fmin − Y (x) if Y (x) < fmin,

0 otherwise.
(4.3)

Assume that we have observed the data set (X,y) on f and let fmin = min{y}
stand for the best function value found so far. When choosing the Gaussian prior
on Y , the posterior process Y (x) | y ∼ N (f̂(x), s2(x)) (cf. Eq. (3.29)) is taken

1Naturally, this function I is also a stochastic process over S.

89



4. INFILL CRITERIA

in Eq. (4.3). In the following discussion, the posterior mean and variance shall
be abbreviated as f̂ and s2 if there is no ambiguity on the location x under the
consideration. The distribution of I(x) | y is known as Rectified Gaussian1, whose
density function is written as (cf. Eq. (A.5)):

pI(u; x) =


Φ
(
f̂ − fmin

s

)
δ(u) u < fmin,

s−1(2π)−1/2 exp
(
− (u− (fmin − f̂))2

2s2

)
otherwise.

(4.4)

Here δ(·) is the Dirac delta. Most of the improvement-based infill criteria are
constructed to summarize the statistical properties of the improvement. A short
review of the improvement-based infill criteria is given as follows.

• Expected Improvement (EI) is originally proposed by Močkus (1975) and
utilized as the infill criterion in the standard Efficient Global Optimization
(EGO) algorithm (Jones et al., 1998). It is defined as the first moment of
the improvement:

EI(x) = E {I(x) | y} =
(
fmin − f̂

)
Φ
(
fmin − f̂

s

)
+sφ

(
fmin − f̂

s

)
. (4.5)

Here Φ(·) and φ(·) are the cumulative distribution function (c.d.f.) and
probability density function (p.d.f.) of the standard normal random variable.
As will be shown in the next section, the EI criterion is highly multi-modal
and tries to balance between exploration and exploitation.

• Bootstrapped Expected Improvement (BEI) (Kleijnen et al., 2012) tries to
correct the bias in EI due to the fact that the Kriging MSE derived in
Eq. (3.11) is an underestimate of the true Kriging MSE when the hyper-
parameters are estimated (den Hertog et al., 2006). Bootstrapped EI uses
parametric bootstrapping to approximate the real Kriging MSE. Although
BEI is shown as a more reliable alternative to EI, it also brings a large
amount of computational cost.

• Probability of Improvement (PI) gives the probability of realizing an improve-
ment (Žilinskas, 1992; Jones, 2001). This criterion is more biased towards
exploitation than exploration since it rewards the solutions that are more

1Do not confuse the rectified Gaussian with the so-called truncated Gaussian distribution.
See Appendix A for the clarification.

90



4.1 Improvement-based Infill Criteria

certain to yield an improvement over the current best solution, without
taking the amount of the actual improvement into account:

PI(x) = Pr(Y (x) < fmin | y) = Φ
(
fmin − f̂

s

)
. (4.6)

Loosely speaking, PI rewards low risk solutions that typically come with
a relatively small amount of improvement while EI rewards solutions that
give high improvement on average but could be risky to realize such an
improvement. Therefore, the maximization of PI is considered as a risk
minimization strategy and in contrast, the maximization of EI is considered
as a gain maximization strategy. In Section 4.2, the trade-off between these
two criteria is investigated by treating them as a bi-objective optimization
problem.

• Weighted Expected Improvement (WEI) is an alternative approach to explicitly
control the balance between exploration and exploitation. Consider Eq. (4.5):
the first term calculates the difference between the current best fmin and the
prediction f̂ , penalized by the probability of improvement. The second term
is large when the RMSE s is large, meaning a large uncertainty about the
prediction is preferred. Therefore, it is also straightforward to balance those
two terms within EI (Sóbester et al., 2005):

WEI(x;w) = w
(
fmin − f̂

)
Φ
(
fmin − f̂

s

)
+ (1−w)sφ

(
fmin − f̂

s

)
, (4.7)

where w ∈ [0, 1] is the balancing weight. Sóbester et al. (2005) argues that
this additional parameter is problem-dependent.

• Generalized Expected Improvement (GEI) (Schonlau et al., 1998) is a gener-
alization of the EI criterion where an additional parameter, g, is introduced
to compute the gth-order moment of the improvement. The larger the value
of g, the more explorative locations will be awarded by the criterion and vice
versa. GEI is defined as follows:

GEI(x; g) = E {I(x)g | y} = sg
g∑
k=0

(−1)k
(
g

k

)
f̂g−kTk, (4.8)

where Tk is defined recursively for k > 1:

Tk = −uk−1φ(u) + (k − 1)Tk−2, (4.9)

91



4. INFILL CRITERIA

with

u = fmin − f̂
s

, T0 = Φ(u), T1 = −φ(u)

Note that as GEI is expressed recursively, additional computational costs are
attached to it and moreover it becomes very difficult to differentiate GEI.
The setting of the additional integer parameter g is entirely empirical. Sasena
et al. (2002) propose a “Simulated Annealing”-like approach to decrease the
value of g gradually, resulting in highly explorative behavior in the beginning
of the optimization and more exploitative behavior after several iterations.
The settings for g proposed are in the form of a look-up table where g starts
at 20 and quickly goes down to 0 after iteration 35.

• Multiple Generalized Expected Improvement (MGEI) (Ponweiser et al., 2008)
instantiates multiple normalized GEI criteria, using different g settings in
parallel. They obtain k best local optima which are evaluated for the next
iteration. The main disadvantage of this approach is the need of a large
number of evaluations.

4.2 Balancing Risk and Gain

In either efficient global optimization or experimental design, a single infill criterion
is maximized to generate the next promising location (solution) to evaluate. The
choice of criteria has a significant impact on the performance because each criterion
represents a different optimization strategy. When considering PI and EI, on the
one hand, a low PI value can be viewed as risky evaluation and the maximization
of PI can be seen as a risk minimization strategy. However, the risk minimization
strategy can still lead to small improvement. On the other hand, the maximization
of EI leads to high gains on average and thus it is a strategy of expected gain
maximization. However, it does not minimize the rate of failure (no improvement is
found). In Wang et al. (2016), we propose to consider the maximization of PI and
EI simultaneously to find the trade-off between them, which naturally forms a bi-
objective optimization problem. In this manner, it is possible to search for the best
set of trade-off locations, namely the Pareto efficient set and candidate locations
can be selected from the Pareto efficient set according to human preferences on
risk/expected gain, or some pre-defined decision-making rules. Formally, the

92



4.2 Balancing Risk and Gain

following vector-valued infill criterion is considered:

AAA : S→ R2, x 7→ (PI(x),EI(x))>. (4.10)

The set of candidate locations is the Pareto efficient set of AAA , namely:

X = arg max
x∈S

AAA (x). (4.11)

Note that such a vector-valued infill criteria can be easily generalized to many
objectives. Before solving Eq. (4.11) numerically, the following observations are
seen in the objective space, i.e., the space formed by PI and EI values. As shown
in the definition of PI and EI (Eq. (4.6) and (4.5)), both of them can be expressed
completely by the Kriging predictor f̂ and root mean squared error (RMSE) s.
Therefore, both PI and EI can be considered in the space formed by f̂ and s. Some
properties of PI and EI can be inferred by investigating their behavior in such space
with the benefit that such approach is independent of a specific Kriging model.
The contour lines of two criteria are shown in Fig. 4.1. Without loss of generality,
we put the current best function value fmin to zero and normalize f̂ , s to [−1, 1]
and [0, 1], respectively. In the figure, the maximum of PI and EI is illustrated by

−0.10 −0.06 −0.02 0.02 0.06 0.10

f̂

0.0

0.1

0.2

0.3

0.4

0.5

s

−0.10 −0.06 −0.02 0.02 0.06 0.10

f̂

0.00 0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.96
Probability of Improvement

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24
Expected Improvement

Figure 4.1: The contour lines of Probability of Improvement (Left) and Expected
Improvement (Right) in the space of Kriging prediction and RMSE. The red points
indicate the maximum of PI and EI, respectively.

93



4. INFILL CRITERIA

the red point. Furthermore, f̂ < 0 indicates predictions that are smaller (better)
than fmin. In this case, PI tends to find the point with the minimal RMSE.
According to the Kriging MSE expression (Eq. (3.11)), the RMSE s decreases to
zero when approaching any observed location. Therefore, when better predictions
exist in the Kriging model, PI prefers locations “next to” the observed ones. When
Kriging predictions are worse than fmin, PI prefers the point with the largest
RMSE and thus is of high risk. In contrast, EI always increases with increasing

0

2

4

6

8

10

12

14

x
2

8.000

8.
00

0

8.000

16.000

16.000

16.000
24.000

24.000

32.000

32.000

40.000

40.000
48.000

48
.0

00

56.000

56.000

64.000

64.000

72.000

72.000

80.000

80.000

88.000

88.000

96.000

96.000

104.000

104.000

112.000

112.000

120.000

120.000

128.000

128.000

136.000

136.000

144.000

144.0
00

152.000

152.000

160.000

160.000

168.000

168.000

176.000

176.000

184.000

184.000

192.000

192.000

200.000

200.000

208.000
216.000
224.000
232.000

Branin function

-4
.0

00

0.000

4.000

8.000

8.000

12.000

16.000

20.000
20

.0
00

24
.0

00

24.00028.000

28.000

32.000

32.000

36.000

36.000

40.000

40.000

44.000

44.000

48.000

52.000

56.000
60.000
64.000

68.000

72.000
76.000

80.000
84.000

88.000
92.000
96.000

100.000
104.000
108.000
112.000

116.000

120.000
124.000
128.000 132.000

136.000

140.000

144.000

148.000

GPR prediction

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x1

0

2

4

6

8

10

12

14

x
2

0.025

0.
02

5

0.050

0.050

0.
07

5

0.075

0.100

0.100

0.
12

5

0.125

0.1
50

0.150

0.
17

5

0.
17

5

0.
20

0

0.200

0.
22

5

0.225

0.2
50

0.250

0.275

0.275

0.300

0.325
0.350

0.375

0.400

0.425

0.
45

0

0.450

0.475

0.475

0.500

0.500

0.525

0.525

0.550

0.550

0.
57

5

0.575

0.600

0.600

0.625

0.625

0.650

0.650

0.675

0.675

0.700

0.
70

0

0.725

0.725

0.750

0.750

0.775 0.775

0.800

0.825
0.850

0.875
0.9000.925

0.950

Probability of Improvement

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x1

0.500

0.500
1.

00
0

1.000

1.500

1.500

1.500

2.0
00

2.
00

0

2.000

2.500

2.
50

0

2.500

3.000

3.
00

0

3.000

3.500

3.
50

0
3.500

4.
00

0

4.
00

0
4.000

4.
50

0

4.5
00

5.
00

0

5.0
00

5.
50

0

5.
50

0

6.
00

0

6.000

6.
50

0

6.500

7.000

7.000

7.
50

0

7.500

8.
00

0

8.0
00

8.
50

0 8.5
00

9.
00

0
9.

50
0 10.000

10.500
11.000
11.500

12.000
12.500
13.000
13.500
14.000
14.500
15.00015.500

16.000

16.500

Expected Improvement

Figure 4.2: On the Branin function (top-left), 10 data points (black dots) are
generated uniformly, on which an Ordinary Kriging model (with Matérn 3/2 kernel)
is trained. Contour lines of the prediction (top-right), Expected Improvement
(bottom-left) and Probability of Improvement (bottom-right) are depicted.

94



4.2 Balancing Risk and Gain

RMSE and decreases with increasing Kriging predictions. Note that, although it
seems possible to compute the Pareto front directly from Fig. 4.1 (by looking for
the points that satisfy the Karush-Kuhn-Tucker (KKT) conditions based on the
contour line of PI and EI), the resulting Pareto front is not feasible due to the
fact that not every point in the objective space is attainable: depending on the
underlying Kriging/GPR model, the pre-image of a point (f̂ , s) ∈ [−1, 1]× [0, 1]
does not necessarily exist in the search/decision space S.

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x1

0

2

4

6

8

10

12

14

x
2

Efficient set

0.80 0.85 0.90 0.95 1.00
PI

0

2

4

6

8

10

12

14

16

E
I

Pareto front

Figure 4.3: Pareto approximation sets of the bi-objective infill criterion formed by
the PI and EI landscape (Fig. 4.2). The results are obtained from the HIGA-MO
with population size 20. Left: Pareto efficient sets (blue dots) between PI (red
contours) and EI (black contours). Right: The corresponding Pareto fronts.

In Wang et al. (2016), it is proposed to solve this problem numerically by a
gradient-based multi-objective optimization algorithm, called Hypervolume Indica-
tor Gradient Ascent Multi-objective Optimization (HIGA-MO) (Wang et al., 2017).
The gradients of PI and EI are required for this algorithm, which are given as
follows. By introducing the auxiliary variable u = (fmin − f̂)/s, the gradients
are:

∂ PI
∂x = −φ(u)

s

(
∂f̂

∂x + u
∂s

∂x

)
,

∂ EI
∂x = φ(u) ∂s

∂x − Φ(u)∂f̂
∂x .

By plugging those gradients into HIGA-MO (Alg. 10 in Section 5.2), the Pareto
front/efficient set of A can be obtained. We illustrate the result of the bi-objective
optimization on the well-known 2-D Branin function. Here 10 design locations are
generated and evaluated on the Branin function using Latin Hypercube Sampling

95



4. INFILL CRITERIA

and an Ordinary Kriging is built on those locations. The landscapes of PI and
EI are shown in Fig. 4.2: the global structures of the landscapes are quite similar
while the local landscape differs subtly. The following setting of HIGA-MO is used
for this problem: the population size is set to 40 and the step-size is set to 0.004
multiplied by the maximal range of the search space. HIGA-MO is terminated
after finishing 2000 generations. The results from the gradient-based algorithm
are shown in Fig. 4.3, where the efficient set and the Pareto front are indicated by
the blue points.

4.3 Moment-Generating Function of Improvement

Following the intuition on using the higher moments of the improvement, an
novel infill criterion based on the Moment-Generating Function (MGF) of the
improvement is introduced in (Wang et al., 2017), where all the moments are
combined. Loosely speaking, given the existence of the moment-generating function,
it can be expanded as a Taylor series, whose terms are proportional to all the
moments (to the infinite order) of the improvement. Therefore, such a function
is considered as combination of all the moments. Formally, the MGF of the
improvement I(x) is an alternative way to give its probability distribution and it
is defined as:

∀t ∈ R, M(x, t) := E exp (tI(x)) =
∫ ∞
−∞

etupI(u; x) du.

Moreover, the moment-generating function can be calculated using the density
function of I(x):

M(x, t) = 1 + Φ
(
fmin − f̂ ′

s

)
exp

((
fmin − f̂

)
t+ s2t2

2

)
− Φ

(
fmin − f̂

s

)
,

f̂ ′ = f̂ − s2t. (4.12)

This function has a closed form and is well-defined for all t ∈ R. From a different
perspective, the Taylor expansion of the MGF is:

M(x, t) = 1 + tEI(x) + t2

2!EI
2(x) + t3

3!EI
3(x) + · · · =

∞∑
n=0

tn

n!EI
n(x). (4.13)

Note that, for an arbitrary distribution, the above series might not converge for
all the t ∈ R, even if all the moments exist. When treating tn/n! as the weight for

96



4.3 Moment-Generating Function of Improvement

each moment EIn, this function can also be considered as a linear combination
of the moments, where the weights are controlled by variable t. In addition, it
is possible to normalize the weights by observing the fact that:

∑∞
n=0

tn

n! = et,

which converges for all t ∈ R. Thus, the normalized MFG function1 is obtained
by dividing it by et. The additional parameter t controls the trade-off between
exploration and exploitation of the search. To visualize this, multiple sets of
weights are plotted in Fig. 4.4 by varying t. According to the figure, a low value
of t (e.g., t < 1) assigns more weights to the lower moments (e.g., the expected
improvement), rendering the search process mainly exploitative. As for the higher
values of t, the “center” (mean) of the weight distribution is t and dispersion
(variance) is also increasing with respect to t. This indicates that more higher
moments of the improvement are taken into account when t increases and therefore
the search tends to be more explorative.

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●

● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●
●

●

●

●

●
●

● ●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
● ● ● ●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ●0.0

0.2

0.4

0.6

0 10 20 30 40
order of the moments

w
ei

gh
t

t
●

●

●

●

●

●

0.5
1
6
11
16
21

Figure 4.4: Distribution of the combination weights in the normalized moment-
generating function by varying the t value from 0.5 to 21.

Finally, it is proposed to incorporate the Probability of Improvement (PI) in
the proposed acquisition function. This is achieved by treating PI as the “zero-
order” moment of I(x) and replacing the constant 1 in Eq. (4.13). Putting all

1In fact, the normalized weight, tn/etn! is exactly the probability mass function of the Poisson
distribution.

97



4. INFILL CRITERIA

the considerations together, the proposed Moment-Generating Function of
Improvement M (MGFI) is defined as:

M(x; t) = M(x, t)− 1 + PI(x)
et

= PI(x) + t

et
EI(x) + t2

2!etEI
2(x) + t3

3!etEI
3(x) + · · ·

= Φ
(
fmin − f̂ ′

s

)
exp

((
fmin − f̂ − 1

)
t+ s2t2

2

)
(4.14)

where f̂ ′ is defined in Eq. (4.12). In order to align with existing work (Wang
et al., 2016) on using gradient-based optimization techniques for infill criteria, the
gradient of MGFI is given as well:

∂M(x; t)
∂x = C

[
Φ
(
fmin − f̂ ′

s

)(
t2s

∂s

∂x − t
∂f̂

∂x

)

− φ

(
fmin − f̂ ′

s

)(
1
s

∂f̂ ′

∂x + fmin − f̂ ′

s2
∂s

∂x

)]
,

where
∂f̂ ′

∂x = ∂f̂

∂x − 2ts ∂s
∂x , C = exp

((
fmin − f̂ − 1

)
t+ s2t2

2

)
.

The gradients ∂f̂/∂x and ∂s/∂x are expressed in Eq. (3.34) and (3.35).

Comparison to GEI As with the Generalized Expected Improvement, MGFI
is designed to exploit the higher moments of the improvement. Compared to GEI,
the main advantages ofM are:

1. M combines all the moments using a weight distribution instead of using
one moment each time in GEI. This leads to a much smaller “change” in the
acquisition function when tuning the addition parameter t.

2. It has a simple closed-form expression, in contrast to a recursive formula
(Eq. (4.9)) for GEI. As a result, it is obvious to see thatM is computationally
less expensive than GEI. The gradient ofM can also be easily calculated.

3. The extra parameter t that balances the exploration and exploitation, takes
continuous values while the parameter g in GEI is an integer variable. Con-
sequently, when tuning this additional parameter, the effect can be more
smooth: cooling schedules such as, e.g., the exponential decay, can be applied.

98



4.3 Moment-Generating Function of Improvement

0

5

10

15

20

-5.0 -2.5 0.0 2.5 5.0 7.5
x

f

95% CI

0.14
0.33
0.82
2.03
5.00

t

(a) MGF of Improvement (MGFI)

0

5

10

15

20

-5.0 -2.5 0.0 2.5 5.0 7.5
x

f

g
0
1
2
3
4
5
6
7
8
9
10

95% CI

(b) Generalized Expected Improvement (GEI)

Figure 4.5: On the 1-D Ackley function (dashed curve), a GPR model (solid curve)
is built on the black dots. MGFI and GEI (both normalized and rescaled to [0, 10])
are plotted by varying parameters t and g, whose maxima are indicated by black
crosses. The shaded area shows the 95% confidence interval of the prediction.

99



4. INFILL CRITERIA

The difference between MGFI and GEI is illustrated in Fig. 4.5. On the 1-D Ackley
function, a GPR model is built on 6 uniformly distributed samples (black dots)
in [−5, 7]. In addition, 11 MFGI functions are created using a log-scaled t value
from roughly 0.1 to 3 while 11 GEI functions are depicted with g from 0 to 10.
The maximum of the infill criteria (the black crosses) is evaluated in the next
iteration. Comparing the spread of those maximum points, it is obvious that when
g increases in GEI, those maxima of infill criteria are getting close to each other
and thus become indistinguishable. This means the GEI functions are, in fact,
indifferent when the parameter g increases. However, for MGFI, those maxima
still show significant differences when t increases. Therefore, the effective range of
the parameter g is much narrower than that of t.

4.4 Cooling Strategies for MGFI

As discussed in the last section, the functionality of parameter t is analogous
to that of temperature in simulated annealing (Nourani and Andresen, 1998).
Consequently it is straightforward to use the temperature cooling strategies to
improve the optimization procedure. In Wang et al. (2018), we propose to adopt two
most commonly applied cooling strategies in simulated annealing, namely (Nourani
and Andresen, 1998):

• Exponential strategy: ti+1 = αti, 0 < α < 1.

• Linear strategy: ti+1 = ti − η, η > 0.

In each cooling strategy, naturally, there are two parameters to set: the initial
temperature t0 and the cooling speed (α for exponential strategy and η for the
linear one). As shown in the next subsection, the initial temperature t0 is a
free parameter, whose setting should be highly problem-dependent. As for the
cooling speed, it should be determined with respect to the prescribed function
evaluation budget. For example, a fast cooling speed for a short run length can
be hazardous because the search will quickly become very exploitative and even
ends up with stagnation. However, instead of setting the cooling speed directly,
the temperature tf at the final iteration of the algorithm1 is of interest here due
to the fact that the moment whose order is the closest to the current temperature

1Note that the algorithm might terminate before consuming all the budget if other termination
criteria are implemented and satisfied.

100



4.4 Cooling Strategies for MGFI

has the biggest weight in MGFI (see Fig. 4.4). Therefore, tf determines the major
functioning order of moment in the final stage of the search. Let Nmax be the
maximal number of iterations. The cooling speed parameters are determined as
follows: α = (tf/t0)1/Nmax , η = (t0 − tf )/Nmax.

4.4.1 Impact of Temperature Configurations

Intuitively, the optimal settings for the initial and final temperature t0, tf should
depend on the specific problem. An experiment is performed to investigate how
large the impact of temperature configurations can be on test problems. Here
10 different temperature configurations (shown in Tab. 4.1) are generated from
the Latin hypercube sampling with design ranges: t0 ∈ [1, 5] and tf ∈ [10−3, 0.5].

Table 4.1: Latin hypercube design of the temperature configuration.

