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Abstract

We analyze the dynamics of pattern forming fronts which propagate into an unstable
state, and whose dynamics is of the pulled type, so that their asymptotic speed is
equal to the linear spreading speed v∗. We discuss a method that allows to derive
bounds on the front velocity, and which hence can be used to prove for, among
others, the Swift-Hohenberg equation, the Extended Fisher-Kolmogorov equation
and the cubic Complex Ginzburg-Landau equation, that the dynamically relevant
fronts are of the pulled type. In addition, we generalize the derivation of the universal
power law convergence of the dynamics of uniformly translating pulled fronts to
both coherent and incoherent pattern forming fronts. The analysis is based on a
matching analysis of the dynamics in the leading edge of the front, to the behavior
imposed by the nonlinear region behind it. Numerical simulations of fronts in the
Swift-Hohenberg equation are in full accord with our analytical predictions.

1 Introduction

In the last few years, it has become clear that when considering a problem
of a front which propagates into an unstable state, it is crucial to distinguish
two different classes, according to whether their asymptotic speed is equal to
or larger than the linear spreading speed v∗. The linear spreading speed is a
simple concept that dates back to developments in plasma physics and fluid
dynamics that took place almost half a century ago [1,2,3,4]. It is the asymp-
totic speed with which an initially localized perturbation about the unstable
state spreads into this unstable state according to the linear dynamics, the
dynamics obtained by linearizing the dynamical equations about the unstable
state. For any deterministic dynamical equation this linear spreading speed v∗
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can be determined explicitly from a long-time asymptotic saddle-point type
analysis of the Green’s function of the relevant dynamical equation. In prac-
tice, therefore, v∗ is given explicitly by the dispersion relation of Fourier modes
obeying the linearized dynamical equation [1,2,3,4,5,6,7].

Given the existence of a finite linear spreading speed v∗ for a given problem,
only two different types of asymptotic front solutions can emerge starting from
“steep” or “sufficiently localized” initial conditions: either the asymptotic ve-
locity of the nonlinear front is equal to v∗ or it is larger than v∗. In the first case
we speak of “pulled fronts”, as such fronts are essentially being pulled along
by the growth and spreading of the linear dynamcs in the leading edge where
the linearized dynamical equations can be used. In the second case of fronts
whose asymptotic speed is larger than v∗, we speak of pushed fronts [5,6,7,8,9].
Because the essential dynamics of pulled fronts is actually taking place in the
region ahead of the nonlinear front region, their properties are very differ-
ent from pushed fronts or other fronts, domain walls or kink solutions whose
properties are determined by a nonlinear eigenvalue problem: the singular per-
turbation theory which is normally used to map weakly curved fronts onto a
moving boundary problem, breaks down for pulled fronts [10], and their ve-
locity and shape converge with universal power laws to their asymptotic value
and shape. For nonlinear diffusion equations of the type studied by Fisher
[11] and Kolmogorov et al. [12] the first term expressing this power law con-
vergence was already derived in 1983 by Bramson [13], but we have recently
found that this slow power law convergence can be summarized in one single
exact equation that governs any pulled front which converges to a uniformly
translating solution [5,6,14]. For a review of many of these results, see [7].

As it turns out, the matching analysis on which the derivation of the power law
convergence is based (see also [15]), requires only minimal input on the form
of the nonlinear uniformly translating pulled front solution to which the front
solution converges — the explicit expressions for the velocity convergence are
all obtained from a proper Ansatz for the asymptotic expansion of the front
solutions in the leading edge, the region where the dynamical equation can
be linearized. It is the purpose of this paper to show that this part of the
analysis can be easily generalized to dynamical equations whose dynamics
is pattern forming, i.e., whose asymptotic front solutions are not uniformly
translating. An example of such a front in the Swift-Hohenberg equation is
shown in Fig. 1. This conclusion was already announced without derivation
in [16]. In fact, the asymptotic relaxation formula which we derive here also
applies to incoherent pattern forming fronts — the reason is that the linear
spreading dynamics is always coherent, irrespective of whether the dynamics
in the nonlinear region behind the front is coherent or incoherent [7,16]. While
the asymptotic expansion in the leading edge which we will discuss here thus
pertains to both types of fronts, we shall focus our discussion of the application
of the formula on coherent pattern forming fronts.
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Fig. 1. Snapshot of a front in the Swift-Hohenberg equation (10) for ε = 0.5. The
front propagates to the right into the region where u is in the unstable state u = 0.

One of the simplest examples of a dynamical equation whose pattern forming
fronts are coherent is the Swift-Hohenberg equation, and we will therefore use
this equation to illustrate and test our analytical results. In fact, the Swift-
Hohenberg equation has often played a role in studies of front propagation
[17,18,19,20,21,22] — it is essentially the only equation with pattern forming
fronts for which a number of exact results (including the convergence to a
pulled front solution) are known [19,20,21,22].

Because there are so few rigorous results for pattern forming fronts in gen-
eral, we will, before turning to the analysis of the front convergence, discuss a
method which allows us to derive a bound on the velocity for pattern forming
fonts, like the Swift-Hohenberg equation, the Extended Fisher-Kolmogorov
equation, or the cubic Complex Ginzburg-Landau equation. Although our ar-
gument is in essence a simplified version of the line of analysis Collet and
Eckmann [22] use to prove that fronts in the Swift-Hohenberg equation are
pulled, we do want to show the reader how in just a few lines one can prove
that fronts in pattern forming equations are pulled: we think that the method
holds the promise for many new rigorous results on front propagation.

The layout of this paper is as follows. In the next section we first discuss our
method to derive a bound on the front velocity. Then, in section III we perform
the asymptotic expansion of the dynamics of the leading edge of a pattern
forming front, which gives the expressions for the convergence of the front
velocity and shape to their asymptotic behavior. In section IV we illustrate
these results with numerical solutions of the Swift-Hohenberg equation, and
we close the paper with a brief summary.

