

X-ray spectroscopy of interstellar dust: from the laboratory to the Galaxy Zeegers, S.T.

Citation

Zeegers, S. T. (2018, November 1). *X-ray spectroscopy of interstellar dust: from the laboratory to the Galaxy*. Retrieved from https://hdl.handle.net/1887/66668

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/66668

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/66668</u> holds various files of this Leiden University dissertation.

Author: Zeegers, S.T. Title: X-ray spectroscopy of interstellar dust: from the laboratory to the Galaxy Issue Date: 2018-11-01

X-ray spectroscopy of interstellar dust

from the laboratory to the Galaxy

X-ray spectroscopy of interstellar dust

from the laboratory to the Galaxy

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 1 november 2018 klokke 12:30 uur

door

Sascha Tamara Zeegers geboren te Alkmaar in 1985

Promotiecommissie

Promotor:	Prof. dr. Alexander G.G.M. Tielens
Co-promotor:	Dr. Elisa Costantini
Overige leden:	Dr. C. Jäger (University of Jena, Germany) Prof. dr. J. Kaastra Dr. F. Kemper (Academia Sinica, Taiwan) Prof. dr. F. Paerels (Colombia University, NY) Prof. dr. H. J. A. Röttgering

Dedicated to my parents: Marianne and Siem

Dit proefschrift werd ondersteund door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) en het Leids Kerkhoven Bosscha fonds.

Cover design: The artwork on the front cover shows an artist's impression of the Galaxy. It was made combining various textile techniques, using wool, silk, fabrics, beads and yarn. The silver stars indicate the position of bright X-ray binaries near the center of the Galaxy and are surrounded by small olivine beads. This artwork was made and designed by Marianne Zeegers, who is a certified textile crafts artist. The back cover shows the X-ray spectrum of olivine around the silicon K-edge.

ISBN: 978-94-028-1234-3

© 2018 Sascha Zeegers

Contents

1	Introduction			1
	1.1	Detect	ing dust in space	1
		1.1.1	Discovering dust	1
		1.1.2	The life cycle of dust in the universe	1
	1.2	Observ	vational constraints on dust properties	5
		1.2.1	Composition of interstellar dust	5
		1.2.2	Grain sizes and size distributions	7
		1.2.3	Open questions on interstellar dust	9
	1.3	Using	the X-rays to study dust	10
		1.3.1	X-ray Absorption Fine Structures	11
		1.3.2	From X-ray laboratory studies of interstellar dust to extinction models	13
		1.3.3	Mapping the dust in the Galaxy	16
		1.3.4	X-ray scattering haloes	17
	1.4	Thesis	outline	17
	1.5	Future	dust studies in the X-rays	19
า	A 1		and another in the internet allow duration the cilians K adam of CV 5.1	21
2	ADS(orption	and scattering by interstellar dust in the silicon K-edge of GA 5-1	21
	2.1	Introd		32
	2.2	A-ray a		34
	2.3		atory data analysis	35
		2.3.1		35
	2.4	2.3.2	Analysis of laboratory data	30
	2.4	Extinc		40
		2.4.1	Optical constants	40
	25	2.4.2 OV 5		41
2.5		GA 5-		43
	2.0	Data a	Continuous and accentral characteries	44
		2.6.1	Continuum and neutral absorption	43
		2.6.2	Fit to Chandra ACIS HE I G data of the silicon edge	47
	27	2.0.3 D:	Flot ionized gas on the line of sight in the Si K-edge region?	49
	2.1	Discus		50
		2.7.1	Abundances towards GA 5-1	50
		2.1.2	Comparison to iron-poor, amorphous, and crystalline dust	53
		2.7.5	Comparison with dust compositions along other signt lines	54 57
		2.7.4	Limiting factors in the analysis of the Si K-edge	55
		2.7.5	Scattering and particle size distributions	56

	2.8 2.A 2.B	Summary58Correction for saturation59Si K-edge models60
3	Dust	absorption and scattering in the silicon K-edge 71
	3.1	Introduction 72
	3.2	X-ray absorption edges 74
	5.4	321 The samples 74
		3.2.1 The samples
		2.2.2 Analysis of laboratory data
	~ ~	5.2.5 A-ray Absorption Fine Structures
	3.3	Extinction cross sections
	3.4	Data analysis of the LMXB
		3.4.1 Source selection
		3.4.2 Modeling procedure
		3.4.3 Silicon abundances and depletion
	3.5	Discussion
		3.5.1 Dust composition toward the Galactic Center
		3.5.2 Silicon abundances and depletion
	3.6	Summary and Conclusion
	3.A	Data tables LMXBs
	3.B	Si K-edge models
		8
4	X-ra	y extinction from interstellar dust 113
	4.1	Introduction
		4.1.1 The elements in this study
	4.2	Extinction profiles
		4.2.1 Laboratory data for aluminum
	4.3	Simulations
	4.4	Discussion
		4.4.1 Carbon
		4.4.2 Aluminum and calcium
		4.4.3 Sulfur
		444 Titanium and nickel 124
	45	Conclusion 124
	4.A	Extinction profiles
_		
5	Inter	stellar dust scattering of X-rays: the case of AU Microscopii 139
	5.1	
	5.2	X-ray dust models for debris disk: the halo model
		5.2.1 Particle size distribution
		5.2.2 Scattering efficiency versus energy and particle size
		5.2.3 Dust mixtures in debris disks
	5.3	X-ray scattering by dust in the AU Mic debris disk
	5.4	The halo modeling
	5.5	Discussion

5.6 Conclusion	154
Nederlandstalige samenvatting	161
Westfriese samenvatting	171
English summary	179
Curriculum Vitae	187
Acknowledgments	189
List of acronyms	191