No. 1 2 3 4 5 6 7 8 9 10
t0 1.084 1.273 1.495 1.756 2.063 2.423 2.847 3.344 3.928 4.613
tf 0.366 0.197 0.005 0.009 0.016 0.001 0.031 0.106 0.057 0.003

The following experiment is carried out on noiseless functions of the BBOB
benchmark (Hansen et al., 2010, 2009) for the exponential cooling strategy. We
only select the 10 multi-modal functions f15-f24 from BBOB. The unimodal
functions are skipped because efficient global optimization is designed for multi-
modal functions and using a high temperature (high explorative effect) usually
leads to inefficient convergence on a unimodal one. In addition, 30 independent
runs are conducted on each test function. The function evaluation budget is
set to 50 × D and the size of the initial LHS design is fixed to 10 × D. For
D = 2, the performance of each temperature configuration is reported in Fig. 4.6,
where empirical cumulative distribution functions of the running length (ECDFs)
are shown. ECDF measures the success probability (if the algorithm reaches a
given target fitness f∗ + ∆f in one run) as a function of maximal number of
function evaluations allowed. On some functions, ECDFs from all the temperature
configurations differ largely, e.g., f19 and f23. However, on f17, ECDFs are quite
similar to each other, implying the temperature configuration has relatively small
impact for f17. Moreover, by checking the winning configuration on each function,
it is obvious that there is no global winner for this multi-modal function class. This

101



4. INFILL CRITERIA

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

1.495-0.005

1.756-0.009

1.084-0.366

1.273-0.197

3.928-0.057

2.063-0.016

3.344-0.106

4.613-0.003

2.423-0.001

2.847-0.031

best 2009f15,2-D
15 Rastrigin

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

3.928-0.057

2.423-0.001

3.344-0.106

2.063-0.016

1.084-0.366

4.613-0.003

1.756-0.009

1.273-0.197

1.495-0.005

2.847-0.031

best 2009f16,2-D
16 Weierstrass

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

4.613-0.003

1.756-0.009

1.273-0.197

3.928-0.057

3.344-0.106

1.084-0.366

2.063-0.016

2.423-0.001

2.847-0.031

1.495-0.005

best 2009f17,2-D
17 Schaffer F7, condition 10

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

2.063-0.016

3.344-0.106

3.928-0.057

1.084-0.366

1.495-0.005

4.613-0.003

2.847-0.031

1.273-0.197

1.756-0.009

best 2009

2.423-0.001f18,2-D
18 Schaffer F7, condition 1000

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

1.084-0.366

3.928-0.057

1.495-0.005

2.423-0.001

2.847-0.031

1.273-0.197

3.344-0.106

1.756-0.009

4.613-0.003

2.063-0.016

best 2009f19,2-D
19 Griewank-Rosenbrock F8F2

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

4.613-0.003

1.273-0.197

2.063-0.016

1.084-0.366

2.847-0.031

3.344-0.106

1.495-0.005

2.423-0.001

1.756-0.009

3.928-0.057

best 2009f20,2-D
20 Schwefel x*sin(x)

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

best 2009

1.495-0.005

2.063-0.016

4.613-0.003

1.756-0.009

3.344-0.106

1.273-0.197

3.928-0.057

2.847-0.031

1.084-0.366

2.423-0.001f21,2-D
21 Gallagher 101 peaks

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

2.423-0.001

3.928-0.057

1.756-0.009

3.344-0.106

2.847-0.031

1.084-0.366

2.063-0.016

best 2009

1.273-0.197

1.495-0.005

4.613-0.003f22,2-D
22 Gallagher 21 peaks

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

1.273-0.197

2.063-0.016

1.495-0.005

3.344-0.106

3.928-0.057

1.084-0.366

4.613-0.003

best 2009

1.756-0.009

2.423-0.001

2.847-0.031f23,2-D
23 Katsuuras

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

2.063-0.016

1.084-0.366

1.756-0.009

2.847-0.031

3.928-0.057

3.344-0.106

4.613-0.003

2.423-0.001

1.495-0.005

1.273-0.197

best 2009f24,2-D
24 Lunacek bi-Rastrigin

Figure 4.6: Bootstrapped empirical cumulative distribution of the number of
function evaluations divided by dimension for all functions in 2-D. The targets are
chosen from 10[−8..2] such that the bestGECCO2009 artificial algorithm just did not
reach them within a given budget of k × DIM, with k ∈ {0.5, 1.2, 3, 10, 50}.

102



4.4 Cooling Strategies for MGFI

observation suggests that the temperature settings are highly problem-dependent
and should indeed be configured in practice.

4.4.2 Benchmarking the Cooling Strategies

For the experiments, only the multi-modal test functions f15 − f24 are picked
for the same reason. Both exponential and linear cooling strategies are tested.
Note that the temperature configuration is not investigated here due to the high
computational time it takes. Instead, the following setting is used: t0 = 2, tf = 0.1.
A relatively small function budget is chosen because it is the scenario on which
Bayesian optimization should perform well: the size of the initial design is set to
10 × D and the totally function evaluation is limited to 50 × D. The maximal
function evaluation is set as the only termination criterion in the experiment.
Therefore, 40×D iterations are executed in each run. For each test function, 30
instances are created for independent runs. For the settings of the Gaussian process,
the Matérn 3/2 kernel is used throughout the experiment. The model is fitted via
the maximum likelihood method, which is solved by the Limited-memory BFGS
(L-BFGS) algorithm with the restarting heuristic. In addition, a small number of
function evaluations 8 + b40 logDc is set for L-BFGS because the computational
overhead on the likelihood function explodes quickly as the number of evaluations
goes up.

On D = 10, the benchmark results are shown in Fig. 4.7. In the plot, “MGFI”
indicates the application of MGFI criterion with a constant temperature setting of
1 (no cooling strategy in this case). “MGFI-exp” stands for MGFI with exponential
cooling strategy while “MGFI-linear” is for the linear cooling. Note that all the
infill-criteria fail completely on f19, indicating many more function evaluations
are needed to solve this function. Using a linear or exponential cooling strategy,
MGFI outperforms the commonly applied expected improvement criterion on seven
functions out of f15− f24. This comparison suggests that MGFI with a cooling
strategy is preferable for BBOB multi-modal functions. In addition, there is no
clear winner between the linear and exponential cooling strategies. However, on
function f21, EI wins the competition. This situation might be caused by a very
poor setting of the cooling temperature and requires further investigation.

103



4. INFILL CRITERIA

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

EI

MGFIlinear

MGFI

MGFIexp

best 2009f15,10-D
15 Rastrigin

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

MGFIlinear

EI

MGFI

MGFIexp

best 2009f16,10-D
16 Weierstrass

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

EI

MGFIlinear

MGFI

MGFIexp

best 2009f17,10-D
17 Schaffer F7, condition 10

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

MGFIexp

EI

MGFI

MGFIlinear

best 2009f18,10-D
18 Schaffer F7, condition 1000

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

MGFIlinear

MGFIexp

MGFI

EI

best 2009f19,10-D
19 Griewank-Rosenbrock F8F2

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

EI

MGFIlinear

MGFI

MGFIexp

best 2009f20,10-D
20 Schwefel x*sin(x)

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

MGFI

MGFIlinear

MGFIexp

EI

best 2009f21,10-D
21 Gallagher 101 peaks

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

EI

MGFI

MGFIlinear

MGFIexp

best 2009f22,10-D
22 Gallagher 21 peaks

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

MGFIlinear

MGFIexp

EI

MGFI

best 2009f23,10-D
23 Katsuuras

-1 0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

MGFIlinear

EI

MGFI

MGFIexp

best 2009f24,10-D
24 Lunacek bi-Rastrigin

Figure 4.7: Bootstrapped empirical cumulative distribution of the number of
function evaluations divided by dimension for all functions in 10-D. The targets are
chosen from 10[−8..2] such that the bestGECCO2009 artificial algorithm just did not
reach them within a given budget of k × DIM, with k ∈ {0.5, 1.2, 3, 10, 50}.

104



4.5 Parallelization

4.5 Parallelization

In some applications, the target function f to optimize is actually represented by a
time-consuming simulator run. Multiple simulators can be distributed over many
CPUs or a grid of machines, allowing for the parallelization of function evaluations.
In order to take advantage of this parallelism, several promising candidate locations
are needed from infill criteria A , in addition to the maximum of A . For instance,
naively, this can be done by randomly sampling q points (q > 1) in addition to A ’s
maximum (Hutter et al., 2010). However, this method might be inefficient because
many random samples would never be chosen for the evaluation if a sequential
q-step maximization of infill criteria were performed. Although parallelization
methods for infill criteria have been discussed extensively in the literature, there is
a lack of a clear definition of the problem itself. Here the following formulation
is introduced. Rigorously, considering a GP prior Y on f and the initial data set
(X,y), each step in the sequential maximization of infill criteria is:

x′i = arg max
x∈S

A

(
x | y,

{
f(x′k) | x′k = arg max

x∈S
A
(

x | y, {f(x′n) | . . .}k−1
n=1

)}i−1

k=1

)
.

Note that the infill criterion is denoted as A (x | y, {f(x′k)}k), to emphasize its
dependence (from the underlying GP posterior) on evaluations {f(x′k)}k from all
previous steps as well as the initial observations y. In addition, the expression
above is written in a recursive manner on purpose to show that it is not possible
to decompose the maximization of infill criteria at a certain step from all previous
function evaluations. Here, the goal of infill criteria parallelization is formulated
as to obtain q points {xi}qi=1 ⊂ S from an infill criterion A without any function
evaluation, such that when comparing to points {x′i}

q
i=1 from the sequential q-step

maximization of A , the following condition holds:

E {min (Y (x1), . . . , Y (xq)) | y} ≈ min
{
E {Y (x′1) | y} ,

E {Y (x′2) | y, f(x′1)} ,

. . . ,

E
{
Y (x′q) | y, {f(x′i)}

q−1
i=1

}}
.

This condition regulates that the expectation of the best fitness from q locations is
roughly the same as the minimal expected fitness value obtained from sequential
q-step maximization of A , or shortly the parallelization exhibits the same effect as

105



4. INFILL CRITERIA

the sequential approach on average. Note that, although this condition gives a clear
target when designing the parallelization method for infill criteria, it is difficult to
validate parallelization methods on it. Thus, in the following, the approaches shall
be discussed regardless of this condition.

4.5.1 Multi-point Infill Criteria

Multi-point Expected Improvement (q-EI) is proposed by Schonlau (1998) and
computes the expectation of the smallest improvement among a set of correlated
locations:

EIq = E {fmin −min(Y (x1), Y (x2), . . . , Y (xq)) | y} . (4.15)

To give the exact formula of q-EI, it requires to integrate the smallest order
statistic from q-correlated Gaussian random variables. The exact formula of 2-EI
is derived in Ginsbourger et al. (2010). For an arbitrary number of points, the
formula is given in Chevalier and Ginsbourger (2013). There are two heuristics,
Kriging Believer and Constant Liar, proposed to approximate q-EI with fewer
computations (Ginsbourger et al., 2010). In Kriging Believer, q points are obtained
via the sequential q-step maximization of A , where the real evaluation f(x) is
replaced by the Kriging prediction. In Constant Liar, a pre-defined fixed value is
used for f(x) and thus is called a “lie”.

4.5.2 Multi-instance of Infill Criteria

Using the additional parameter β in LCB (Eq. (4.2)), Hutter et al. (2012) propose
an alternative parallelization method, where q different β-values are sampled from
the log-normal distribution Lognormal(0, 1) and subsequently q different LCB
criteria are instantiated using β samples:

βi ∼ Lognormal(0, 1), xi = arg min
x∈S

LCB(x;βi), i = 1, 2, . . . , q. (4.16)

Compared to q-EI, this method brings no additional computational cost and it
serves as reasonable between exploration and exploitation. On one hand, as the
probability mass of the standard log-normal distribution concentrates around small
values, most of the β samples will be relatively small and the corresponding LCB
criteria are of low risk. On the other hand, the standard log-normal also possesses
a long tail, meaning that it is possible to obtain a few large β samples with a small

106



4.5 Parallelization

probability. Note that such a trade-off is controlled by the mean and standard
deviation of the log-normal distribution. At the time of writing, to the best of
our knowledge, there is no theoretical work on investigating the impact of those
parameters in the log-normal distribution, or a proof to show that the log-normal
distribution is the optimal probability law for this purpose, in the first place.
Regardless of this theoretical concern, this method can be easily applied to other
parameterized infill criteria, e.g., MGFI and GEI, although its performance needs
to be tested systematically.

4.5.3 Multi-objective Infill Criteria

The multi-objective treatment of the infill criteria (Section 4.2) also allows for the
parallelization. As a natural extension to the bi-objective formulation in Eq. (4.10),
the general vector-valued infill criteria is considered:

AAA : S→ Rm, x 7→ (A1(x),A2(x), . . . ,Am(x))> ,

where A1,A2, . . . ,Am : S→ R are real-valued infill criteria (subject to maximiza-
tion) that are either selected from some well-defined infill criteria or generated from
a parameterized one, e.g., using Eq. (4.16). To select q points based on this prob-
lem, for instance, we could adopt the so-called decomposition-based multi-objective
optimization (Zhang and Li, 2007), in which q different linear scalarizations on
infill criteria are generated uniformly and q points are obtained as the maximum
of the linear scalarization, namely

xk = arg max
x∈S

m∑
i=1

wiAi(x), w1, w2, . . . , wm ∼ U(0, 1), k = 1, . . . , q.

Note that U(0, 1) stands for the uniform distribution over [0, 1]. Although this
multi-objective proposal seems plausible, it remains untested as of the time of
writing.

4.5.4 Niching-based Infill Criteria Maximization

Considering the landscape of EI, this approach is motivated by the observation
that its landscape is usually highly multi-modal (Jones et al., 1998; Wang et al.,
2018) (also see Fig. 4.2). The original EGO algorithm aims at finding the global

107



4. INFILL CRITERIA

optimum of the EI landscape, which is another global optimization task and
therefore is difficult to solve (the exhaustive branch-and-bound method has been
proposed initially). Suppose x∗ is the global maximum of EI and x′ is a local
optimum. After incorporating the fitness f(x∗), the Kriging formula are updated
such that the Kriging MSE are largely reduced at x∗ and a neighborhood around
it. Consequently, the EI value drops locally in this neighborhood due the fact that
EI decreases with deceasing Kriging MSE. As this is only a local change of the EI
landscape, EI values around x′ are normally not affected. Then, x′ would possibly
become new global maximum if EI is maximized again. Instead of using the
sequential maximization of EI to “expose” local maxima, it is proposed to combine
EGO with a so-called niching evolution strategy (Shir and Bäck, 2005b), where the
niching method is intended to find multiple distinct local maxima simultaneously.
In the evolutionary computation, niching refers to a collection of methods that
aims at locating multiple distinct local optima, in order to improve the exploration
on highly multi-modal function. In this manner, within one iteration, it is possible
to locate the global maximum of EI as well as some local maxima, which would
be explored using a few iterations, if the sequential maximization were performed.
The resulting parallelization method is called Niching-q-EI (Wang et al., 2018).
Interestingly, from the niching perspective, niching-q-EI can also be considered as a
meta-model assisted niching algorithm where the niche formation is performed on
the EI landscape instead of the real objective function. The niching-q-EI algorithm
is summarized in Alg. 8.

Niching Evolution Strategies Herein the niching evolution strategy is briefly
introduced. In general, Evolutionary Algorithms (EAs) have the tendency to
converge quickly into a single solution in the search space. However, in many
problem solving scenarios (e.g., global optimization), locating and maintaining
multiple solutions/optima is required. Niching is developed to achieve this goal by
forming sub-populations in order to maintain the population diversity of EAs. The
most successful techniques are fitness sharing (Goldberg and Richardson, 1987)
and Crowding (De Jong, 1975).

Although the niching technique is initially proposed mainly for Genetic Algorithms
(GAs), it has also been introduced to classic (1 +, λ) self-adaptive Evolution Strate-
gies by Shir and Bäck (2005b). Later, it is further developed for the derandomized
ES (Shir and Bäck, 2005a) including the well-known Covariance Matrix Adaptation

108



4.5 Parallelization

Algorithm 8 Niching-based Efficient Global Optimization
1: procedure niching-q-ei(q,S, f)
2: Given: the number of points q for parallelization
3: Sample the initial design X = {x1, . . . ,xn} ⊂ S
4: Evaluate y← (f(x1), f(x2), . . . , f(xn))>

5: Construct the Kriging/GPR model f̂ on X,y.
6: while the stop criteria are not fulfilled do
7: {x′1, . . . ,x′q} ← (1 +, λ)-niching-es(q,S,EI(x; f̂)) . Alg. 9
8: Parallel evaluation y1, . . . , yq ← f(x′1), . . . , f(x′q)
9: X← X ∪ {x′1, . . . ,x′q}
10: y← (y>, y1, . . . , yq)>

11: Re-construct the Gaussian process model f̂ on X,y
12: end while
13: end procedure

Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001) and finally evolved
into a self-adaptive approach which allows for the niche radius and the niche shape
adaptation (Shir et al., 2007). The (1 +, λ)-niching evolution strategy with fixed
niche radius and spherical niche shape (Alg. 9) is chosen for our purpose and it
works as follows: given q optima expected to investigate, the niching procedure
initializes q + p so-called “D-sets” (Shir et al., 2008) which are evolution strat-
egy kernels containing all the adapted strategy parameters (step-size, covariance
matrix) as well as decision parameters (current search point/solution, mutation vec-
tors). Each D-set defines the current search point and all the internal information
regarding an evolution strategy in a given time during the evolution.

The q D-sets are meant for identifying q possible local optima/peaks while p
D-sets are for a “non-peak” domain, which are randomly regenerated every κ

generations. The purpose of p “non-peak” D-sets is to explore the search space so
that new niches would emerge and the probability of finding undiscovered optima
is increased. The niching procedure then proceeds to generate λ offspring for each
D-set. The population of λ(q + p) offspring is evaluated according to the fitness
function. Using their corresponding fitness values, the selection of p search points
is conducted based on the dynamic peak identification (DPI) algorithm (Miller and
Shaw, 1996), using a prescribed niche radius ρ.

The functionality of DPI is to select a subset from the population in which each

109



4. INFILL CRITERIA

search point has a good fitness value and is not within the radius of the remaining
points. The selected p search points are considered as parental points for the next
generation and their D-sets are inherited from their parents. Finally, the D-sets
are updated based on the selected points. The process above is repeated until the
termination criteria are satisfied.

Algorithm 9 Niching Evolution Strategy
1: procedure (1 +, λ)-niching-es(q, S, f). q: number of niches, S: search space,
f : fitness function

2: Initialize D-set {Di}q+pi=1 in search space S
3: Set generation counter c← 0
4: while the stop criteria are not fulfilled do
5: for i = 1→ (q + p) do
6: Generate λ mutations according to Di

7: end for
8: Evaluate the population using fitness function f .
9: Obtain the dynamic peaks set DPS by performing Dynamic Peak

Identification.
10: for p in DPS do
11: Set p as a new search point
12: Inherit the D-set from the parent of p and update the D-set accord-

ingly.
13: end for
14: if N = size of DPS < q then
15: Generate N − q new search points and reset corresponding D-sets.
16: end if
17: c← c+ 1
18: if c mod κ = 0 then
19: Randomly re-generate (q + 1)th . . . (q + p)th D-sets.
20: end if
21: end while
22: end procedure

For implementation details, we choose the niching-DR2 (Shir and Bäck, 2005b)
among many other niching evolution strategies which could be introduced into
EGO. It is the niching version of a so-called “second derandomized evolution
strategy” (DR2) (Ostermeier et al., 1994). We choose niching-DR2 because it is
both simple to implement and converges fast. The parameters of niching-dr2,

110



4.5 Parallelization

which are listed in Alg. 9, are set as following: the function evaluation budget is
set the be 103(q + p). The parameter κ controls the frequency of sub-population
resampling and is set to 10. The niche radius ρ required by DPI procedure is
computed as (Shir and Bäck, 2005b):

ρ = r
n
√
q
, r = 1

2

√√√√ n∑
k=1

(xk,max − xk,min)2,

where n is the dimensionality and xk,max, xk,min are the upper and lower bound
of each coordinate in the search space. The termination criterion for the niching
ES is currently given by the function evaluation budget.

Example As with the Constant Liar (CL) strategy (Ginsbourger et al., 2010),
the niching approach is also expected to have a repulsive behavior between the
points, due to the niching formation. The CL repulsive behavior is controlled with
increasing lie value L. The setting L = max{y} and L = mean{y} leads to a space
filling behavior (Ginsbourger et al., 2010). The behavior of the niching approach
and the CL strategy are further compared and visualized on the Himmelblau’s
function:

yH(x1, x2) = (x2
1 + x2 + 11)2 + (x1 + x2

2 − 7)2

Himmelblau’s function has four global optima located at (3, 2), (−2.81, 3.13),
(−3.78,−3.23) and (3.58,−1.85) with global minimal value 0. In order to show
that the niching approach can maintain multiple distinct points, we choose four
points to be generated in each iteration, which are expected to identify four global
optima on Himmelblau’s function.

In Fig. 4.8, we compare the CL strategy with L = min{y} (CL min) to niching-q-EI
in four consecutive iterations (from top to bottom). Both of the two approaches
locate the four basins of attraction. They also explore the search space while
keeping track of all the points found, showing a trade-off between exploitation and
exploration. The difference is that the niching approach is not likely to sample two
points in one high performance region while the CL min strategy would result in
two (or even more) points explore the same region (see step 3 and 4 in the figure).
In addition, we also estimate the q-EI values of points found from a 4-point EGO
with niching on Himmelblau’s function. The estimation is conducted by Monte
Carlo simulations of the q-EI formula (Ginsbourger et al., 2010).

111



4. INFILL CRITERIA

CL min Niching

st
ep

3

●

●

●

●

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

y

●

●

●

●

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

y

st
ep

4

●

●

●

●

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

y

●

●

●

●

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

y

st
ep

5

●

●

●

●

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

y

●

●

●

●

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

y

Figure 4.8: On Himmelblau’s function: 4-point EGO in four iterations. The white
circles indicates the current sites found in each iteration while black stars show
the sites sampled in history. Left: Constant Liar Strategy using min{y}. Right:
niching-q-EI.

112



4.6 Experimental Comparison

4.6 Experimental Comparison

In this section, we test the niching-q-EI and three Constant Liar variants: CL min,
CL max and CL mix on a collection of test functions. The CL mix strategy (Cheva-
lier and Ginsbourger, 2013) is a mixture of the CL min and CL max in which two
batches of points are generated from the CL min/max and the batch of better q-EI
value is provided to the Kriging model. For all the tests we use the DiceKriging

and DiceOptim packages (Roustant et al., 2012). The experiment is presented in
three parts: First we list the test functions selected. Then, the global convergence
is compared among all the tested algorithms and finally the q-EI values of the
point found are compared. All the algorithms are tested in 10 iterations and all
the results are averaged over 100 runs. The reason to choose a small number of
iterations as test run length is simple: on one hand, the classic EGO algorithm
is capable of locating all the optima on several test functions (Jones et al., 1998)
using 10 to 20 iterations. Thus, longer runs are not necessary. On the other hand,
due to our observations, most of the space explorations and the Kriging model
updates happen in the first 10 to 15 iterations on the 2-D functions, in which the
EGO algorithm makes large progress.

Test Functions We select 6 artificial multi-modal continuous functions:

• The transformed Hartman6 function is defined on [0, 1]6 and is a unimodal
function. The original function is transformed by − log(−Hartman6(x)).
This is the test-case where niching-q-EI is expected to perform badly. We
set q = 3 on this function.

• M is a hyper-grid multi-global function. Its global optima are uniformly
distributed and have optimal value −1. The function expression is listed
below. We test the algorithms in 2-D where 10 minima are located in [0, 1]2.

M(x) = −1
d

d∑
i=1

sinα(5πxi).

Note that d is the dimensionality and we choose α = 6.

• The Branin function is a multi-global function and a classical test-case in
global optimization (Jones et al., 1998; Schonlau, 1998). It is defined in 2-D
with three global optima. The global minimal value is roughly 0.4.

113



4. INFILL CRITERIA

• The Rastrigin function (Torn and Zilinskas, 1989) is a multi-modal function,
which has only one global optimum, surrounded by a number of local minima.
The test is performed on 2-D. It has 6 optima in the space [0, 1.5]2.

