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When differential real-space renormalization-group theory was proposed by Hilhorst,

Schick, and van Leeuwen, they suggested that their approach could only be applied to lattice
models for which a star-triangle transformation exists. However, differential

renormalization-group equations for the square Ising model have recently been proposed
whose derivation does not involve the star-triangle transformation. We show that the latter

equations are not exact renormalization-group equations by an analysis that reveals some

essential limitations of the present formulation of differential real-space renormalization.

We investigate the structure of the renormalization-group flow equations obtained in this

method and uncover a strong property of these equations that simplifies the calculations in

actual applications of the theory. However, the status and implications of this property,
which embodies the crux of the theory, are not yet fully understood.

I. INTRODUCTION

In the well-known block-spin renormalization-

grouy methods, ' one groups together a whole block
of I site spins (where d is the dimensionality and I
is the linear dimension of the block in units of the
lattice parameter). This block of site spins is then
essentially represented by one single cell spin so that
the number of degrees of freedom on the renormal-
ized lattice is only a finite fraction 1 ~ of the num-

ber of degrees of freedom on the original site spin
lattice. In such cases each successive renormaliza-
tion step can be represented by a finite jump in the
parameter space. The observation that one will ob-
tain flow equations in differential form for a renor-
malization transformation in which only an infini
tesimal fraction of the spins is thinned out underlies
the so-called differential real-space renormaliza-
tion-group (DRSRG) theory of Hilhorst, Schick,
and van Leeuwen (HSL). In their method a lattice
L of (N+ 1) spins is mapped onto a similar lattice
L' of N spins, so that for large N the renormalized
lattice L' contains only a fraction
(N + 1) /N —1 =d /N less than L, the original one.
By taking the thermodynamic limit N~ ao, the re-
normalization flow equations can then be cast in dif-
ferential form.

HSL showed that this program can be carried out
explicitly for an Ising model on a triangular lattice.
They thus obtained exact DRSRG equations for the
triangular Ising model. The linearized flow around

the fixed point they found was consistent with the
well-known exact results for the Ising model.

As was noted already by HSL, the so-called star-
triangle transformation (STT) for Ising models, 3 il-
lustrated in Fig. 1(a), appeared to be an indispens-

able tool in DRSRG. Indeed, later applications of
DRSRG to the d-dimensional Gaussian model,
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FIG. 1. (a) STT transformation for the Ising model
converts the star of three nearest-neighbor interactions
(solid lines) to a triangle of interactions. The inverse
transformation always exists. (b) The star-square
transformation converts the star of four interactions to a
square with nearest-neighbor, next-nearest-neighbor
(dashed diagonal lines), and a four-spin interaction (dotted
circle). The inverse transformation generally does not ex-
ist.
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g(p [K ])=g(p«[K' ]» (2)

where I is the scaling length of the transformation.
Equation (2) shows that for this transformation the
correlation function is independent of the distance p
at the fixed point K since g(p, [K~"])=g(p/l, [K ]).
This result is in contradiction with the critical
behavior of most lattice models that have a phase
transition at finite temperature.

The above arguments do not immediately apply to
DRSRG, since in this theory the interaction param-
eters are dependent on the position on the lattice,
and the scaling of the length enters in a different
way. After having summarized the essentials of
DRSRG in Sec. II, we therefore extend the above
ideas to the case of DRSRG by discussing the
behavior of the correlation functions of spins that
remain fixed during the transformation. As in the
case of block-spin methods, the analysis rules out a
certain class of transformations because of incon-

the q-state Potts model in the limit q~0, and even
to the square Ising model relied heavily on the STT
or a generalization thereof. All these applications
therefore seem to substantiate HSL's surmise that
DRSRG is useful only for lattice models to which
the STT can be applied. In this light it appears
worthwhile to investigate a recent suggestion that
the square Ising model can be analyzed within the
framework of DRSRG without invoking the STT at
all. In this paper we argue, however, that this pro-
posed transformation is not a proper renormali-
zation-group transformation, and more generally
point out some of the inherent limitations of
DRSRG, as presently implemented.

The problem with the suggested renormalization-
group transformation is related to one that arises in
certain block-spin transformations. As discussed,
e.g., by van Leeuwen, ' block-spin methods that re-
sult from summing over part of the site spins sp
while keeping a subset s of them fixed are often in-

consistent with the known behavior of the correla-
tion function of the model under investigation.
Such transformations, often called decimation
transformations, are defined in terms of the site spin
Hamiltonian H(se, so ) (with interaction paraineters

K;) and the renormalized Hamiltonian H'(se) (in-

teractions K~') as
—PH'(s) —PH(sg sp )

e =pe (1)
Isp I

where the summation is over the states of the spins
so. If one denotes by g(p, [K;]) the correlation
function of two spins s a distance p apart on the

site spin lattice, then it follows immediately from
Eq. (1) that

sistencies, including the one proposed by Jezewski;
moreover, it will support the original suggestion of
HSL (Ref. 2) that the STT is indeed essential in
their formulation of DRSRG.

Though it is easy to assess why the approach of
HSL cannot be implemented in certain cases, the
reason why the theory is successful in other cases is,
in our opinion, not fully understood. In fact, there
is a simple but quite strong property of the general
DRSRG flow equations that embodies the crux of
the theory but whose status and implications are still
unclear. Our analysis of the square Ising model'
was already based on this property, but its discus-
sion was obscured by the detailed calculations. It is
therefore rederived in a simpler and more general
way in Sec. IV, and we hope that its clarification
will indicate how the theory can be adapted so as to
make it more generally applicable.

