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Abstract

Purpose: When employing simultaneous multi-slice (SMS-) EPI for background 

suppressed (BGS-) arterial spin labeling (ASL), correction of through-plane 

motion could introduce artefacts, since the slices with most effective BGS 

are adjacent to slices with the least BGS. In this study, a new framework is 

presented to correct for such artefacts.

Methods: The proposed framework consists of three steps: (i) homogenization 

of the static tissue signal over the different slices to eliminate most inter-slice 

differences due to different levels of BGS, (ii) application of motion correction, 

and, (iii) extraction of perfusion-weighted signal using a general linear model. 

The proposed framework was evaluated by simulations and a functional ASL-

study with intentional head-motion.

Results: Simulation studies demonstrated that the strong signal differences 

between slices with the most and least effective BGS caused suboptimal 

estimation of motion parameters when through-plane motion was present. 

Although use of the M0 image as the reference for registration allowed 82% 

improvement of motion estimation for through-plane motion, it still led to 

residual subtraction errors caused by different static tissue signal between 

control and label due to different BGS levels. By using our proposed framework, 

those problems were minimized and the accuracy of CBF estimation was 

improved. Moreover, the functional ASL study showed improved detection 

of visual and motor activation when applying the framework as compared 

to conventional motion correction, as well as when motion correction was 

completely omitted.

Conclusion: When combining BGS-ASL with SMS-EPI, particular attention is 

needed to avoid artefacts introduced by motion correction. With the proposed 

framework these issues are minimized.
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Introduction

Simultaneous multi-slice (SMS, a.k.a multiband) EPI excites multiple slices at the same 

time, and therefore reduces the number of excitation pulses per repetition time (TR) 

(1,2). This approach has been proven to be very advantageous for functional MRI 

(fMRI) and diffusion tensor imaging (DTI) (1,3). Whereas for fMRI and DTI the prime 

advantage of SMS-EPI is the acceleration of the acquisition by shortening TR, for 

arterial spin labeling (ASL) this is much less beneficial because the preparation module 

for labeling and post-labeling delay (PLD) is the main time-consuming part of the 

sequence and not the readout. For measurement of tracer kinetics using multi time-

point ASL, however, SMS allows the number of slices to be increased within a limited 

acquisition window to achieve whole-brain coverage (4,5). Another advantage of 

SMS for 2D-multislice-ASL is smaller variation of the level of background suppression 

(BGS) (6) and PLD (7) over the acquired slices. Most ASL sequences now employ BGS 

to decrease physiological noise and motion artefacts from background static tissue, 

thereby improving the signal to noise ratio (SNR). BGS is highly effective in 3D multi-

shot readout sequences because the image data is acquired after a single excitation 

per TR, which can be timed to have optimal BGS (8). However, for certain applications 

such as ASL-fMRI, a single-shot readout is preferred to achieve high temporal 

resolution, hence multi-slice single-shot EPI is still common as a readout module for 

ASL (9). In multi-slice ASL, optimal BGS is usually timed to occur for the first slice, 

whereas longitudinal relaxation will reduce the effectiveness of BGS for more distal 

slices that are typically acquired hundreds of milliseconds later than the first slice. 

Similarly, the effective PLD of the distal slices will be hundreds of milliseconds longer 

than the PLD of the first slice, leading to interpretation issues as well as a loss of SNR 

in more distal slices. Therefore, shortening the total readout duration by use of SMS-

EPI could help to minimize both detrimental effects.

The combination of SMS and BGS, although desirable for the reasons outlined above, 

could also potentially introduce new problems when motion correction (MoCo) 

is required as illustrated in Figure 1. In Figure 1 it can be seen that, with the SMS-

excitation, slices with the most effective BGS will be adjacent to slices that experience 

the least effective BGS (see the two slices indicated with yellow circles in Figure 1a), 

which results in discrete dark lines clearly visible on sagittal and coronal reformatted 

images as shown in Figure 1b. These will be referred to as “BGS dark-lines” throughout 

this article. The presence of the BGS dark-lines might hamper a successful registration 

procedure that is required for good MoCo, because such a registration algorithm might 

attempt to align the BGS dark-lines, instead of registering the underlying anatomical 

structures. Therefore, the motion could be poorly estimated, especially when motion 
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occurs in the slice-selection direction as a result of rotation around the x- or y-axes 

or translation in the z-direction. Furthermore, and more importantly, even assuming 

registration works correctly, another problem will occur: when a certain part of the 

cortex moves in the slice direction during either the label or control condition (e.g. 

a control image without motion and a labeled image with motion, as illustrated 

in Figure 1c), the tissue would experience different levels of BGS for the label and 

control conditions. The difference of BGS effectiveness will be especially significant 

when tissue moves between slice locations with the most and least effective BGS. 