• Himmelblau’s function is a multi-global function which is introduced previ-
ously in this thesis. The search space is [−5, 5]2.

• The Ackley function is a multi-modal function and has only one global
optimum. The global optimum has a much lower value than the local optima.

We choose the number of points generated in each iteration equal to the number
of minima with two exceptions: on Hartman6, which is a unimodal function,
we choose q = 3 and on the Ackley function where the local optima increases
exponentially with the increasing distance to the global optimum, we choose q = 9.
For Hartman6 function, it is intended to show that the niching-q-EI could perform
quite badly with q > 1 setting. We thus choose a moderate value q = 3. For
the Ackley function with range [−5, 5]2, there are 8 sub-optimal locations whose
function values are the same, inferior to the global optimal but superior to the
remaining local optima. We would like to locate such sub-optima as well as the
global one and thus choose q = 9.

Convergence results The relative mean squared error (Chevalier and Gins-
bourger, 2013) is used to measure the convergence rate to the global optimum. It
is defined as:

rMSEi = 1
p

p∑
k=1

(
fki − f∗

f∗

)2

.

Here rMSEi denotes the relative mean squared error at iteration i (rMSE should
not be confuse the Kriging RMSE in Section 3.1.1). Furthermore, p is the number
of runs performed while fki is the minimum value observed at iteration i in run
number k. Note that we translate optimal values of some test functions to prevent 0
when calculating the rMSE. The relative mean squared error on each test function is
shown in Fig. 4.9. Note that the rMSE is scaled by log 10. On the unimodal function
Hartman6, the results of 3-points EGO show that the niching-q-EI performs much
worse than any variants of CL strategy. This is the expected behavior because the
niches formed on the EI landscape of Hartman6 do not map to any local optima
and the niching method is performing space-filling using all three niches.

114



4.6 Experimental Comparison

−2.5

−2.0

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(a) Hartman6

−5.5

−5.0

−4.5

−4.0

−3.5

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(b) M

−4

−3

−2

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(c) Branin

−2.0

−1.5

−1.0

−0.5

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(d) Rastrigin

−1

0

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(e) Himmelblau

−3.5

−3.0

−2.5

−2.0

−1.5

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(f) Ackley

Figure 4.9: The relative mean squared error to the global optimal (y axis in
log 10) against iterations (x axis). Legend: ◼: CL max, ⚫: CL min, ˛: CL mix, Ĳ:
niching-q-EI.

On the multi-modal Rastrigin function, niching-q-EI actually outperforms all the
CL variants. On the Branin function, niching-q-EI performs equally to the CL
max in the first three iterations and makes a large acceleration from the fourth
iteration. On the M function, the niching approach works much worse in the
first 6 iterations and accelerates again in the later iterations. On the Rastrigin
function, the same behavior is observed. We think that the reason is that initially
the Kriging prediction response surface differs from the real landscapes drastically
so that the niches formed on the EI landscape do not map to any high performance
region. After updating the Kriging model, local optima on the objective function
would possibly create local optima in the EI landscape. On Himmelblau’s function,
niching-q-EI is the worst method initially and finally catches up with the CL
mix from iteration 8. On the Ackley function, niching-q-EI performs roughly the

115



4. INFILL CRITERIA

same as the CL min strategy and outperforms both the CL min and CL mix
after iteration 5. In general, convergence plots suggest that initially niching-q-EI
performs worse than or equally to the CL variants and accelerates the convergence
after updating the Kriging model for some iterations. Furthermore, such behavior
may even suggest a possible mixture approach where the CL strategy is applied in
the beginning and then the algorithm is switched to the niching method to gain
from the acceleration.

0.01

0.10

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(a) Hartman6

0.01

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(b) M

0.01

0.10

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(c) Branin

1

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(d) Rastrigin

10

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(e) Himmelblau

0.01

0.10

1 2 3 4 5 6 7 8 9 10

max
min
mix
niching

(f) Ackley

Figure 4.10: Average q-EI value of points from tested algorithms. Legend: ◼: CL
max, ⚫: CL min, ˛: CL mix, Ĳ: niching-q-EI. The x axis represents the iteration
while the y axis is the averaged q-EI measured.

q-EI of search points The average q-EI values of the points generated in each
iteration are computed by Monte Carlo simulations (Ginsbourger et al., 2010),
which are shown in Fig. 4.10. The plotted values are scaled by log 10. All the
average q-EI values decrease with respect to increasing iterations. It is not clear

116



4.7 Summary

which method is the winner in general. Focusing on the first 4 iterations, q-EI
values of the search points found by the niching approach are roughly smaller than
q-values from the CL variants on the Hartman6,M and Ackley function. On the
Rastrigin and Himmelblau’s function, the proposed algorithm gives higher q-EI
values in the middle (iteration 4, 5, 6) of the test. On the Branin function, the
differences are not significant. In general, niching-q-EI shows a much faster q-EI
value reduction when the iteration goes upper than 8.

4.7 Summary

Infill criteria control the exploration-exploitation trade-off in the Efficient Global
Optimization algorithm. In this chapter, we focus on the improvement-based infill
criteria, that is a class of functions that calculates the potential improvement over
the current best objective value. It is shown that the exploration-exploitation
trade-off can be explicitly controlled by considering the risk and return of the
infill criterion, resulting in a multi-objective infill criterion. Alternatively, such an
exploration-exploitation control can also be realized by the novel infill-criterion,
called Moment-Generating Function of Improvement (MGFI). MGFI introduces a
real parameter, called “temperature” that tunes the exploration-exploitation trade-
off smoothly. Furthermore, the cooling strategies, that are originally introduced in
the Simulated Annealing, are applied to the temperature parameter of MGFI. The
resulting infill criterion exhibits high exploration behaviors in the beginning (high
temperature) and evolves towards exploitative behaviors as the temperature cools
down. Finally, the parallelization problem of infill-criteria is investigated. The
challenge here is how to obtain several well-performing candidate solutions based
on the infill criterion. Several new methods are proposed for this purpose, including
multi-objective infill criteria and niching-assisted infill criteria maximization.

117





ch
ap

te
r

5
Numerical Multi-objective Optimization

Many multi-objective optimization (MOO) algorithms have been proposed and
exploited in real-world problems over the years, e.g., NSGA-II (Deb et al., 2000),
SPEA2 (Zitzler et al., 2001) and SMS-EMOA (Beume et al., 2007). These evolu-
tionary multi-criteria optimization (EMO) algorithms employ heuristic operators
(e.g., random variation and selection operators), instead of using the gradient infor-
mation of the objective functions. For a large subclass of such problems, that is the
continuous multi-objective optimization problem, gradient-based algorithms are
of interest due to the fact that they are generally fast, precise and stable with re-
spect to local convergence. Various gradient-based approaches have been proposed
for the multi-objective optimization task (Fliege and Svaiter, 2000; López et al.,
2012; Hillermeier, 2001; Schütze et al., 2011). A relatively new idea is proposed
by (Emmerich et al., 2007; Emmerich and Deutz, 2014), in which the gradient of
the hypervolume indicator with respect to a set of decision vectors is computed.
In this chapter, we adopt the definition and the computation of the hypervolume
indicator gradient to steer the search points within the decision space. By using
the hypervolume indicator gradient (Emmerich and Deutz, 2014), the search points
are moved into the direction of steepest ascent w.r.t. the hypervolume indicator.
Therefore, the proposed numerical multi-objective optimization algorithm is termed
hypervolume indicator gradient ascent multi-objective optimization (HIGA-MO).
The major benefits of exploiting hypervolume gradients are 1) the points in the
objective space will be well distributed on the Pareto front, 2) it is almost free of
control parameters, and 3) the algorithm has a high precision of convergence to
the Pareto front.

However, the first implementation of this idea showed numerical problems. As
a remedy, ideas that were developed in the field of evolutionary multi-criterion

119



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

optimization are adopted in this thesis. Firstly, the hypervolume indicator may
have zero gradient components at some decision vectors, e.g., the dominated points.
The well-known non-dominated sorting technique is adopted and combined with the
hypervolume indicator gradient computation, in order to equip each decision vector
with a multi-layered gradient. Secondly, the normalization of the hypervolume
indicator sub-gradient is used to overcome the “creepiness” phenomenon observed in
earlier versions of hypervolume gradient ascent, and caused by an imbalance in the
length of sub-gradients which leads to a slow convergence speed (Sosa Hernández
et al., 2014). Thirdly, the usage of constant step-sizes is no longer appropriate if
the precise convergence to the Pareto front is aimed for. Instead, a cumulative
step-size control inspired by the optimal gradient ascent is proposed to dynamically
adapt the step-size. Such a cumulative step-size control resembles the step-size
adaptation mechanism in the well-known CMA-ES (Hansen and Ostermeier, 2001),
an evolutionary algorithm for single objective continuous optimization. The
resulting algorithm is tested on problems named ZDT1-4 and ZDT6 from (Zitzler
et al., 2000). Its performance is compared to three evolutionary algorithms: NSGA-
II (Deb et al., 2000), SPEA2 (Zitzler et al., 2001) and SMS-EMOA (Beume et al.,
2007), as well as the other methods for steering the dominated points.

In addition, the hypervolume-based numerical MOO is extended by differentiat-
ing the hypervolume gradient again, yielding the hypervolume indicator Hessian
matrix. We furthermore investigate the condition on which the Hessian matrix
stays non-singular, showing that it is “safe” to apply the Hessian in general appli-
cations. Based on the Hessian matrix, the hypervolume indicator Newton method
is proposed and validated.

In the following, the general settings/notations on set-oriented numerics are given
first. In multi-objective optimization problems (MOPs), a collection of functions,
represented as the m-tuple below, are optimized simultaneously:

(f1 : S1 → R, f2 : S2 → R, . . . , fm : Sm → R), S1,S2, . . . ,Sm ⊆ Rd.

where d denotes the dimension of the domain of each function and m denotes
the number of objective functions. Without loss of generality, we assume all the
functions above are to be minimized (maximization problems can be transformed
into minimization problems). In this thesis, it is assumed that each objective
function fi is continuously differentiable almost everywhere in Si. Thus, the MOP

120



can be formulated as follows:

min
x∈S

f(x), S =
m⋂
i=1

Si ⊆ Rd,

where f(x) = (f1(x), f2(x), . . . , fm(x))> is a vector-valued function composed of
m objective functions: f : S → Rm. Note that the minimization of the vector-
valued function f is understood with respect to the Pareto order ≺ as defined
in Section 1.2. Let a,b be two distinct points in Rm. We say a ≺ b iff ai ≤ bi,
i = 1, . . . ,m, where ≤ is the natural total order on the real numbers. Because of
the continuous differentiability assumption on each objective function, f is again
continuously differentiable almost everywhere in S. The gradient information is
expressed as transpose of the Jacobian matrix as follows:

∂f(x)
∂x = [∇f1(x),∇f2(x), . . . ,∇fm(x)] , ∇fi(x) : S→ Rd, i = 1, 2, . . . ,m.

In addition, it is assumed that each gradient vector above (column vector) can be
computed either analytically or numerically. In MOPs, a set of decision vectors
are moved in decision space S to approximate the Pareto efficient set, which is the
so-called Pareto efficient set approximation:

X =
{

x(1),x(2), . . . ,x(µ)
}
, x(i) ∈ S, i = 1, 2, . . . , µ.

with corresponding Pareto front approximation set (objective vectors) in the
objective space:

Y =
{

y(1),y(2), . . . ,y(µ)
}
, y(i) = f(x(i)) ∈ Rm, i = 1, 2, . . . , µ.

In order to measure and compare the quality among Pareto front approximation
sets Y , one approach is to quantify the quality by constructing a proper indicator.
The most common one is the hypervolume indicator H (Zitzler and Thiele, 1998;
Zitzler et al., 2003). Given a reference point r ∈ Rm, the hypervolume indicator
of the Pareto front approximation set Y can be expressed as:

H(Y ; r) = λm

⋃
y∈Y

[r,y]

 ,

where λm denotes the Lebesgue measure on Rm, which is the size of the hypervolume
dominated by the approximation set Y with respect to the reference space. Note
that the reference point r will be assumed to be a given constant and thus omitted

121



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

in the following notations for brevity. The hypervolume indicator gradient is defined
as the gradient of the hypervolume indicator with respect to the approximation
of the Pareto efficient set, which is proposed in Emmerich and Deutz (2014);
Emmerich et al. (2007). In this thesis, the derivation of the hypervolume indicator
gradient is reformulated and the notation is simplified. In the following, we shall
use matrix calculus notations with denominator layout, meaning that the derivative
of a vector/matrix is laid out according to the denominator.

5.1 Mixed-Peak Test Problem

Prior to the discussion of the numerical MOO algorithm, a bi-objective problem
class, called Mixed-Peak problems are introduced for investigating the behavior
of the proposed algorithms. Such a problem class is chosen over other standard
benchmark problems, e.g., the so-called ZDT problems (Zitzler et al., 2000), because
1) it allows for controlling the problem difficulty of its instance, by varying the
number of peaks in each objective function. 2) it is smooth and differentiable
almost everywhere in its domain, which makes it a perfect test problem for the
gradient and Hessian methods. As no analytical property is available on this
problem, the detailed analysis is conducted on this problem and as a result, the
expressions of the Pareto front and efficient set are derived.

5.1.1 Mixed-Peak Functions

In this this, a sophisticated problem generator, called Multiple Peaks Model 2
(MPM2, Wessing (2015)), is adopted to illustrate the proposed topological defini-
tions and further analyze the behavior of explorative algorithms. Such a function
class is a mixture of similar unimodal functions, i.e., the peaks, that have convex
local level sets, which is typically combined with the well-known Karush-Kuhn-
Tucker theorem to identify local efficient points. In addition, the complexity of
the problem can be easily controlled by the number of peaks. The mixed-peak
function is defined as an unconstrained function f : Rd → R that is subject to

122



5.1 Mixed-Peak Test Problem

minimization:

f(x) = 1− max
1≤i≤N

{gi(x)} , x ∈ Rd. (5.1)

gi(x) = hi

1 +

(√
(x− ci)>Σi(x− ci)

)si
ri

−1

, i = 1, . . . , N. (5.2)

The function g above defines a parameterized quasi-concave unimodal peak, whose
negative leads to quasi-convex valleys on function f . According to the optproblems

package (Wessing, 2016), it has the following parameters: (1) number of peaks
N ∈ Z>0, (2) center ci ∈ Rd, height hi ∈ [0, 1] and radius ri ∈ [0.25

√
d, 0.5

√
d]

per peak, with decision space dimension d, (3) “shape” si ∈ [1.5, 2.5] per peak,
controlling the landscape’s steepness, (4) rotation of the elliptical level sets based
on a positive definite matrix Σi. In the following, we will use the norm notation
‖x− ci‖Σi :=

√
(x− ci)>Σi(x− ci) as it can be considered as the Mahalanobis

distance w.r.t. Σi.

Ridges: As a result from the definition of f (Eq. (5.1)), the landscape can
contain ridges. The set of all ridges of f can be represented by:

R =
{

x ∈ Rd | ∃i 6= j ∈ {1, 2, . . . , N}, gi(x) = gj(x) and gi(x) = max
1≤k≤N

{gk(x)}
}
,

i.e., the set of all points on which the value of f is simultaneously attained by
at least two peak functions. In the simple case, when the Σi’s are identical and
the peaks differ only in centers, the ridges actually form a Voronoi diagram in
the decision space. According to Eq. (5.1), for any point that is not on the ridge,
x ∈ Rd \ R, there is only one peak function that is effective or active. From now
on, the active peak function at x is denoted as gτ w.r.t. τ = arg max1≤i≤N{gi(x)}.
In fact, ridges separate the decision space into many active regions, on each of
which only a single peak function g is active:

Ai =
{

x ∈ Rd | ∀k ∈ {1, 2, . . . , N} \ {i}, gi(x) > gk(x)
}
, i = 1, 2, . . . , N.

Note that the active regions Ai’s are open and mutually disjoint and the union of
all such active regions A = ∪1≤i≤NAi is equal to the set of non-ridge points.

123



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

Convex Local Level Sets: Given the quasi-concavity of each peak gi, 1−gi has
local convex level sets in Rd. If the function 1− gi is restricted to an ε-Euclidean
ball Bε(x∗) =

{
x ∈ Rd | ‖x− x∗‖ < ε

}
for every x∗ ∈ Rd and every ε > 0, the

resulting function 1− gi
∣∣
Bε(x) : Bε(x)→ R also has local convex level sets. Also,

due the fact that the active regions Ai’s are disjoint and open, for every non-ridge
point x∗, it is possible to find a δ > 0 (depending on x∗) such that Bδ(x∗) ⊂ Aτ
and Bδ(x∗) ∩ Ai = ∅, ∀i 6= τ (τ is the unique index of the active peak function
at x∗). Then the restricted f to Bδ(x∗), f

∣∣
Bδ(x∗)

equals 1− gτ
∣∣
Bδ(x∗)

and thus it
has local convex level sets. Therefore, we have the following conclusion:

∀x∗ ∈
(
Rd \ R

)
∃δ > 0, f

∣∣
Bδ(x∗)

has local convex level sets. (5.3)

For the points on the ridge, x∗ ∈ R, the conclusion above does not hold because it
is not possible to find a δ such that Bδ(x∗) has no intersection with all Ai’s except
Aτ .

As the gradient of the mixed-peak function is required to derive the Pareto front,
we given it as follows:

∇f(x) = hτsτ
rτ

(
1 +
‖x− cτ‖sτΣτ

rτ

)−2

‖x− cτ‖sτ−2
Στ

Στ (x− cτ ). (5.4)

5.1.2 Mixed-Peak Bi-objective Problem

By generating two different configurations for the parameters in Eq. (5.1), two
different multimodal functions are constructed, naturally defining a bi-objective
optimization problem:

f1(x) = 1− max
1≤i≤N

gi(x)→ min, f2(x) = 1− max
1≤i≤N ′

g′i(x)→ min .

Note that the peak function g and g′ (and its parameters N and N ′) are distin-
guished by the superscript. Next, the efficient set and Pareto front are derived
analytically. In the following, the analytical efficient set and Pareto front are
derived.

One Peak Scenario We first consider a simple case in which each objective
function consists of one peak without any ridges in the domain. In this case, the

124



5.1 Mixed-Peak Test Problem

objective functions degenerate to:

f1(x) = 1− h
(

1 +
‖x− c‖sΣ

r

)−1

, f2(x) = 1− h′
(

1 +
‖x− c′‖s

′

Σ′

r′

)−1

.

According to the Karush-Kuhn-Tucker (KKT) condition (Ehrgott, 2006) for multi-
objective optimization problems, a necessary condition for x∗ ∈ Rd being efficient
is:

∃λ1 > 0, λ2 > 0, λ1∇f1(x∗) + λ2∇f2(x∗) = 0.

Substituting the condition above by the gradient expression (Eq. (5.4)) leads
to:

λ1C(x∗)Σ(x∗ − c) + λ2C
′(x∗)Σ′(x∗ − c′) = 0,

with C(x∗) := hs

r

(
1 +
‖x∗ − c‖sΣ

r

)−2

‖x∗ − c‖s−2
Σ .

And C ′ is defined similarly to C by adding prime superscripts to all parameters.
As a result, the condition above can further be simplified to:

∃λ1 > 0, λ2 > 0, Σ(x∗ − c) = −λ2C
′(x∗)

λ1C(x∗) Σ
′(x∗ − c′). (5.5)

Let us denote k := λ2C
′(x∗)/λ1C(x∗). Thus, λ1, λ2 > 0 and C,C ′ ≥ 0 result in

k ≥ 0. In addition, C → 0 leads to k →∞, i.e., x∗ → c. Due to the fact that C
and C ′ are continuous functions w.r.t. x∗, k is also continuous in Rd. Therefore, it
must take any value between its minimum and maximum, resulting in 0 ≤ k <∞.
Taking the range of k into account, every point that satisfies Eq. (5.5) can be
written as:

∀k > 0, x∗ = c−
(
Σ

k
+ Σ′

)−1
Σ′(c− c′). (5.6)

Note that the points above are not necessarily local efficient points (as defined
in Section 1.2). The sufficiency can be shown as follows: for any point x∗ ∈ Rd

satisfying Eq. (5.6) – remember, there is no ridge in this scenario – there exists an
ε > 0 such that the restricted objective function f1

∣∣
Bε(x∗)

has local convex level sets
according to Eq. (5.3). Similarly, there exists an ε′ > 0 such that f2

∣∣
Bε′ (x∗)

has local
convex level sets. It is then possible to construct a Euclidean ball with radius ε∗ :=
min{ε, ε′} such that: f1

∣∣
Bε∗ (x∗) and f2

∣∣
Bε∗ (x∗) both have local convex level sets.

This implies that it is always possible to find a neighborhood around a point where
the local level sets of both objective functions are convex. Thus, it is sufficient

125



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0 0.2 0.4 0.6 0.8 1.0
f1

f 2

Figure 5.1: Example of analytical Pareto fronts and efficient sets: the contour
lines of f1 (solid curves, 1 peak) and f2 (dashed curves, 3 peaks) are drawn in the
decision space (left) with ridges shown as thick solid curves. Three local efficient
sets are drawn in different colors while the dashed extensions of them represent the
pseudo-efficient sets. The corresponding Pareto fronts are shown on the right.

to conclude that points satisfying Eq. (5.6) are locally Pareto efficient and the
efficient set of the problem is expressed as:

XLE =
{

c−
(
Σ

k
+ Σ′

)−1
Σ′(c− c′)

∣∣ 0 ≤ k <∞
}
. (5.7)

Consequently, the Pareto front can implicitly be obtained by applying the objective
functions to the efficient set from above. When the contour lines are spherical for
both objective functions, the arguments here can be largely simplified. We omit
such a special case, since it has already been discussed in detail in Kerschke et al.
(2016).

Multiple Peaks If each of the objective functions consists of multiple peak
functions, namely N > 1, the efficient set derived in Eq. (5.7) can be adapted
in the following manner: suppose function f1 and f2 contain N and N ′ peaks,
respectively. For each pair of peaks between two objective functions (e.g., gi and
g′j), a pseudo-efficient set can be calculated according to Eq. (5.7) as if the rest of

126



5.2 Hypervolume Indicator Gradient

the peaks in both objective functions were not existing:

Pij =
{

ci −
(
Σi

k
+ Σ′j

)−1
Σ′j(ci − c′j)

∣∣ 0 ≤ k <∞
}
,

where ci and c′j are the centers of the i-th and j-th peak of function f1 and f2,
respectively. Note that Eq. (5.7) requires that no ridge is present in the function
domain and thus for the set defined above, it is not necessarily a local efficient
set. Let us denote the active region of peak gi and g′j as Ai and A′j , respectively.
Then the region on which gi and g′j are both active is Ai ∩ A′j . Consider the
intersections of Pij and the ridges R of f1 for instance: at such points, any
infinitesimal movement towards a different active region other than Ai ∩ A′j will
revert the direction of ∇f1 and therefore this movement will improve both f1 and
f2 values of the intersection points. This implies that the points in Pij intersecting
or crossing the ridges are not efficient for gi and g′j . In other words, the efficient
set X ∗ij = Pij ∩ Ai ∩ A′j associated with peak gi and g′j is the intersection of Pij
with the active regions of both peak functions. In addition, all local efficient sets
can be enumerated by calculating the local efficient set associated with each pair of
peaks between two objective functions: X ∗ =

⋃N
i=1
⋃N ′
j=1 X ∗ij . An example of this

is illustrated in Fig. 5.1. Here, three pseudo-efficient sets are depicted in different
colors (red, orange and green) and the orange and green sets are truncated by the
ridges (thick black lines), where the valid local efficient sets are depicted as solid
curves.

