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Toxicological responses to chemical insult are largely regulated by transcriptionally

activated pathways that may be independent, correlated and partially or fully overlapping.

Investigating the dynamics of the interactions between stress responsive transcription

factors from toxicogenomic data and defining the signature of each of them is an

additional step toward a system level understanding of perturbation driven mechanisms.

To this end, we investigated the segregation of the genes belonging to the three following

transcriptionally regulated pathways: the AhR pathway, the Nrf2 pathway and the ATF4

pathway. Toxicogenomic datasets from three projects (carcinoGENOMICS, Predict-IV

and TG-GATEs) obtained in various experimental conditions (in human and rat in vitro

liver and kidney models and rat in vivo, with bolus administration and with repeated

doses) were combined and consolidated where overlaps between datasets existed.

A bioinformatic analysis was performed to refine pathways’ signatures and to create

chemical activation capacity scores to classify chemicals by their potency and selectivity

of activation of each pathway. With some refinement such an approach may improve

chemical safety classification and allow biological read across on a pathway level.

Keywords: transcriptomics, Nrf2, AhR, ATF4, toxicity pathways, toxicogenomic, oxidative stress

INTRODUCTION

Many transcriptionally activated pathways are intimately involved in responses to chemical induced
perturbations and toxicological outcomes (Jennings et al., 2013). Here we focus on three such
pathways. (1) The Nrf2 pathway (Nuclear Factor (Erythroid-derived 2)-Like 2 NFE2L2) which
regulates the response to oxidative stress, (2) the ATF4 (Activating Transcription Factor 4) branch
of the unfolded protein response and (3) the dioxin response or AhR pathway (Aryl Hydrocarbon
Receptor). While these pathways have specific non-overlapping activation mechanisms and
specific non-overlapping DNA binding elements reviewed in (Jennings et al., 2013), they also
have overlapping downstream target genes. Adding to this complexity, converging toxicological
mechanisms may lead to co-activation.

Oxidative stress is a major cause of chemical-induced injury and associated chronic diseases
(e.g., cancer or Parkinson’s disease) (Taguchi et al., 2011; Kong et al., 2014). The Nrf2 pathway the
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main adaptive response to oxidative stress. The Nrf2 protein
exists in an inactive, cytoplasm-localized state, that is bound
to the cytoskeleton-associated KEAP1 which facilitates Nrf2
ubiquitination and degradation. Upon oxidative stress, a
conformational change in KEAP1 makes its binding to Nrf2
less favorable. Nrf2 stabilizes and translocates to the nucleus
where it binds the antioxidant response element and drives the
transcription of a genes involved in glutathione synthesis and
recycling, xenobiotic metabolism and transport, and antioxidant
genes (Jennings et al., 2013). ATF4 is a major branch of
the unfolded protein response and is activated in response
to endoplasmic reticulum (ER) disturbances or proteotoxicity
where unfolded proteins accumulate in the ER and compete
with PERK for the inhibitory protein BiP (Leonard et al.,
2014). Activated PERK phosphorylates eIF2a which inhibits
general protein translation while inducing AT4 translation. ATF4
in turn binds to the CARE consensus sequence and drives
transcription of genes involved in amino acid synthesis, amino
acid transport and aminoacyl-tRNA synthesis (Leonard et al.,
2014). Xenobiotics can also activate specific genes through
the AhR pathway. Upon ligand (xenobiotic) binding, the AhR
transcription factor (TF) shuttles into the nucleus where it
dimerizes with the “AhR nuclear translocator” and binds to
so-called xenobiotic-responsive elements (XRE), aka dioxin
response element (DRE), in the promoter region down stream
targets including cytochrome P1-450 A1 (CYP1A1) (Haarmann-
Stemmann et al., 2012).

Measuring the activation of transcriptionally regulated
pathways such Nrf2, AhR, and ATF4 using transcriptomic
approaches has great potential in increasing mechanistic
understanding of chemical perturbations and to develop better
prediction tools (Aschauer et al., 2015; Limonciel et al., 2015).
Also, such an approach could be used for biological read across.
However, there is still a knowledge gap pertaining to the interplay
between the Nrf2, AhR, and ATF4 pathways. It is known that
several of their downstream targets have promotor sequences
for more than one of these TFs. For example, NQO1 is driven
by both AhR and Nrf2. Also, it is likely that the pathways
may cooperate in redressing certain hoemeostatic perturbations.
For example, we have shown that Nrf2 and ATF4 cooperate
on the level of glutathione, where ATF4 promotes the uptake
of glutathione amino acid building blocks including glutamine
and cysteine and promotes glutamate production via induction
of asparagine synthetase. Nrf2 in turn through induction of
glutamate cysteine ligase and glutathione synthase produce new
glutathione (Wilmes et al., 2013). Very little is known about
species differences, tissue specificity, chemical specificity, or other
subtleties in the activation of these pathways.

To investigate this further, we performed a transcriptomic
analysis of large and medium size toxicogenomic datasets from
the EU 6th and 7th framework projects carcinoGENOMICS and

Abbreviations:AhR, Aryl Hydrocarbon Receptor; ATF4, Activating Transcription

Factor 4; CAC, Chemical Activation Capacity; ChIP-seq, Chromatin

Immunoprecipitation followed by DNA sequencing; CYP1A1, Cytochrome

P1-450 A1; FC, Fold Change; Nrf2, Nuclear Factor (Erythroid-derived 2)-Like 2

(NFE2L2); TF, Transcription Factors.

Predict-IV, as well as from TG-GATEs. Within these studies we
also identified some potentially useful specific activators of the
pathways investigated. Potassium bromate and phorone have
been used to experimentally activate Nrf2. Potassium bromate
is an oxidizing agent causing ROS injury and oxidative stress-
induced DNA damage (Ballmaier and Epe, 1995; Limonciel
et al., 2012). In a recent study we showed that potassium
bromate activated the Nrf2 and p53 response without activation
of the ATF4 response (Limonciel et al., 2018). Phorone can
similarly activate Nrf2 due to glutathione depletion (Younes
et al., 1986; Iannone et al., 1990; Oguro et al., 1996). Tunicamycin
is a prototypical activator of the unfolded protein response
(including the ATF4 branch) by causing an accumulation of
misfolded glycoproteins in the ER (Oslowski and Urano, 2011).
More specifically, tunicamycin inhibits the N-glycosylation of
newly formed proteins by DPAGT1, leading to an interruption
in glycoprotein production (Bassik and Kampmann, 2011).
Benzo(a)pyrene and omeprazole have been used to activate AhR.
Benzo(a)pyrene is a polycyclic aromatic hydrocarbon and a
prototypical AhR agonist (Nebert et al., 2004). Omeprazole, a
proton pump inhibitor (Howden, 1991, 199) is also an AhR
activator (Jin et al., 2012, 2014).