In such a situation, even when the registration worked successfully and the tissue is 

correctly realigned to its original location, severe subtraction errors would occur (red 

circle in Figure 1c) as a result of the significant difference in static tissue signal for 

the label and control conditions. This problem will be referred to as “BGS subtraction 

error” throughout this article. 

Figure 1: Schematic figures illustrating the potential issues that could arise when motion correction 
(MoCo) is applied to background suppressed (BGS-) ASL acquired with simultaneous multi-slice (SMS-) 
EPI: (a) BGS-image of conventional 2D-EPI and SMS-EPI pCASL, where yellow circles show slices with 
the most effective and poorest BGS immediately next to each other. (b) Dark-lines observed on 
reformatted images, produced by slices with the most effective and poorest BGS (BGS dark-lines). (c) 
Subtraction between a control image without motion and a label image with through-plane rotation 
(realigned). The red circle shows the subtraction errors caused by the different background static 
signal intensity between control and label images (BGS subtraction errors).
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In this article, we present a new framework to deal with both sources of error 

in background suppressed SMS-ASL imaging, which will enable accurate MoCo 

realignment as well as a separation of the perfusion-weighted signal from the above-

mentioned BGS subtraction errors.

Methods

Correction Framework
The proposed framework consists of three steps: 

(i) Homogenization of static tissue signal over the different slices is performed to 

reduce inter-slice signal intensity differences as caused by the SMS acquisition with 

BGS. The slice-wise mean BGS effect is estimated by:

BGSeffect(slice z) =
mean tissue value of slice z of M0 image

mean tissue value of slice z of BGS–ASL image
 [1]

where the averaging for the mean tissue value of BGS-ASL was performed over all 

dynamic volumes, and homogenization is performed by multiplying the BGS-ASL 

time-series images by BGSeffect. Although the main purpose of homogenization is to 

minimize BGS subtraction errors by homogenizing the inter-slice signal intensity, it 

will also avoid erroneous MoCo estimation due to the BGS dark-lines as shown in 

Figure 1(b). 

(ii) MoCo registration based on the conventional rigid-body transformation is 

performed by commonly available software such as SPM (10) or FSL (11), while using 

the M0 image as reference, which is chosen based on the absence of dark-lines. In 

addition, an extra 4D-dataset of the same size is created, which at first has a constant 

value equal to BGSeffect for each slice, but is subsequently resliced according to the 

motion parameters as estimated by the MoCo for the ASL time-series. This new 

dataset will be referred to as “resliced BGSeffect” and used in the third step.

(iii) Perfusion-weighted signal is extracted. A standard subtraction of label from 

control images would not extract the perfusion-weighted signal correctly, because 

the perfusion-weighted signal was scaled by the BGSeffect during the homogenization 

process of step (i). Moreover, because the application of BGSeffect only achieves 

slice-wise homogenization of the static tissue signal, there will remain some BGS-

variations at the voxel-level that will still lead to some residual BGS subtraction errors 

when through-slice motion occurs. To correct for both effects, it is proposed to use a 
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general linear model (GLM) regression to 1) rescale the perfusion-weighted signal as 

well as to 2) separate the perfusion-weighted signal from residual errors. The GLM is 

represented as:

yt = βbaseline xt_baseline + βperf xt_perf + βerror xt_error + e [2]

where yt is the motion corrected ASL time-series at a certain voxel. The regressors 

that constitute the design matrix are: xt_baseline = 1 for baseline tissue signal, xt_perf that 

describes the labeling paradigm [0.5, -0.5, …, 0.5, -0.5]T and xt_error that represents an 

estimate of the pixel-wise residual error. As mentioned above, because the perfusion-

weighted signal was scaled by the BGSeffect during the homogenization process, xt_

perf was also multiplied by the resliced BGSeffect that was generated at the step (ii). It 

should be noted that the resliced BGSeffect will both depend on the location within the 

images as well as on the temporal profile and extent of the through plane motion. In 

this study, xt_error was generated from subtraction of the homogenized (BGS-removed) 