5.2 Hypervolume Indicator Gradient

Intuitively, the hypervolume indicator can be expressed as a function of the Pareto
efficient set approximation X, which allows for the differentiation of hypervolume
indicator with respect to decision vectors. More specifically, by concatenation of
all the vectors in this set, we obtain a so-called µ · d-vector:

X =
[
x(1)> ,x(2)> , . . . ,x(µ)>

]>
∈ Sµ ⊆ Rµ·d.

and its corresponding Pareto front approximation vector can be written as a
µ ·m-vector:

Y =
[
y(1)> ,y(2)> , . . . ,y(µ)>

]>
∈ Rµ·m.

127



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

In order to establish a connection between µ ·d-vectors and µ ·m-vectors, we define
a mapping F : Sµ → Rµ·m,

F(X) :=
[
f(x(1))>, f(x(1))>, . . . , f(x(µ))>

]>
.

Now consider that the hypervolume indicator, that is normally defined in the ob-
jective space, can be re-written as a function of µ · d-vectors by composition:

HF(X) := H(F(X)),

which is a continuous mapping from Sµ to R, for which under certain regularity
conditions the gradient is defined (in case of differentiable objective functions only
for a zero measure subset of Rµ·d the gradient is undefined, in which case one-sided
derivatives still exist). Given HF, its derivatives (hypervolume indicator gradient)
are defined (given they exist) by:

∂HF(X)
∂X =

[
∂HF(X)
∂x(1)

>
, . . . ,

∂HF(X)
∂x(µ)

>
]>

, (5.8)

where each of the term in the RHS of the equation above is called sub-gradient, which
is the local hypervolume change rate by moving each decision vector infinitesimally.
It has been shown in Emmerich and Deutz (2014) that the hypervolume indicator
gradient is the concatenation of the hypervolume contribution gradients. Moreover,
the sub-gradients can be calculated by applying the chain rule:

∂HF(X)
∂x(i) = ∂y(i)

∂x(i)
∂HF(X)
∂y(i) (5.9)

=
m∑
k=1

∂HF(X)
∂fk(x(i))

∇fk(x(i)). (5.10)

The first partial derivative in Eq. (5.9) is the gradient of HF in the objective space
while the second one is the transpose of the Jacobian matrix of the mapping F.
Eq. (5.10) is the detailed form. From it, it is clear that the hypervolume indicator
gradient is a linear combination of gradient vectors of objective functions, where
the weight for an objective function is the partial derivative of the hypervolume
indicator at this objective value. We omit the calculation for gradients of HF in the
objective space for simplicity, noting that in the bi-objective case they correspond
to the length of the steps of the attainment curve. For the high dimensional case
and efficient computation, see Emmerich and Deutz (2014).

128



5.2 Hypervolume Indicator Gradient

Note that in practice the length of the sub-gradients usually differs by orders of
magnitude, leading to the “creepiness” behavior (Sosa Hernández et al., 2014) that
some decision vectors move much faster than the rest, Such a behavior results in
a very slow convergence speed and points might get dominated by others. As a
remedy, it is suggested to normalize all the sub-gradients.

5.2.1 Steering Dominated Points

The difficulty increases when applying the hypervolume indicator gradient direction
for steering the decision vectors: the hypervolume indicator can either be zero
or only one-sided at decision vectors. For example, at every strictly dominated
search point, the hypervolume indicator sub-gradient is zero, because the Pareto
front and thus the hypervolume indicator remain unchanged if it is moved locally
in an infinitesimally small neighborhood. For every weakly dominated point, the
hypervolume indicator sub-gradient at this point, even does not exist due to the
fact that only one-sided partial derivatives exist. Consequently, such decision
vectors will become stationary in the gradient ascent method. One obvious solution
to such a problem is to apply evolutionary operators (mutation and crossover) on
those search points (decision vectors) until they become non-dominated. However,
as we are aiming for a fully deterministic multi-objective optimization algorithm,
randomized operators are not adopted in this thesis.

Some methods have been proposed to steer dominated points (Ren et al., 2015;
Wang et al., 2017; López et al., 2012). The most prominent one, proposed in López
et al. (2012), computes the gradient at dominated points as follows (for bi-objective
problems):

−

(
∇f1(x(i))∥∥∇f1(x(i))

∥∥ + ∇f2(x(i))∥∥∇f2(x(i))
∥∥
)
, x(i) is dominated.

which is a sum of normalized gradients of each objective function (the minus symbol
is for the minimization problem). It guarantees that dominated decision vectors
move into the dominance cone (Wang et al., 2017). However, such a method only
considers the movement of single points, instead of a set of search points and it
does not generalize to more than two dimensions. We shall call this method Lara’s
direction in the following experiments, where it is compared with the method
proposed in this thesis. Another method for steering the dominated points is

129



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

proposed by the authors in Wang et al. (2017). It steers dominated points towards
the nearest gap on the non-dominated set. The search direction is determined as
the gradient of the distance of the dominated objective vector to the center of its
nearest gap. Again, this method steers dominated points independently and is
termed gap-filling in this thesis. In the above methods, dominated points are
steered widely independent of each other, which might result in a diversity loss.

In this thesis, we propose to use the non-dominated sorting technique that is
developed in the NSGA-II algorithm (Srinivas and Deb, 1994), in order to compute
the hypervolume indicator gradients of multiple layers of non-dominated sets. In
detail, the decision and objective vectors are partitioned into q subsets, or layers
according to their dominance rank in the objective space:

X→
{

X1,X2, . . . ,Xq
}
,

Xi =
[
x(i1)> ,x(i2)> , . . . ,x(iµ)>

]>
,

where Xi indicates a layer of order i and iµ indexes decision vectors in the ith
rank layer. The layers can be recursively defined as (given nd as the procedure

r
f2

f1

Front i

Front i+ 1

Figure 5.2: Schematic graph showing the partition of the objective vectors using
non-dominated sorting. For each partition (layer), a hypervolume indicator is defined
and thus its gradient can be computed.

130



5.2 Hypervolume Indicator Gradient

that selects the non-dominated subset from an approximation set):

X1 = nd(X), Xi+1 = nd

X − i⋃
j=1

Xj

 ,

where q is the highest index i such that Xi 6= ∅. Note that the µ ·m-vector is
also partitioned as above. In principle, it is possible to compute the hypervolume
indicator gradient for any layer by ignoring all the layers that dominate it (have a
lower rank) temporarily. This partition is illustrated in Fig. 5.2. The hypervolume
volume indicator gradient on the approximation set X can be (re-)written as the
concatenation of hypervolume indicator gradients on each layer:

∂HF(X)
∂X

:=
[
∂HF(X1)
∂X1

>

,
∂HF(X2)
∂X2

>

, . . . ,
∂HF(Xq)
∂Xq

>
]>

. (5.11)

Note that again q is the number of layers obtained from non-dominated sorting
techniques. The gradient computation given in Eq. (5.10) can be used to compute
each gradient term above. Thus, each decision vector is associated with a steepest
ascent direction that maximizes its hypervolume contribution on each layer.

There are two advantages of using the non-dominated sorting procedure. Firstly,
maximizing the hypervolume will not only steer the points towards the Pareto front,
but also spread out the points across the intermediate Pareto front approximation.
By applying the hypervolume indicator gradient direction on each layer, the decision
vectors on each layer will be well distributed before a dominated layer merges into
the global Pareto front and thus the additional cost to spread out points after
merging is small. Moreover, when the Pareto efficient set is disconnected in the
decision space, the proposed approach will increase the convergence speed due to
the fact that each connected efficient set is treated as one layer and the decision
vectors on it are spread quickly over the efficient sets. This effect can be shown by
visualizing the trajectories of the approximation set on a simple objective landscape.
In Fig. 5.3, trajectories of the approximation set are illustrated in both decision and
objective space, on MPM2 functions (from the R smoof package1). In the decision
space, it is clear that our layering approach (Fig. 5.3) manages to approximate five
disconnected efficient sets with a good distribution of points. Secondly, on the real
landscape, it is possible that local Pareto fronts exist (e.g., consider the well-known
ZDT4 problem (Zitzler et al., 2000)). Using the non-dominated sorting, it is more

1https://github.com/jakobbossek/smoof

131



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

likely to identify those local Pareto fronts, which could be helpful to balance global
and local search. This advantage of the proposed approach is exploited by the
authors in multi-objective multi-modal landscape analysis (Kerschke et al., 2016).

Figure 5.3: Trajectories of 50 points under hypervolume indicator gradient
direction to approximate the Pareto front using 103 function evaluations. The
experiment is conducted on a bi-objective problem MPM2 (from the R smoof
package) in the 2-D decision space. All five disconnected components of the Pareto
front are obtained with well distributed points. Left: the decision space. Right:
the objective space.

5.2.2 Step-size adaptation

The constant step-size setting that is common in gradient descent (ascent) for the
single objective optimization task, is no longer appropriate. Usually, the length of
the gradient vector (in the gradient field) gradually goes to zero when approaching
the local optimum. In this case, a properly set constant step-size will lead to the
local optimum in a stable manner. However, in our case, due to the normalization,
the length of the search steps is always 1 when decision vectors are approaching
the Pareto efficient set. If a constant step-size is applied here, the decision vector
will overshoot its optimal position and begin to oscillate (even diverge). In order
to tackle this issue, the step-size of the decision vectors needs to 1) gradually
decrease when approaching the Pareto efficient set and 2) increase quickly when

132



5.2 Hypervolume Indicator Gradient

the decision vectors are far away from the efficient set. In addition, it is reasonable
to use individual step-sizes that are controlled independently for each decision
vector because their optimal step-size differs largely.

A cumulative step-size adaptation mechanism is proposed to approximate the
optimal step-size in the optimization process. It is inspired by the following obser-
vation: in single objective gradient optimization, if the step-size is set optimally,
then consecutive search directions are perpendicular to each other. In order to
approximate the optimal step-size setting, the inner product of consecutive nor-
malized hypervolume indicator gradients is calculated. If such an inner product is
positive, it indicates the current step-size is smaller than the optimal one and vice
versa:

I
(i)
t =

〈
∂HF(X)
∂x(i)

(t−1)
,
∂HF(X)
∂x(i)

(t)
〉
, i = 1, . . . , µ, t = 1, 2, . . . .

Note that superscripts (t), (t − 1) are iteration indices. In addition, such an
inner product computed in each iteration fluctuates hugely and direct use of it
leads to unstable adaptation behavior. Therefore, the inner product is cumulated
using exponentially decreasing weights through the iterations to get a more stable
indicator for the step-size adaptation. The cumulative rule for the inner product
is written as follows:

p
(i)
t ← (1− c)p(i)

t−1 + cI
(i)
t , i = 1, . . . , µ, t = 1, 2, . . . . (5.12)

Note that p(i)
t denotes the cumulated inner product for search point i at iteration

t and c (0 < c < 1) is the accumulation coefficient. Such an inner product
accumulation rule is similar to the cumulative step-size adaptation mechanism
in the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen
and Ostermeier, 2001), where consecutive mutation steps are accumulated for
step-size adaptation. Based on the cumulated inner product, a simple control rule
is designed to adapt the step-size online:

σ
(i)
t+1 =


ασ

(i)
t if p(i)

t < 0,
σ

(i)
t if p(i)

t = 0,
σ

(i)
t /α if p(i)

t > 0.
0 < α < 1. (5.13)

where σ(i)
t is the individual step-size for search point i at iteration t. In this

thesis, the settings of c = 0.7, α = 0.8 are suggested by tuning the algorithmic
performance on MPM2 functions.

133



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

The backtracking line search (Nocedal and Wright, 2000), which is a common
technique to approximate the optimal step-size in single objective gradient ascent, is
not suitable for the proposed algorithm. It requires additional function evaluations
for each search point to estimate the optimal step-size setting. Such additional
costs are no longer acceptable for the set-based algorithm. In contrast, the
proposed cumulative step-size adaptation mechanism does not bring any additional
overheads.

5.2.3 Hypervolume Indicator Gradient Ascent Algorithm

In this section, the algorithmic components developed in the previous sections
are combined into the Hypervolume Indicator Gradient Ascent Multi-objective
Optimization (HIGA-MO) algorithm.

In practice, the continuous objective function can be non-differentiable at some
points, even if the function is almost everywhere differentiable (e.g., on the con-
straint boundary of the ZDT1 problem). To overcome this issue, it is suggested
to mutate those points in the decision space. Given a point x ∈ Rd, it is mutated
in the decision space S when the gradient of objective functions at x contains
invalid values (e.g., the derivative becomes infinite when approaching the origin,
on function f = 1/x). The mutation of x should be local but large enough to
escape from the non-differentiable regions. For this purpose, the mutation operator
in Differential Evolution (Storn and Price, 1997) is adopted here because it is
adaptive and only contains a single parameter. Suppose x is in the ith ranked
layer (x ∈ Xi), then the following mutation operation is applied on x:

x← x + F (x(a) − x(b)), (5.14)

where x(a),x(b) are randomly picked from Xi. Furthermore, F ∈ [0, 2] is the
differential weight that is set according to the literature. It is necessary to compute
the differential vector within the same layer of x because the Pareto efficient set
is possibly disconnected in the decision space and differential vectors computed
across layers possibly create non-local mutations.

The resulting algorithm is presented in Alg. 10. In line 4, the non-dominated
sorting procedure is called to partition the approximation set. In line 7 the
hypervolume indicator gradient is computed for every decision vector on each
layer. If a decision vector has either zero gradient or is not differentiable, it is

134



5.2 Hypervolume Indicator Gradient

mutated in line 9 according to Eq. (5.14). In line 11, the hypervolume indicator
sub-gradient is normalized before decision vectors are moved in the steepest ascent
manner (line 12). The cumulative step-size adaptation (Eq. (5.12) and (5.13)) is
then applied in line 13. In addition to the common usage of the function evaluation
budget for the termination criterion, it is suggested here to check stationarity
of search points: a decision vector is considered stationary if the norm of its

Algorithm 10 Hypervolume Indicator Gradient Ascent Multi-Objective Optimization

1: procedure higa-mo(µ,S, f ,∇f) . ∇f : Jacobian of the objective function
2: c← 0.7, α← 0.8, F ∈ [0, 2]. . endogenous parameters
3: Initialize µ search points X =

{
x(1),x(2), . . . ,x(µ)} ⊂ S uniformly.

4: while the termination criteria are not satisfied do
5: Y ←

{
y(1),y(2), . . . ,y(µ)}← {

f(x(1)), f(x(2)), . . . , f(x(µ))
}

6:
{
X1, X2, . . . , Xq

}
← non-dominated-sorting(X,Y )

7: for k = 1 to q do
8: for every x(i) in Xk do
9: Compute the sub-gradient (Eq. (5.9)):

∂HF(X)
∂x(i) ← ∇f(x(i))

∂HF(X)
∂y(i)

10: if ∂HF(X)
∂x(i) is undefined then

11: Randomly pick x(a) 6= x(b) from Xk

12: x(i) ← x(i) + F (x(a) − x(b))
13: else
14: g(i) ← ∂HF(X)

∂x(i) /
∥∥∥∂HF(X)

∂x(i)

∥∥∥ . sub-gradient normalization
15: x(i) ← x(i) + σ(i)g(i) . gradient ascending
16: p(i) ← (1− c)p(i) + c〈g(i),g(i)

old〉 . cumulation

17: σ
(i)
t+1 =


ασ

(i)
t if p(i)

t < 0,
σ

(i)
t if p(i)

t = 0,
σ

(i)
t /α if p(i)

t > 0.
. step-size control

18: g(i)
old ← g(i)

19: end if
20: end for
21: end for
22: end while
23: return X,Y

24: end procedure

135



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

sub-gradient multiplied by the step-size is close to zero (≤ 10−8).

5.2.4 Experiments

Experiment settings To test the performance of HIGA-MO, the well-known
ZDT problems (Deb et al., 2000) are selected as benchmark problem set. The pro-
posed algorithm is compared to three well-established evolutionary multi-objective
optimization algorithm: NSGA-II, SPEA2 and SMS-EMOA. The parameters in
those two algorithms are set according to the literature (Deb et al., 2000; Beume
et al., 2007; Zitzler et al., 2001). In addition, other methods for steering the
dominated point (Section 4), Lara’s direction and Gap-filling, are tested against
HIGA-MO. For these two methods, the non-dominated points are moved using the
hypervolume indicator gradient.

The hypervolume indicator and convergence measure used in Beume et al. (2007),
are adopted here as the performance metrics. The convergence measure is calculated
numerically by discretizing the Pareto front into 1000 points. For the hypervolume
indicator computation, the reference point [11, 11]> is used for the test problems
ZDT1− 4 and ZDT6. Two experiments are conducted: one with a relatively small
population setting µ = 40 while the other uses a large population, µ = 100. A
relatively small function evaluation budget, 100µ, is chosen here due to the reason
that in long runs, all deterministic methods stagnate to local optima. All the
algorithms terminate if the maximal function evaluation budget is reached. For
each algorithm, 15 independent runs are conducted to obtain average performance
measures. The initial step-size of the proposed HIGA-MO algorithm is set to 0.05
multiplied by the maximum range of the decision space. The internal reference
point to compute the hypervolume indicator gradient is set to [11, 11]> to ensure
every objective vector is within the reference space.

Results The test results are shown in Tab. 5.1 for µ = 40 and Tab. 5.2 for
µ = 100. The hypervolume of the non-dominated set after termination is used to
compute the performance measures. For the small population setting, HIGA-MO
outperforms the evolutionary algorithms (NSGA-II, SPEA2 and SMS-EMOA)
on ZDT1-3 and ZDT6 problems, both in terms of hypervolume indicator and
convergence measure. By checking the standard deviation, it is obvious that
HIGA-MO generates more stable results compared to evolutionary algorithms and

136



5.2 Hypervolume Indicator Gradient

such deviations are only affected by the initialization of the approximation set and
the technique to handle the non-differentiable points (Eq. (5.14)). Comparing it
to the other two methods, namely, Lara’s direction and Gap-filling, that steer the
dominated points independently, HIGA-MO gives a higher hypervolume indicator
value on ZDT1-3 while Lara’s method performs better on ZDT6.

Table 5.1: µ = 40: performance measures on ZDT1-4 and ZDT6 problems.

Test- Convergence measure Hypervolume indicator
function Algorithm Average Std. dev. Rank Average Std. dev. Rank
ZDT1 HIGA-MO 0.00500490 1.3075e-02 1 120.62948062 4.0750e-03 1

Lara’s direction 0.07747718 6.4031e-02 3 120.33761711 1.2309e-01 2
Gap-filling 0.06061863 1.2352e-01 2 120.22307239 4.6840e-01 3
NSGA-II 0.10960371 3.2542e-02 5 119.33541376 3.7345e-01 4
SMS-EMOA 0.09376444 3.5934e-02 4 119.20965862 4.8101e-01 5
SPEA2 0.32006024 5.9788e-02 6 116.27370195 1.6826e+00 6

ZDT2 HIGA-MO 0.00036082 3.6233e-05 3 120.31634691 9.8307e-04 1
Lara’s direction 0.00011253 5.0289e-05 1 118.92812930 3.5019e+00 3
Gap-filling 0.00015973 2.0645e-04 2 119.45871166 2.5324e+00 2
NSGA-II 0.16511979 7.7092e-02 4 114.03423180 3.7806e+00 4
SMS-EMOA 0.24929199 8.4178e-02 5 109.17629732 3.2584e+00 5
SPEA2 0.67688451 1.5708e-01 6 104.54506810 3.3537e+00 6

ZDT3 HIGA-MO 0.00031903 5.0492e-05 2 128.55259300 7.9970e-01 2
Lara’s direction 0.00028076 5.0842e-05 1 125.78304061 3.5114e+00 6
Gap-filling 0.00034568 5.4557e-05 3 128.75911576 9.2658e-03 1
NSGA-II 0.00228282 5.9689e-03 4 126.56081625 2.8857e+00 3
SMS-EMOA 0.00405046 5.7238e-03 5 125.88966563 2.9289e+00 5
SPEA2 0.00635668 1.0852e-02 6 126.55026001 2.5895e+00 4

ZDT4 HIGA-MO 38.13060527 7.6780e+00 4 0.00000000 0.0000e+00 6
Lara’s direction 43.19742796 1.1544e+01 5 0.00000000 0.0000e+00 5
Gap-filling 52.35972878 1.2465e+01 6 1.16325406 4.3525e+00 4
NSGA-II 4.07411956 1.6869e+00 2 75.28344930 1.8038e+01 2
SMS-EMOA 3.52099683 1.7386e+00 1 78.04608227 1.8555e+01 1
SPEA2 11.17677922 4.9514e+00 3 19.34577362 2.2000e+01 3

ZDT6 HIGA-MO 3.83694298 1.3668e+00 6 113.28359226 1.3577e+00 2
Lara’s direction 0.00010409 4.3909e-05 1 116.86127498 1.6820e+00 1
Gap-filling 3.02249489 2.7090e+00 5 106.81768735 2.0573e+01 3
NSGA-II 1.28139859 3.0071e-01 2 97.53535725 3.8143e+00 4
SMS-EMOA 1.36426329 3.1163e-01 3 96.84386232 4.2309e+00 5
SPEA2 2.22799304 7.2398e-01 4 86.25780584 7.9570e+00 6

In terms of the convergence measure, Lara’s direction always outperforms HIGA-
MO on ZDT1-3 and 6. Lara’s direction moves the dominated points toward the
Pareto front without considering their distribution while HIGA-MO is designed
to achieve both. Thus, HIGA-MO requires more efforts to approach the Pareto
front than Lara’s direction, in terms of the convergence measure. On ZDT4, which

137



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

has a highly multi-modal landscape, none of the gradient-based methods (HIGA-
MO, Lara’s direction and Gap-filling) achieves comparable results to evolutionary
algorithms. The gradient-based methods easily stagnate in the local Pareto-
front and fail to move towards the global one. For such a highly multi-modal
optimization problem, a restart heuristic could improve the performance of gradient-
based algorithms. For the large population setting, Tab. 5.2 shows roughly the
same results for algorithm comparisons as for the small population setting.

Table 5.2: µ = 100: performance measures on ZDT1-4 and ZDT6 problems.

