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Abstract We discuss a simple model for  the relaxation 
of two interacting dynamical systems, based  on the 
Ehrenfests’ wind-tree model. It is still exactly solvable 
if Boltzmann’s Stosszahlansatz is assumed to hold. 

Samenvatting We bespreken een eenvoudig  model 
voor de relaxatie van twee  dynamische systemen met 
interactie,  gebaseerd op het wind-bos model van P en T 
Ehrenfest.  Onder  aanname van de geldigheid van de 
Stosszahlansatz is ons model nog steeds exact oplos- 
baar. 

1 Introduction 
In many instances simple models offer great  help in 
understanding the basic phenomena of physics. In 
the following we shall describe  a generalisation of 
the Ehrenfests’ wind-tree model in order  to study 
the approach to equilibrium of two interacting 
dynamical systems. This generalisation exhibits 
some  interesting  features, which are not present in 
the original model. 

The wind-tree model was introduced by Ehren- 
fest and  Ehrenfest (1911) in their famous review 
article on the foundations of statistical mechanics. 
Its main objective was to clarify which assumptions, 
made in the derivation of the Boltzmann equation, 
introduce the irreversibility in this equation. In the 
model a gas of ‘wind particles’ moves in between a 
random array of square ‘trees’. The trees are all 
fixed with the  same  orientation, whereas the wind 
particles move with constant speed tr in the  four 
directions  parallel to  the diagonals (see figure 1). 
There is no interaction  between the wind particles, 
so that  the direction in  which they move is only 
changed by collisions with the trees. 

t Address  from 1 October 1980: Theory division, 
CERN,  Geneva, Switzerland. 
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Figure 1 Square ‘trees’ of the Ehrenfests’  model, 
which scatter ‘wind’ particles (broken  line). 

The  rate equation for N,, the average  number of 
wind particles moving in the  ith direction, is? 

where 2a is the length of the diagonals of the trees, 
Z is the number of trees, and R is the  free  area 
between the trees$. 

One arrives at  equation (1) only if all correlations 
and memory effects are neglected: it  is as if after 
each collision the wind particles are again randomly 
distributed, the only restriction being that each 
wind particle continues to move in the same direc- 
tion as just before the redistribution. This of course 
amounts  to  the Stosszahlansatz; it limits the valid- 
ity of equation (1) to  the regime where  the  total 
area occupied by the trees is small compared with 
R, that is 

2a2Z << R. (2) 
Only then will the effects of ‘ring collisions’ and 
possible overlap of trees8 be negligible. The Stoss- 
zahlansatz accounts for  the irreversible approach 

t The indices are used modulo 4. Hence N ,  = N ,  and 
No=N4 if i = 4 and 1 respectively in equation (1). 

$’ The quantity 2 au dt is the collision cylinder for a  par- 
ticle moving in a  particular  direction. Therefore the 
probability of hitting a tree in a  time  interval dr will be 
2au dr/R. When there  are Z trees  and Ni particles 
moving in the  ith direction, the first term in brackets is 
due  to  the loss of these  particles  through  scattering, 
while the  other two terms are  due  to  the gain of parti- 
cles moving in this direction. 
8 These  effects become increasingly important at higher 
densities  for they cause the breakdown of a density ex- 
pansion for the diffusion coefficient. For  a more elabo- 
rate discussion of this  point within the context of an 
Ehrenfest wind-tree model we refer to Hauge and 
Cohen (1969). 
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to  equilibriumt. 

approach to the equilibrium state where 
Although  equation (1) may be solved easily, the 

N"4 - N;4 = Ne3q = w4q = 1 -  (3 )  
N being the total  number of wind particles, may 
also be  derived by introducing Boltzmann's H 
function.  This function is defined here by 

4 

H,,,= N, In N ~ .  (4) 
L =  I 

With the aid of equation (1) and  the inequality 

(x - Y 1 ln(x/y) 3 0 (x, Y > 0)  (5) 
it is straightforward to show that 

dH,,,/dt GO, (6) 

where the equality sign holds in the equilibrium 
state.  Thus  the approach to equilibrium is estab- 
lished without the need to solve equation (1) ex- 
plicitly. 

The generalisation of the model to be discussed 
leads to the following new features: 
(i) The relaxation depends explicitly on the initial 
conditions. For instance, if special initial conditions 
are chosen, the behaviour of some of the Ni is 
governed by a Gaussian exponential. 
(ii) Contrary to what one finds in the original 
Ehrenfest model, the N, may approach  their 
equilibrium values non-monotonically. 
(iii) In the H function the inclusion of a non-trivial 
term  for the trees is required. 