ASL time-series before and after MoCo. This regressor will be dominated by static 

tissue signal changes and will therefore be a reasonable surrogate for the residual 

error after MoCo. βbaseline, βperf and βerror are fitting coefficients for xt_baseline, xt_perf and 

xt_error, i.e. βbaseline and βperf represent the homogenized background tissue image and 

the baseline perfusion-weighted (∆M) image, respectively. e is the fitting error. When 

ASL-fMRI is performed, an additional regressor is added:

 yt = βbaseline xt_baseline + βperf xt_perf + βact_perf xt_act_perf + βerror xt_error + e [3]

where xt_act_perf describes the perfusion signal changes as a result of activation and 

βact_perf is the fitting coefficients for xt_act_perf . Please note that xt_act_perf is also multiplied 

by the resliced BGSeffect, similar as described above. 
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Simulation
All simulations and image processing were performed offline using SPM 12 and 

custom-written scripts in MATLAB (MathWorks, Natick, MA, USA). 

A dataset of single-PLD pseudo-continuous ASL (pCASL), M0 image, and a quantitative 

T1 map, all at the same spatial resolution, were used from a single subject out of 

a previous in vivo healthy volunteer perfusion study (see Table 1 in ref (12) for 

acquisition details). The quantitative CBF map was calculated in accordance with the 

recommendation from the recent ASL white paper (8): 

CBF =

6000∙λ∙∆M∙exp

2∙α∙T(1,blood)∙M0∙(1-exp

PLD

T(1,blood)

( )

τ

T(1,blood)

( )  [4]

where ∆M is the perfusion-weighted signal intensity, M0 is the signal intensity of 

the M0 scan, and τ is the labeling duration. The values from the white paper for the 

brain/blood partition coefficient (λ) of 0.95 mL/g, the T1,blood of 1650 ms, and labeling 

efficiency (α) of 0.85 were used.

From the M0 image, seven time-series of 60 dynamic images each were generated 

and six different types of motion (translation in the x-, y- and z-direction and rotation 

around the x-, y- and z-axes) were applied to six of them. As illustrated in Figure 2, each 

type of motion has a four-step pattern in a single time-series: ±1.4 and ±2.8 fractional 

pixel translation (±4.2 and ±8.4 mm) in the x- and y-direction, ±0.6 and ±1.2 fractional 

slice shift (±4.2 and ±8.4 mm) in the z-direction, and ±3 and ±6 degree rotation around 

the x-, y- and z-axes. One time-series was untouched (no-motion dataset). 
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Figure 2: Motion applied to the simulated dataset: ±1.4 and 2.8 fractional pixel translation (±4.2 and 
8.4 mm) in the x- and y-direction, ±0.6 and 1.2 fractional slice shift (±4.2 and 8.4 mm) in z-direction 
and ±3 and 6 degree rotation around the x-, y- and z-axes.

By using the T1 map, the pixel-wise signal attenuation as a result of two BGS inversion 

pulses (TI = 1860 and 3150 ms) was calculated, in which different PLDs for the multi-

slice acquisition were incorporated by assuming an interval of 30 ms between two 

subsequent excitation pulses; SMS acquisition with factor 3 was assumed and the 

following standard Bloch equation was used for calculating the evolution of the 

longitudinal magnetization: 

Mz (t) = M0 1-exp - +Mz (0)exp -
t t

T1 T1

 [5]

where Mz(t) is the longitudinal magnetization at time-point t, M0 and T1 are pixel-

wise values from the M0 image and T1 map, respectively. Afterward, perfusion-like 

signal changes were incorporated to the even dynamic numbers to represent the 

labeled images. Perfusion-like signal was only added to the left side of the brain, 

thereby keeping the right side without perfusion, in which all signal intensity that 

would appear after the post-processing will be a measure of the artefactual signal as 

a result of applied post-processing without any influence of the underlying perfusion 

pattern. Using these datasets, two studies were carried out:

Simulation-1: Comparison of MoCo estimation. First it was studied whether MoCo 

would indeed be impaired in SMS-ASL data with BGS that exhibit the BGS dark-lines 

and whether the performance of MoCo would be improved by the homogenization 
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step (step-(i) of the correction framework) as well as by using the M0 image as 

reference for registration, instead of one dynamic out of the SMS-ASL dataset. All 

six motion-corrupted datasets underwent four types of MoCo registration defined 

as follows: 

MoCo-A: with BGS dark lines present and the use of the firstly acquired ASL image as 

reference

MoCo-B: with BGS dark lines present and the use of the M0 image as reference (instead 

of the firstly acquired ASL image)

MoCo-C: with homogenization and the use of the firstly acquired ASL image as 

reference

MoCo-D: with homogenization and the use of the M0 image as reference

As a reference for the MoCo performance comparison, another set of six motion-

corrupted datasets was created with exactly the same motion patterns, but without 

BGS- and perfusion-like signal attenuation, that also underwent the MoCo registration 

(referred to as “ref-no-BGS”). This separate reference dataset allows any errors 

resulting from the suboptimal performance of MoCo unrelated to BGS dark-lines to be 

excluded from the evaluations. For each six time-series with different types of motion 

as described above, six motion parameters (translation in x-, y- and z-direction and 

rotation around x-, y- and z-direction) were estimated by MoCo-A, -B, -C and -D, and 

the normalized mean difference with regard to the reference was calculated, which 

was normalized by the size of the simulated translation and rotation. 

Simulation-2: Separation of the perfusion-weighted signal. All six motion-corrupted 

datasets underwent the proposed post-processing framework i.e. the homogenization, 

MoCo (MoCo-D in simulation-1), and GLM as described above, which will be referred 

to as “NewMoCo”. Using the obtained βperf map (i.e. ∆M image) and the M0 image, the 

CBF map was calculated by applying equation [4]. For comparison, CBF maps were 

also calculated using ∆M images obtained by GLM but without the homogenization 

step (MoCo-B in simulation-1), referred to as “StdMoCo”, GLM without both the 

homogenization step and MoCo, referred to as “NoMoCo”, and also with the same 

framework as NewMoCo, but without including the error regressor “xt_error” in the 

design matrix, referred to as “NewMoCowo_error_reg”. 
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All signal intensities observed in the right side of the brain represent the level of 

artefactual signal arising from the applied post-processing, i.e. the signal intensity will 

be close to zero when errors such as BGS subtraction errors as well as conventional 

type of subtraction error due to inaccurate motion estimation (or when MoCo is not 

applied) are corrected well.

In Vivo ASL-fMRI Study with Healthy Volunteers
The study was approved by the local institutional review board and all volunteers 

provided written informed consent before inclusion into this study. A total of four 

volunteers (2 male, 2 female, mean age = 41.8 years [range, 24-59 years]) without 

known cerebrovascular disease participated in the study. 

Three ASL-fMRI scans using pCASL were performed for each volunteer consisting 

of a blue-and-yellow 8Hz flickering circular checkerboard (for visual stimuli) for 32 

seconds alternated with a white fixation cross on a black background for 32 seconds. 

Volunteers were instructed to also perform a bilateral finger tapping task while the 

checkerboard was projected. For the first and the last ASL-fMRI scans, volunteers 

were instructed to move their head during pCASL labeling and/or PLD (not during 

the readout). For the second ASL-fMRI scan, volunteers were instructed not to move 

and this scan was used as a reference. After the first ASL-fMRI scan, image data were 

immediately processed to estimate the motion, so that before the third ASL-fMRI scan 

the volunteers could be instructed to adjust their degree of motion; we aimed for a 

few mm and/or degrees of motion. The M0 scan and was acquired between the first 

and second ASL-fMRI scans.

All MR scans were performed on a Philips 3.0T Ingenia scanner (Philips, Best, The 

Netherlands) using a 32-channel head coil. Imaging parameters for SMS-EPI pCASL 

were as follows: Field of View (FOV) = 240 × 240 mm, scan matrix = 80 × 80, 18 slices 

acquired with a thickness of 7.0 mm, TE of 16 ms and TR of 4000 ms, and sensitivity-

encoding (SENSE) was applied with a factor of 3 in anterior-posterior direction, and 

the SMS-factor was set to 3. Both labeling duration and PLD were set to 1800 ms. A 

fat-suppression pre-pulse was applied to avoid water-fat shift artifacts and a WET 

pre-saturation scheme was inserted before labeling (13,14); BGS pulses were applied 

using hyperbolic secant pulses (15) at 1830 and 3150 ms after the start of labeling. 