Test- Convergence measure Hypervolume indicator
function Algorithm Average Std. dev. Rank Average Std. dev. Rank
ZDT1 HIGA-MO 0.00031201 4.1269e-05 1 120.64580412 1.7718e-03 1

Lara’s direction 0.02103585 4.7314e-02 5 120.48926778 5.2474e-02 2
Gap-filling 0.02091304 6.1387e-02 4 120.42616648 2.7937e-01 5
NSGA-II 0.01769266 4.6048e-03 3 120.45030137 4.5135e-02 4
SMS-EMOA 0.01234011 2.6377e-03 2 120.48071780 3.6130e-02 3
SPEA2 0.06017346 1.7966e-02 6 119.86686583 2.1615e-01 6

ZDT2 HIGA-MO 0.00028335 3.3303e-05 3 120.31710222 2.3560e-03 1
Lara’s direction 0.00005498 1.2085e-05 1 120.30338190 2.9998e-03 2
Gap-filling 0.00007857 8.7094e-05 2 120.14758158 1.5778e-01 3
NSGA-II 0.02834448 4.4153e-03 5 119.16220851 1.0985e+00 4
SMS-EMOA 0.02338094 7.0938e-03 4 118.40070248 2.7352e+00 5
SPEA2 0.08566545 4.8472e-02 6 114.48551919 4.4285e+00 6

ZDT3 HIGA-MO 0.00047505 7.5997e-05 3 128.77154126 8.5828e-03 3
Lara’ direction 0.00046485 5.9553e-05 2 128.77257561 5.2596e-03 2
Gap-filling 0.00039660 4.9392e-05 1 128.77099724 3.3611e-03 4
NSGA-II 0.00063823 5.1880e-05 5 128.77436195 1.1318e-03 1
SMS-EMOA 0.00055256 3.5594e-05 4 128.34841609 1.0889e+00 6
SPEA2 0.00243258 6.6391e-03 6 128.55447469 7.9741e-01 5

ZDT4 HIGA-MO 31.34155544 3.9090e+00 4 0.00000000 0.0000e+00 6
Lara’s direction 40.35930710 1.1041e+01 5 0.00000000 0.0000e+00 5
Gap-filling 43.47103886 1.5933e+01 6 5.23444012 1.5425e+01 4
NSGA-II 0.80498648 5.0038e-01 1 109.60569075 5.4368e+00 1
SMS-EMOA 1.01209147 6.3095e-01 2 107.14186469 7.1460e+00 2
SPEA2 2.80155378 1.3959e+00 3 83.82023960 1.5461e+01 3

ZDT6 HIGA-MO 3.54689504 1.2985e+00 5 113.79978098 8.8488e-01 2
Lara’s direction 0.00004369 1.2553e-05 1 116.49314419 1.4990e+00 1
Gap-filling 4.12388484 2.9230e+00 6 86.58598768 3.4123e+01 6
NSGA-II 0.43202530 7.1773e-02 3 109.28079070 1.2513e+00 4
SMS-EMOA 0.40028650 1.1394e-01 2 109.87049482 1.8951e+00 3
SPEA2 0.49692387 1.2882e-01 4 108.17997611 1.9177e+00 5

As shown in the experimental results on ZDT4, the proposed algorithm fails to
approach the global Pareto front and gets stuck in local ones instead. In practice,
such an issue can be tackled by using restart heuristics to re-sample the stagnated

138



5.3 Hypervolume Indicator Hessian

points. In addition, it is possible to hybridize HIGA-MO with an evolutionary
multi-objective (EMO) algorithm, where the global search ability of an EMO helps
the algorithm to escape from a deceptive, local Pareto front and HIGA-MO could
achieve fast convergence speed when approaching the global Pareto front. Such
an approach has been proposed in López et al. (2012) and the optimal way to
combine HIGA-MO with EMOs should be investigated.

The experiments conducted in this thesis are on a small number of problems. In
future research, the proposed algorithm should be investigated on more multi-
objective problems. When using a large number of search points, the objective
vectors on the Pareto front are close to each other, which might result in relatively
slow movement. In this case, its performance needs to be further tested. In
addition, it is of interest to compare HIGA-MO empirically to other set-based
scalarization method (Schütze et al., 2016).

5.3 Hypervolume Indicator Hessian

In this section, we first derive the Hessian matrix of the hypervolume indicator
for the general multi-objective optimization scenario. The Hessian matrix in bi-
objective cases is treated in Section 5.3.1. For conciseness, matrix calculus notations
are used in the following derivation, which helps to understand the structure of
the Hessian matrix. The hypervolume Hessian matrix is the “Jacobian” of the
hypervolume gradient defined as follows:

∇2HF(X) = ∂

∂X

(
∂HF(X)
∂X

)
(5.15)

=

 ∂

∂X

(
∂HF(X)
∂x(1)

)
︸ ︷︷ ︸

µ·d×d

, . . . ,
∂

∂X

(
∂HF(X)
∂x(µ)

)

=


∂

∂x(1)

(
∂HF(X)
∂x(1)

)
. . . ∂

∂x(1)

(
∂HF(X)
∂x(µ)

)
...

. . .
...

∂
∂x(µ)

(
∂HF(X)
∂x(1)

)
. . . ∂

∂x(µ)

(
∂HF(X)
∂x(µ)

)
 ,

where each sub-gradient is differentiated with respect to X. This results in µ2

block partitions (d × d) of the Hessian matrix. The (i, j)-block matrix can be

139



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

further expressed as follows:

∂

∂x(i)

(
∂HF(X)
∂x(j)

)
= ∂

∂x(i)

(
∂y(j)

∂x(j)
∂HF(X)
∂y(j)

)
=

m∑
k=1

∂

∂x(i)

(
∂fk(x(j))
∂x(j)

∂HF(X)
∂fk(x(j))

)

=
m∑
k=1

∂

∂x(i)

(
∂HF(X)
∂fk(x(j))

)
∇fk(x(j))

>

︸ ︷︷ ︸
Aij

+
m∑
k=1

∂2fk(x(j))
∂x(i)∂x(j)

∂HF(X)
∂fk(x(j))︸ ︷︷ ︸

Bij

. (5.16)

According to the differentiation above, each (i, j)-block matrix is a combination of
two components: Aij and Bij . Note that matrix Aij , ∂

∂x(i)

(
∂HF(X)
∂fk(x(j))

)
is a column

vector of size n and stands for the sub-gradient of ∂HF(X)
∂fk(x(j)) at x(j). In the following,

we abbreviate fk(x(i)) as f (i)
k and its gradient ∇fk(x(i)) as ∇f (i)

k .

The first component: Aij Due the fact that the matrix aij is a sum of m outer
products, this term has at most rank m. It is possible to make Aij to have full rank
only if m ≥ n. In other cases, Aij is always rank deficient (rank(Aij) ≤ m < d).
This indicates that in the “usual” multi-objective optimization case, where the
number of objective functions is smaller than the number of decision variables,
such a matrix Aij is always singular.

In the following lemma, a detailed expression of Aij is given for the bi-objective
case (m = 2). Without loss of generality, we assume that the objective vectors
(and corresponding decision vectors) are arranged according to the ascending order
of the first objective values.
Lemma 5.1. Let m = 2, i = 1, . . . , µ and j = 1, . . . , µ. Assume that all vectors
x(i) are mutually non-dominated, then the first component Aij is non-zero only
if the block matrix is located on the main diagonal (i = j) or the first diagonal
above/below the main diagonal (|i− j| = 1), and it can be written as:

Aij =



∇f (j)
2 ∇f

(j)
1
>

+∇f (j)
1 ∇f

(j)
2
>

if i = j

−∇f (j+1)
1 ∇f (j)

2
>

if i = j + 1

−∇f (j−1)
2 ∇f (j)

1
>

if i = j − 1

0 otherwise.

(5.17)

Proof. Assume a fixed reference point r = (r1, r2)>. To simplify the formulation,
we denote f (µ+1)

1 := r1 and f (0)
2 := r2. The partial derivative of the hypervolume

140



5.3 Hypervolume Indicator Hessian

indicator w.r.t. the objective value is derived in Emmerich and Deutz (2014),
which corresponds to the length of the steps of the attainment curve:

∂HF(X)
∂f

(j)
1

= f
(j)
2 − f (j−1)

2 ,
∂HF(X)
∂f

(j)
2

= f
(j)
1 − f (j+1)

1 . (5.18)

It is clear that ∂HF(X)
∂f

(j)
1

is a function of only x(j) and x(j−1) (similar argument holds

for ∂HF(X)
∂f

(j)
2

). The gradient of the partial derivatives can be given, for example:

∂
∂x(j)

(
∂HF(X)
∂f

(j)
k

)
= ∇f (j)

2 . Such a gradient is nonzero for at least one objective

function, when i = j, i = j + 1 or i = j − 1. By substituting the required gradients
into Eq. (5.16), the expression of Aij can be obtained.

The second component: Bij Bij is a weighted sum of second order deriva-
tives of the objective functions, where the weights are partial derivatives of the
hypervolume indicator at each objective value (cf. Eq. (5.10)). Note that the
second order derivative ∂2f

(j)
k

∂x(i)∂x(j) is not zero if and only if i = j:

H(j)
k :=

∂2f
(j)
k

∂x(j)2 ,

is the Hessian matrix of objective function fk at point x(j). Consequently, matrix
Bij can be written as:

Bij =


m∑
k=1

∂HF(X)
∂f

(j)
k

H(j)
k if i = j

0 if i 6= j.

(5.19)

Note that ∂HF(X)
∂f

(j)
k

can be obtained from Eq. (5.18). The singularity of matrix
Bij depends on the properties of the Hessian matrices of the objective functions.
Under the assumption that all objective functions are convex (the objective-
wise Hessian matrices are positive-definite), matrix Bij is also positive-definite,
under the condition that all objective functions are subject to maximization (for
minimization, Bij is negative-definite). In general, if each objective function has
non-singular Hessian matrix almost everywhere, it is obvious that the matrix Bij

is non-singular.

141



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

5.3.1 The Bi-objective Case

For a bi-objective optimization problem, the hypervolume Hessian matrix has the
following structure:

∇2HF(X) =



D1 Ã1
Ã>1 D2 Ã2

Ã>2
. . . . . .
. . . . . . Ãµ−1

Ã>µ−1 Dµ

 ,

where Di = Aii+Bii and Ãi = Ai(i+1) = −∇f (i)
2 ∇f

(i+1)
1

>
according to Eq. (5.17).

Note that the Hessian matrix ∇2HF(X) is a tridiagonal block matrix. It is
important to investigate when the diagonal block matrix is singular. Due to the
difficulty of the investigation, we start to discuss the invertibility of the Hessian
matrix in two special cases: single-point system, where only a single decision vector
is moved and two-point system where the interactions between two points need to
be considered.

One-point system In this case, the hypervolume Hessian matrix degenerates
to the diagonal block matrix Di, that can be expressed using Eq. (5.19):1

Di =
(
f

(i)
2 − f

(i−1)
2

)
H(i)

1 +
(
f

(i)
1 − f

(i+1)
1

)
H(i)

2︸ ︷︷ ︸
Bii

+∇f (i)
2 ∇f

(i)
1
>

+∇f (i)
1 ∇f

(i)
2
>︸ ︷︷ ︸

Aii

.

To investigate the invertibility of such a matrix, we assume that each objective
function is convex, in addition to the differentiability assumption.
Theorem 5.1. If the decision vector belongs to the efficient set, x(i) ∈ PX and
its two neighbors x(i−1) and x(i+1) are not weakly dominated simultaneously, then
the diagonal block matrix Di is non-singular and negative definite.

Proof. Note the following facts: 1) Due the assumption that both objective func-
tions are convex, the objective-wise Hessian matrices H(i)

1 and H(i)
2 are positive

definite. 2) Since the minimization task is assumed and x(i−1),x(i+1) are not weakly
dominated simultaneously, the coefficients

(
f

(i)
2 − f

(i−1)
2

)
and

(
f

(i)
1 − f

(i+1)
1

)
are

non-positive but do not take zero value at the same time (Emmerich and Deutz,
1As only a single decision vector is considered here, the script index i can be removed. We

still keep it because the discussion of invertibility here holds for every diagonal block matrix.

142



5.3 Hypervolume Indicator Hessian

2014). 3) If x(i) ∈ PX , then the two objective-wise gradients are anti-parallel
to each other, namely ∃β > 0, ∇f (i)

1 = −β∇f (i)
2 , due the Karush-Kuhn-Tucker

theorem (Ehrgott, 2006). Then, ∀y ∈ Rd \ {0}, the quadratic form associated with
Di is:

y>Diy =
(
f

(i)
2 − f

(i−1)
2

)
y>H(i)

1 y +
(
f

(i)
1 − f

(i+1)
1

)
y>H(i)

2 y− 2β
(

y>∇f (i)
2

)2
.

Each term on the right-hand-side of the equation above is negative according to
the facts listed above and therefore their sum, y>Diy < 0. Consequently, Di is
negative definite and thus non-singular.

Theorem 5.2. If the objective functions are convex and the decision vector x(i)

does not belong to the efficient set X , the matrix Di is non-singular if and only if
the following condition holds:(

∇f (i)
2
>

B−1
ii ∇f

(i)
1 + 1

)2
6=
(
∇f (i)

2
>

B−1
ii ∇f

(i)
2

)(
∇f (i)

1
>

B−1
ii ∇f

(i)
1

)
.

Proof. We introduce the following notations:

Pi :=
(
∇f (i)

1 ,∇f (i)
2

)
, Qi :=

(
∇f(i)

2
>

∇f(i)
1
>

)
.

Then Di can be re-written as: Di = Bii+PiQi. Note that Bii =
(
f

(i)
2 − f

(i−1)
2

)
H(i)

1

+
(
f

(i)
1 − f

(i+1)
1

)
H(i)

2 is a combination of objective-wise Hessian matrices. Since

both of the objective function are convex, H(i)
1 and H(i)

2 are positive definite. In
addition, the coefficients

(
f

(i)
2 − f

(i−1)
2

)
and

(
f

(i)
1 − f

(i+1)
1

)
are negative in case

of minimization. Consequently, Bii is negative definite and thus non-singular. Ac-
cording to the matrix inversion lemma (Woodbury matrix identity), Ci is invertible
if and only if Ti = I2×2 + QiB−1

ii Pi is invertible:

Ti =

∇f (i)
2
>

B−1
ii ∇f

(i)
1 + 1 ∇f (i)

2
>

B−1
ii ∇f

(i)
2

∇f (i)
1
>

B−1
ii ∇f

(i)
1 ∇f (i)

1
>

B−1
ii ∇f

(i)
2 + 1

 .

As matrix Ti is always of size 2× 2, its determinant is much easier to compute
than that of Ci:

det(Ti) =
(
∇f (i)

2
>

B−1
ii ∇f

(i)
1 + 1

)2
−
(
∇f (i)

2
>

B−1
ii ∇f

(i)
2

)(
∇f (i)

1
>

B−1
ii ∇f

(i)
1

)
.

The matrix Di is non-singular if and only if the determinant above is non-zero.

143



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

Note that the analysis of the convergence of a single point to the maximal hyper-
volume is structurally similar to the maximization of the hypervolume contribution
of a single point in a set. The only difference is that the reference point is provided
by coordinates of the neighboring non-dominated points in the objective space.
Therefore, Theorem 5.2 also holds for maximizing the hypervolume contribution of
a single point, as long as the neighboring points in the objective space are kept
fixed.

Two-point system In this case, the hypervolume Hessian matrix looks as
follows:

∇2HF(X) =
(

D1 Ã1
Ã>1 D2

)
.

Again, we assume that two decision points x(1) and x(2) are mutually non-
dominated. For this 2× 2 block matrix, its invertibility is given by the following
theorem.
Theorem 5.3. If the diagonal block matrices D1,D2 are non-singular, then the
hypervolume indicator Hessian matrix is non-singular if and only if:(

∇f (1)
1
>

D−1
1 ∇f

(1)
1

)(
∇f (2)

2
>

D−1
2 ∇f

(2)
2

)
6= 1.

Proof. See appendix B.1.

Note that the non-singularity condition above does not hold even when both of
the search points are in the efficient set. Such a situation can be depicted using a
simple bi-objective optimization problem with d = 1 and m = 2:

f1 = x2, f2 = (1− x)2, x ∈ R.

To illustrate the singularity scenario, only two decision points are used, namely
x(1) and x(2). For such a problem, the efficient set is the interval [0, 1] and thus
the box [0, 1]2 is the region where x(1) and x(2) are both efficient. In Fig. 5.4, the
set where the Hessian matrix is singular is depicted by the curved boundary of
the shaded area. As shown in this example, in the two-point system, the Hessian
matrix is not always invertible, even if all the search points belong to the Pareto
efficient set. Moreover, in the shaded area (in [0, 1]2), the hypervolume Hessian
matrix is even indefinite, which would make it more difficult for Newton method
to converge to the optimum.

144



5.3 Hypervolume Indicator Hessian

0.0 0.2 0.4 0.6 0.8 1.0
x (1)

0.0

0.2

0.4

0.6

0.8

1.0

x
(2

)

Figure 5.4: An example of two-point case in bi-objective optimization problem: The
box [0, 1]2 is the region where x(1), x(2) are both Pareto efficient. The hypervolume
Hessian matrix is singular when (x(1), x(2)) is on the blue curve.

Remark. As illustrated in this example, the hypervolume Hessian matrix is only
singular on a set of zero measure and therefore the applicability of the Newton
method is not affected by the singularity because the probability of entering into
such a set is zero. However, in general additional caution is needed if the set where
the hypervolume Hessian is singular has nonzero measure, or in case there are
regions where the Hessian is indefinite (which happens in our example).

5.3.2 Hypervolume Indicator Newton Method

After having stated the hypervolume gradient and Hessian matrix for a µ ·n-vector
X for a given MOP, we are now in the position to address the population based
Newton method for hypervolume maximization. For this, we will first consider
the unconstrained case and later on discuss first attempts to treat constrained
problems. Given an unconstrained MOP and a population of µ points, the Newton
step (or Newton function) is defined as follows:

∆X := −σ
[
∇2HF(X)

]−1∇HF(X). (5.20)

In practice, a small step size σ ∈ (0, 1] is introduced to ensure the so-called Wolfe
conditions (Wright and Nocedal, 1999) are met after each Newton step. As with
the treatment in Section 5.2, the Newton step for decision point x(i) is denoted by
∆X(i) ∈ Rd, i = 1, . . . , µ. Since the hypervolume indicator sub-gradient (Eq. (5.9))

145



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

for the strictly dominated point x(i) of X is zero, its corresponding Newton direction
is also zero. Consequently, such a point will remain stationary when applying the
set-based Newton method. For the sake of simplicity, it is assumed that all the
points contained in X are mutually non-dominated by each other. In case any point
is dominated, it is always possible to apply the non-dominated-sorting approach
proposed in Section 5.2.1. The Hypervolume Newton Method (HNM) is thus
defined as

X0 ∈ Rµ·d, Xi+1 = Xi + ∆X, i = 0, 1, 2, . . . . (5.21)

The pseudo code for HNM is shown in Alg. 11. For the step size control, we suggest
to choose the initial step size σ0 = 1 and adjust it online using the backtracking
line search. If automatic differentiation is used to evaluate the (exact) hypervolume
indicator gradient and the Hessian matrix at each iteration, the cost for each
Newton step is given by 5µ+ (4 + 6d)µ function evaluations.

Algorithm 11 Hypervolume Newton Method
1: procedure hnm(X, N, ε) . X: initial approximation set, N : maximal

iteration, ε: tolerance on the length of hypervolume gradient
2: for i = 1→ N do
3: Compute ∇HF(X), ∇2HF(X)
4: Compute step size σ by backtracking line search
5: X← X− σ

[
∇2HF(X)

]−1∇HF(X) . Newton step
6: if ‖∇HF(X)‖ < ε then
7: return X
8: end if
9: end for

10: return X
11: end procedure

Example. In order to demonstrate the performance of the HNM we consider the
following bi-objective optimization problem (also known as the MOP1 problem):

f1 = (x1 − 1)2 + (x2 − 1)2

f2 = (x1 + 1)2 + (x2 + 1)2,
(5.22)

where we choose as reference point r = (20, 20)>.

146



5.4 Summary

(a) We choose µ = 5 and the initial approximation set X as{
x(1),x(2),x(3),x(4),x(5)

}
=
{(

0
−2

)
,

(
0.5
−1.5

)
,

(
1
−1

)
,

(
1.5
−0.5

)
,

(
2
2

)}
.

(5.23)

Fig. 5.5 shows the performance of HNM both in the decision and objective
space. As it can be seen, the iterations quickly approach the optimal solution
for µ = 5 and a given reference point. This observation is confirmed in
Tab. 5.3a, where the hypervolume values, the norm of the gradients, and
the error measured in terms of the Hausdorff distance (Schütze et al., 2012)
of X and the optimal solution are displayed for each iteration. The values
indicate quadratic convergence.

(b) Next, we consider the same setting but using a different initial approximation
set: {

x(1),x(2),x(3),x(4),x(5)
}

=
{(
−0.12
−1.57

)
,

(
0.48
−1.24

)
,

(
1
−1

)
,

(
1.32
−0.26

)
,

(
1.89
−0.11

)}
.

(5.24)

Fig. 5.6 and Tab. 5.3b show the numerical results of HNM. In step 2, x(1)

gets dominated by x(3). The iteration thus continues with the remaining
4 point excluding x(1). HNM converges (again quadratically) toward the
optimal hypervolume population, albeit for population size µ = 4.

5.4 Summary

The multi-objective optimization problem is investigated in this chapter. The
general goal here is to generalize the first- and second-order optimization method
from the single-objective scenario to the multi-objective scenario. In order to
achieve this goal, the notion on the gradient is extended to the multi-objective
problem: the partial derivatives of the hypervolume indicator is taken w.r.t. to
the decision points and the so-called hypervolume indicator gradient is defined
as the concatenation of such partial derivatives at all decision points. Based on
this extension, a gradient ascent algorithm, called hypervolume indicator gradient
ascent multi-objective optimization (HIGA-MO) is proposed to maximize the
hypervolume in the steepest manner. Following this treatment, the second-order

147



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

Table 5.3: On the MOP1 Problem (Eq. (5.22)), Alg. 11 is executed for seven
iterations and the following values are listed iteratively: the hypervolume value, the
size of the approximation set µ, the error in the Hausdorff distance to the optimal
approximation set and the norm of the hypervolume indicator gradient.

(a) Using Eq. (5.23) for X0 (cf. Fig. 5.5).

Iter µ HF Error ‖∇HF‖

0 5 306.5000 76.5695 48.8262

1 5 369.5622 13.5072 21.0628

2 5 379.0652 4.0042 13.9973

3 5 382.7340 0.3355 2.8800

4 5 383.0680 0.0015 0.2000

5 5 383.0695 0.0000 0.0013

6 5 383.0695 0.0000 0.0000

7 5 383.0695 0.0000 0.0000

(b) Using Eq. (5.24) for X0 (cf. Fig. 5.6)

Iter µ HF Error ‖∇HF‖

0 5 321.5483 61.5212 52.9006

1 5 376.6161 6.4534 14.6855

2 4 373.5446 9.5249 2.0132

3 4 380.6982 2.3713 0.1104

4 4 380.6985 2.3710 0.0002

5 4 380.6985 2.3710 0.0000

6 4 380.6985 2.3710 0.0000

7 4 380.6985 2.3710 0.0000

derivatives of the hypervolume indicator is formulated. In addition, we investigate
the condition on which the resulting Hessian matrix is regular (non-singular). This
is an essential prerequisite for using the hypervolume indicator Hessian matrix
correctly. In addition, to investigate the proposed algorithms, a bi-objective
problem class, called Mixed-Peak problems are introduced. This problem class
allows for directly controlling the problem difficulty of its instance.