3



2 The linear spreading velocity as a rigorous upper bound

2.1 The linear spreading velocity

We consider a generic dynamical equation for some generic dynamical vari-
able φ, whose stationary state φ = 0 is linearly unstable, and whose dispersion
relation is given by ω(k). This means that a Fourier perturbation eikx of the
unstable state evolves under the linear dynamics as e−iω(k)t+ikx. Associated
with the linear dynamical problem is a linear spreading velocity v∗, the ve-
locity with which an initially localized perturbation spreads asymptotically
into the unstable state according to the linearized dynamics. The asymptotic
spreading is simply determined by a long-time saddle point analysis of the
Green’s function of the linear equation. From this analysis, one finds v∗ ex-
plicitly in terms of ω(k) as [1,2,3,4,5,6,7]

dω(k)

dk

∣

∣

∣

∣

∣

k∗

=
Im ω(k∗)

λ∗
, v∗ =

Im ω(k∗)

λ∗
, k∗ ≡ q∗ + iλ∗. (1)

The first equation determines the saddle point value k∗ in the complex plane,
and the second one then gives the linear spreading velocity v∗. The third equa-
tion fixes our notation for the splitting of k∗ into real part q∗ and imaginary
part λ∗ for the remainder of the paper. The complex parameter

D ≡ i

2

d2ω(k)

dk2

∣

∣

∣

∣

∣

k∗

(2)

plays the role of a complex diffusion coefficient 1 . If there are several saddle
points, the one with the largest v∗ is the relevant one [6]. Since the growth
rate Im (−iω(k)+ iv∗k) in the comoving frame is maximal at k∗ for a relevant
saddle point, the sign of Re D is fixed:

Re D > 0. (3)

Our analysis applies to sufficiently steep initial conditions [6]

lim
x→∞φ(x, 0) e

λx = 0 for some λ > λ∗; (4)

initial conditions with bounded support fall into this class. An important
result is that in a frame ξ = x− v∗t moving with velocity v∗ to the right, the

1 D is the complex generalization of the diffusion constant D as in [7] and should
not be confused with the operator defined in Eq. (5.27) of [6].
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asymptotic evolution of the field under the linear equation is given by

φ(x, t) ∼ e−λ
∗ξ + iq∗ξ − iΩ(k∗)t e−ξ2/4Dt√

4πDt
, (5)

where

Ω(k) ≡ ω(k)− v∗k, (6)

and where the co-moving coordinate

ξ = x− v∗t (7)

is held fixed while t → ∞. This follows from the saddle point analysis of the
Green’s function in the limit of large t, cf. sections 5.3 and 5.5.1 in [6]. The
saddle point equations (1) can be expressed in terms of Ω(k) as dkΩ|k∗ = 0
and Im Ω(k∗) = 0. For the remaining real part of Ω(k∗), we use the notation

Ω∗ = Ω(k∗) = Re Ω(k∗). (8)

Eq. (5) illustrates that an initially sufficiently localized linear perturbation
reaches the velocity v∗ and the spatial decay rate λ∗ for t → ∞ under the
dynamics of the linearized equation.

2.2 Upper bounds on the velocity: proof of pulling

When a front evolves under the full nonlinear equation into an unstable state,
its asymptotic speed can never be smaller than the linear spreading velocity v∗.
If the asymptotic speed equals v∗, the front is called pulled [5,6,7,8], otherwise
it is called pushed. As a rule of thumb, dynamical equations whose nonlinear
terms are all suppressing the growth lead to pulled fronts, but there is at
present no general theory that allows one to predict when fronts are pulled
and when they are pushed.

In the present section, a simple proof is given that fronts in some pattern
forming equations are pulled.

2.2.1 A real field φ with nonlinearity N (φ) φ

Consider first an equation of motion for a real field φ

5



∂tφ =
N
∑

n=0

an∂
n
xφ−N (φ) φ, N (0) = 0, (9)

with explicit linear terms and a nonlinearity 2 N (φ) φ. Examples of such
equations are the nonlinear diffusion equation ∂tu = ∂2xu + f(u), the Swift-
Hohenberg-equation

∂tu = εu− (∂2x + 1)2u− u3 = (ε− 1)u− 2∂2xu− ∂4xu− u3, (ε > 0), (10)

or the Extended Fisher-Kolmogorov (EFK) equation [7,23,24]

∂tu = ∂2xu− γ∂4xu+ u− u3. (11)

The linear operator determines the dispersion relation ω(k) and the parame-
ters v∗, Ω∗, q∗, λ∗ and D as discussed above.

The relevant dynamics of a pulled front that leaves a homogeneous state be-
hind (Ω∗ = 0 = q∗), was identified in [6] by the leading edge transformation
φ(x, t) = e−λ∗ξψ(ξ, t), ξ = x−v∗t. For pattern forming fronts with Ω∗ 6= 0 6= q∗,
different generalizations of this transformation are possible. While in the next
section dealing with the asymptotic dynamics, the complete complex phase
e−λ∗ξ+iq∗ξ−iΩ∗t will be factored out of φ, for deriving bounds, it will be more
convenient here to factor out the envelope e−λ∗ξ. In a frame moving with
velocity v∗, the field ψ̂(ξ, t) is then defined through

φ(x, t) = e−λ∗ξψ̂(ξ, t), ξ = x− v∗t. (12)

The effect of the transformation is demonstrated by comparing Fig. 1 with
Fig. 2 below which show the original dynamical field u of the Swift-Hohenberg
equation and the associated field ψ̂. The field ψ̂ in Fig. 2 magnifies the relevant
dynamics in the leading edge which we will analyze in section 3, while this
dynamics is hidden in Fig. 1.