The timing of the BGS pulses was determined via Bloch simulations. With the number 

of dynamic scans set to 64, the total scan time was 8:40 min. The M0 image was 

acquired without labeling, WET pre-saturation and BGS, but with identical acquisition 

parameters as the perfusion scan except for the TR, which was set to 2500 ms.  

Before the quantification process, the M0 image was multiplied by the factor  
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1/(1-exp(-TR/T1_gm)), where T1_gm was assumed to be 1200 ms, to correct for incomplete 

T1 recovery (8,16).

All three ASL-fMRI datasets were post-processed with the NewMoCo framework, and 

the baseline CBF map was calculated from the βperf map. Moreover, a map which 

consisted of the t-value of βact_perf was generated to indicate the area where the 

perfusion changed as a result of the visual and motor tasks. Figure 3 shows an example 

of the employed design matrix. For the two ASL-fMRI datasets with intentional head 

movement, NoMoCo and StdMoCo were also performed for comparison. 

On the t-value maps obtained from the ASL-fMRI dataset without intentional head 

movement, ROIs were manually drawn around the activated visual, and left and 

right motor area. These ROIs were copied to the t-value maps of the datasets with 

intentional head movement, and the mean t-values as well as the number of voxels 

that exhibited a t-value larger than 3.0 were compared between NewMoCo, NoMoCo 

and StdMoCo. The analysis was performed by a two-way ANOVA followed by multiple 

comparisons with adjustment of Bonferroni, using SPSS.

Results

Simulation-1: Comparison of MoCo Estimation
Figure 4 shows the normalized mean difference of MoCo estimated parameters 

with MoCo-A, -B, -C and -D relative to the reference. For correction of through-plane 

motion (Figure 4b) MoCo-A resulted in the largest mean normalized difference from 

the reference, which can be attributed to the presence of BGS dark-lines influencing 

the MoCo estimation. When using the M0 image as a reference (MoCo-B), and 

homogenization (MoCo-C), as well as the combination of these two (MoCo-D), the 

mean normalized difference was much lower. In contrast, for correction of in-plane 

motion (Figure 4a) differences of MoCo estimation were much smaller for MoCo-A, 

presumably because the presence of BGS dark-lines did not influence the MoCo 

estimation for in-plane motion. When observing in more detail these results as in 

the zoomed version of Figure 4c, it becomes clear that MoCo-B showed relatively 

larger mean normalized difference for in-plane motion than the other approaches. 

It can be speculated that the use of the M0 image as a reference for registration 

might introduce small additional errors because of its slightly different contrast as 

compared to pCASL images.
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Figure 3: An example of the design matrix employed to the in vivo ASL-fMRI study, in which xt_baseline = 1 
for baseline tissue signal, xt_perf represents the signal changes as a result of the ASL labeling paradigm, 
and xt_act_perf describes the ASL signal changes induced by activation. Because the perfusion-weighted 
signal is scaled by the BGSeffect during the homogenization process, xt_perf and xt_act_perf were multiplied 
by the resliced BGSeffect that was generated at the step (ii), to include the pixel by pixel scaling of the 
perfusion-weighted signal. xt_error represents an estimate of the pixel-wise residual error.
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For further simulations (simulation-2, see next section) and the in vivo study, 

MoCo-B and MoCo-D were chosen and will be referred to as StdMoCo and NewMoCo, 

respectively.