148



5.4 Summary

x1

-2 -1 0 1 2 3

x
2

-2

-1

0

1

X

x
(5)
0

x
(4)
0

x
(3)
0

x
(2)
0

x
(1)
0

(a)

f1

0 5 10

f
2

0

2

4

6

8

10

PX

f (x
(1)
0 )

f (x
(2)
0 )

f (x
(3)
0 )

f (x
(4)
0 )

F(x
(5)
0 )

(b)

x1

-2 -1 0 1 2 3

x
2

-2

-1

0

1

X

x
(1)
7

x
(2)
7

x
(3)
7

x
(4)
7

x
(5)
7

(c)

f1

0 5 10

f
2

0

2

4

6

8

10

PX

f (x
(1)
7 )

f (x
(2)
7 )

f (x
(3)
7 )

f (x
(4)
7 )

f (x
(5)
7 )

(d)

Figure 5.5: Numerical result of HNM on the MOP1 problem using Eq. (5.23) as
the initial approximation set. Top: the iterations in decision and objective space.
Bottom: the optimal solution and its image for µ = 5 and r = (20, 20)>.

149



5. NUMERICAL MULTI-OBJECTIVE OPTIMIZATION

x1

-2 -1 0 1 2 3

x
2

-2

-1

0

1

X

x
(5)
0

x
(4)
0

x
(3)
0

x
(2)
0

x
(1)
0

(a)

f1

0 5 10

f
2

0

2

4

6

8

10

PX

f (x
(1)
0 )

f (x
(2)
0 )

f (x
(3)
0 )

f (x
(4)
0 )

f (x
(5)
0 )

(b)

x1

-2 -1 0 1 2 3

x
2

-2

-1

0

1

X

x
(2)
7

x
(3)
7

x
(4)
7

x
(5)
7

(c)

f1

0 5 10

f
2

0

2

4

6

8

10

PX

f (x
(2)
7 )

f (x
(3)
7 )

f (x
(4)
7 )

f (x
(5)
7 )

(d)

Figure 5.6: Numerical result of HNM on the MOP1 problem using Eq. (5.24) as
the initial approximation set. Top: the iterations in decision and objective space.
Bottom: the optimal solution and its image for µ = 4 and r = (20, 20)>.

150



ch
ap

te
r

6
Conclusion

In this thesis, several important aspects of the stochastic optimization are in-
vestigated in depth. In Chapter 1, the discussion begins with the fundamental
definitions on single- and multi-objective optimality (Section 1.1). It is attempted
to give rigorous definitions on the procedure of stochastic optimization. In addition,
a mathematical prerequisite, called Matrix Calculus is also described. The research
question in this chapter is:

Can we generalize the notion of local optimality in the single objective
case to multi-objective problems?

We give a generalization by revisiting the local efficient points and defining the
local efficient set (Def. 1.8). Basically, a local efficient set should consist of local
efficient points that collectively forms a connected component.

Chapter 2 discusses several issues on generating stochastic variations in Rd.
Herein, the major concerns are:

When using a small sample size in stochastic variation, what is the
drawback of the so-called sampling error? How to mitigate such
drawbacks? Is it possible to justify our approach both theoretically and
empirically?

Random sampling from the multivariate Gaussian distribution is the most com-
monly applied stochastic variation. It suffers from the well-known sampling error
when the sample size is small. This issue is re-visited in Chapter 2 and an improved
sampling method, called mirrored orthogonal sampling is proposed to relax the
drawback. Both theoretical analysis and empirical study are conducted on the
proposed sampling method. After plugged into evolution strategies, this sampling

151



6. CONCLUSION

method is, in addition, tested on the well-known BBOB benchmark. The second
research question is:

The well-known Efficient Global Optimization (EGO) algorithm differs
largely from the canonical stochastic optimization algorithms (e.g.,
evolutionary algorithms). Is it possible to find a unified treatment to
incorporate EGO into stochastic optimization algorithms?

In EGO, new candidate locations are generated by optimizing the so-called infill
criterion. This procedure is considered as a special stochastic variation method,
called mutation by optimization.

Chapter 3 resorts to a different topic, the surrogate modeling. The Krig-
ing/Gaussian Process Regression (GPR) is discussed in depth, where an unified
treatment is presented from three different perspectives: 1) the theory on the best
linear predictor, 2) reproducing kernel Hilbert Space and 3) Bayesian inference.
Our major theoretical concerns are:

The most prominent feature of Kriging/GPR is the prediction uncer-
tainty. What does this uncertainty truly characterize? How does the
uncertainty related to the inaccuracy in the function approximation?

Our consideration starts with a clear specification of the modeling assumption:
the target function f is a sample function of a prescribed stochastic process Y .
An optimal linear predictor Ŷ is derived for Y based on the partial information
(finite locations) on Y . Then the function approximation is obtained by taking
a realization f̂ from Ŷ . Based on this treatment, it is clearly seen that the
Kriging uncertainty is the MSE of the predictor: s2 = E{Y − Ŷ }2. Moreover, the
accuracy of function approximation is related to s2 (theorem 3.1). When it comes
to the application of the Kriging/GPR method, the following question is of our
interest:

The Kriging/GPR method suffers from a cubic time complexity when
dealing with large data sets. It is then crucial to propose methods that
reduce the time complexity.

In the reminder of this chapter, a novel algorithmic framework, called Cluster
Kriging is proposed to tackle this issue. Cluster Kriging is tested on some selected
functions and data sets, exhibiting an acceleration of the modeling speed as well

152



as an improved modeling precision. Despite the successful experiments on Cluster
Kriging, there is still a lack of theoretical treatment (using one of the three
aforementioned perspectives) to illustrate its asymptotic convergence property to
the target function. This part should be investigated in future work.

Chapter 4 focuses on the following problem: given a thorough study on the
surrogate model, naturally the next step is to investigate how the surrogate model
can be utilized in a reasonable manner. The utility of each location on a surrogate
model is quantified by a well-defined function, called infill criterion. The research
question in this chapter are:

Since some infill criteria are more explorative and some others are
more exploitative, does it make sense to look for the optimal trade-off
among infill criteria? Can we design an infill criterion that controls
this trade-off explicitly and smoothly?

Prior to the investigation on the exploration-exploitation trade-off, most of the
improvement-based infill criteria is discussed. Among them, two infill criteria,
Probability of Improvement (PI) and Expected Improvement (EI) are selected for
the investigation, where PI and EI are treated as a bi-objective optimization task.
This task is solved using a gradient-based multi-objective optimization algorithm
that is proposed later in this thesis (Section 5.2). In addition, to explicitly control
such trade-offs, a novel infill criterion, Moment-Generate Function of Improvement
(MGFI) is proposed as the an extension of all improvement-based criteria. It is
equipped with an continuous control parameter t (called temperature), which is
enable to scale the exploration behavior smoothly. The other research question
discussed is:

How to parallelize the EGO algorithm, namely proposing multiple
candidate locations in each iteration?

The goal of parallelizing infill criteria is formulated in the first place. Then
several well-known parallelization methods are discussed: multi-point Expected
Improvement and Multi-Instance of infill criteria. In addition, we proposed two nee
approached: 1) packing several infill criteria as a multi-objective function and thus
multiple point could be obtained via the multi-objective optimization. 2) when
using a single infill criteria, multiple distinct locations can be found by applying
the so-called niching technique. Although the proposed parallelization methods

153



6. CONCLUSION

seem plausible, some of them remains untested as of the time of writing. It is
important to perform systematic experiments on them in the future.

Chapter 5 discusses the numerical multi-objective optimization (MOO). The
demands on this topic originate from many numerical multi-objective tasks that
arise in the study of stochastic optimization, e.g., the multi-objective treatment of
infill criteria in Chapter 4. The research question in this chapter is:

How to design a deterministic optimization algorithm for multi-
objective problems using either the gradient or the Hessian matrix
of the objective function, such that both the convergence rate to the
Pareto front and the distribution of non-dominated points are consid-
ered simultaneously?

The contribution in this chapter are three-fold: firstly, we mathematically analyze
the so-called Mixed-Peak bi-objective test problem. Secondly, the gradient field
and Hessian matrix of the hypervolume indicator are derived and studied in depth.
Thirdly, two novel numerical MOO algorithms, namely the hypervolume-based
first- (gradient) and second-order (Hessian) methods are proposed and tested.
Differentiating the hypervolume indicator resolves our research question due to
the fact that maximizing the hypervolume leads to the convergence to the Pareto
front and a set of well-distributed efficient points. In parallel to the algorithmic
development, we also investigate the condition on which the hypervolume indicator
Hessian would be singular. The singularity would make the Hessian inapplicable
for the optimization. The preliminary proof/results show that the subset (of the
search space S) where the Hessian is singular is of measure zero in S, meaning
that it is generally safe to apply the Hypervolume Hessian method. However,
this theoretical study is conducted in an idealized setting: 1) two points in the
approximation set and 2) the objective function is set to the simple sphere model.
As the next step, it is necessary to investigate the singularity condition furthermore
on more general functions with more approximation points.

Many research directions/proposals can be given by combining the techniques
in multiple chapters. For example, the novel infill criteria MGFI (Section 4.3)
can be combined with Kriging-based multi-objective optimization algorithm, e.g.,
SMS-EGO (Ponweiser et al., 2008), replacing the EI criteria. In addition, as
the surrogate model is required in SMS-EGO, it is also recommended to use the

154



proposed Cluster Kriging (Section 3.2) with this algorithm, aiming at improving
the algorithm running time and convergence rate.

In addition, the theoretical study in this thesis can also be continued. In Chapter 2,
although the mirrored orthogonal sampling is analyzed in depth, the distribution
of the proposed uniform random orthogonal vectors (Def. 2.1) is yet to discover.
In Chapter 3, despite the successful experimental result of Cluster Kriging, the
theoretical aspects are not treated. Thus, it is quite important to check its
modeling ability from the perspective of either Bayesian inference or RKHS. In
Chapter 4, when combining the EGO algorithm and the proposed MGFI criteria,
the convergence rate of the resulting optimizer is theoretically unknown, although
the faster empirical convergence is validated from benchmarking.

155





ap
pe

nd
ix

A
Gaussian Distribution

Assume the probability space (Ω,F ,P) and a measurable space (R,B), where B

is the Borel algebra on R. A random variable X : Ω→ R is said to be normally
distributed if and only if its probability distribution PX : B → [0, 1], defined as
a push-forward measure, ∀B ∈ B, PX(B) := P(X−1[B]), admits the following
form:

PX(B) =
∫
B

1√
2πσ2

exp
(
− (x−m)2

2σ2

)
dλ, (A.1)

where λ is the Lebesgue measure on R and m,σ2 are the mean and variance of X,
respectively. We typically use the notation X ∼ N (m,σ2). This distribution PX is
called Gaussian measure and the notation Gm,σ2 is assigned to it. The cumulative
distribution function (c.d.f.) of X is

Φm,σ2(x) = Gm,σ2 ({X ∈ R : X ≤ x}) .

In addition, the probability density function (p.d.f.) of X is the Radon-Nikodym
derivative of Gm,σ2 w.r.t. λ:

φm,σ2(x) =
dGm,σ2

dλ = 1√
2πσ2

exp
(
− (x−m)2

2σ2

)
, (A.2)

that is, by definition, the integrand in Eq. (A.1). In the multivariate case, consider
the measurable space (Rn,Bn) where Bn is the Borel algebra on Rn. A random
vector x = (X1, X2, . . . , Xn)> : Ω→ Rn is said to follow the multivariate Gaussian
distribution, if and only if any linear combination c>x, c ∈ Rn admits the
distribution as in Eq. (A.1). In addition, the distribution of x is

∀B ∈ Bn, Gnm,K(B) =
∫
B

(2π)−n2 det (K)
1
2 exp

(
−1

2 (y−m)>K−1 (y−m)
)

dλn,

157



A. GAUSSIAN DISTRIBUTION

where λn is the n-dimensional Lebesgue measure on (Rn,Bn) and m,K are the
mean and covariance matrix of x. As with the univariate case, we shall take the
notation x ∼N (m,K) and its cumulative distribution function is,

Φnm,K(ζ) = Gnm,K ({x ∈ Rn : x ≤ ζ}) .

Given an arbitrary partition on x = (x>1 ,x>2 )>, in which x1, x2 have n1 and n2

components, respectively. The distribution of x can be re-written as[
x1
x2

]
∼N

([
m1
m2

]
,

[
K11 K12
K21 K22

])
,

where all sub-mean vectors and sub-covariance matrices are obtained by applying
the same partition on m and K. The marginal distribution of x1 is Gaussian:

x1 ∼N (m1,K11) . (A.3)

The result holds for x2 in the same manner. In addition, the conditional distribution
of x1 on x2 = v is Gaussian (Tong, 2012):

x1 | x2 = v ∼N
(
m1 + K12K−1

22 (v−m2), K11 −K12K−1
22 K21

)
. (A.4)

Often, the value of Gaussian random variables is restricted:

X ∼ N (m,σ2), XR = max{0, X}.

The random variable XR is known as the Rectified Gaussian and its distribution
shall be denoted as NR(m,σ2). Note that the rectification “concentrates” all the
probability measure in (−∞, 0) to the rectification point 0, leading to an infinite
impulse at this point. Thus, the p.d.f. of XR is:

pXR(x) = Φm,σ2(0)δ(x) + φm,σ2(x)H(x), (A.5)

where δ is the Dirac delta (distribution)1 and H is the step function:

δ(x) =
{
∞ x = 0,
0 x 6= 0.

, H(x) =
{

0 x ≤ 0,
1 x > 0.

The rectification is sometimes confused with the so-called truncated Gaussian,
which is the distribution of a Gaussian variable X ∼ N (m,σ2) conditioning on an
interval (a, b) ⊂ R:

p(x | a < X < b) =
φm,σ2(x)

Φm,σ2(b)− Φm,σ2(a) .

1Formally, the Dirac delta should be defined either as a distribution or measure. We use the
heuristic characterization here for the sake of simplicity.

158



ap
pe

nd
ix

B
Proof

B.1 Theorem 5.3

Proof. Let us define a := −∇f (2)
1 and b := ∇f (1)

2 , such that Ã1 = ba> and

∇2HF(X) =
(

D1 ba>

ab> D2

)
.

For two block matrices, their column vectors are denoted as: D1 = (d1, . . . ,dn)
and D2 = (d′1, . . . ,d′n). The hypervolume Hessian is of size 2n × 2n and its
determinant can be simplified using the Laplace expansion along the first n rows
of the ∇2HF(X). To achieve this, n distinct columns need to be selected out of
2n rows. Let S be the set of the n-element subsets of {1, 2, . . . , 2n}:

S = {{1, 2, . . . , n}, {1, 2, . . . , n− 1, n+ 1}, . . .}

For every L ∈ S, we define its complement L′ := {1, 2, . . . , 2n} \ L. Note that a
permutation is defined on {1, 2, . . . , 2n}, by appending L′ to L: {L,L′} and we
shall use N(L) to denote the number of inversions in {L,L′}. According to the
Laplace expansion, such a determinant can be expressed as:

det
(
∇2HF(X)

)
=
∑
L∈S

(−1)N(L)
bLcL′ ,

where bL is the cofactor of the hypervolume Hessian, which is the determinant
of the minor matrix obtained by keeping the first n rows and n columns given
in L. Similarly, cL′ is the complementary cofactor of bL, obtained by removing
the first n rows and n columns given in L. For example, if L = {1, 2, . . . , n}, then
bL = det(D1) and cL′ = det(D2). In particular, when L contains two or more
elements from {2n+ 1, 2n+ 2, . . . , 2n}, meaning that at least two columns from

159



B. PROOF

ba> are chosen to compute bL, it is obvious that the cofactor bL is zeros because all
the columns from ba> are linear dependent. Using this observation, the expansion
can be simplified:

det
(
∇2HF(X)

)
= det (D1) det (D2)︸ ︷︷ ︸

L={1,2,...,n}

+ (−1)1 det ((d1, . . . ,dn−1, a1b)) det ((bna,d′2 . . . ,d′n))︸ ︷︷ ︸
L={1,2,...,n−1,n+1}

+ (−1)2 det ((d1, . . . ,dn−1, a2b)) det ((bna,d′1,d′3, . . . ,d′n))︸ ︷︷ ︸
L={1,2,...,n−1,n+2}

+ · · ·

+ (−1)n det ((d1, . . . ,dn−1, a2b)) det
(
(bna,d′1,d′2, . . . ,d′n−1)

)︸ ︷︷ ︸
L={1,2,...,n−1,2n}

+ · · ·

There are n terms shown in the equation above, resulting from choosing the first
n − 1 columns and one column from {2n + 1, 2n + 2, . . . , 2n}. Those terms can
also be simplified:

(−1)1
a1bn det ((d1, . . . ,dn−1,b)) det ((a,d′2 . . . ,d′n))

+ (−1)3
a2bn det ((d1, . . . ,dn−1,b)) det ((d′1,a,d′3 . . . ,d′n)) + · · ·

+ (−1)2i−1
aibn det ((d1, . . . ,dn−1,b)) det

(
(d′1, . . . ,d′i−1,a,d′i+1, . . . ,d′n)

)︸ ︷︷ ︸
move a to the i-th column

= −bn det ((d1, . . . ,dn−1,b)) det (D2)
n∑
i=1

ai
det
(
(d′1, . . . ,d′i−1,a,d′i+1, . . . ,d′n)

)
det ((d′1,d′2, . . . ,d′n))

(B.1)

= −bn det ((d1, . . . ,dn−1,b)) det (D2) a>D−1
2 a

Note that the last step above is according to Cramer’s rule for the equation
D2x = a (D1 and D2 are assumed to be nonsingular):

xi =
det
(
(d′1, . . . ,d′i−1,a,d′i+1, . . . ,d′n)

)
det ((d′1,d′2, . . . ,d′n))

160



B.1 Theorem 5.3

In principle, the same simplification here can be applied to other terms in the
hypervolume Hessian determinant:

det
(
∇2HF(X)

)
= det (D1) det (D2)

− bn det ((d1, . . . ,dn−1,b)) det (D2) a>D−1
2 a︸ ︷︷ ︸

drop column n from D1

− bn−1 det ((d1, . . . ,dn−2,b,dn)) det (D2) a>D−1
2 a︸ ︷︷ ︸

drop column n− 1 from D1

− · · ·

− b1 det ((b,d2, . . . ,dn)) det (D2) a>D−1
2 a︸ ︷︷ ︸

drop column 1 from D1

= det (D1) det (D2)
[

1− a>D−1
2 a

n∑
i=1

bi
det ((d1, . . . ,di−1,b,di+1, . . . ,dn))

det ((d1,d2, . . . ,dn))

]
=
(
1−

(
a>D−1

2 a
) (

b>D−1
1 b

))
det (D1) det (D2)

Again, in the last step above the same argument as in Eq. (B.1) is applied.
Because matrices D1 and D2 are nonsingular, the hypervolume Hessian matrix is
nonsingular as long as 1−

(
a>D−1

2 a
) (

b>D−1
1 b

)
is not zero.

161





Bibliography

Ababou, R., A. C. Bagtzoglou, and E. F. Wood (1994). On the Condition Number
of Covariance Matrices in Kriging, Estimation, and Simulation of Random Fields.
Mathematical Geology 26 (1), 99–133.

Agrawal, R. B., K. Deb, and R. B. Agrawal (1995). Simulated Binary Crossover
for Continuous Search Space. Complex systems 9 (2), 115–148.

Andrianakis, I. and P. G. Challenor (2012). The Effect of the Nugget on Gaussian
Process Emulators of Computer Models. Computational Statistics & Data
Analysis 56 (12), 4215–4228.

Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the
American mathematical society 68 (3), 337–404.

Auer, P. (2002). Using Confidence Bounds for Exploitation-exploration Trade-offs.
Journal of Machine Learning Research 3 (Nov), 397–422.

Auer, P., N. Cesa-Bianchi, and P. Fischer (2002). Finite-time Analysis of the
Multiarmed Bandit Problem. Machine learning 47 (2-3), 235–256.

Auger, A., D. Brockhoff, and N. Hansen (2010). Mirrored Variants of the (1, 2)-
CMA-ES Compared on the Noisy BBOB-2010 Testbed. In Proceedings of the
12th annual conference companion on Genetic and evolutionary computation,
GECCO ’10, New York, NY, USA, pp. 1575–1582. ACM.

Auger, A., D. Brockhoff, and N. Hansen (2011a). Analyzing the Impact of Mirrored
Sampling and Sequential Selection in Elitist Evolution Strategies. In H.-G. Beyer
and W. B. Langdon (Eds.), Proceedings of the 11th workshop proceedings on
Foundations of genetic algorithms, FOGA ’11, ACM, New York, pp. 127–138.

Auger, A., D. Brockhoff, and N. Hansen (2011b). Mirrored Sampling in Evolution
Strategies with Weighted Recombination. In Proceedings of the 13th Annual

163



BIBLIOGRAPHY

Conference on Genetic and Evolutionary Computation, GECCO ’11, New York,
NY, USA, pp. 861–868. ACM.

Auger, A. and N. Hansen (2011). Theory of Evolution Strategies: A New Per-
spective. Theory of Randomized Search Heuristics: Foundations and Recent
Developments 1, 289–325.

Bache, K. and M. Lichman (2013). UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml.

Bäck, T. (1995). Order Statistics for Convergence Velocity Analysis of Simplified
Evolutionary Algorithms. Volume 3 of Foundations of Genetic Algorithms, pp.
91 – 102. Elsevier.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford, UK: Oxford
University Press.

Bäck, T., C. Foussette, and P. Krause (2013). Contemporary Evolution Strategies
(1 ed.). Natural Computing Series. Springer-Verlag Berlin Heidelberg.

Bäck, T. and H.-P. Schwefel (1993, March). An Overview of Evolutionary Algo-
rithms for Parameter Optimization. Evol. Comput. 1 (1), 1–23.

Bartz-Beielstein, T., C. W. G. Lasarczyk, and M. Preuss (2005, Sept). Sequential
Parameter Optimization. In 2005 IEEE Congress on Evolutionary Computation,
Volume 1, pp. 773–780 Vol.1.

Beume, N., B. Naujoks, and M. Emmerich (2007). SMS-EMOA Multiobjective
Selection Based on Dominated Hypervolume. European Journal of Operational
Research 181 (3), 1653–1669.

Beyer, H.-G. (1993, June). Toward a Theory of ‘Evolution Strategies’: Some
Asymptotical Results from the (1,+ λ)-Theory. Evolution Computation 1 (2),
165–188.

Beyer, H.-G. (2013). The Theory of Evolution Strategies. Springer Science &
Business Media.

Bischl, B., S. Wessing, N. Bauer, K. Friedrichs, and C. Weihs (2014). MOI-MBO:
Multiobjective Infill for Parallel Model-Based Optimization. In International
Conference on Learning and Intelligent Optimization, pp. 173–186. Springer.

164

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


BIBLIOGRAPHY

Björck, A. (1994, Jan). Numerics of Gram-Schmidt Orthogonalization. Linear
Algebra and its Applications 197-198, 297–316.

Bonabeau, E., M. Dorigo, and G. Theraulaz (1999). Swarm Intelligence: from
Natural to Artificial Systems. Number 1. Oxford university press.

Bonnans, J.-F., J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal (2006).
Numerical Optimization: Theoretical and Practical Aspects. Springer Science &
Business Media.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. New York, NY, USA:
Cambridge University Press.

Breiman, L. (1996). Bagging Predictors. Machine Learning 24 (2), 123–140.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984). Classification
and Regression Trees. CRC press.