With this transformation, the equation of motion for ψ̂ becomes

∂tψ̂ − v∗ (∂ξ − λ∗) ψ̂ =
N
∑

n=0

an (∂ξ − λ∗)n ψ̂ −N
(

ψ̂ e−λ∗ξ
)

ψ̂. (13)

With the two auxiliary functions of the Fourier variable k

2 Note that in [6] the complete nonlinear expression N (φ) φ was denoted as N(φ),
but the present notation turns out to be more convenient for the generalizations.
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σ(k) =
N
∑

n=0

an(ik − λ∗)n + v∗(ik − λ∗) = −iω(k + iλ∗) + iv∗(k + iλ∗),

ψ̄(k, t) =

∞
∫

−∞
dξ ψ̂(ξ, t) e−ikξ, (14)

the linear operators in Eq. (13) can be written in a more compact form

∂tψ̂(ξ, t) =

∞
∫

−∞

dk

2π
eikξ σ(k) ψ̄(k, t)−N

(

ψ̂ e−λ∗ξ
)

ψ̂. (15)

Now multiply the equation with ψ̂(ξ, t) and integrate over space. Using the
identity

∫

dk σ(k) ψ̄(k, t) ψ̄(−k, t) =
∫

dk Re σ(k)
∣

∣

∣ψ̄(k, t)
∣

∣

∣

2
, (16)

the final result is

∂

∂t

∫

dξ
ψ̂2(ξ, t)

2
=
∫

dk

2π
Re σ(k)

∣

∣

∣ψ̄(k, t)
∣

∣

∣

2

−
∫

dξ N
(

ψ̂(ξ, t) e−λ∗ξ
)

ψ̂2(ξ, t). (17)

If φ initially is sufficiently steep (4) for x → ∞, and if |φ| stays bounded
behind the front at x→ −∞, then the integrals exist initially. If furthermore
the right hand side of (17) can be shown to be negative and of order

∫

dξ ψ̂2,
then

∫

dξ ψ̂2(ξ, t) ↓ 0 for growing t. This means that in a frame moving with
velocity v∗, ψ̂2 vanishes; and this implies that the front cannot move faster
than v∗ for t→ ∞.

For the r.h.s. of (17) to be negative, we need both integrals to be negative.
Since Re σ(k) = Im ω(k + iλ∗) − v∗λ∗, the saddle point construction entails
that Re σ(q∗) = 0, ∂kσ|q∗ = 0 and ∂2kσ|q∗ = −2D with Re D > 0. Therefore

Re σ(k) ≤ 0 for all real k. (18)

If there are several saddle points, this condition holds for the one corresponding
to the largest spreading speed v∗ [6]. The present formulation in terms of σ(k)
yields another route to this conclusion.

The sign of the integral over the nonlinearity is fixed if the sign of N is fixed.
Therefore a sufficient criterion for the front to be pulled is

N (φ) ≥ 0 for all relevant φ. (19)
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In a pattern forming front, the sign of φ can change. This increases the rele-
vant values of φ and therefore decreases the admissible functions N . E.g., for
N (φ) = φr, a monotonic front with non-negative φ will be certainly pulled
for all r > 0, while for a pattern forming front, r needs to be an even inte-
ger. Both in the Swift-Hohenberg and EFK equation, N is quadratic in the
dynamical variable, hence the above argument immediately shows that suffi-
ciently steep initial conditions lead to pulled fronts in these equations. With
a few slight modifications, the analysis can also be extended to the difference
equation dCi/dt = Ci − C2

i−1, for which fronts were empirically found to be
pulled [14,25].

2.2.2 A complex field A: the complex Ginzburg-Landau-equation

It was already remarked by Collet and Eckmann in a footnote in [22] that
the above line of analysis can be extended to the case of the cubic Complex
Ginzburg Landau equation. We present the argument here in our language,
and then generalize it to an even more general class of equations in the next
subsection.

We analyze the complex Ginzburg-Landau-equation for complex field A(x, t)

∂tA = ǫA+ (1 + c1)∂
2
xA− (1− ic3)|A|2A, with ǫ, c1, c3 real, (20)

or more generally an equation of the form

∂tA =
N
∑

n=0

an∂
n
xA−N (A) A, with A(x, t), an complex. (21)

The saddle point parameters λ∗, q∗, v∗, Ω∗ and D are again used for the
transformation

ψ̂(ξ, t) = e−λ∗ξ A(x, t), where ξ = x− v∗t. (22)

The calculation now follows essentially the lines of the previous calculation —
except that one has to take into account that the field ψ̂ and the coefficients
are now complex. Therefore the equations of motion for A∗ or ψ̂∗ have to be
considered, too. They are, of course, derived by simply taking the complex
conjugate of the equations for A and ψ̂. One then easily derives an equation
for ψ̂∗∂tψ̂ ++ψ̂∂tψ̂

∗ = ∂t|ψ̂|2 that after spatial integration and a few steps of
calculation can be reduced to

∂

∂t

∫

dξ
|ψ̂(ξ, t)|2

2
=
∫ dk

2π
Re σ(k) |ψ̄(k, t)|2 −

∫

dξ Re N (A) |ψ̂|2. (23)
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Here ψ̄(k, t) and σ(k) are defined precisely as in (14).

This means that the complex equation has been reduced to expressions that
contain absolute values and real parts only. Therefore the conclusion from the
previous subsection is easily extended: an equation of form (20) or (21) creates
pulled fronts if

Re N (A) ≥ 0 for all relevant A. (24)

This is a nontrivial result, since in contrast to the real equation (12), the com-
plex equation does not have an energy minimizing structure; still the bound
can be derived in the same way as before. Specialized to the cubic Complex
Ginzburg-Landau equation, the above analysis simply proves that fronts in
this equation are pulled, a fact known already empirically since over 20 years
[7,26].

2.2.3 Generalization of admissible linearities and nonlinearities

In the last step, the admissible linear and nonlinear operators are reconsidered
and generalized. For complex functions A, the general form is

LA+N (A, ∂xA, ∂
2
xA, . . . , ∂

m
x A) A = 0, (25)

where N again can be complex. L is an arbitrary complex linear operator
that can take the differential form above, but also a difference or integral or
mixed form as discussed in Section V of [6]. It determines the saddle point
parameters v∗, λ∗, q∗ and D. Independent of the original functional form of
the linear operator, the expansion about the (large-t, large-x)-saddle point
will lead to the differential form

τ0∂tψ̂ = . . .−N (A, ∂xA, ∂
2
xA, . . . , ∂

m
x A) ψ̂. (26)

The analysis now proceeds as before with the final result

∂

∂t

∫

dξ
|ψ̂(ξ, t)|2

2
= . . .−

∫

dξ Re
N (A, ∂xA, . . . , ∂

m
x A)

τ0
|ψ̂|2. (27)

A sufficient criterion for the front to be pulled is

Re
N (A, ∂xA, . . . , ∂

m
x A)