2 The generalised model 
We consider a generalisation of the wind-tree 
model in  which there  are, besides the  trees of the 
usual Ehrenfest model (which we call trees of type 
I), trees  that are rotated  through 45" (trees of type 
11; see figure 2). Thus trees of type I scatter wind 
particles from the direction i into  perpendicular 
directions i + 1 and i - 1 (modulo 4) and hence give 
rise to an equilibration of wind particles in  all 
directions. On  the  other  hand, trees of type I1 
scatter  them into  the opposite direction i + 2  and 
tend  to equilibrate only the directions 1 and 3, as 
well as 2 and  4, separately. Finally we endow the 
trees with a simple dynamical rule:  each tree ro- 
tates through 45" immediately after it has been 
struck by a wind particle. Consequently  a tree of 
type I transforms into a tree of type I1 and vice 
versa. 

To start  our analysis, we notice that the equilib- 
rium values for  the average  number of wind parti- 
cles moving in each direction will again be given by 
equation (3). This follows from symmetry consider- 
ations  and the principle of detailed  balance. The 

tThe  Ehrenfests (1911, note 62) point  out  that  the 
Srosszahlansatz cannot  hold for both  the  direct  and  the 
inverse  collisions. 

Figure 2 The two types of 'trees' of the general- 
ised model, which scatter wind particles differ- 
ently. 

average  numbers of trees of type I and type 11, ZI 
and ZII respectively, are also determined in equilib- 
rium by the principle of detailed balance. Taking 
into account that  the scattering cross section of 
trees of type I1 is smaller than that of trees of type I 
by a  factor &!, we find 

z;p/z;q = Jz. (7) 

The  rate equation  for the wind particles becomes 
(cf equation (1)) 

with 

A = fl/2av. (9) 

Notice that as A is the average  time  after which one 
particular wind particle  strikes one particular tree 
of type I, ZJA and ZII/&A are  the collision fre- 
quencies of that wind particle on trees of type I and 
I1 respectively. 

Since the rotation of a tree takes place irrespec- 
tive of the direction in  which the colliding wind 
particle moves, the  rate equation  for the trees 
depends only on the total  number of wind particles 
N. Because this number is conserved, as is the total 
number of trees Z,  the  rate equation  for the trees 
becomes linear: 

z1 + ZII = z. (1 1) 

These last equations immediately yield 

Z1(t)=Z;"+(Z,(O)-ZEq)exp(-tlT), (12) 

with 
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T = A/(l+g2)N, (13) relaxation  time is determined by the value of Z,(O): 

zp  = Z/(1 +A). (14) 

Indeed Z, approaches the equilibrium  value given 
by detailed balance (equation (7)) with a relaxation 
time proportional to A divided by N ;  this ratio is 
essentially the average  time  between two  collisions 
on a tree. For convenience,  from now  on  we will 
choose T as our unit of time. 

The solution  (12)-(14) can be substituted into 
equation (8), which  can then  be  solved as  well.  This 
leads to 

Ni(t)   =$N+;a, exp(-G(t))+fpi exp(-H([)), 
(15) 

with 

G(t)=(3&-4)-  (3f- 
z Z,(O) - z;" 
N Z 

H ( t )  = ( 6 ~ 5 - 8 )  - ( t +  
z Z,(O) - z;' 
N ZP [l-exp(-t)l). 

(17) 

Here the constants ai and pi are determined by the 
initial conditions: 

a, =Ni(o)-Ni+2(0) ,  (18) 

0, = N, (0) + Ni+2(0)  -;N. (19) 
From equations (15)-(17) it follows that the rate of 
relaxation of the wind particles  towards  equilibrium 
depends on the initial  distribution of the trees, as 
well  as  on the density of the gas  of  wind particles 
relative to the trees, N/Z. 

We  will  now  discuss the properties of the solu- 
tion, described by equations (15)-(19). One can 
distinguish  two  regimes: the dilute gas regime, 
when N / Z  1; and the dense gas regime, NIZ >> 1. 
In the dilute gas approximation the wind particles 
have a relaxation  time much shorter than  that of 
the trees, because  each wind particle  has  already 
been scattered often before an appreciable  number 
of trees is hit. In this  case one may take t<< 1 in 
studying the relaxation of the wind particles (re- 
member  that we measure  time in units of the 
relaxation  time T of the trees). Hence (using equa- 
tion (14)) 

This leads to the usual  decay  law  for the Ni( t ) ,  a 
linear combination of exponentials. The leading 

71 I 7 2  ++ Z,(O) I Azp. (22) 

An exception  occurs when Z,(O)= 0. In this  case 
the linear  approximation (21) for H([) breaks 
down,  and one finds a leading tZ  term in H ( [ ) :  

H ( t ) ~ ( 3 f i - 4 ) - t Z ~ y t 2 ,  t<< 1. (23) 
Z 
N 

If one has, for example, 

NI(0) = N, NZ(0) = N3(0) = N4(0) = 0 ,  (24) 

one finds a Gaussian  time dependence for N2 and 
N4: 

N2(t) = N4(t) = $N[1-exp(-yt*)]. (25) 

The reason  for  this  is that initially no wind particles 
are scattered into the directions 2 and 4 if all trees 
are of type 11. 