Brockhoff, D., A. Auger, N. Hansen, D. V. Arnold, and T. Hohm (2010). Mirrored
Sampling and Sequential Selection for Evolution Strategies. In R. Schaefer,
C. Cotta, J. Kolodziej, and G. Rudolph (Eds.), Proceedings of the 11th inter-
national conference on Parallel problem solving from nature: Part I, PPSN’10,
Springer-Verlag, Berlin, pp. 11–21.

Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations,
Volume 12. Cambridge university press.

Chalupka, K., C. K. I. Williams, and I. Murray (2013, February). A Framework for
Evaluating Approximation Methods for Gaussian Process Regression. J. Mach.
Learn. Res. 14 (1), 333–350.

Chen, T. and J. Ren (2009, March). Bagging for Gaussian Process Regression.
Neurocomput. 72 (7-9), 1605–1610.

Chevalier, C. and D. Ginsbourger (2013). Fast Computation of the Multi-points
Expected Improvement with Applications in Batch Selection. In G. Nicosia and
P. Pardalos (Eds.), Learning and Intelligent Optimization, Berlin, Heidelberg,
pp. 59–69. Springer Berlin Heidelberg.

Cressie, N. (1990). The Origins of Kriging. Mathematical geology 22 (3), 239–252.

Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.

165



BIBLIOGRAPHY

Csató, L. and M. Opper (2002). Sparse On-line Gaussian Processes. Neural
computation 14 (3), 641–668.

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph. D. thesis, Ann Arbor, MI, USA. AAI7609381.

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan (2000). A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-
II. In Parallel Problem Solving from Nature, 2000 Conference on, pp. 849–858.
Berlin, Heidelberg: Springer.

den Hertog, D., J. P. C. Kleijnen, and a. Y. D. Siem (2006). The Correct Kriging
Variance Estimated by Bootstrapping. Journal of the Operational Research
Society 57 (4), 400–409.

Dick, J. and F. Pillichshammer (2010). Digital Nets and Sequences: Discrepancy
Theory and Quasi-Monte Carlo Integration. New York, NY, USA: Cambridge
University Press.

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3 (3), 32–57.

Eaton, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley,
New York.

Ehrgott, M. (2006). Multicriteria Optimization. Springer Science & Business
Media.

Emmerich, M. (2005). Single-and Multi-Objective Evolutionary Design Optimization
assisted by Gaussian Random Field Metamodels. Ph. D. thesis, FB Informatik,
TU Dortmund.

Emmerich, M. and A. Deutz (2014). Time Complexity and Zeros of the Hypervol-
ume Indicator Gradient Field. In A. Tantar et al. (Eds.), EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation III,
Volume 500 of Studies in Computational Intelligence, pp. 169–193. Springer.

Emmerich, M., A. Deutz, and N. Beume (2007). Gradient-Based/Evolutionary
Relay Hybrid for Computing Pareto Front Approximations Maximizing the
S-metric. In Proceedings of the 4th International Conference on Hybrid Meta-
heuristics, HM’07, pp. 140–156. Springer.

166



BIBLIOGRAPHY

Emmerich, M., O. M. Shir, and H. Wang (2018). Evolution Strategies, pp. 1–31.
Cham: Springer International Publishing.

Emmerich, M., K. Yang, A. Deutz, H. Wang, and C. M. Fonseca (2016). A
Multicriteria Generalization of Bayesian Global Optimization, pp. 229–242.
Cham: Springer International Publishing.

Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons.

Fliege, J. and B. F. Svaiter (2000). Steepest Descent Methods for Multicriteria
Optimization. Mathematical Methods of Operations Research 51 (3), 479–494.

Forrester, A., A. Keane, et al. (2008). Engineering Design Via Surrogate Modelling:
A Practical Guide. John Wiley & Sons.

Fortin, F., F. Michel, M. A. Gardner, M. Parizeau, and C. Gagné (2012, jul).
DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning
Research 13, 2171–2175.

Gabillon, V., M. Ghavamzadeh, and A. Lazaric (2012). Best Arm Identification:
A Unified Approach to Fixed Budget and Fixed Confidence. In Advances in
Neural Information Processing Systems, pp. 3212–3220.

Ginsbourger, D., R. Le Riche, and L. Carraro (2010). Kriging Is Well-Suited
to Parallelize Optimization, pp. 131–162. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

Goldberg, D. E. and J. Richardson (1987). Genetic Algorithms with Sharing for
Multimodal Function Optimization. In Genetic algorithms and their applications:
Proceedings of the Second International Conference on Genetic Algorithms, pp.
41–49. Hillsdale, NJ: Lawrence Erlbaum.

Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review, pp. 75–102.
Berlin, Heidelberg: Springer Berlin Heidelberg.

Hansen, N. (2008, September). Adaptive Encoding: How to Render Search
Coordinate System Invariant. In Parallel Problem Solving from Nature - PPSN
X, Dortmund, Germany, pp. 205–214.

167



BIBLIOGRAPHY

Hansen, N., A. Auger, S. Finck, and R. Ros (2010, March). Real-Parameter
Black-Box Optimization Benchmarking 2010: Experimental Setup. Research
Report RR-7215, INRIA.

Hansen, N., S. Finck, R. Ros, and A. Auger (2009). Real-Parameter Black-Box
Optimization Benchmarking 2009: Noiseless Functions Definitions. Research
Report RR-6829, INRIA.

Hansen, N., S. D. Müller, and P. Koumoutsakos (2003, March). Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance Matrix
Adaptation (CMA-ES). Evol. Comput. 11 (1), 1–18.

Hansen, N. and A. Ostermeier (2001, June). Completely Derandomized Self-
Adaptation in Evolution Strategies. Evol. Comput. 9 (2), 159–195.

Hartman, L. and O. Hössjer (2008). Fast Kriging of Large Data Sets with Gaussian
Markov Random Fields. Computational Statistics & Data Analysis 52 (5), 2331–
2349.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical
Learning (2 ed.). Springer Series in Statistics. New York, NY, USA: Springer-
Verlag New York.

Hillermeier, C. (2001). Generalized Homotopy Approach to Multiobjective Opti-
mization. Journal of Optimization Theory and Applications 110 (3), 557–583.

Hoffman, M., E. Brochu, and N. D. Freitas (2011). Portfolio Allocation for Bayesian
Optimization. Conference on Uncertainty in Artificial Intelligence, 327–336.

Hoffman, M. W., B. Shahriari, and N. de Freitas (2014). On Correlation and
Budget Constraints in Model-Based Bandit Optimization with Application to
Automatic Machine Learning. Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics 33, 365–374.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011). Sequential Model-Based Op-
timization for General Algorithm Configuration, pp. 507–523. Berlin, Heidelberg:
Springer Berlin Heidelberg.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2012). Parallel Algorithm Configu-
ration. LION 6, 55–70.

168



BIBLIOGRAPHY

Hutter, F., H. H. Hoos, K. Leyton-Brown, and K. Murphy (2010). Time-Bounded
Sequential Parameter Optimization. In International Conference on Learning
and Intelligent Optimization, pp. 281–298. Springer.

Jin, Y. (2011). Surrogate-assisted Evolutionary Computation: Recent Advances
and Future Challenges. Swarm and Evolutionary Computation 1 (2), 61–70.

Jones, D. R. (2001). A Taxonomy of Global Optimization Methods Based on
Response Surfaces. Journal of global optimization 21 (4), 345–383.

Jones, D. R., M. Schonlau, and W. J. Welch (1998). Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global optimization 13 (4), 455–492.

Journel, A. G. and M. Rossi (1989). When do we need a trend model in Kriging?
Mathematical Geology 21 (7), 715–739.

Kaya, H., P. Tüfekci, and S. F. Gürgen (2012). Local and Global Learning Methods
for Predicting Power of a Combined Gas & Steam Turbine. International Confer-
ence on Emerging Trends in Computer and Electronics Engineering (ICETCEE
2012), 13–18.

Kennedy, J. and R. Eberhart (1995, Nov). Particle Swarm Optimization. In Neural
Networks, 1995. Proceedings., IEEE International Conference on, Volume 4, pp.
1942–1948 vol.4.

Kerschke, P., M. Preuss, S. Wessing, and H. Trautmann (2016). Low-Budget
Exploratory Landscape Analysis on Multiple Peaks Models. In Proceedings of
the 18th Annual Conference on Genetic and Evolutionary Computation, GECCO
’16. ACM.

Kerschke, P., H. Wang, M. Preuss, C. Grimme, A. H. Deutz, H. Trautmann,
and M. Emmerich (2016). Towards Analyzing Multimodality of Continuous
Multiobjective Landscapes. In J. Handl, E. Hart, P. R. Lewis, M. López-
Ibáñez, G. Ochoa, and B. Paechter (Eds.), Proceedings of the 14th International
Conference on Parallel Problem Solving from Nature (PPSN XIV), Volume 9921
of Lecture Notes in Computer Science, pp. 962–972. Springer.

Kimura, S. and K. Matsumura (2005). Genetic Algorithms Using Low-discrepancy
Sequences. In Proceedings of the 7th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’05, New York, NY, USA, pp. 1341–1346. ACM.

169



BIBLIOGRAPHY

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by Simulated
Annealing. science 220 (4598), 671–680.

Kleijnen, J. P. C., W. van Beers, and I. van Nieuwenhuyse (2012). Expected
Improvement in Efficient Global Optimization through Bootstrapped Kriging.
Journal of Global Optimization 54 (1), 59–73.

Kollo, T. o. and D. von Rosen (2005). Advanced Multivariate Statistics with
Matrices (1 ed.), Volume 579 of Mathematics and Its Applications. Springer
Netherlands.

Krige, D. G. (1951, December). A Statistical Approach to Some Basic Mine
Valuation Problems on the Witwatersrand. Journal of the Chemical, Metallurgical
and Mining Society of South Africa 52 (6), 119–139.

Lawrence, N. D. (2004). Gaussian Process Latent Variable Models for Visuali-
sation of High Dimensional Data. Advances in neural information processing
systems 16 (3), 329–336.

López, A. L., C. A. C. Coello, and O. Schütze (2012, May). Using Gradient Based
Information to Build Hybrid Multi-objective Evolutionary Algorithms. Ph. D.
thesis, CINVESTAV-IPN, Mexico City.

Lophaven, S. N., H. B. Nielsen, and J. Søndergaard (2002). DACE: a Matlab
Kriging Toolbox, Volume 2. Citeseer.

Loshchilov, I., M. Schoenauer, and M. Sebag (2011). Adaptive Coordinate De-
scent. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 885–892. ACM.

Luke, S. (2009). Essentials of Metaheuristics, Volume 113. Lulu Raleigh.

MacQueen, J. et al. (1967). Some Methods for Classification and Analysis of
Multivariate Observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Volume 1, pp. 281–297. Oakland, CA,
USA.

Martinez-Cantin, R. (2014). Bayesopt: A Bayesian Optimization Library for
Nonlinear Optimization, Experimental Design and Bandits. The Journal of
Machine Learning Research 15 (1), 3735–3739.

170



BIBLIOGRAPHY

Miller, B. L. and M. J. Shaw (1996). Genetic Algorithms with Dynamic Niche
Sharing for Multimodal Function Optimization. In Evolutionary Computation,
1996., Proceedings of IEEE International Conference on, pp. 786–791. IEEE.

Močkus, J. (1975). On Bayesian Methods for Seeking the Extremum. In Optimiza-
tion Techniques IFIP Technical Conference, pp. 400–404. Springer.

Močkus, J. (2012). Bayesian Approach to Global Optimization: Theory and
Applications, Volume 37. Springer Science & Business Media.

Moscato, P. et al. (1989). On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms. Caltech concurrent computation
program, C3P Report 826, 1989.

Naish-Guzman, A. and S. Holden (2007). The Generalized FITC Approximation.
In Advances in Neural Information Processing Systems, pp. 1057–1064.

Nguyen-Tuong, D., M. Seeger, and J. Peters (2009). Model Learning with Local
Gaussian Process Regression. Advanced Robotics 23 (15), 2015–2034.

Niederreiter, H. (1992). Random Number Generation and quasi-Monte Carlo Meth-
ods. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.

Nocedal, J. and S. Wright (2000). Numerical Optimization (2 ed.). Springer Series
in Operations Research and Financial Engineering. Springer-Verlag New York.

Nourani, Y. and B. Andresen (1998). A Comparison of Simulated Annealing
Cooling Strategies. Journal of Physics A: Mathematical and General 31 (41),
8373.

O’Hagan, A. and J. Kingman (1978). Curve Fitting and Optimal Design for
Prediction. Journal of the Royal Statistical Society. Series B (Methodological),
1–42.

Øksendal, B. (2003). Stochastic Differential Equations. Universitext. Springer-
Verlag Berlin Heidelberg.

Omre, H. (1987). Bayesian Kriging — Merging Observations and Qualified Guesses
in Kriging. Mathematical Geology 19 (1), 25–39.

Ostermeier, A., A. Gawelczyk, and N. Hansen (1994). Step-Size Adaption Based
on Non-Local Use of Selection Information. In Proceedings of the International
Conference on Evolutionary Computation. The Third Conference on Parallel

171



BIBLIOGRAPHY

Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN III,
London, UK, UK, pp. 189–198. Springer-Verlag.

Ponweiser, W., T. Wagner, D. Biermann, and M. Vincze (2008). Multiobjective
Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric
Selection. In G. Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni (Eds.),
Parallel Problem Solving from Nature – PPSN X, Berlin, Heidelberg, pp. 784–794.
Springer Berlin Heidelberg.

Ponweiser, W., T. Wagner, and M. Vincze (2008, June). Clustered Multiple
Generalized Expected Improvement: A Novel Infill Sampling Criterion for
Surrogate Models. In 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence), pp. 3515–3522.

Quiñonero-Candela, J. and C. E. Rasmussen (2005). A Unifying View of Sparse
Approximate Gaussian Process Regression. The Journal of Machine Learning
Research 6 (1), 1939–1959.

Rao, C. R., H. Toutenburg, Shalabh, and C. Heumann. Linear Models and
Generalizations (3rd ed.). Springer Series in Statistics. Springer-Verlag Berlin
Heidelberg.

Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning.
Adaptative computation and machine learning series. University Press Group
Limited.

Ren, Y., A. Deutz, and M. Emmerich (2015). On Steering Dominated Points in
Hypervolume Gradient Ascent for Bicriteria Continuous Optimization (extended
abstract). In Numerical and Evolutionary Optimization, NEO 2015, Tijuana,
Mexico (Book of abstracts).

Reynolds, D. (2009). Gaussian Mixture Models. In Encyclopedia of Biometrics,
pp. 659–663. Springer.

Rosenbrock, H. H. (1960, January). An Automatic Method for Finding the Greatest
or Least Value of a Function. The Computer Journal 3 (3), 175–184.

Roustant, O., D. Ginsbourger, and Y. Deville (2012, 10). DiceKriging, DiceOptim:
Two R Packages for the Analysis of Computer Experiments by Kriging-Based
Metamodeling and Optimization. Journal of Statistical Software 51 (1), 1–55.

172



BIBLIOGRAPHY

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and Analysis
of Computer Experiments. Statistical Science 4 (4), 409–423.

Santner, T., B. Williams, and W. Notz (2003). The Design and Analysis of
Computer Experiments. Springer Series in Statistics. Springer.

Sasena, M. J., P. Papalambros, and P. Goovaerts (2002). Exploration of Meta-
modeling Sampling Criteria for Constrained Global Optimization. Engineering
optimization 34 (3), 263–278.

Schölkopf, B., R. Herbrich, and A. J. Smola (2001). A Generalized Representer
Theorem. In International conference on computational learning theory, pp.
416–426. Springer.

Schonlau, M. (1998). Computer Experiments and Global Optimization. University
of Waterloo.

Schonlau, M., W. J. Welch, and D. R. Jones (1998). Global versus Local Search
in Constrained Optimization of Computer Models. Lecture Notes-Monograph
Series, 11–25.

Schütze, O., C. Domínguez-Medina, N. Cruz-Cortés, L. Gerardo de la Fraga, J.-Q.
Sun, G. Toscano, and R. Landa (2016). A Scalar Optimization Approach for
Averaged Hausdorff Approximations of the Pareto front. Engineering Optimiza-
tion 48 (9), 1593–1617.

Schütze, O., X. Esquivel, A. Lara, and C. A. C. Coello (2012, Aug). Using the
Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multi-
objective Optimization. IEEE Transactions on Evolutionary Computation 16 (4),
504–522.

Schütze, O., A. Lara, and C. Coello Coello (2011). The Directed Search Method
for Unconstrained Multi-objective Optimization Problems. Proceedings of the
EVOLVE–A Bridge Between Probability, Set Oriented Numerics, and Evolution-
ary Computation.

Schwefel, H.-P. (1993). Evolution and Optimum Seeking: The Sixth Generation.
New York, NY, USA: John Wiley & Sons, Inc.

Shir, O. M. et al. (2008). Niching in Derandomized Evolution Strategies and its
Applications in Quantum Control. Natural Computing Group, LIACS, Faculty
of Science, Leiden University.

173



BIBLIOGRAPHY

Shir, O. M. and T. Bäck (2005a). Dynamic Niching in Evolution Strategies with
Covariance Matrix Adaptation. In Evolutionary Computation, 2005. The 2005
IEEE Congress on, Volume 3, pp. 2584–2591. IEEE.

Shir, O. M. and T. Bäck (2005b). Niching in Evolution Strategies. In Proceedings of
the 7th annual conference on Genetic and evolutionary computation, pp. 915–916.
ACM.

Shir, O. M., M. Emmerich, and T. Bäck (2007). Self-Adaptive Niching CMA-ES
with Mahalanobis Metric. In Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pp. 820–827. IEEE.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
(2016). Mastering the Game of Go with Deep Neural Networks and Tree Search.
nature 529 (7587), 484–489.

Silverman, B. W. (1985). Some Aspects of the Spline Smoothing Approach to Non-
parametric Regression Curve Fitting. Journal of the Royal Statistical Society.
Series B (Methodological) 47 (1), 1–52.

Slater, M. (2014). Lagrange Multipliers Revisited. In Traces and Emergence of
Nonlinear Programming, pp. 293–306. Springer.

Snelson, E. and Z. Ghahramani (2005). Sparse Gaussian Processes using Pseudo-
inputs. In Advances in neural information processing systems, pp. 1257–1264.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical Bayesian Optimization
of Machine Learning Algorithms. In Advances in neural information processing
systems, pp. 2951–2959.

Sóbester, A., S. J. Leary, and A. J. Keane (2005). On the Design of Optimization
Strategies Based on Global Response Surface Approximation Models. Journal
of Global Optimization 33 (1), 31–59.

Sosa Hernández, V. A., O. Schütze, and M. Emmerich (2014). EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation V,
Chapter Hypervolume Maximization via Set Based Newton’s Method, pp. 15–28.
Cham, Switzerland: Springer International Publishing.

Srinivas, N. and K. Deb (1994). Muiltiobjective Optimization using Nondominated
Sorting in Genetic Algorithms. Evolutionary computation 2 (3), 221–248.

174



BIBLIOGRAPHY

Srinivas, N., A. Krause, S. Kakade, and M. Seeger (2010). Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design. In
Proceedings of the 27th International Conference on International Conference
on Machine Learning, ICML’10, USA, pp. 1015–1022. Omnipress.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging (1
ed.). Springer Series in Statistics. Springer-Verlag New York.

Storn, R. and K. Price (1997, Dec). Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of global
optimization 11 (4), 341–359.

Sundberg, R. (1974). Maximum Likelihood Theory for Incomplete Data from an
Exponential Family. Scandinavian Journal of Statistics, 49–58.

Talbi, E.-G. (2009). Metaheuristics: from Design to Implementation, Volume 74.
John Wiley & Sons.

Teytaud, O. and S. Gelly (2007). DCMA: yet another derandomization in
Covariance-Matrix-Adaptation. In Proceedings of the 9th annual conference
on Genetic and evolutionary computation, pp. 955–963. ACM.

Tong, Y. L. (2012). The Multivariate Normal Distribution. Springer Science &
Business Media.

Torn, A. and A. Zilinskas (1989). Global Optimization. Lecture Notes in Computer
Science 350.

Tresp, V. (2000). A Bayesian Committee Machine. Neural computation 12 (11),
2719–2741.

Ursem, R. K. (2014). From Expected Improvement to Investment Portfolio Im-
provement: Spreading the Risk in Kriging-Based Optimization. In International
Conference on Parallel Problem Solving from Nature, pp. 362–372. Springer.

van der Vaart, A. W. and J. H. van Zanten (2008). Rates of Contraction of
Posterior Distributions Based on Gaussian Process Priors. The Annals of
Statistics, 1435–1463.

van Stein, B., H. Wang, W. Kowalczyk, T. Bäck, and M. Emmerich (2015).
Optimally Weighted Cluster Kriging for Big Data Regression. In E. Fromont,
T. De Bie, and M. van Leeuwen (Eds.), Advances in Intelligent Data Analysis
XIV, pp. 310–321. Cham: Springer International Publishing.

175



BIBLIOGRAPHY

van Stein, B., H. Wang, W. Kowalczyk, M. Emmerich, and T. Bäck (2016).
Fuzzy clustering for Optimally Weighted Cluster Kriging. In Fuzzy Systems
(FUZZ-IEEE), 2016 IEEE International Conference on, pp. 939–945. IEEE.

Vijayakumar, S., A. D’souza, and S. Schaal (2005). Incremental Online Learning
in High Dimensions. Neural computation 17 (12), 2602–2634.

Wang, H., T. Bäck, and M. T. M. Emmerich (2018). Multi-point Efficient Global
Optimization Using Niching Evolution Strategy. In A.-A. Tantar, E. Tantar,
M. Emmerich, P. Legrand, L. Alboaie, and H. Luchian (Eds.), EVOLVE - A
Bridge between Probability, Set Oriented Numerics, and Evolutionary Computa-
tion VI, Cham, pp. 146–162. Springer International Publishing.

Wang, H., A. Deutz, T. Bäck, and M. Emmerich (2017). Hypervolume Indicator
Gradient Ascent Multi-objective Optimization. In H. Trautmann, G. Rudolph,
K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, and C. Grimme (Eds.), Evolution-
ary Multi-Criterion Optimization, Cham, pp. 654–669. Springer International
Publishing.

Wang, H., M. Emmerich, and T. Bäck (2014). Mirrored Orthogonal Sampling with
Pairwise Selection in Evolution Strategies. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC ’14, New York, NY, USA, pp.
154–156. ACM.

Wang, H., M. Emmerich, and T. Bäck (2016). Balancing Risk and Expected Gain
in Kriging-Based Global Optimization. In Evolutionary Computation (CEC),
2016 IEEE Congress on, pp. 719–727. IEEE.

Wang, H., M. Emmerich, and T. Bäck (2018). Cooling Strategies for the Moment-
Generating Function in Bayesian Global Optimization. In Evolutionary Compu-
tation (CEC), 2018 IEEE Congress on, pp. to appear. IEEE.

Wang, H., Y. Ren, A. Deutz, and M. Emmerich (2017). On Steering Dominated
Points in Hypervolume Indicator Gradient Ascent for Bi-Objective Optimization,
pp. 175–203. Cham: Springer International Publishing.

Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017). A New Acquisition
Function for Bayesian Optimization Based on the Moment-Generating Function.
In Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference
on, pp. 507–512. IEEE.

176



BIBLIOGRAPHY

Wang, H., B. van Stein, M. Emmerich, and T. Bäck (2017). Time Complexity
Reduction in Efficient Global Optimization using Cluster Kriging. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’17, New
York, NY, USA, pp. 889–896. ACM.