The aim of the investigation was to investigate potential co-
dependences of ATF4, Nrf2 and/or AhR, to develop a signature
panel for each pathway and to develop a chemical activity scoring
system, for chemical grouping.

MATERIALS AND METHODS

Generation of Target Gene Lists
For each of the three TF of interest (AhR, Nrf2, and ATF4), the
following three search strategies, from the works of (Limonciel
et al., 2015), were applied in PubMed to retrieve TF target genes:
(i) search for TF name and ChIP-sequencing or ChIP-microarray
studies, (ii) search for TF name and TF-specific response element
and “Electrophilic Mobility Shift Assay” or ChIP studies, and
(iii) search for TF name and TF-specific DNA response element
and name of a target gene known. In the first tier of this
strategy, high-throughput sequencing datasets were retrieved,
which provided extensive lists of genes shown to have the TF bind
in their promoter region. In the second tier, lower throughput
investigations were included, providing target genes that were
more deeply investigated in the article with proven TF binding of
the promoter region. These first two tiers provided an unbiased
source of target genes that was completed in the third tier with
manually added target genes for which at least one study showed
binding of the TF in their promoter region.

PubMed searches were performed on 24.11.2014 for
Nrf2 and 17.12.2014 for ATF4 and AhR. Gene lists are
reported in Supplementary Table 1 and illustrated on
Supplementary Figure 1.

Construction of a Chemical-Effects
Transcriptomics Database
The database of chemical-induced transcriptomic changes comes
from three projects: carcinoGENOMICS (Vinken et al., 2008),
Predict-IV (Mueller et al., 2015) and TG-GATEs (Igarashi et al.,
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TABLE 1 | Number of chemicals used in each experimental category.

Project Species Tissue Setting Mode Time-points Number of chemicals Notes

All dataset [211]* (1–2)

Carcino-GENOMICS [31] Human Kidney in vitro Bolus 6h, 24h, 72h 30 (3–4)

Rat Kidney in vitro Bolus 6h, 24h, 72h 15

PREDICT-IV [22] Human Kidney in vitro Repeated doses 1d, 3d, 14d 12 (5–6)

Human and Rat Liver in vitro Repeated doses 1d, 3d, 14d 11 (7)

TG-GATEs [171] Human Liver in vitro Bolus 2h, 8h, 24h 160 (8)

Rat Liver in vitro Bolus 2h, 8h, 24h 145 (9)

Liver in vivo Bolus 3h, 6h, 9h, 24h 158 (10–11)

Liver in vivo Repeated doses 4d, 8d, 15d, 29d 143 –

Kidney in vivo Bolus 3h, 6h, 9h, 24h 41

41

(12)

Kidney in vivo Repeated doses 4d, 8d, 15d, 29d

(1) Number of chemicals assayed in at least one of the three source projects.

(2) Cyclosporine A is the only chemical that was used in the three projects. Cyclosporine A appears in every single experimental category and sub-category (except

carcinoGENOMICS’s Rat tests).

(3) In carcinoGENOMICS, all 15 chemicals tested on rat cells, except one (Dimethylnitrosamine), were also tested on human cells.

(4) Beside Cyclosporine A, and five of the chemicals that appear in TG-GATEs as well, all chemicals are specific to carcinoGENOMICS [2-Nitrofluorene and N-nitrosomorpholine

(TG-GATEs “Human liver in vitro bolus” and “Rat liver in vivo bolus”); and Diclofenac, Nifedipine and Tolbutamide (all liver categories of TG-GATEs)].

(5) The 12 chemicals tested on kidney cells and the 11 tested on liver cells in PREDICT-IV are distinct; Only Cyclosporine A is presented in these two categories.

(6) Among the chemicals tested on kidney cells in PREDICT-IV, only Cisplatin appears elsewhere (in TG-GATEs rat tests).

(7) Among the chemicals tested on liver cells in PREDICT-IV, onlyAcetaminophen and Valproic acid appear in all TG-GATEs categories;Amiodarone,Chlorpromazine, Fenofibrate,

Ibuprofen and Metformin were tested on liver cells of TG-GATEs, and Rosiglitazone as well (except in “Rat liver in vitro bolus”).

(8) In TG-GATEs, five chemicals were tested on human cells only (HGF, IL1beta, IL6, INFalpha, Nefazodone, and TGFbeta1) and six others on animal categories only (Carboplatin,

Cephalotin, Cisplatin, Gentamicin, TNFalpha, and Trimethadione).

(9) Five chemicals appear in liver in vitro bolus categories only (human and rat): Alpidem, Buspirone, Clozapine, Nefazodone and Venlafaxine.

(10) 3-Methylcholantrene, Bortezomib, Gefitinib, Imatinib, and Puromycin appear in the “Rat liver in vivo bolus” category exclusively.

(11) 2-Nitrofluorene, Aflatoxin B1, Dexamethasone, N-methyl-N-nitrosourea and TNF are common to TG-GATEs’ “Human” and “Rat liver in vivo bolus” categories and were not

tested in other conditions.

(12) The 41 chemicals that are used for TG-GATEs kidney in vivo testing are the same for both modes (bolus and repeated doses) and are common for all other categories (exceptions:

Gentamicin, Carboplatin, Cephalotin, Cisplatin, Desmopressin acetate, Amphotricine B, and Acetamide).

*The number between brackets refers to the number of chemicals per project.

TABLE 2 | Chosen pathway specific chemical through the dataset.

Pathway Species Kidney Liver

in vitro in vivo in vitro in vivo

AhR Human Benzo(a)pyrene Omeprazole

Rat

Nrf2 Human Potassium Bromate Phorone

Rat

ATF4 Human Tunicamycin

Rat

2015). In carcinoGENOMICS, human and rat kidney cells were
exposed to bolus concentrations of up to 31 chemicals in
in vitro settings for up to 72 h. In Predict-IV, human kidney
cells and liver cells from human and rat were exposed daily
in vitro for up to 14 days to up to 22 chemicals. Up to
171 chemicals from TG-GATEs were tested in various rat
in vivo and in vitro systems, with various treating regimes.
Table 1 summarizes this and shows the 211 chemicals tested and
dispatched in different categories of one or more of the three
projects. Supplementary Table 2 presents the exhaustive lists of
chemicals by category.