Figure 4: Normalized mean difference of MoCo estimation for (a) in-plane motion, and (b) through-
plane motion obtained from simulation-1. In (c) the result of in-plane motion shown in (a) is given 
in more detail. MoCo-A: with BGS dark lines present and the use of the firstly acquired ASL image as 
reference, MoCo-B: with BGS dark lines present and the use of the M0 image as reference (instead of 
the firstly acquired ASL image), MoCo-C: with homogenization and the use of the firstly acquired ASL-
image as reference, MoCo-D: with homogenization and the use of the M0 image as reference.
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Simulation-2: Separation of Perfusion-Weighted Signal
Figure 5 illustrates the simulation results from the slice that exhibited the largest 

difference in static tissue signal intensity compared to a neighboring slice, and 

therefore most prone to the BGS subtraction errors. In StdMoCo, severe BGS 

subtraction errors were observed for through-plane motion (severe signal increase in 

the anterior part of the brain in combination with a decrease in signal at the posterior 

side, as illustrated in Figure 5i), whereas such BGS subtraction errors were not 

observed in images with in-plane motion (Figure 5e). By use of the NewMoCo-

approach, the BGS subtraction errors were substantially reduced for through-plane 

motion (Figure 5f ). When employing NoMoCo, the presence of in-plane motion 

appeared as a blurring of the CBF map (Figure 5d). In contrast, for through-plane 

motion (Figure 5h) such a blurring was less obvious. In both types of motion, however, 

the conventional subtraction errors (due to motion) were observed clearly along 

tissue boundaries of the right side of the brain (without perfusion). When removing 

the error regressor “xt_error” from the design matrix (NewMoCowo_error_reg), a small increase 

of blurring was observed in the image with through-plane motion, especially along 

the boundary between gray and white matter (Figure 5g).

Figure 5: Representative CBF maps obtained from simulation-2. In the right hemisphere, no perfusion 
signal was simulated, and therefore all signal intensity in the right hemisphere indicates motion-
related errors. (a) Reference CBF map obtained from the dataset without motion. (b)-(e) Respectively 
NewMoCo, NewMoCo without error regressor, NoMoCo and StdMoCo are applied to in-plane motion 
(translation in the x-direction), and (f )-(i) to through-plane motion (rotation around the x-axis). 
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Figure 7: Representative baseline CBF maps and t-value maps showing the activated regions by 
the visual stimulus and finger tapping obtained from the ASL-fMRI study with intentional head 
movements processed by NewMoCo, NoMoCo and StdMoCo. As reference, maps acquired without 
intentional head movement are also shown on top of them.
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For a more quantitative observation of the artefactual signal changes, Figure 6 

shows the empirical cumulative distribution function (CDF) of the signal intensity in 

the right side of the brain (without perfusion), in which without any errors present 

(i.e. all voxels are zero) the empirical CDF would be a step function at zero, whereas 

significant deviation from this step-function at zero implies the presence of voxels 

with large errors. (The asymmetry in the empirical CDF between positive and negative 

signal intensities is attributed to the fact that the signal intensity was analyzed only 

for one side of the brain.) Similar to the qualitative results as shown in Figure 5, more 

pixels with signal intensity far from zero were observed as a result of StdMoCo applied 

to data corrupted by through-plane motion, whereas the distribution was closer to 

the step-function for in-plane motion. For some motion patterns (not clearly divided 

by the category “through-plane” and “in-plane motion”), NoMoCo resulted in mild 

elevation of artefactual signal, which reflects the blurring as also observed in Figure 

5d. With the NewMoCo-approach, both types of subtraction errors were substantially 

reduced independent of the direction of motion.

In Vivo Healthy Volunteer Study
Figure 7 shows representative results of the ASL-fMRI experiments showing the 

baseline CBF maps as well as the activated regions evoked by the visual stimulus and 

finger tapping. In the motion corrupted datasets, the activated regions were depicted 

much more clearly when applying NewMoCo as compared to StdMoCo, whereas 

NoMoCo provided results in between of these two approaches. The results of the ROI 

analysis from all volunteers confirmed that the highest mean t-value (Figure 8a) as 

well as highest number of activated voxels (Figure 8b) were obtained by NewMoCo. 

All differences were statistically significant (p < 0.05) except the difference between 

NoMoCo and StdMoCo of the number of voxels that exhibited a t-value larger than 3.0.