τ0
≥ 0 for all relevant A. (28)
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In essence, the method discussed here confirms mathematically what one
would expect intuitively for equations where only the linear terms lead to
growth away from the unstable state φ = 0, while all the nonlinear terms
are clearly stabilizing. In such cases, fronts are shown to be of the pulled
type. There are several cases where fronts are empirically known to be pulled,
but where the method in its present formulation fails. E.g., while adding
a nonlinearity like −(∂xu)

2u to the Swift-Hohenberg equation (10) or EFK
equation (11) leaves the fronts in these equations of the pulled type, since
N = (∂xu)

2 ≥ 0, the nonlinearity of the Kuramoto-Sivashinsky-equation
∂tu = −∂2xu − ∂4xu + (∂xu)u does not fall into the class (28). In fact, ex-
tending the method to the Kuramoto-Sivashinsky equation must clearly be
quite a challenge, since adding a linear term c∂3xu gives a transition to pushed
fronts for c ≈ 0.15 [7]. An easier challenge to start with appears to be the the
Cahn-Hilliard-equation ∂tu = −∂2x (∂2xu+ u− u3). Again, in its present form
our method does not apply straightforwardly to the Cahn-Hilliard equation.
Nevertheless, for a front penetrating the state u = 0 under the Cahn-Hilliard
dynamics, we derive after a few partial integrations that

∂t

∫

dξ ψ̂2 = . . .− 3
∫

dξ ψ̂2
(

(∂xu)
2 − (λ∗u)2

)

. (29)

It is very likely that the sign of this integral over the nonlinearity is negative,
since (∂xu)/u is the local slope of the full oscillating front, while (λ∗u)/u is
the slope of only the envelope in the leading edge. However, we have not yet
been able to prove this.

In summary, we have derived sufficient criteria for a large class of equations to
form pulled fronts, i.e., fronts that propagate with the linear spreading speed
v∗. We now proceed to determining their actual rate of convergence to the
asymptotic behavior.

3 Power law convergence to the asymptotic speed and shape of a
pulled front

In [6] we have analyzed pulled fronts that for long times approach uniformly
translating fronts, and we have derived their rate of convergence to the asymp-
totic velocity and front profile. We will now extend this analysis to pattern
forming fronts.

Our analysis in [6] was based on a complete matching of the transient dynamics
in the leading edge (where the nonlinearities in the dynamical equation can
be neglected) to the behavior in the nonlinear front region itself. This detailed
analysis explicitly demonstrates that the matching procedure can be carried
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out order by order. It is remarkable and in line with the picture that has
emerged for the pulled front mechanism, that the coefficients in the asymptotic
expressions are actually obtained from the asymptotic analysis in the leading
edge only; more precisely they are given by the saddle point parameters (1), (2)
of the linearized equation. This is because for the analysis in the leading edge
only input on the dominant analytic behavior of the asymptotic front profile is
needed 3 . For brevity, we will therefore present here only the generalization of
the asymptotic expansion in the leading edge, following the lines of our earlier
paper.

3.1 The dynamical equation for the leading edge variable ψ in the frame ξX

The first ingredient of the asymptotic analysis for the front convergence is
to note that in the leading edge, the saddle point analysis from Section 2.1
implies that the field ψ(ξ, t) defined through

φ(x, t) = e−λ∗ξ eiq
∗ξ−iΩ∗t ψ(ξ, t), ξ = x− v∗t. (30)

becomes a function which varies slowly in space and time for large x and t,
and this slow dynamics is governed by a generalized diffusion equation of the
form

∂ψ

∂t
= D∂

2ψ

∂ξ2
+D3

∂3ψ

∂ξ3
+ w

∂2ψ

∂t∂ξ
+ τ2

∂2ψ

∂t2
+ · · · − N (φ, . . .) ψ. (31)

In the function ψ, the full complex prefactor is factorized out of φ, in contrast
to the partial factorization in Eq. (13). The parameter D is the generalized
diffusion coefficient defined already in Eq. (2) above. Likewise the other ex-
pansion coefficients D3, w, τ2 et cetera can all be expressed in terms of the
expansion of the dispersion relation near the saddle point — see Eq. (5.64) of
[6]. E.g., we simply have D3 = (1/3!)d3ω/dk3|k∗. Note that we call Eq. (31) a
generalized diffusion equation since the dominant terms for large ξ and t are
in fact diffusive and can generate the Gaussian from Eq. (5).

For equations which lead to uniformly translating fronts, q∗ = 0 and D is real,
but for pattern forming fronts D is generally complex and q∗ 6= 0.

As discussed in [5,6,7], if we follow a level line where |φ| is constant, the 1/
√
t

term in (5) implies an unbounded logarithmic shift in the position of the level
line, and hence of the transient fronts in the nonlinear equation. The crux of

3 In the language of a matching analysis, the outer (leading edge) expansion of the
inner (nonlinear front) solution is expressed by the condition (42) below.
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the convergence analysis is therefore to introduce a collective coordinate X(t)
for the front position,

Ẋ(t) =
c1
t
+
c3/2
t3/2

+
c2
t2

+ · · · ⇐⇒ X(t) = c1 ln t−
2c3/2
t1/2

+ · · · , (32)

and to perform an expansion in the logarithmically shifted frame

ξX = ξ −X(t) = x− v∗t−X(t). (33)

For pattern forming fronts, we likewise introduce a global time-dependent
phase Γ(t),

Γ̇(t) =
d1
t
+
d3/2
t3/2

+
d2
t2

+ · · · ⇐⇒ Γ(t) = d1 ln t−
2d3/2
t1/2

+ · · · , (34)

and we define the field ψX in the shifted frame ξX and with a global slow
phase factor Γ by writing φ as

φ(x, t) = e−λ∗ξxeiq
∗ξX−i(Ω∗t+Γ(t)) ψX(ξX , t). (35)

Comparison of (30) and (35) shows that

ψ(ξ, t) = eλ
∗X(t)−iq∗X(t)−iΓ(t) ψX(ξX , t). (36)

With this transformation, we obtain from (31) the relevant dynamical equa-
tion 4 for ψX(ξX , t)

∂ψX

∂t
− Ẋ(t)

(

ik∗ +
∂

∂ξX

)

ψX − iΓ̇(t)ψX = D∂
2ψX

∂ξ2X
+D3

∂3ψX

∂ξ3X
+ . . .