TABLE 3 | Number of conditions (chemicals, concentrations, time-points) tested

per category.

Pathway Species Kidney Liver TOTAL

in vitro in vivo in vitro in vivo

Human 85 0 963 0 1048

Rat 30 487 1282 1838 3637

Total 602 4083 4685

Data Sources
The carcinoGENOMICs and Predict-IV data are publicly
accessible on the diXa database hosted by The European
Bioinformatics Institute1. In carcinoGENOMICS, in vitro renal
cell experiments were performed using the human cell lines
RPTEC/TERT1 (human, telomerase transfected) and NRK-52E
(rat). The study no. is DIXA-003. Differentiated cell cultures
were exposed to a single bolus of non or low cytotoxic
(<IC10) concentration of chemical for 6, 24, or 72 h before
lysis in TRIZOL, RNA purification and transcriptomic analysis

1http://wwwdev.ebi.ac.uk/fg/dixa/
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FIGURE 1 | Methods summarizing workflow.

on Affymetrix microarrays as described (Limonciel et al.,
2012). Affymetrix Human Genome U133 Plus 2.0 GeneChIP
arrays were used for human samples and Rat Genome 230
2.0 GeneChIP for rat samples. Normalization quality controls,
including scaling factors, average intensities, present calls,
background intensities, noise and raw Q-values were within
acceptable limits for all chips. Hybridization controls were
identified on all chips and yielded the expected increases in
intensities. All subsequent analyses were based on normalized
expression values generated using the MAS5 normalization
algorithm. It is noted that RMA or GCRMA normalization
would have been preferred. Normalized data was imported into
GeneSpring (Agilent) to identify log2 fold change values for
selected genes.

Within PREDICT-IV, in vitro testing of nephrotoxic and
hepatotoxic compounds were performed on RPTEC/TERT1 cells
(renal model), primary human hepatocytes, and rat hepatocytes
(PHH and PRH, respectively). The study no. on the diXa
database is DIXA-095. Differentiated cell cultures were exposed

daily to a high (≤10% cell death) or low concentration of
chemical for 1, 3 or 14 days, as described (Wilmes et al.,
2013, 2014; Aschauer et al., 2015; Crean et al., 2015; Limonciel
et al., 2015). Transcriptomic analysis was carried out on
Illumina R© HT 12 v4 BeadChip arrays for kidney and PHH
human samples, except RPTEC/TERT1 exposed to CsA (HT
12 v3 chips). PRH samples were analyzed with Illumina R©

RatRef-12 v1 BeadChIP arrays. Results were normalized by
quantile normalization and expressed as log2 fold over time-
matched control. Where several probes existed for a given gene,
the probe with the highest variation across the dataset was
selected.

The TG-GATEs datasets comprised in vivo rat data from
liver and kidney tissue, as well as data from in vitro
primary rat and human hepatocyte cultures, after a single
administration of chemical and repeat dosing (see Table 1)2.
CEL files were downloaded from the Open TG-GATEs

2https://dbarchive.biosciencedbc.jp/en/open-tggates/desc.html
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FIGURE 2 | Geometric representation of chemical specificity and potency for

the Nrf2 and AhR pathways. K represents a chemical and its coordinates are

(CACAhR, K, CACNrf2, K ). K also defines the vector
−→
OK linking the origin O (0,

0) to point K. The absolute value of the cosine of the angle α between
−→
OK and

a pathway’s axis can be used to measure the specificity of a chemical for the

given pathway (the smaller α, the more specific the chemical). On the other

hand, the overall activation potency of a chemical increases proportionally with

the length of
−→
OK. Points A, B, and C represent three other chemicals with

different specificities and potencies for pathways’ activation (see text).

database of the Toxicogenomics Project and Toxicogenomics
Informatics Project under CC Attribution-Share Alike 2.1
Japan. Probe annotation for the primary human hepatocyte
data was performed using the hthgu133pluspmhsentrezg.db
package version 17.1.0 and probe mapping was performed
with hthgu133pluspmhsentrezgcdf downloaded from NuGO3.
Probe annotation for the rat data was performed using the
rat2302rnentrezg.db package version 19.0.0 and probe mapping
was performed with the rat2302rnentrezgcdf package version
19.0.0 downloaded from NuGO. These mappings summarize the
corresponding probes to a single probe set per gene. Probe-wise
background correction (Robust Multi-Array Average expression
measure), between-array normalization within each treatment
group (quantile normalization) and probe set summaries
(median polish algorithm) were calculated with the RMA
function of the Affy package (Affy package, version 1.38.1)
(Irizarry et al., 2003). The normalized data were statistically
analyzed for differential gene expression using a linear model
with coefficients for each experimental group within a treatment
group (Wolfinger et al., 2001). A contrast analysis was applied to
compare each exposure with the corresponding vehicle control.
For hypothesis testing the moderated t-statistics by empirical
Bayes moderation was used followed by an implementation
of the multiple testing correction of Benjamini and Hochberg
(Hochberg and Benjamini, 1990) using the LIMMA package
(Smyth et al., 2005).

All interspecies gene conversions where done using the
provided human gene symbols which were converted to human
or rat gene identifiers using the online conversion tool of
bioDBnet4.

3http://nmg-r.bioinformatics.nl/NuGO_R.html
4https://biodbnet-abcc.ncifcrf.gov/

Altogether, the collected data concern 804 genes from the
857 genes identified in PubMed as targets of AhR, Nrf2 and
ATF4. The 53 target genes that are not covered with data
from any of the three projects were excluded from this study.
These genes are listed in the last row of Supplementary

Table 1.

Bioinformatics Methods
Data Selection
The heterogeneity of the sources of information of our
database widens its coverage and strengthens its capacity to
represent multiple conditions. However, this richness makes
the database’s structure complex. To simplify the analysis
without losing potentially important information, we focused
on conditions providing the best background to study the
three pathways individually. The effects observed following
exposure to a chemical could vary greatly depending on
exposure duration. Exposures lasting more than 24 h tend to
cause mixed stress responses that make it difficult to delineate
the activation of specific molecular pathways and the initial
mechanisms of toxicity of chemicals. These conditions could
be a potential source of noise for the analysis and were
thus excluded. Excluding all data obtained after 24 h reduced
the dataset from 7,042 to 4,685 testing conditions. We chose
not to eliminate the early kidney in vivo time points (at
3 and 6 h), even though they may be more reflective of
background levels in case of slow absorption of the chemical
administered.