As baseline CBF maps from all scans show (Figure 9), the BGS subtraction errors on 

the baseline CBF map were corrected well by NewMoCo. For the two datasets with 

the most severe head-motion (scan-7 from volunteer-4 and scan-1 from volunteer-1), 

however, correction was not sufficient for slices with the largest BGS difference 

between neighboring slices, as indicated by red arrows in Figure 9. For the baseline 

CBF maps, NoMoCo generally resulted in reasonable image quality without BGS 

subtraction errors, although some blurring can be observed. The estimated motion 

parameters from all volunteers are shown in Figure 10.
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Figure 8: The results of the ROI analysis. (a) the mean t-values, and (b) the number of voxels that 
exhibited a t-value larger than 3.0 from dataset processed by NewMoCo, NoMoCo and StdMoCo as well 
as dataset obtained without intentional head movement for reference. 
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Figure 9: The baseline CBF maps from all scans, showing two slices with largest difference of BGS 
efficiency from the neighboring slices. Red arrows indicate the residual error from two scans with the 
most severe head-motion.
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Figure 10: Estimated motion parameters of all scans.
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Discussion

In this article, we demonstrated two major issues that can affect ASL measurements 

when using a 2D multi-slice readout with SMS and BGS: suboptimal estimation of 

motion parameters by MoCo and the occurrence of BGS subtraction errors, which can 

be very severe. Our simulation studies showed that these problems predominantly 

occur when through-plane motion (translation in z-direction, or rotation around 

the x- or y-axes) is present, pointing to the large influence of the BGS dark-lines. 

Although MoCo estimation was already improved to a great extent by the use of the 

M0 image as the reference for MoCo registration, successful realignment still led to 

BGS subtraction errors in the perfusion-weighted signal, as was also evident in the 

ASL-fMRI study. By use of our proposed framework, the BGS subtraction errors were 

minimized and the depiction of activated regions was improved, while still allowing 

the use of conventional MoCo methodology as available in commonly applied 

neuroscience software. The benefit of our framework was most obvious in the ASL-

fMRI experiments, in which application of MoCo is especially important to detect 

statistically significant activation from small regions of interest. 

In general, MoCo methods such as those implemented in SPM and FSL estimate 

motion parameters based upon an error-measure calculated from the similarity 

between images. Therefore, strong contrast as imposed by the BGS dark-lines could 

overwhelm differences as a result of anatomical misalignment and cause an erroneous 

estimation of motion parameters. By using the M0 image, which does not exhibit BGS 

dark-lines, as the reference image for MoCo estimation, the MoCo will not be biased 

due to a tendency to keep BGS dark-lines aligned and will therefore be better able 

to pick up the real motion and thus improve the MoCo estimation. This was found to 

be true for through plane motion, both with and without homogenization. However, 

for in-plane motion, the use of M0 image as a reference resulted in slightly poorer 

performance when homogenization had not been applied, although to an extent 

that was much smaller than the improvement for through-plane motion. The poorer 

performance of the M0-approach (MoCo-B) for in-plane motion can most probably be 

attributed to the difference in contrast between the M0 and BGS-pCASL images. The 

improvement observed by combining the M0-approach with the homogenization 

(MoCo-D) reinforces this argument, in which further reduction of the normalized 

mean difference was achieved for all types of motion. 

The source of subtraction errors as identified in this study can be categorized into 

two groups: the first type of errors are conventional subtraction errors occurring 

when anatomical structures are not stable at the same location as a result of 
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inaccurate motion estimation due to BGS dark-lines (or when MoCo is not applied), 

i.e. the ‘normal’ type of motion artefacts. One important target of BGS is to minimize 

this type of subtraction error by lowering the signal intensity of static tissue (8). In 

multi-slice ASL, however, even when SMS is applied, multiple excitation pulses will 

still be needed and the level of BGS will not be optimal in all (sets of ) slices, thereby 

increasing the severity of these subtraction errors. In our experiments such artefacts 

can be observed in the NoMoCo data (i.e. subtraction without applying motion 

correction). 

The second type of error arises from subtraction of signals with different levels of 

BGS (BGS subtraction error). These errors are evident in the StdMoCo data in which 

MoCo does assure that anatomical structures are realigned, although signal intensity 

differences of static tissue result in artefacts due to the fact that an anatomical 

structure was part of a different slice during the label versus the control condition 

(e.g. a certain anatomical structure moves from a location with optimal BGS for the 

control acquisition to a position with lower BGS efficiency during the label condition). 