The dense gas approximation, on the other hand, 
is characterised by the relatively  slow  approach to 
equilibrium of the wind particles. In this  case  they 
move after a small transient time of order T be- 
tween trees that have  reached their equilibrium 
distribution. We then find (take t >> 1 in equations 
(16) and (17)) 

G(t)=(33-4)--(-  N z Z,(O)-zp Z 

[>>l, (26) 

H( t )=(63-8) - (  N z Z,(O)-ZP 2;' 

t > > l .  (27) 

The presence of the constant  terms C, and C,, 
which rescale a, and pi by factors exp(-Cl) and 
exp(-C,)  respectively?, is the only reminder of 
this  small transient regime. The relaxation  times now 
have a fixed ratio 

71 = $7,. (28) 

An interesting property of the solution  (15)-(19) 
is that  it allows for non-monotonic  relaxation. Con- 
sider, for example, the case  described by the initial 
conditions (24). Substitution into equations (15)- 
(19) leads in particular to 

N3(f)=iN-1 ,N exp(-G(t))+fN exp(-H(t)). 
(29) 

?Notice that the qualitative behaviour of C ,  and C,  as 
a function of the initial conditions may also  be under- 
stood easily. As C, rescales ai = Ni(0) -Ni+,(0), 
exp(-C,)  should  be  smaller,  the larger the initial frac- 
tion of  type I1 trees was (for  these trees in particular 
equilibrate N, and N i + J .  On  the  other  hand, pi = 
Ni + Ni+? -hN will be  reduced  the  more, the larger the ini- 
tial fractlon of type I trees  was.  Equations  (26) and (27) 
agree with this qualitative picture. A similar explanation 
may be given for the qualitative behaviour in the  other 
regime,  as  expressed by equations  (20)-(22). 
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Although initially N3 is equal to zero, it can exceed 
its  equilibrium value according to equation  (29) if 

G(t)-H(t)>ln2. (30) 

Using the explicit expressions (16)  and  (17) for G 
and  H, it  is straightforward to show that this condi- 
tion is always satisfied for large  times, irrespective 
of the initial distribution of the trees.  This  behaviour 
is exemplified for  the case NIZ = 1 in figure 3. We 
emphasise that this ‘overshoot effect’ can exist even 
when the trees are not allowed to  rotate but have a 
fixed distribution. Thus this effect can arise in linear 
Ehrenfest  modelst. 

2 - 
2- 

0.4 

0.2 

0 

0 2 L 6 
f 

Figure 3 Time  evolution of the fraction of wind 
particles moving in direction i = (1,2,  3,4) for the 
initial conditions N1(0)  = N,  N2(0) = N3(0) = 
N4(0) = 0 ;  Z,(O) = 0,  ZI,(0)  = Z ;  with N/Z = 1. 

Finally we discuss the approach to equilibrium of 
the combined system within the context of 
Boltzmann’s H function. Our model is not time- 
reversal  invariant,  because we defined our  trees  to 
rotate after each collision. This  leads to a modifica- 
tion in the definition of H. The H function is  an 
additive  quantity and can be written as 

H = H,+H,. (3 1) 

For H,.,, which  is defined in equation (4),  the in- 
equality (6) can, with the aid of equation (8), still 
be shown to hold. H, is the contribution of the 
trees. The non-monotonic  decrease of H is  now 
established if 

dH,/dt S 0. (32) 

The following form turns out  to be  appropriate: 

H,  = Z ,  ln(&z,) + zII In z,,. (33) 

Indeed, with the aid of equations  (lo), (11) and 
(15) we  find 

The presence of the factor in the definition (33) 
is due to the different scattering cross sections of 
the two types of trees,  and reflects the violation of 
time-reversal invariance. 

3 Concluding remarks 
Finally, we comment on the possible relevance of 
the model.  It  illustrates nicely how relaxation 
phenomena may depend on the initial conditions. 
However, it does not possess time-reversal in- 
variance, as it is not a purely mechanical model. 
Therefore it seems more fit to describe  phenomena 
such as chemical reactions. 

Of course one can generalise the model still 
further in several ways. However,  a few simple 
extensions we investigated did not lead to qualita- 
tively different results. 
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