Pathway Specific Chemicals
In order to distribute the genes to pathways and pathway
overlapping zones, log2 genes fold changes (FC) were ranked in
decreasing order and examined on reduced datasets containing
conditions relative to pathway specific activators. We define a
pathway specific activator as a chemical where the mode of
action is known, that the mode of action activates the specific
pathways and that this mode of action is not expected to activate
the other pathways under investigation. Thus, at relatively short
exposures, to relatively low concentrations these chemicals will
only act on their specific target. It is however possible at higher
concentrations or longer time exposure, other targets will be
affected due to increasing toxicity. As shown in Table 1, some
chemicals were not tested in all categories and tissue types. Thus,
it was not possible to find pathway specific activators able to
cover the entire database. Table 2 shows the coverage of the
datasets by the pathway specific activators selected as reference
for analysis. Although none of the toxicogenomic databases
analyzed here were designed to specifically address any of our
three pathways of interest, most datasets included at least one
chemical that could be considered as a specific pathway activator.
Two specific chemicals were selected for AhR (Benzo(a)pyrene
and Omeprazole) and Nrf2 (Potassium Bromate and Phorone)
and one for ATF4 (Tunicamycin). However, within “Rat Kidney
in vivo” category, no Nrf2 specific chemicals were found, and
for all kidney data no ATF4 specific chemical were found
either.
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TABLE 4 | Pathways’ global signatures for AhR, Nrf2 and ATF4 pathways and the signatures of their overlapping zones (AhR-Nrf2, Nrf2-ATF4, AhR-ATF4, and

AhR-Nrf2-ATF4) for all available data.

Activated

genes

AhR Signature Nrf2 Signature ATF4 Signature

Genes log2 (FC)

averages

A priori

pathway

Genes log2 (FC)

averages

A priori

pathway

Genes log2 (FC)

averages

A priori

pathway

CYP1A1 4.35 AhR HMOX1 1.12 Nrf2 DDIT3 1.59 ATF4

DLL1 1.36 AhR SRXN1 0.97 ATF4 Nrf2 TSLP 1.51 ATF4

RUNX2 1.03 AhR MAFF 0.78 AhR Nrf2 AKNA 1.30 ATF4

SLC16A9 0.92 Nrf2 OSGIN1 0.67 Nrf2 HERPUD1 1.23 ATF4

FAM65C 0.79 AhR DUSP5 0.66 ATF4 SLC1A4 1.15 ATF4

FLRT1 0.78 ATF4 TXNRD1 0.63 ATF4 IL23A 1.05 ATF4

FIBIN 0.77 ATF4 GCLC 0.60 ATF4 CHAC1 0.99 ATF4

TIPARP 0.73 AhR PPP1R15A 0.57 ATF4 FGF21 0.95 ATF4

CYP1A2 0.69 AhR GCLM 0.57 Nrf2 HSPA5 0.94 ATF4

ASB3 0.67 Nrf2 HSPA1B 0.56 Nrf2 NUPR1 0.94 ATF4

PDE1A 0.66 ATF4 FBXO30 0.55 ATF4 GTPBP2 0.91 ATF4

PBX1 0.64 Nrf2 GSTP1 0.53 Nrf2 PDIA4 0.87 Nrf2

PHGDH 0.46 Nrf2 FAM129A 0.87 ATF4

TMEFF2 0.46 ATF4 LONP1 0.80 ATF4

RUNX3 0.46 Nrf2 VNN3 0.78 ATF4

SESN2 0.75 ATF4

MTHFD2 0.73 ATF4

PYCR1 0.72 ATF4

BACH1 0.68 Nrf2

Inhibited

genes

SLC1A7 −1.57 ATF4 TMEM189 −1.48 ATF4 COCH −1.25 Nrf2

PSG5 − 1.43 AhR NREP −0.99 ATF4 SNAI2 − 1.20 ATF4

PRKAR2B −1.23 Nrf2 KIFC1 −0.79 ATF4 INSIG1 −1.02 Nrf2

SOAT2 −0.80 ATF4 DLX2 − 0.78 Nrf2 AKR1B10 −0.96 Nrf2

DAAM2 −0.78 Nrf2 BMF −0.73 ATF4 PMAIP1 −0.88 Nrf2

WDR63 − 0.70 AhR TGFB2 −0.72 ATF4 ANGPTL4 − 0.87 ATF4

FAM69A −0.68 Nrf2 DDC − 0.71 Nrf2 SNRNP35 − 0.77 ATF4

CDH11 −0.67 Nrf2 GLI2 −0.71 ATF4 SERPINE1 −0.68 Nrf2

LCN2 −0.66 ATF4 AURKB −0.69 ATF4 PRC1 −0.65 Nrf2

PLA2G4A −0.66 Nrf2 NEDD9 −0.67 ATF4 LMCD1 −0.64 AhR

CXCL5 −0.64 Nrf2 TFPI −0.65 ATF4 LBH −0.61 Nrf2

WISP1 −0.62 ATF4 OSMR − 0.59 Nrf2

Activated or

Inhibited genes

AhR-Nrf2 Overlapping signature Nrf2-ATF4 Overlapping signature

Genes AhR log2(FC)

averages

Nrf2 log2(FC)

averages

Genes Nrf2 log2(FC)

averages

ATF4 Log2 FC

average

NQO1 0.7 0.83 ATF3 0.73 0.90

DLGAP5 −0.64 −0.56 SLC7A11 0.70 0.69

CFTR −0.69 −0.73 TRIB3 0.70 1.02

RAB39B −0.92 −0.52 CABC1 0.56 2.90

GSTA1 −1.43 −0.83 GDF15 0.48 0.80

CCL2 −0.61 −1.28

KCNT2 −0.9 0.76

Activated or

Inhibited genes

AhR-ATF4 Overlapping signature AhR-Nrf2-ATF4 Overlapping signature

Genes AhR

log2(FC)

averages

ATF4

log2(FC)

averages

Genes AhR

Log2 FC

average

Nrf2

log2(FC)

averages

ATF4

log2(FC)

averages

CYP1B1 3.56 −0.63 TPX2 −0.75 −0.8 −2.38

Gray background indicates genes that appear in the signature of the pathway from previous studies (Supplementary Table 1) and confirmed here. Non-grayed out values are novel

allocations from this analysis.
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FIGURE 3 | Venn diagram of the number of genes per pathway’s global

signatures and names of genes of overlapping zones.