We propose to eliminate this second type of subtraction errors by homogenization of 

the static tissue signal over slices before MoCo is performed. This homogenization is, 

however, only performed by equalizing the mean signal of a slice relative to the mean 

signal of the same slice of the M0 image. This implies that at the level of individual 

pixels this homogenization will not be perfect and residual BGS subtraction errors 

can still occur. To minimize such residual errors, the use of a GLM was proposed with 

additional regressors, besides a subtraction-regressor that extracts the perfusion-

weighted signal from the unsubtracted ASL data. In this study, we employed the 

subtracted pixel value of the homogenized ASL data before and after MoCo as an 

additional regressor. This metric is a measure of static tissue signal change after 

MoCo reslicing, which is the main cause of BGS subtraction errors. In the simulation 

study, the calculated CBF map showed increased errors along the boundary between 

gray and white matter when applying NewMoCo without this error regressor, which 

most likely represents residual BGS subtraction errors.

It should be noted that, as Figure 9 shows, when the motion was very large NewMoCo 

could fail to generate reliable baseline CBF maps at the slices with the largest 

difference in BGS between neighboring slices (at the BGS dark-lines), and NoMoCo 

resulted in better quality. When ASL is performed for clinical diagnostic purposes, the 

main goal will be to achieve high quality resting-state baseline CBF map, in which 

some motion-blurring can be tolerated. Therefore, performing both NewMoCo and 

NoMoCo would be recommended to avoid potential misinterpretation due to residual 

BGS subtraction errors on the CBF map as obtained by NewMoCo. However, when 
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functional ASL is performed, small location changes might result in one becoming 

blind for the brain activation, thereby making MoCo more essential. In fact, the ROI 

analysis performed on the ASL-fMRI scans resulted in higher mean t-value and higher 

number of activated voxels by NewMoCo than NoMoCo for all 8 scans.

Another approach to avoid BGS subtraction errors would be to limit the inter-slice 

BGS signal differences by changing the acquisition. Such an approach was proposed 

recently by Shao et al via a slice-dependent signal preparation, i.e. pre-saturation is not 

performed at a single moment in time for all slices, but slice-dependent preparation 

pulses are applied to ensure optimal BGS for each slice (6). With this approach, the 

largest differences in signal intensity of static tissue between neighboring slices 

can be avoided, thereby lowering the risk for the most severe subtraction artefacts, 

although not excluding these completely. Moreover, when motion occurs between 

the saturation module and readout, i.e. including the labeling duration and PLD, 

the carefully optimized scheme could be affected and inter-slice signal differences 

could appear. Therefore, it would be interesting to see whether the currently 

proposed approach would also improve motion-corrupted SMS-ASL data acquired 

with the slice-dependent pre-modulation approach. It could be expected that both 

approaches would enhance each other’s performance.

Several limitations of the current study should be mentioned. First of all, the 

most important message of this article is to demonstrate the issues that could be 

introduced by combined use of SMS and BGS in an ASL study. Although we employed 

the subtraction of pixel values before and after MoCo of the homogenized ASL data 

as an additional error regressor, it does not mean that we can assure that this is 

the most optimal regressor. In fact, as discussed above, there is certainly room for 

further improvements when severe motion is present, especially for the baseline 

CBF maps. Secondly, the proposed method does not correct for other well-known 

sources of artefacts in motion corrupted MRI data. For example, distortions due to B0 

inhomogeneities and residual water-fat shift artifacts (even though fat suppression 

was applied) are dependent on the head orientation and can thus change during 

head-motion. Therefore, after MoCo realignment, such artifacts will be repositioned 

to different locations, again resulting in subtraction errors. In this study, only rigid-

body MoCo was applied, which cannot correct for such artifacts. Moreover, motion 

that happened during the readout might introduce additional artifacts that cannot 

be corrected by rigid-body MoCo. In future work, further investigation of even more 

appropriate regressors and application of more advanced MoCo approaches should 

be studied.



140

Motion Correction Framework for SMS-ASL

140

Conclusion

In ASL with combined use of SMS and BGS, severe BGS subtraction errors can occur 

when through-plane motion is corrected by traditional MoCo procedures. With the 

proposed framework, these BGS subtraction errors can be minimized, resulting in 

improved accuracy of CBF estimation while still allowing the use of conventional 

MoCo approaches as available in widely used software packages.
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