+w

[

∂

∂t
− Ẋ(t)

(

ik∗ +
∂

∂ξX

)

− iΓ̇(t)

]

∂ψX

∂ξX
+ · · · − N ψX . (37)

4 The term proportional to w is not present for equations like the Swift-Hohenberg
equation or for the Complex Ginzburg Landau equation, but can be present in more
general cases. As was already found for uniformly translating fronts [6], this term
does not affect the relevant terms for the power law relaxation.
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3.2 The asymptotic expansion for ψX in terms of similarity variables of the

diffusion equation

As we already pointed out above, in dominant order, the dynamical equation
(31) for ψ(ξ, t) is a diffusion equation, and this was reflected by the fact that
in the fully linear spreading problem, ψ(ξ, t) is just the fundamental Gaussian
similarity solution e−ξ2/(4Dt)/

√
t — Cf. Eq. (5). As explained in [6,16], the

nonlinearity in (31) can be interpreted as a sink for the diffusive field ψX

to the left of the leading edge. This imposes that in contrast to the linear
problem, ψ has to increase linearly in ξ for small ξ. The relevant fundamental
solution of the diffusion equation which has this behavior is

ψ(ξ, t) ∼ ξ

t3/2
e−ξ2/(4Dt), (38)

and as explained in detail in [6,7] one can already obtain the dominant term of
the power law relaxation of the velocity and front shape from this argument.

The expansion is systematized by working in the ξX frame, as explained above,
and by recognizing that the similarity variable of the diffusion equation is

z =
ξ2X
4Dt . (39)

In short, since far ahead of the front in the leading edge, ψX will fall off like
a Gaussian e−z = e−ξ2/(4Dt) for a sufficiently steep front (4) (see [6]), we write

ψ(ξX , t) = G(z, t)e−z . (40)

To ensure the Gaussian decay for large ξX and finite t, we require

lim
z→∞

G(z, t) e−z = 0 ⇐⇒ lim
ξx→∞

ψX(ξX , t) = 0. (41)

Note that as we already stated in (3), Re D > 0, so the limit z → ∞ should
be taken along a line in the right complex z plane. This is the first boundary
condition for G. The second boundary or matching condition arises from the
behavior for small ξX , actually in the transition towards the nonlinear regime.
In agreement with the intuitive argument about the nonlinearity as a sink for
the diffusion process, one derives

ψX(ξX , t)
ξX/

√
t→0

= αξ + β ⇐⇒ G(z, t) = 2α
√
Dzt+ . . . , (42)
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where α and β are in general complex constants with α 6= 0 due to the
nonlinearity 5 .

Upon substitution of (40) into Eq. (37) for ψX , and using the expansion (32)
for X(t) and (34) for Γ(t), we obtain the equation of motion for G

t∂tG−
(

c1 +
c3/2√
t

) [

ik∗ +

√
z√
Dt

(∂z − 1)

]

G− i

(

d1 +
d3/2√
t

)

G =

[

z∂2z +
(

1

2
− z

)

∂z −
1

2

]

G

+
D3

√
z

D 3

2

√
t

[

3

2
(∂z − 1)2 + z (∂z − 1)3

]

G (43)

+w

√
z√
Dt

[

t∂t − z(∂z − 1)− 1− ik∗c1 − id1
]

(∂z − 1) G+ · · · .

The relevant long-time asymptotics of ψX then directly follows from solving
this equation with boundary conditions (41) and (42) [6]. As in [6], the coeffi-
cients ci and di in X(t) and Γ(t) can be obtained by expanding G(z, t) as an
asymptotic series in terms of functions of the similarity variable z,

G(z, t) = t1/2g−1/2(z) + g0(z) +
g1/2(z)

t1/2
+
g1(z)

t
· · · , (t≫ 1), (44)

where the matching condition (42) implies that the leading order indeed is
√
t

with the coefficient g−1/2(z) =
√
z + . . . for small z.

From here on, the analysis is just the technical implication of the expansion
introduced above. Since the structure of the analysis follows essentially the
one given in our earlier work on uniformly translating fronts, we relegate the
details to appendix A. The final outcome of the analysis is that the velocity
relaxes to v∗ according to the general formula

v(t) ≡ v∗ + Ẋ(t) = v∗ − 3

2λ∗t
+

3
√
π

2(λ∗)2t3/2
Re

1√
D

+O
(

1

t2

)

, (45)

5 For the nonlinear diffusion equation, we derived Dα =
∫∞
−∞ dξ N ψ in section

2.5.2 of [6]. The relation between non-vanishing α and N can be generalized to
pattern forming fronts [16]. In general, N then becomes time dependent and some
temporal averaging is required. For the cubic CGL equation (20), however, we obtain
Dα =

∫∞
−∞ dξ (1+ic3)|A|2ψ(ξ) without temporal averaging. The phase of α changes

in the same way as the phase of ψ while the complete problem is phase invariant.
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while the phase relaxation is governed by a similar expression,

Γ̇(t) = −q∗Ẋ(t)− 3
√
π

2λ∗t3/2
Im

1√
D

+O
(

1

t2

)

. (46)

3.3 Convergence of a coherent front profile to its asymptotic shape

The above expressions are valid for any pulled front, irrespective of whether
it is asymptotically uniformly translating or a coherent or incoherent pat-
tern forming front 6 . Here ‘coherent’ means that the approximately periodic
pattern laid down by the leading edge of the front stays periodic in the non-
linear region, while incoherent means that the pattern undergoes some further
dynamics behind the front. Such incoherent fronts arise e.g. in some param-
eter regimes of the cubic and quintic Complex Ginzburg Landau equation
[7,16,26,27] or the Kuramoto-Sivashinsky equation [7]. Even when a pulled
pattern forming front is incoherent the linear dynamics in the leading edge is
described by the above equations. The dynamics in the leading edge is there-
fore still coherent: the incoherent behavior only sets in in the region where
the dynamics become truly nonlinear. Since the matching condition which the
nonlinear dynamics imposes on the linear leading edge dynamics is still the
same in this case [7,16], the above results even apply to incoherent fronts. How-
ever, the phase relaxation applies in that case only to the coherent dynamics
in the leading edge.