Construction of Pathway Signatures
For each of the pathway specific chemicals, all testing conditions
were selected. For every gene, the mean of log2(FC) throughout
all those conditions was calculated, to form the average activation
value of each gene by each of the pathway specific activator.
For AhR and Nrf2, the two average activation values obtained
(one for each of the pathway specific activator) were themselves
averaged. Genes were then sorted in decreasing order of average
activation values per pathway. It is important to note that, since
the expression of some genes can be inhibited (down regulated)
by some chemicals or in certain conditions, some of the average
activation values were negative. In order to select the most
sensitive genes for each pathway, we computed the mean (µ)
and the standard deviation (σ) of the genes’ average activation
values in each list. A pathways signature was formed by the
genes whose average activation values were greater than µ +
2σ or smaller than µ – 2σ for this pathway. Genes appearing
in the signature of more than one pathway were set apart in
“overlapping signatures.”

Furthermore, we stratified signatures by original databases’
categories (“Rat liver cells in vitro,” “Rat liver cells in vivo,”
“Human liver cells in vitro” etc.) (which correspond to primary
cells), to check if there would be any species-specific or
in vitro/in vivo differences among signatures. We chose to work
only with liver data since more data were available for liver
(602 conditions in kidney vs. 4,083 tested in liver, see Table 3).
Following the same procedure as above, we constructed pathway
signatures for AhR, Nrf2, and ATF4 in each of the following liver
categories: (a) Rat liver cells in vitro, (b) Rat liver cells in vivo, and
(c) Human liver cells in vitro.

In all cases, general or stratified, some genes were excluded for
having no data on effect of the chosen pathway specific chemicals.
A list of those genes appears in Supplementary Table 3.

A summary of the above-described protocols and the
following procedures of Methods are presented in the workflow
of Figure 1.

Pathway’s Signature-Based Prioritization of

Chemicals
Among the three liver categories where signatures were stratified,
we chose to focus on the “Human liver cells in vitro” sub-category
exclusively since the ultimate goal of our toxicity pathways’
analyses and models is risk assessment of human cells’ exposure
to xenobiotics. We considered only the genes belonging to the
signature of each of the three pathways, but not their overlapping
zones. This selection of experimental category and genes reduces
the number of studied chemicals from 211 to 160 for the lack of
data on the rest of chemicals in this section. Then, for each of the
160 chemicals investigated, we averaged log2(FC) of the pathway
signature genes over experimental conditions. Therefore, for
each of the three pathways, we obtained a “chemical activation
capacity” (CAC) value per chemical. This value reflects how
strongly a chemical can activate a given toxicity pathway. Those
CACs can be negative for chemicals inhibiting the majority of
the genes of a pathway. We used CACs to estimate the pathway’s
selectivity of chemicals as well as the importance of their impact.

Each chemical can be considered as a point having three CACs
as coordinates in a 3-dimensional space which axes correspond
to a given pathway. Let us consider a chemical K that has a point
in a bi-dimensional graph where the X-axis corresponds to AhR
and the Y-axis to Nrf2. In this graph, K’s coordinates would be:
(CACAhR, K, CACNrf2, K), see Figure 2. K also defines the vector
−→
OK linking the origin O (0, 0) to the point K.

The specificity of a chemical for a given pathway can be
measured by the proximity of its point K to the axis representing
that pathway. Proximity can be mathematically evaluated by the
absolute value of the cosine of the angle (α) between the pathway’s

axis and
−→
OK . The more K is specific to AhR, the closer it is

to the AhR’s axis, the smaller α is, and the bigger cos (α). In
theory, in a 3-dimensional space, a point is closer to an axis
than to the two others when its cos (α) with this axis is greater
than 1√

3
. Thus, the value of 0.57735 ( 1√

3
) was chosen as a cut-

off point for cos (α). On the other hand, the activation potency
of a chemical proportionally increases with the module of the

vector
−→
OK vector noted

∥

∥

∥

−→
OK

∥

∥

∥

(the distance between the origin

and the chemical’s point). The value of 0.5 was chosen as a cut-off

point for
∥

∥

∥

−→
OK

∥

∥

∥

. For instance, chemicals A and B in Figure 2 are

both quite specific of Nrf2, but A’s activation potency is relatively

limited compared to B’s (
∥

∥

∥

−→
OA

∥

∥

∥

<

∥

∥

∥

−→
OB

∥

∥

∥

).

Similarly, even though C seems to have a greater activation
potency than A and B (greater module), it is equidistant to both
axes and therefore is not specific of any of the two pathways. The
same logic applies for a 3-dimensional space, adding one extra
axis for the ATF4 pathway.

In our signature-based classification of chemicals, for each
pathway, after applying the chosen cut-off points, we sorted

chemicals by the result of the product cos(α)×
∥

∥

∥

−→
OK

∥

∥

∥

. Thus,
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FIGURE 4 | Network representation of AhR, Nrf2 and ATF4 pathway signatures and their overlapping zones.

chemicals which are both pathway specific (high cos (α)) and

potent (high
∥

∥

∥

−→
OK

∥

∥

∥

) show up first in our lists.

RESULTS

A visual depiction of the workflow is provided in Figure 1.

Pathways’ Global Signatures
Pathway’s signatures defined on the basis of the whole data set are
listed in Table 4. Each signature has two parts: “Activated genes”
(those having positive log2(FC) averages and are greater than
µ + 2σ) and “Inhibited genes” (those having negative log2(FC)
averages and are smaller than µ – 2σ); The two parts are merged
in one in the overlapping signatures. In all lists, genes are sorted
by the decreasing absolute value of the genes’ log2(FC) averages.

The number of genes in the obtained pathway’s signature was
24 for AhR, 27 for Nrf2 and 30 for ATF4. In each pathway,
at least half (12 for AhR, 15 for Nrf2 and 19 for ATF4) were
“Activated genes.” The a priori pathway is the one for which
the gene has come up in PubMed searches; Table 4 shows that
most of activated genes were a priori suspected to belong to
the target pathway (for example: CYP1A1, RUNX2, and CYP1A2
were known to be activated by AhR,HMOX1 and SRXN1 by Nrf2
and DDIT3 and HERPUD1 by ATF4; those genes are highlighted
in gray) while this wasn’t the case of the “Inhibited genes” part
of the lists. Figure 3 shows the overlapping zones. Among the
five genes that are in the AhR-Nrf2 overlapping zone (NQO1,
DLGAP5, CFTR, RAB39B and GSTA1), only NQO1 is a mainly
activated gene while this was the case of most seven genes of the
Nrf2-ATF4 overlapping zone (ATF3, SLC7A11, TRIB3, CABC1,
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TABLE 5 | AhR, Nrf2 and ATF4 pathways’ signatures stratified in liver data and by all liver data sub-categories (“Rat Liver in vitro” data, “Rat Liver in vivo” data and

“Human Liver in vitro” data).