Webster, R. and M. A. Oliver (2007). Geostatistics for Environmental Scientists.
John Wiley & Sons.

Wessing, S. (2015). Two-Stage Methods for Multimodal Optimization. Ph. D. thesis,
Technische Universität Dortmund.

Wessing, S. (2016). optproblems: Infrastructure to Define Optimization Problems
and Some Test Problems for Black-Box Optimization. python package version
0.9.

Wright, S. and J. Nocedal (1999). Numerical Optimization. Springer Science 35 (67-
68), 7.

Yeh, I.-C. (1998). Modeling of Strength of High-performance Concrete using
Artificial Neural Networks. Cement and Concrete research 28 (12), 1797–1808.

Zhang, Q. and H. Li (2007). MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Transactions on evolutionary computation 11 (6),
712–731.

Žilinskas, A. (1992). A Review of Statistical Models for Global Optimization.
Journal of Global Optimization 2 (2), 145–153.

Zimmerman, D., C. Pavlik, A. Ruggles, and M. P. Armstrong (1999). An Exper-
imental Comparison of Ordinary and Universal Kriging and Inverse Distance
Weighting. Mathematical Geology 31 (4), 375–390.

Zitzler, E., K. Deb, and L. Thiele (2000, June). Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computation (2),
173 – 195.

Zitzler, E., M. Laumanns, L. Thiele, et al. (2001). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In Eurogen, Volume 3242, pp. 95–100.

Zitzler, E. and L. Thiele (1998). Multiobjective Optimization Using Evolutionary
Algorithms — A Comparative Case Study. In A. E. Eiben, T. Bäck, M. Schoe-
nauer, and H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature — PPSN
V, Berlin, Heidelberg, pp. 292–301. Springer Berlin Heidelberg.

177



BIBLIOGRAPHY

Zitzler, E., L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca (2003,
April). Performance Assessment of Multiobjective Optimizers: An Analysis and
Review. IEEE Transactions on Evolutionary Computation 7 (2), 117–132.

178



Acronyms

BLP Best Linear Estimator. 50

BLUE Best Linear Unbiased Estimator. 48

BLUP Best Linear Unbiased Predictor. 48

ECDF Empirical Cumulative Distribution Function. 36, 101

EGO Efficient Global Optimization. 37, 90, 113, 114

EI Expected Improvement. 78, 90–93, 96, 103, 108, 114, 154

GEI Generalized Expected Improvement. 91, 92, 98, 100

GLS Generalized Least Squares. 48

GPR Gaussian Process Regression. 39, 43, 44, 56, 59, 63, 69, 87, 88, 95, 100, 152

KKT Karush-Kuhn-Tucker conditions. 57, 95, 125

LHS Latin Hypercube Sampling. 57, 101

LUP Linear Unbiased Predictor. 47

MAP Maximum a Posterior. 59

MGF Moment-Generating Function. 96

MGFI Moment-Generating Function of Improvement. 98, 100, 101, 103, 107, 154,
155

MSE Mean Squared Error. 37, 39, 49, 50, 69, 71, 73, 80, 82, 94, 108

179



Acronyms

RBF Radial Basis Functions. 46

RKHS Reproducing Kernel Hilbert Space. 54, 56, 57, 155

180



Index

Ackley function, 114
acquisition function, 37, 87
almost everywhere, 120
attainable, 95

basis functions, 45
Bayesian Committee Machines, 65
Bayesian optimization, 37
Bayesian statistics, 58
best linear predictor, 50
best linear unbiased predictor, 48
bi-objective, 92
Branin function, 113

characteristic function, 51
Coefficient of determination, 77
condition number, 53
conditional distribution, 59, 158
Constant Liar, 106
convergence in probability, 4
convergence rate analysis, 27
covariance function, 44

auto-covariance, 48
covariance matrix, 158
cumulative distribution function, 157,

158
cumulative regret, 88

data generation process, 51
decision space, 3

Efficient Global Optimization, 37,
90

Euclidean ball, 3
Expected Improvement, 37, 90

Bootstrapped, 90
Generalized, 91
Multi-point, 106
Multiple Generalized, 92
Weighted, 91

Fuzzy C-means, 67, 74

Gaussian
Markov Random Fields, 64
measure, 157
mixture models, 66
multivariate, 15, 157
Process, 43, 58

Gaussian Mixture Model Cluster Kriging,
74, 78

Generalized Least Squares, 48
Global minimum, 3
GPR variance, 59

Hartman6, 113
Hilbert space, 53
Himmelblau’s function, 114
hyper-parameters, 46
hypervolume indicator, 121

gradient, 119, 128
Gradient Ascent, 95, 134

181



INDEX

Hessian matrix, 120
Newton method, 146

improvement, 89
Improvement-based infill criteria,

89
indicator function, 51
Infill Criteria

parallelization, 105
parameterized, 88

infill criterion, 37, 87
Isotropy, 46

K-means, 66, 73
Karush-Kuhn-Tucker, 57, 143
Kriging, 43

Cluster Kriging, 43
local Kriging, 69
Ordinary Kriging, 39, 45
Simple Kriging, 45, 50
Universal Kriging, 45, 51

Kriging Believer, 106
Kriging MSE, 49, 87
Kriging nugget, 52
Kriging predictor, 53
Kriging RMSE, 49

Lagrange Multiplier, 71
Lagrange Multipliers, 48
Lebesgue measure, 158
likelihood, 58
linear unbiased predictor, 47
Local minimum, 3
local search, 3
Lower Confidence Bound, 37, 88

marginal distribution, 158
Matrix Calculus, 8
Maximum a Posterior Probability,

59
Maximum Likelihood Estimation,

63

mean squared error, 37, 47
Mean Standardized Log Loss, 77
metaheuristics, 5
metric space, 3
Model Tree Cluster Kriging, 74,

78
Moment-Generating Function, 96

of Improvement, 98
multi-objective optimization, 119
Mutation by Optimization, 37

niching evolution strategy, 108
Niching-q-EI, 108
non-informative, 61
nonparametric regression, 51
nugget effect, 52
nugget variance, 52

Optimally Weighted
Cluster Kriging, 73, 78
Fuzzy Cluster Kriging, 74

Pareto efficient, 7
efficient set, 7

Pareto front, 7
Pareto order, 7
positive semi-definite matrix, 47
positive-definite, 50

positive-definite kernel, 44,
60

positive-definite matrix, 47
posterior, 58

kernel, 60
mean, 60

prior, 58
mean, 59

probability density function, 157
probability distribution, 157
Probability of Improvement, 37,

90

radial basis functions, 46

182



INDEX

Radon-Nikodym derivative, 157
random forests, 87
Rastrigin function, 114
Rectified Gaussian, 90, 158
regression function, 51
representer theorem, 56
Reproducing Kernel Hilbert Space,

54
risk function, 47

sample path, 44
sampling error, 15
search space, 3
Semivariogram, 52
separable space, 53
set-oriented numerics, 120
simple random sampling, 15
Sparse On-Line Gaussian Processes,

64
Standardized Mean Squared Error,

77
Stationary, 46
statistical model, 69
Stochastic Optimization, 4
Subset of Data, 64
Subset of Regressors, 64
supermartingale, 4
support vector regression, 87
supremum norm, 55

uniform random orthogonal vectors,
21

Upper Confidence Bound, 88

weakly isotropic, 46
weakly stationary, 46

183





Summary

The black-box optimization problem is frequently encountered in many applications.
For example, the tuning task of a machine learning algorithm or fitting a curve
to some experimental data. In the PROMIMOOC project (PROcess MIning for
Multi-Objective Online Control with industrial partners Tata Steel and BMW
group), the optimization problem we are facing is to search for proper control
parameters of production processes (for both partners), such that the number of
defects generated during the production would be largely reduced. Such a problem
is typically referred as an “black-box”, as we don’t directly model the physical
mechanism behind the production process and there is no additional information
about its mathematical characteristics (e.g., convexity and continuity) that would
be very useful for the optimization. Therefore, the black-box problem is also
considered very challenging. Another difficulty arises in the extremely high cost
of making trials on the production line: suppose a candidate setting of control
parameters (or candidate solution) is proposed by an optimization algorithm. The
quality of this setting can only be assessed by applying it to the actual production
line and then measuring defect rate in the output. This is typically very costly and
risky: when the candidate setting doesn’t actually perform well, many defects will
be generated, resulting in extra production costs for industrial partners. To solve
this problem efficiently and carefully, several fundamental optimization techniques
have to be combined in a reasonable way.

First of all, as there is not much mathematical assumptions on the problem, we
have to resort to the so-called stochastic optimization algorithm, instead of using
the traditional optimization techniques from mathematics/operational research.
The stochastic optimization algorithm is a class of methods that directly optimize
the objective function by solely using the assessment (evaluation) of the candidate
solution. Stochastic optimization algorithms are underpinned by the so-called

185



ENGLISH SUMMARY

stochastic variation, which generates (local) random perturbations to modify the
current search point. In evolutionary computation, this is typically called the
mutation operator. Intuitively, the efficiency of a stochastic variation method
greatly affects the performance of the corresponding optimization algorithm. This
is the reason why we investigate the efficiency issue of such methods in depth
(Chapter 2). As a result of the investigation, we propose a novel stochastic variation
method, called mirrored orthogonal sampling, which aims at generating random
perturbations that cover the search space (subset of Rd) evenly. Both theoretical
analysis and empirical study are conducted on the proposed method.

Secondly, because it is very costly to assess candidate solutions, it is common to
replace an actual expensive assessment by a machine learning model, which is
trained on the historical assessments. Then an optimization algorithm can query
the quality of a candidate solution from the model, instead of running the real
production process with this solution. Such a technique is called surrogate modeling.
One big challenge in surrogate modeling is to give a reliable quantification about
the uncertainty in model prediction due to the fact that data-driven models usually
yield significant errors in prediction. In Chapter 3, we study the well-known
Kriging/Gaussian Process Regression (GPR) model, that is capable of quantifying
the uncertainty. The quantification approach in Kriging/GPR is discussed in
detail. When it comes to the application of the Kriging/GPR method to real-world
data, we are confronted with the following obstacle: The Kriging/GPR method
suffers from a cubic time complexity when dealing with large data sets, limiting its
applicability for big data sets. In the reminder of this chapter, a novel algorithmic
framework, called Cluster Kriging is proposed to tackle this issue. Cluster Kriging
is tested on some selected functions and data sets, exhibiting an acceleration of
the modeling speed as well as an improved modeling precision.

Naturally, once a good surrogate model is obtained from the previous discussion,
the next question is how to use such a model in a reasonable manner such that the
uncertainty quantification is taken into account. It is possible to select the most
trustworthy solution based on the surrogate model, or alternatively the point that
possesses the highest potential to help the optimization procedure if the actual
assessment were conducted on it. Such decisions are usually determined through
an utility function on the surrogate model, called infill criterion. This is the topic
of Chapter 4. The difficulty in designing the infill criterion is how to balance the
trade-off between the model prediction (exploitation) and the model uncertainty

186



Summary

(exploration). In this chapter, we summarize the existing infill criterion and propose
a novel infill criteria, called Moment-Generating Function of Improvement that
allows for controlling this trade-off explicitly and smoothly. Furthermore, the
parallelization issue of infill criteria is also considered thoroughly and several new
parallelization methods are proposed and tested.

Lastly, we discuss the so-called multi-objective optimization problem: suppose we
want to minimize the number of defects generated in the production and maximize
the throughout simultaneously. In this case, it is typical not possible to find a
setting of control parameters that satisfies both objectives in the same time and
thus we have to adopt multi-objective optimization algorithms. In Chapter 5, we
aims at designing a multi-objective optimization algorithm that is able to use
either the gradient or the Hessian matrix of the objective function. To achieve this
goal, the gradient field and Hessian matrix of the so-called hypervolume indicator
are derived and studied in depth. As a result, two novel algorithms, namely
the hypervolume-based first- (gradient) and second-order (Hessian) methods are
proposed and tested.

187





Samenvatting

Het black-box-optimalisatieprobleem komt in veel toepassingen voor. Bijvoorbeeld,
de afstemmingstaak van een machine-learning algoritme voor het leren van een
curve op experimentele gegevens.

In het PROMIMOOC-project (PROcess MIning voor Multi-Objective Online
Control met industriële partners Tata Steel en BMW groep), is het optimal-
isatieprobleem waarmee we geconfronteerd worden, het zoeken naar de juiste
controleparameters van productieprocessen (voor beide partners), zodanig, dat het
aantal defecten tijdens deze productie processen grotendeels gereduceerd word. Een
dergelijk probleem wordt meestal een “black-box” genoemd, omdat we niet direct
het fysieke mechanisme achter het productieproces modelleren en omdat er geen
aanvullende informatie over de wiskundige kenmerken (bijvoorbeeld convexiteit en
continuïteit) bekend zijn die zouden helpen bij de optimalisatie. Daarom wordt het
Black-Box-probleem ook als zeer uitdagend beschouwd. Een andere moeilijkheid
doet zich voor bij de extreem hoge kosten van het uitvoeren van proeven op de
productielijn: veronderstel dat een kandidaat-instelling van controleparameters
(of kandidaat-oplossing) wordt voorgesteld door een optimalisatie-algoritme. De
kwaliteit van deze instelling kan alleen worden beoordeeld door deze toe te passen
op de daadwerkelijke productielijn en vervolgens de defectfrequentie in de uitvoer
te meten. Dit is vaak erg duur en riskant: wanneer de kandidaat-instelling niet
goed presteert, zullen veel defecten worden gegenereerd en dit resulteert in ex-
tra productiekosten voor de industriële partners. Om dit probleem efficiënt en
zorgvuldig op te lossen, moeten verschillende fundamentele optimalisatietechnieken
op een redelijke manier worden gecombineerd.

Allereerst, omdat er niet veel wiskundige veronderstellingen over het probleem zijn,
moeten we onze toevlucht nemen tot het zogenaamde stochastische optimalisatie-
algoritme, in plaats van de traditionele optimalisatietechnieken uit de wiskunde en

189



NEDERLANDSE SAMENVATTING

operationeel onderzoek te gebruiken. Het stochastische optimalisatie-algoritme is
een klasse van methoden die de doelfunctie direct optimaliseert door uitsluitend
de beoordeling (evaluatie) van de kandidaat-oplossing te gebruiken. Stochastische
optimalisatie-algoritmen worden onderbouwd door de zogenaamde Stochastische
variatie, die (lokale) willekeurige verstoringen genereert om het huidige zoekpunt
te wijzigen. In evolutionaire methoden wordt dit meestal de mutatie-operator
genoemd. Intuïtief beïnvloedt de efficiëntie van een stochastische variatiemethode
de prestaties van het bijbehorende optimalisatie-algoritme enorm. Dit is de reden
waarom we de efficiëntie van dergelijke methoden grondig onderzoeken (Hoofd-
stuk 2). Als resultaat van het onderzoek stellen we een nieuwe stochastische
variatiemethode voor, genaamd mirrored orthogonal sampling, die gericht is op het
gelijkmatig genereren van willekeurige verstoringen die de zoekruimte (deelverza-
meling van Rd) dekken. Zowel theoretische analyse als empirisch onderzoek zijn
uitgevoerd op de voorgestelde methode.

Ten tweede, omdat het erg duur is om kandidaat-oplossingen te beoordelen, is het
gebruikelijk om een dure beoordeling in de praktijk te vervangen door een machine
learning model, dat is getraind met behulp van de historische beoordelingen. Dan
kan een optimalisatie-algoritme de kwaliteit van een kandidaat-oplossing bepalen
aan de hand van het model, in plaats van het echte productieproces met deze
oplossing uit te voeren. Z’on techniek heet Surrogaatmodellering. Een grote uitdag-
ing bij surrogaatmodellering is het geven van een betrouwbare kwantificering over
de onzekerheid van de voorspelling van een model, omdat data-gestuurde modellen
meestal significante voorspellingsfouten opleveren. In hoofdstuk 3 bestuderen we
het bekende Kriging/Gaussian Process Regression (GPR) model, dat in staat is
om de onzekerheid te kwantificeren. De kwantificeringsbenadering in Kriging/GPR
wordt in detail besproken. Bij de toepassing van de Kriging/GPR-methode op reële
gegevens, worden we geconfronteerd met het volgende obstakel: de Kriging/GPR-
methode heeft een kubieke tijd complexiteit, waardoor de toepasbaarheid van
de methode bij grote datasets wordt beperkt. In dit hoofdstuk wordt een nieuw
algoritmisch raamwerk, genaamd Cluster Kriging, voorgesteld om dit probleem
aan te pakken. Cluster Kriging wordt getest op een aantal geselecteerde functies
en datasets, met een versnelling van de model leersnelheid en een verbeterde model
precisie.

Vanzelfsprekend is, wanneer eenmaal een goed surrogaatmodel is verkregen, de
vraag hoe een dergelijk model op een redelijke manier moet worden gebruikt, zodat

190



Samenvatting

de kwantificering van de onzekerheid in aanmerking wordt genomen. Het is mogelijk
om de meest betrouwbare oplossing te bepalen op basis van het surrogaatmodel, of
als alternatief, welk punt het grootste potentieel heeft om de optimalisatieprocedure
te helpen als de feitelijke beoordeling daarop is uitgevoerd. Dergelijke beslissingen
worden meestal bepaald door een nutsfunctie op het surrogaatmodel, genaamd
invulcriterium. Dit is het onderwerp van hoofdstuk 4. De moeilijkheid bij het
ontwerpen van het invulcriterium is het in balans brengen van de afweging tussen
de modelvoorspelling (exploitatie) en de modelonzekerheid (verkenning). In dit
hoofdstuk vatten we het bestaande invulcriterium samen en stellen we een nieuw
invulcriterium voor, genaamd Moment-Generating Function of Improvement dat
het mogelijk maakt om deze afweging expliciet en soepel te regelen. Bovendien
wordt de parallellisatie mogelijkheden van invulcriteriums ook grondig overwogen en
worden verschillende nieuwe parallellisatie methoden voorgesteld en getest.

Ten slotte, bespreken we het zogenaamde optimaliseringsprobleem met meerdere
doelstellingen: stel dat we het aantal defecten in de productie willen minimaliseren
en het hele proces tegelijkertijd willen maximaliseren. In dit geval is het typisch niet
mogelijk om een instelling van parameters te vinden die beide doelen op hetzelfde
moment behaalt, daarom moeten we speciale algoritmen voor de optimalisatie
van meerdere doeleinden gebruiken. In hoofdstuk 5 willen we een optimaliser-
ingsalgoritme met meerdere doeleinden ontwerpen dat de gradiënt of de Hessiaanse
matrix van de doelfunctie kan gebruiken. Om dit doel te bereiken, worden het
gradiëntveld en de Hessiaanse matrix van de zogenaamde hypervolume-indicator
afgeleid en grondig bestudeerd. Dientengevolge worden twee nieuwe algoritmen,
namelijk de hypervolume-gebaseerde eerste- (gradiënt) en tweede-orde (Hessiaan)
methoden voorgesteld en getest.

191





About the Author

Hao Wang born 1989 in Baoji, China, received his Master degree of Computer
Science at Leiden University, The Netherlands in 2013. Hao worked as a PhD since
May, 2014 in Leiden Institute of Advanced Computer Science (LIACS), supervised
by Prof. Thomas Bäck and Associate Prof. Michael Emmerich. His research inter-
ests are proposing, improving and analyzing optimization algorithms, especially
Evolutionary Strategies, as well as developing statistical machine learning methods
for big and complex industrial data. He also aims at combining state-of-the-art
optimization algorithm with data mining techniques to make efficient and robust
optimizers for industry processes.

王王王昊昊昊者，己巳年正月十五生，秦地陈仓人也。自幼生性好动，非钻研之才，

亦无格物致知之心。及至中学，心性渐变，随倾心于数字之妙，万物变化之理。

至中学结业时，已立科学研究之志。岁在丁亥，初赴京师，研习算法之术。至大

学结业之时，学业已成，然则胸中希冀未满，随而出西洋，至荷兰，为术业之精

进，师洋人，专攻优化之术。乃至术业精通，忆大学往昔，岁月如梭，竟已有十

一载。今已近而立之年，东眺中土之地，百业兴盛，视诸夷域，若如虚无缥缈之

间。而我之云帆高涨，昼夜星驰，非只因吾之奋进，更赖国家培养之道，父母哺

育之恩也。念此道此恩，吾必兢兢业业，用吾之所学，回馈父母，助我国家科学

之盛，绵薄之力，在所不辞。

戊戌八月十一于荷兰莱顿

193


	Abstract
	List of Symbols
	1 Introduction
	1.1 Stochastic Optimization
	1.2 Multi-objective Optimization
	1.3 Matrix Calculus
	1.4 Outline of the Dissertation

	2 Stochastic Variation
	2.1 Quasi-Random Sampling
	2.2 Mirroring and Orthogonalization
	2.2.1 Deterministic Orthogonal Sampling
	2.2.2 Mirrored Orthogonal Sampling
	2.2.3 Implementation of Random Orthogonal Sampling

	2.3 Convergence Analysis of Mirroring and Orthogonalization
	2.3.1 Mirrored Sampling
	2.3.2 Mirrored Orthogonal Sampling

	2.4 Empirical Results on Mirroring and Orthogonalization
	2.4.1 Experiments on BBOB

	2.5 Efficient Global Optimization
	2.6 Summary

	3 Kriging/Gaussian Process Regression
	3.1 General Discussion
	3.1.1 Best Linear Unbiased Predictor
	3.1.2 Reproducing Kernel Hilbert Space
	3.1.3 Bayesian Inference
	3.1.4 Differentiation

	3.2 Cluster Kriging
	3.2.1 Clustering
	3.2.2 Modeling
	3.2.3 Cluster Kriging Predictor
	3.2.4 Experiments

	3.3 Cluster Kriging and EGO
	3.3.1 The algorithm
	3.3.2 Experiments

	3.4 Summary

	4 Infill Criteria
	4.1 Improvement-based Infill Criteria
	4.2 Balancing Risk and Gain
	4.3 Moment-Generating Function of Improvement
	4.4 Cooling Strategies for MGFI
	4.4.1 Impact of Temperature Configurations
	4.4.2 Benchmarking the Cooling Strategies

	4.5 Parallelization
	4.5.1 Multi-point Infill Criteria
	4.5.2 Multi-instance of Infill Criteria
	4.5.3 Multi-objective Infill Criteria
	4.5.4 Niching-based Infill Criteria Maximization

	4.6 Experimental Comparison
	4.7 Summary

	5 Numerical Multi-objective Optimization
	5.1 Mixed-Peak Test Problem
	5.1.1 Mixed-Peak Functions
	5.1.2 Mixed-Peak Bi-objective Problem

	5.2 Hypervolume Indicator Gradient
	5.2.1 Steering Dominated Points
	5.2.2 Step-size adaptation
	5.2.3 Hypervolume Indicator Gradient Ascent Algorithm
	5.2.4 Experiments

	5.3 Hypervolume Indicator Hessian
	5.3.1 The Bi-objective Case
	5.3.2 Hypervolume Indicator Newton Method

	5.4 Summary

	6 Conclusion
	Appendix A Gaussian Distribution
	Appendix B Proof
	B.1 Theorem 5.3

	Bibliography
	Index
	Summary
	Samenvatting
	About the Author