If the pattern forming front is coherent, the results apply throughout the whole
front region. More precisely, we call a front coherent if the asymptotic front
solution is time periodic in the co-moving frame ξ = x − v∗t, i.e. if there is
some period T such that

Φ(ξ, t+ T ) = Φ(ξ, t), where φ(ξ, t)
t→∞
= Φ(ξ, t). (47)

The dynamics of the leading edge actually determines this period to be

T = 2π/Ω∗, (48)

where Ω∗ is the frequency determined by the saddle point (1). This can be
easily read from Eq. (5) or from Eq. (35) and the knowledge that ψX(ξX , t)
becomes stationary for t→ ∞.

6 Of course, for uniformly translating fronts there is no phase, hence q∗ = 0 = Ω∗

and Im D = 0 in (46).
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Because of the temporal periodicity, we can generally write a coherent Φ in
the whole spatial domain as a Fourier series

Φ(ξ, t) =
∑

n=0,±1,...

e−inΩ∗tΦn(ξ). (49)

In our analysis [6] of fronts which converge to a uniformly translating front so-
lution, we explicitly showed that to order O(1/t2), the front shape relaxation
follows the velocity relaxation adiabatically. An extension of the analysis to
coherent pattern forming fronts shows that a similar result holds for these.
The reason is that when the front is converging to its asymptotic shape as
1/t, the temporal derivative terms in the dynamical equations only generate
terms of order 1/t2 in the asymptotic expansion, while the terms coming from
the adiabatic variation of v(t) and Γ(t) generate terms of order 1/t and 1/t3/2.
In other words, to order 1/t3/2 the only temporal dependence comes in para-
metrically via v(t) and Γ(t). Thus, for long times, coherent pattern forming

fronts relax to their asymptotic shape according to

φ(x, t)
t≫1
= Φv(t)(ξX, t) +O(t−2) with Φ(ξX , t) ≈ Φv(t)(ξX , t+ T (t)), (50)

where v(t) and Γ(t) are given by Eqs (45) and (46) above, and where T (t)
is the instantaneous period 2π/(Ω∗ + Γ̇(t)). In terms of the temporal Fourier
series this result can be written as

φ(x, t)
t≫1
=

∑

n=0,±1,···
e−in(Ω∗t+Γ(t))Φn

v(t)(ξX) +O(t−2) (51)

where the Φn
v are the Fourier transform functions of the coherent pattern

forming solutions 7 with velocity v and frequency Ω∗ + Γ̇. Thus the above
result expresses that the coherent front profiles follow this family of solutions
adiabatically, and that their velocity and frequency shift Γ̇ is set completely
by the dynamics in the leading edge.

7 Clearly, this result implies the existence of a two-parameter family of coherent
front solutions, parametrized by their velocity and frequency. It is argued in [7] that
this is the generic case, and that if such a two-parameter family of solutions does
not exist, there generically does not exist a coherent pulled front solution either;
the fronts will then be incoherent.
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4 Numerical study of the relaxation behavior of fronts in the Swift-
Hohenberg equation

We now illustrate the above analysis with numerical results obtained for the
Swift-Hohenberg equation (10). This equation has often been used [17,18,19,20,21,22]
as one of the simplest equations to illustrate the behavior of coherent pattern
forming fronts. Collet and Eckmann were the first to prove that fronts propa-
gating into the linearly unstable state φ = 0 are pulled; the analysis of section
2 applies too and therefore establishes this fact as well. In the simulations
of this equation presented here, we study the approach of the fronts to these
asymptotic pulled front solutions, starting from a Gaussian initial condition.
Note in this regard that while the Swift-Hohenberg is often studied for small ε
where the dynamics maps onto an amplitude expansion, our front convergence
analysis applies generally. We will illustrate this by taking finite values of ε.
Fig. 1 shows a φ-profile for ε = 0.5.

We first illustrate an important ingredient of our convergence analysis. As we
argued above, in the co-moving frame ξ = x− v∗t the leading edge variable ψ
defined in (30) should asymptotically behave as ξ/(t3/2)e−ξ2/(4Dt) [Cf. Eq. (38)].
To illustrate this for the Swift-Hohenberg equation, we show in Fig. 2 three
snapshots of the leading edge variable t3/2ψ̂(x, t) = eλ

∗(x−v∗t) φ(x, t) in a sim-
ulation for ε = 0.5; according to our analysis, the envelope of this function
should asymptotically behave as

(x− v∗t) e−(x−v∗t)2/(4Dt), with
1

D
≡ Re

1

D . (52)

Our numerical results in Fig. 2 fully confirm this behavior.

To test our convergence results, we have to extract the velocity v(t) and fre-
quency Ω∗ + Γ̇(t) from our numerical data. Because of the oscillating charac-
ter of the fronts, this is nontrivial in principle. We will do it in a pragmatic
way, replacing differentials by finite difference approximants: In our simula-
tion, we keep track of the local maxima of φ(x, t) and from these determine
the positions Xn and times tn at which the foremost maximum n reaches
a predetermined fixed “level” ℓ. From this we calculate the finite difference
approximants

vℓ(tn) =
Xn −Xn−1

tn − tn−1
, Ωℓ(tn) =

2π

tn − tn−1
. (53)

and then analyze whether indeed the convergence of these quantities to their
asymptotic values is consistent with the universal ℓ-independent behavior de-
rived above. The error of the finite difference approximants is of O(1/t2) only.
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Fig. 2. Three snapshots of the function t3/2ψ̂ obtained from our simulations of the
Swift-Hohenberg equation for ε = 0.5. The results confirm the asymptotic behavior
(52). Note in particular the diffusive broadening of the pattern: the one at time
t = 200 is twice as wide as the one at time t = 50.

For testing the convergence up to terms of O(1/t3/2), the discretization error
is therefore irrelevant.

In Fig. 3 we show two plots of the velocity relaxation data for two different
values of ε, namely ε = 0.5 and ε = 5. The various lines indicate the velocity
extracted for different levels ℓ. To probe the predicted behavior in detail, we
have plotted vℓ(t)−v∗−c1/t versus t−3/2. According to our prediction (45) this
velocity difference should asymptotically approach 0 along the dashed lines.
Similar plots for the frequency relaxation, obtained from the same runs, are
shown in Fig. 4. Clearly, all our numerical results are in full agreement with
the predicted behavior.