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

AhR SIGNATURES

Activated genes CYP1A1 4.55 CYP1A1 1.30 CYP1A1 6.86 CYP1A1 4.72

CYP1A2 1.47 CYP1A2 1.71 CYP1A2 2.44

TIPARP 0.64 TIPARP 0.40 TIPARP 1.21

ABCC4 0.25 ABCC4 0.97

IL1R1 0.24 HTATIP2 1.19 CYP1B1 3.49

TAF15 0.22 SLC20A1 0.78

Inhibited genes PRKAR2B −0.20 KCNT2 −0.60

ANXA1 −0.18

ANGPTL4 −0.17

Nrf2 SIGNATURES

Activated genes MAFF 1.42 MAFF 0.67 MAFF 2.37

FBXO30 0.92 FBXO30 0.35

HSPA1B 0.82 HSPA1B 0.37 HSPA1B 0.63

PPP1R15A 0.77 PPP1R15A 1.16

GSTP1 0.67 GSTP1 1.24

GCLC 0.66 GCLC 0.35

PSAT1 0.64 PSAT1 1.54

DUSP5 0.62 DUSP5 0.64

SLC3A2 0.60 SLC3A2 1.09 SLC3A2 0.40

OSGIN1 0.58 OSGIN1 0.91 OSGIN1 0.42

SLC6A9 0.57 SLC6A9 1.06

SLC20A1 0.52 SLC20A1 0.41

ABCC3 0.52 ABCC3 1.00

YPEL5 0.47 YPEL5 0.37

CPT1A 0.38 CPT1A 0.36

ASNS 0.75 SRXN1 0.66 HMOX1 2.03 ATF5 0.37

PHGDH 0.55 PHLDA1 0.53 SLC7A11 1.74 AP5Z1 0.35

PLA2G12A 0.50 TXNRD1 0.41 GDF15 1.30

SLC7A1 0.48 ABCC2 0.39 BTG2 0.89

PIR 0.34

FLVCR2 0.33

GSR 0.33

GABARAPL1 0.33

AGPAT9 0.57

TBCEL 0.48

MMD 0.33

Inhibited genes MMD −0.4

LCN2 −0.45 LCN2 −0.97

TGFB2 −0.34 TGFB2 −0.44

MID1IP1 −0.48 TNFAIP2 −0.44 BMF −0.88 ALDH1A1 −0.61

IL33 −0.46 VASN −0.39 DHRS7 −0.69 DDC −0.42

NREP −0.45 AURKB −0.38 DUT −0.35

SERPINB9 −0.42 RAB32 −0.36 IFIT3 −0.33

CD36 −0.36 UGT1A6 −0.32

DCN −0.34

CTSC −0.34

(Continued)
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TABLE 5 | Continued

All liver data Rat liver in vitro Rat liver in vivo Human liver in vitro

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

Genes Log2(FC)

averages

LBH −0.32

CXCL3 −0.32

ATF4 SIGNATURES

Activated genes TSLP 1.51 TSLP 1.51

AKNA 1.30 AKNA 1.30

HERPUD1 1.23 HERPUD1 1.28 HERPUD1 0.61 HERPUD1 2.39

IL23A 1.05 IL23A 1.69 IL23A 1.86

HSPA5 0.94 HSPA5 3.28

GTPBP2 0.91 GTPBP2 1.12 GTPBP2 1.89

PDIA4 0.87 PDIA4 0.92 PDIA4 2.18

FAM129A 0.87 FAM129A 2.92

PYCR1 0.72 PYCR1 0.91

CHAC1 1.40 CHAC1 0.50

KLF15 0.81 KLF15 0.43

SLC1A4 1.15 TRIB3 1.12 HES1 0.57 FIBIN 2.72

NUPR1 0.94 BCAT2 0.97 USP2 0.55 LCN2 1.91

LONP1 0.80 ARHGEF2 0.93 ENC1 0.48 CTH 1.62

VNN3 0.78 CASP4 0.84 TSC22D3 0.44 NFE2L1 1.2

SESN2 0.75 KLF4 0.82 DDIT4 0.39

BACH1 0.68 BET1 0.82 SLC38A2 0.38

WARS 0.80 IP6K2 0.62

PCK2 0.73

SLC25A33 0.71

SLC7A5 0.71

ACOT2 0.83

MANEA 0.75

Inhibited genes PRC1 −0.65 PRC1 −0.61

LMCD1 −0.64 LMCD1 −0.80 LMCD1 −1.73

LBH −0.61 LBH −2.56

SNAI2 −1.20 DPYSL2 −0.98 FOXA2 −0.61 FRMD6 −1.52

AKR1B10 −0.96 DUSP6 −0.97 ABCG2 −0.49 SLC39A10 −1.35

PMAIP1 −0.88 IFIT3 −0.72 NEDD9 −0.43 GPNMB −1.26

SNRNP35 −0.77 EMILIN1 −0.69 TMEM159 −0.37 ANKRD1 −1.16

SERPINE1 −0.68 FCER1G −0.65 PHLDA1 −1.16

SQRDL −0.61

IFI44 −0.61

Genes that appear in more than one column are highlighted in gray.

GDF15) with two exceptions (CCL2 has negative averages for
both pathways and KCNT2 for Nrf2). CYP1B1 is the only mutual
gene for AhR (strong activation) and ATF4 (inhibition) and
TPX2 is the only mutual gene for all three pathways (inhibition).
Figure 4 shows a network representation of the three signatures
and their overlapping zones.

Pathways’ Stratified Signatures in Liver
The Three Main Pathways’ Stratified Signatures in

Liver
Table 5 shows the stratified signatures in liver of each pathway
in four columns (categories): each containing the genes’ names

and their log2(FC) averages. Genes that appear in more than one
column are highlighted in gray and empty lines were left in order
to display those genes on the same line in all the categories where
they appear. Genes of the first column, sorted by the decreasing
absolute values of their log2(FC) averages, appear first, followed
by genes appearing in more than one category but not the first
column and then the rest of the genes sorted by the decreasing
absolute values of their log2(FC) averages as well.