We finally study the convergence of the shape of the profile to its asymptotic
form. In principle, the information is contained in the expression (51) above,
but to make it explicit one would have to know all functions Φn

v . Since our
goal here is simply to check that the shape relaxation follows the velocity
and phase relaxation adiabatically, we circumvent this problem as follows. We
construct an effective (real) envelope A(ξX , t) of the front profile 8 in the co-
moving frame by tracking the positions of the maxima of φ(x, t) during one
effective period 2π/(Ω∗ + Γ̇(t)). In doing so, ξX is determined by requiring
that A(ξX = 0, t) = const. where the constant is chosen so that the level of
the effective envelope at this point is about half of its asymptotic value. The
implication of (51) now is that the convergence of the effective envelope A(ξ, t)
determined this way should, up to terms of O(1/t2), adiabatically follow the

8 Note that this real envelope A differs from the complex amplitude A of the pre-
vious sections.
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Fig. 3. Velocity difference vℓ(t)− v∗ − c1/t as a function of t−3/2 for ε = 0.5 (panel
a) and ε = 5 (panel b). The various lines denote, from top to bottom, the levels
ℓ = 0.0001
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Fig. 4. As Fig. 3, but now for the frequency relaxation Ω(t) = Ω∗ + Γ̇(t).

velocity and shape relaxation:

A(ξX , t) = Av(t),Γ̇(t)(ξX) +O(1/t2), (54)

so that

A(ξX , t)− A(ξX , t
′) =

δAv,Γ̇(ξX)

δv
[v(t)− v(t′)]

+
δAv,Γ̇(ξX)

δΓ̇
[Γ̇(t)− Γ̇(t′)] +O(1/t2). (55)

As in the discretization (53), the averaging over one period only affects the
terms of O(1/t2) in this expression.

Fig. 5 shows the effective envelope A(ξX , t) for the front from Fig. 1. The
figure confirms that even for this value, where the pattern behind the front
is rapidly oscillating, the effective envelope can be obtained accurately and is
smooth.

In Fig. 6 we present our analysis of the large-time shape relaxation of this
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Fig. 5. The front envelope A(ξX , t) for ε = 0.5 obtained as described in the text. In
this case, t = 160, and the front shape is obtained by averaging over one period that
lasts about ∆t = 2. Note the different horizontal scale in comparison with Fig. 1.
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Fig. 6. (a) The convergence of the effective envelope difference A(ξX , t)−A(ξX , 180),
as obtained from the numerical solutions illustrated in Fig. 5. (b) The ratio (56)
as obtained from the data shown in panel (a). The figure confirms that this ratio
converges to a time-independent function, in agreement with our predictions.

profile. Panel (a) shows the difference A(ξX , t)−A(ξX , 180), while in panel (b)
we plot the ratio

A(ξX , t)− A(ξX , 180)

1/t− 1/180
, (56)

which according to our prediction (55) should for large times become a function

of ξX only. It is clear that our numerical results fully corroborate this.
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5 Conclusion

In this paper we have presented two types of results. First of all, we have intro-
duced a simple line of analysis which allows us to prove for certain classes of
equations which include the Swift-Hohenberg equation, the Extended Fisher-
Kolmogorov equation and the cubic Complex Ginzburg Landau equation that
fronts are pulled. The method works for real or complex equations and fields
and is not restricted to nonlinearities like N (A) A = |A|2nA with integer n,
but also can treat nonlinearities that depend, e.g., on ∂xA. Important is that
the over-all sign of Re N can be determined.

Second, we have derived the universal slow convergence of the velocity and
phase of coherent pattern forming pulled fronts to their asymptotic value.
Numerical simulations of the Swift-Hohenberg equation are in full agreement
with these predictions. In another paper [16], we have shown that the results
for the velocity convergence also apply to incoherent pattern forming fronts.

We are grateful to Kees Storm for many useful discussions.
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A Derivation of Eqs. (45) and (46)

The derivation follows essentially the lines of [6], except that z is now a com-
plex rather than a real variable, and that there are additional terms due to q∗

and Γ̇. The task is to solve (43) with the ansatz (44) and with boundary con-
ditions (41) and (42). Actually, the analysis of the nonlinear region for finite
t contributes additional terms to (42) which will play a role in the calculation
of the subleading terms. The boundary conditions for ψX become

ψX(ξX, t) = αξX + β +
f1(ξX)

t
+O

(

f3/2(ξX)

t3/2

)

, (A.1)

ψX(ξX, t)
ξ2
X
/(4Dt)≫1−→ 0. (A.2)

Insertion into the ansatz (44) implies for the function G(z, t) that

G(z, t) =
√
t
[

2α
√
Dz +O

(

z3/2
) ]

+
[

β +O (z)
]

+
O (

√
z)√
t

+O
(

1

t

)

,

(A.3)

lim
z→∞

e−z G(z, t) = 0. (A.4)

These boundary conditions determine a unique solution for the functions
g1/2(z) and g0(z) and the constants c1, d1, c3/2 and d3/2 in Ẋ and Γ̇, as we will
derive below.

Inserting (44) into (43), we see that the dominant terms are of order t1/2.
Upon collecting these, we get

[

z
d2

dz2
+
(

1

2
− z

)

d

dz
− 1− λ∗c1 + i(d1 + q∗c1)

]

g−1/2 = 0. (A.5)

This homogeneous equation is an example of Kummer’s equation [28]

T̂ [a, b]g ≡
[

z
d2

dz2
+ (b− z)

d

dz
− a

]

g = 0, (A.6)

whose general solution is a superposition of the two confluent hypergeometric
functions

M(a, b, z) and z1−bM(1 + a− b, 2− b, z). (A.7)
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These functions are defined through the series

M(a, b, z) =
∞
∑

n=0

(a)nz
n

(b)nn!
, (A.8)

where

(a)n = a(a + 1) . . . (a + n− 1) =
Γ(a+ n)

Γ(a)
, (a)0 = 1. (A.9)

The asymptotic large-z behavior of the functions M for positive b is

M(a, b, z)
z→∞≃











Γ(b)
Γ(a)

za−b ez for a 6= 0,−1,−2,−3, · · · ,
(a)|a|z

|a|

(b)|a|(|a|)! for a = 0,−1,−2,−3, · · · ,
(A.10)

Let us return to Eq. (A.5) for g−1/2(z). The boundary condition (A.3) implies

g−1/2(z) = 2α
√
Dz +O(z3/2). (A.11)

Since M(a, b, z = 0) = 1, a contribution of the solution M(a, b, z) is excluded
through (A.11), and g−1/2(z) has to be proportional to z

1−bM(1+a−b, 2−b, z).
With boundary condition (A.3), we therefore get

g−1/2(z) = 2α
√
Dz M

(

3

2
+ λ∗c1 − i(d1 + q∗c1),

3

2
, z
)

. (A.12)

Furthermore, (A.10) shows that the Kummer functions M(a, b, z) diverge as
ez when the coefficient a is not zero or a negative integer, while they are simple
polynomials when a is zero or a negative integer since then the coefficients (a)n
vanish for n ≥ 1− a. An exponential divergence of g is not allowed according
to the second boundary condition (A.4); this fixes

1 + a− b =
3

2
+ λ∗c1 − i(d1 + q∗c1) = 0,−1,−2, . . . . (A.13)

For a detailed discussion of the solutions with 1+a− b = −1,−2, . . ., we refer
to [6]: essentially, these solutions are dynamically not relevant since they will
always be overrun by the solution with 1 + a − b = 0. As both c1 and d1 are
real, (A.13) with 1 + a− b = 0 implies

c1 = − 3

2λ∗
, d1 = −q∗c1 , (A.14)
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with the corresponding solution

g−1/2(z) = 2α
√
Dz. (A.15)

The terms of order t0 obtained by subsituting (44) into (43) are

T̂
[

1
2
+ λ∗c1 − i(d1 + q∗c1),

1
2

]

g0(z) =
[

−ik∗c3/2 − c1

√
z√
D

(∂z − 1)− id3/2

]

g−1/2(z)

−D3

√
z

D 3

2

[

3

2
(∂z − 1)2 + z (∂z − 1)3

]

g−1/2(z) (A.16)

−w
√
z√
D

[

1

2
− z(∂z − 1)− 1− ik∗c1 − id1

]

(∂z − 1) g−1/2(z).

The function g−1/2(z) on the right hand side of (A.16) is known from (A.15);
likewise c1 and d1 are known from (A.14). Substitution of these results gives
the following inhomogeneous equation for g0(z)

T̂ [−1, 1
2
] g0(z) = 2α

[

c3/2λ
∗ − i(d3/2 + q∗c3/2)

]√
Dz + 3α

2λ∗
(1− 2z)

+2α
D3

D
[

z2 − 3z +
3

4

]

+ 2α w
[

z2 − 3z +
3

4

]

. (A.17)

The general solution of this inhomogeneous equation is a particular solu-
tion plus the sum of two independent solutions of the homogeneous equation
T̂ [−1, 1

2
]g0(z) = 0. The latter can again be written in terms of Kummer func-

tions. It is easy to find particular solutions which reproduce most of the terms
on the right by noting that

T̂ [−1, 1
2
]
√
z= 1

2

√
z, T̂ [−1, 1

2
]1 = 1,

T̂ [−1, 1
2
]z= 1

2
, T̂ [−1, 1

2
]z2 = −z2 + 3z. (A.18)

With these terms, we can generate all the terms on the right hand side of
(A.16), except for the term linear in z. We can generate this term by noting
that the function

FN (z) =
∞
∑

n=N

(1)n−2 z
n

(

1
2

)

n
n!

(A.19)
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is proportional to a truncated Kummer seriesM(1, 1
2
, z) (see below) and solves

T̂ [−1, 1
2
]FN (z) =

zN−1

(

1
2

)

N−1
(N − 1)

, hence T̂ [−1, 1
2
]F2(z) = 2z . (A.20)

Using all the results (A.7), (A.18) and (A.20), we can write the general solution
of (A.17) as

g0(z) = k0(1− 2z) + l0
√
zM

(

−1

2
,
3

2
, z
)

+4α
[

c3/2λ
∗ − i(d3/2 + q∗c3/2)

]√
Dz (A.21)

+
3α

2λ∗

[

1− F2(z)
]

− 2α
(D3

D + w
) [

z2 − 3

4

]

.

where we used the fact that M(−1, 1
2
, z) = 1− 2z. The parameters k0, l0, c3/2

and d3/2 are again determined by the boundary conditions. First, the boundary
condition (A.3) implies for g0 that g0(z) = β +O(z). This gives with (A.21)

β +O(z) =
[

k0 +
3α

2

(

1

λ∗
+

D3

D + w
)]

+
[

4α
(

c3/2λ
∗ − i(d3/2 + q∗c3/2)

)√
D + l0

]√
z + · · · . (A.22)

The first term on the right determines the coefficient k0 in terms of α, β and
the other parameters, but this term is not needed in the sequel. The condition
that the prefactor of the

√
z term on the right vanishes gives

(

c3/2λ
∗ − i(d3/2 + q∗c3/2)

)√
D +

l0
4α

= 0. (A.23)

Second, the boundary condition (A.4) imposes also for g0(z), that the function
does not diverge exponentially for large z. There are two terms in (A.21) which
diverge exponentially: the Kummer function M , whose asymptotic behavior
is given in (A.10), and the function F2(z). It is easy to see that for large z, we
have

z2
d2F2(z)

dz2
≃M(1, 1

2
, z) =⇒ F2(z) ≃

√
πz−3/2ez . (A.24)

Therefore the requirement that the two exponentially divergent terms in g0(z)
cancel each other, translates into

l0
4α

+
3
√
π

2λ∗
= 0. (A.25)
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Upon eliminating l0/α from equations (A.23) and (A.25) we simply get

c3/2 =
3
√
π

2(λ∗)2
Re

1√
D
, d3/2 = −3

√
π

2λ∗
Im

1√
D

− q∗c3/2. (A.26)

The second contribution to d3/2 is just the contribution to the phase relaxation
which is induced by the relaxation of v(t). Upon substitution of these results
in the expansions (32) for X(t) and (34) for Γ(t) we get the results (45) and
(46).
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