AhR stratified signatures
Table 5 shows that CYP1A1 is clearly, by far the most activated
gene in this pathway. Three other genes appear in the AhR

Frontiers in Genetics | www.frontiersin.org 10 October 2018 | Volume 9 | Article 429

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zgheib et al. Toxicogenomics Identification of Pathway Cross-Talks

signature in more than one column: CYP1A2 everywhere except
“Rat liver in vitro,” TIPARP everywhere except “Rat liver in vivo”
and ABCC4 shows up in these two categories only. “Rat liver
in vitro” AhR signature is completed by five additional genes,
“Rat liver in vivo” by one more and “Human liver in vitro” by
three.

Nrf2 stratified signatures
Nrf2 signatures are bigger: 22 genes in the all liver data signature,
28 for “Rat Liver in vitro” and 15 for each of “Rat Liver in vivo”
and “Human Liver in vitro”. Around two third of those genes are
“Activated genes” and the rest have negative log2(FC) averages.
MAFF, SLC3A2, OSGIN2 are among the “Activated genes” that
appear in three out of the four categories we are studying. Other
important genes show up in two columns (HSPA1B, PPP1R15A,
and GCLC) and some, in only one (SRXN1 in “Rat Liver in vitro”
and HMOX1 in “Rat Liver in vivo”). The values of the “Rat liver
in vivo” are also higher than the “Rat liver in vitro” and “Human
liver in vitro” categories.

ATF4 stratified signatures
ATF4 signatures size is similar to Nrf2’s signatures with a
comparable proportion of activated genes: 23 genes in the all liver
data signature, 28 for “Rat liver in vitro” and 14 for each of “Rat
liver in vivo” and 19 for “Human liver in vitro.” HERPUD1 is
an important gene in this pathway; it is part of the signature of
every single category we are examining and exhibits values as
high as 2.39 in “Human Liver in vitro” (among the highest in
ATF4 signatures). Other genes also are present in the majority of
the categories: IL23A, GTPBP2, and PDIA4. It is noteworthy that
the ATF4 signature of “Rat Liver in vivo” results don’t have a lot in
commonwith the other three categories and its log2(FC) averages
are lower than the rest (the highest value is 0.61 for HERPUD1).

The Overlapping Zones Stratified Signatures
Figure 5 shows that the AhR-ATF4 overlapping zone is the least
populated (four genes maximum in all liver data, no genes for
“Rat Liver in vivo” and two genes in the two other categories).
The number of genes in the AhR-Nrf2 overlapping signatures
ranges from four to eight, with many typical key Nrf2 genes

FIGURE 5 | Venn diagram of the number of genes per pathway’s stratified signatures and names of genes of overlapping zones. Categories: (A) All liver data, (B) Rat

Liver in vitro data, (C) Rat Liver in vivo data, (D) Human Liver in vitro data. *Refers to genes that were known to be part of the same overlapping zone according to

Supplement Table 1 lists. White is the color of gene names that appear in an overlapping zone of only one of the four categories studied, and black is the color of

gene names that appear in more than one category (two, three or four).
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(NQO1, SRXN1, HMOX1, TXNRD1, and GCLM) appearing in
more than one category. The Nrf2-ATF4 overlapping signatures
contain six to eleven genes (DDIT3, ATF3, and CHAC1 are
among the repetitive genes). Finally, TRIB3, FGF21, GDF15,
SLC7A11, and TPX2 are in the signature of the zone mutual
to all three pathways for at least two of the four categories
studied.

Pathways’ Stratified Signatures in Liver
Figures 6, 7, 8 plot the 160 chemicals’ vector modules vs. the
absolute value of cos (α), which represents the pathway activation

scores of chemicals that activate each pathway both selectively
and strongly. Chemicals are represented by a number that
corresponds to their rank in the alphabetically ordered list. The
blue dashed lines mark the vertical (cos(α)= 1√

3
) and horizontal

(
∥

∥

∥

−→
OK

∥

∥

∥

=0.5) limits we set. The number chemicals that are off

these limits is 34 for AhR, one for Nrf2 and four for ATF4; these
chemicals are in red and their names are listed in the legend on
the right by the order of the decreased values of the product result

cos(α)×
∥

∥

∥

−→
OK

∥

∥

∥

. As we can see in these figures’ legends, “pathway

specific activators” show up first in the lists of AhR (Omeprazole)

FIGURE 6 | Distribution of chemicals by potency (Y-axis: module
∥

∥

∥

−→
OK

∥

∥

∥

of the vector linking the origin O(0,0) to the chemical’s point in a 3D space) and specificity to

the AhR pathway (X-axis: the absolute value of the |cos(α)| of the angle between
−→
OK and the AhR axis in a 3D space). Chemicals are represented by their rank in the

alphabetically ordered list. Chemicals that are both strong (horizontal blue dashed line:
∥

∥

∥

−→
OK

∥

∥

∥

>0.5) and AhR specific (vertical blue dashed line: cos(α) = 1√
3
) are in

red and their names are listed in the legend on the right.
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FIGURE 7 | Distribution of chemicals by potency (Y-axis: module
∥

∥

∥

−→
OK

∥

∥

∥

of the vector linking the origin O(0,0) to the chemical’s point in a 3D space) and specificity to

the Nrf2 pathway (X-axis: the absolute value of the |cos(α)| of the angle between
−→
OK and the AhR axis in a 3D space). Chemicals are represented by their rank in the

alphabetically ordered list. The only chemical that is both strong (horizontal blue dashed line:
∥

∥

∥

−→
OK

∥

∥

∥

>0.5) and AhR specific (vertical blue dashed line: cos(α) = 1√
3
)

Sulindac, is in red and it is listed in the legend on the right.

and ATF4 (Tunicamycin), but do not appear at all in the list of
Nrf2 (Phorone).

DISCUSSION

Nrf2, ATF4, and AhR are important TFs in toxicological
contexts and have well described downstream gene targets
(Jennings et al., 2013). Each of these TFs have distinct
unrelated upstream activation points, unique gene targets,
but also have direct (i.e., via multiple upstream promoter
regions) and likely indirect overlaps on some specific gene

targets. The AhR protein is a cytosolic protein receptor,
where activation via chemical ligand binding causes nuclear
translocation, DNA binding to it consensus sequence and RNA
transcription. Several toxic compounds including dioxin-like
compounds activate AhR. The TF Nrf2 is liberated from its
cytosolic inhibitor KEAP1, where the latter is sensitive to
electrophiles and ROS. The TF ATF4 is activated via PERK,
where PERK is activated when its inhibitor BiP, dissociates
from PERK to bind unfolded proteins. All sorts of Endoplasmic
Reticulum disturbances can cause an increase in unfolded
proteins.
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FIGURE 8 | Distribution of chemicals by potency (Y-axis: module
∥

∥

∥

−→
OK

∥

∥

∥

of the vector linking the origin O(0,0) to the chemical’s point in a 3D space) and specificity to

the ATF4 pathway (X-axis: the absolute value of the |cos(α)| of the angle between
−→
OK and the AhR axis in a 3D space). Chemicals are represented by their rank in the

alphabetically ordered list. Chemicals that are both strong (horizontal blue dashed line:
∥

∥

∥

−→
OK

∥

∥

∥

>0.5) and AhR specific (vertical blue dashed line: cos(α) = 1√
3
) are in

red and their names are listed in the legend on the right.

Using multiple toxicogenomic databases we investigated the
most appropriate activators of these three pathways, where it
is expected that the chemical does not directly activate the
other two pathways. These compounds were, Benzo(a)pyrene
and Omeprazole for AhR, Potassium Bromate and Phorone
for Nrf2 and Tunicamycin A for ATF4. All conditions up to
and including 24 h were pooled to generate a list of genes
allocated to the three pathways (Table 4). This list confirmed the
majority of a priori literature based information of “Activated
genes” (i.e., upregulated). Although some genes were now
reallocated to different pathways. The overlap with “Inhibited
genes” (i.e., down regulated), was much poorer. This is too
be expected as TF activated gene down regulation is much

more complex and is often due to competition for auxiliary
transcription facilitating proteins. Cytochrome P450 1A was
the central element of the AhR pathway: CYP1A1 is the most
prominent gene of this pathway, regardless of the experimental
category, followed by CYP1A2. These findings are similar to
previous investigations and have been implemented in a systems
biology model (Hamon et al., 2014). For the Nrf2 pathway, the
prototypical Nrf2 genes (HMOX1, SRXN1, and GCLM) appear
in the Nrf2 signature of all datasets, but also in the AhR-Nrf2
overlapping signature for most liver categories. This may reflect
the fact that several AhR agonists are themselves metabolized
to reactive chemicals via AhR dependent CYP expression. For
example benzo(a)pyrene is a substrate of the CYP1 sub family of
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cytochrome P450 enzymes, and it promotes its own metabolism
to reactive epoxide and quinone products (Gelboin, 1980).
These metabolic products can lead to oxidative stress and to
an activation of the Nrf2 pathway as part of a second line
of responses (Burchiel and Luster, 2001). The only activated
gene that appears in the ATF4 signature of each of the three
studied categories is HERPUD1. In most cases, HERPUD1 also
had the highest log2(FC) averages. Overlapping zones show an
interaction between AhR and Nrf2, between Nrf2 and ATF4, but
a very limited or non-existent interaction betweenAhR andATF4
pathways.

We have used the exclusive pathway genes to create pathway
chemical activation capacity (CAC) scores. The CAC reflects
both specificity for the pathway (cos (α)) and the activation

potency
∥

∥

∥

−→
OK

∥

∥

∥

. CAC scores were generated for 160 chemicals

using the TG-GATEs liver data. For ATF4, tunicamycin,
methylene dianiline, diclofenac, and butylated hydroxyanisole
were ranked highest, in that order. Tunicamycin was used
as a specific ATF4 specific activator. Both diclofenac and
butylated hydroxyanisole have previously been demonstrated
to positive modulate the ATF4 pathway (Afonyushkin et al.,
2010; Fredriksson et al., 2014). The molecular mechanism for
methylene dianiline has not been fully elucidated and this
evidence would suggest an ER disturbance and/or proteotoxic
mechanism. For AhR, 34 chemicals were considered positive
by CAC scores. Omeprazole was ranked highest, followed
by acetamidofluorene, 2-Nitrofluorene, mexiletine, flutamide,
isoniazid, and hexachlorobenzene. Many of the 34 chemicals
have not been previously linked with AhR, but several are.
These include, hexachlorobenzene (Randi et al., 2008; de Tomaso
Portaz et al., 2015), ketoconazole (Novotna et al., 2014), clozapine
(Donohoe et al., 2008), and doxorubicin (Volkova et al., 2011).
Fluphenazine has not been established as a ligand for the AhR, its
structure—a halogenated aromatic ring system—closely matches
the motif involved in binding to this receptor (Donohoe et al.,
2008). In a recent study we have demonstrated that isoniazid
induced CYP1A1 in HepaRG cells, which is a potential indicator
of AhR activation (Limonciel et al., 2018). Only Sulindac from the
160 was ranked as active using the CAC selection criteria, which
may seem surprising given the frequency of oxidative injury in
liver toxicities. Although butylated hydroxyanisole was marginal.
The reason for a lack of Nrf2 activation prediction might be
simply due to the fact that none of the 160 compounds, including
the positive compound phorone cause an Nrf2 response in the
liver within the first 24 h. Another possibility is that removing
the overlapping genes has weakened the ability to pick up this
pathway. Indeed, this is a weakness in the overall strategy as it is
difficult to determine in such data sets if the pathways themselves
are co-regulated since there are several gene overlaps amongst the
pathways.

SUMMARY AND CONCLUSION

The size of the data set, its multiple sources, abundancy
of compounds, concentrations and time of exposures,
in vitro and in vivo, different organs are both a blessing

and a curse. On the one hand, it is generally an advantage
to have as broad as data set as possible, but the different
sizes and focuses of the individual data sets/studies meant
we needed to reduce the data to the lowest denomination.
Another major issue was the low abundance of well
described pathway activators. Despite these issues we have
made some interesting observations and have developed a
method to quantify a chemical’s capacity to activate one three
pathways.

We uncovered variations in AhR, ATF4 and Nrf2
signatures across tissues, compounds, species and in vivo
vs. in vitro. Some of these alterations are likely to be linked
to pharmacokinetics, including distribution and metabolism,
others may be linked to tissue specific regulation of these
pathways. While some genes were very variable across
experimental conditions, some were extremely robust, for
example CYP1A1 in the AhR pathway and HERPUD1 in the
ATF4 pathway. Some genes swing between a pathway’s specific
signature and overlapping zones for example GCLC between
Nrf2 and AhR-Nrf2. Others are regularly on overlapping
signatures for example TPX2 and TRIB3. However, it is not
possible with this type of analysis to delineate whether these
overlaps are solely on a gene level or also on the pathway
level.

The CAC score system developed, based on cos(α) ×
∥

∥

∥

−→
OK

∥

∥

∥

,

can be used to quantify a chemical’s specificity and potency to
selectively activate one of these pathways. However, future work
will be required to validate and optimize the gene signatures
utilized.
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