II. RECAPITULATION OF DRSRG THEORY

L" being the renormalized of L', etc. In the
transformation of HSL this requirement is fulfilled
since steps Ia, Ib, and II of Fig. 2 can be performed
for any given starting lattice. Indeed, it is instruc-
tive to summarize the renormalization-group
transformations of HSL symbolically by

LH LH LH

/ 4/414 (4)

In this section we retrace the two main in-

gredients of DRSRG by recalling briefly the deriva-
tion of the equations for the triangular Ising
model. " The transformation of HSL consists of
two steps (see Fig. 2):

I. A transformation of a triangular Ising lattice
LT with 1/2N(N + 1) spins [closed circles, Fig. 2(a)]
into a hexagonal lattice (Fig. 2(b)] and then back
into a triangular lattice LT of 1/2N(N 1) spins-
[open circles, Fig. 2(c)]. In this step the STT as well
as the inverse STT are employed.

II. A uniform rescaling of the coordinate system
with respect to the center 0 so as to make the new
renormalized lattice Lr [Fig. 2(d)] of the same size
as the old one.

Steps I and II together form the basis of DRSRG
theory. At this point it is worthwhile to recall the
well-known fact that renormalization-group theory
requires that each renormalization step be repeat-
able. This means that starting from a lattice L one
should be able to construct the whole renormaliza-
tion sequence

L ~L' —+L"~L'"~
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(a)

STEP Za

2. . N+1

(b) STEP Zb

could show that if the functions K,(r) also satisfy
appropriate boundary conditions the difference be-
tween K,

' (r ) and K;(r ) is only of order I /N (the lat-
tice parameter) everywhere on the lattice. In the
thermodynamic limit 1/N=5t —+0 their renormali-
zation-group equations therefore become of the
form

BK;(r,t) = g DJ(K~(r, t),K2(r, t)K3(r, t))
Bt j

STEP II VKJ(r, t) r V—K;(.r, t) . (5)

(c)

(e)

FIG. 2. Renormalization transformation of HSL for
the triangular lattice. Units are such that the total length
of an edge of LT in (a) is 1, so that the lattice constant is
1/N. In step Ia the lattice LT is transformed into a hex-

agonal lattice L~, using the inverse STT. In step Ib the
STT is applied to the spins indicated by closed circles on

LH, yielding the lattice LT. Finally the renormalized lat-
tice Lz is obtained from LT by an overall stretching. The
next hexagonal lattice in the sequence is shown in (e).

The hexagonal lattice L& is also drawn in Fig. 2.
Of course, the upper set of lattices

constitutes equally well a proper
renormalization-group transformation as does the
set of triangular lattices LT,LT, LT", . . . .

HSL observed that even if they started with
homogeneous interactions K; on the lattice L~
(homogeneous meaning independent of the position
r on the lattice), then on the lattice LT the renor-
malized interactions K near the edge were in gen-
eral quite different from those in the bulk. HSL
therefore concluded that it was necessary to formu-
late their theory for lattices with inhomogeneous in-
teractions. The analysis of such lattices simplifies if
the spatial dependence of the interactions is slowly
varying over distances of the order of 1/N. HSL

These equations are defined on a triangle with edges
of length 1. Equation (5) expresses dK, /dt, the
change in the E; by one renormalization step in the
limit N~ao, in terms of two contributions. The
first, involving D j results from the local restructur-
ing of the lattice (step I}. This restructuring is an
identity transformation for homogeneous lattices
(VK~ ——0), but yields changes of order I/N if
VK,&0. Note that D;J, for which HSL had an ex-
plicit expression, does not depend on r or the "time"
t. This is due to the fact that step I is the same
everywhere on the lattice and during every repeated
renormalization. The scaling of the coordinates
(step II of DRSRG) does depend on the position r
on the lattice, and it gives rise to the term —r VE;
in Eq. (5).

As mentioned above, Eq. (5) must be supplement-
ed by the boundary conditions which ensure that the
transformation stays infinitesimal at the edges too.
However, we will not specify these, since they play
no role in the following discussion.

III. BEHAVIOR OF THE CORRELATION
FUNCTIONS IN THE DRSRG

We will now extend van Leeuwen's' argument
concerning decimation transformations, summarized
in the Introduction, to DRSRG. The analysis for
DRSRG differs from the one for block-spin
methods for two reasons. Firstly, as discussed
above, one now deals with lattices with inhomogene-
ous interactions. Secondly, whereas in block-spin
methods the distance p between spins, measured in
units of the lattice parameter, decreases a factor I
upon each renormalization step, this distance
remains unchanged in DRSRG, even though the
spins are situated at a different position r after re-
normalization (see below).

We first analyze the behavior of the correlation
function in the transformation of HSL. As shown
in Fig. 2, the triangular lattice Lr (spins se} and Lr
(spins so) have no spins in common. However, the
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hexagonal lattices LH and L~ do have the spins so
in common. This does pot lead to inconsistencies,
since unlike the decimation transformations in
block-spin methods summarized by (2), the spins so
all disappear in the next transformation to the lat-
tice LH. It is nevertheless instructive to analyze
how the analog of Eq. (2) would read if all lattices
LH g,H g,H', . . . , would have spins so in common.
Consider, e.g., the spins so labeled 1 and 2 on LH
and LH. On both lattices they are next-nearest
neighbors, and their distance in units of the lattice
parameter is therefore the same on LH and LH.
Their position is changed, however. If we denote
their center on L& by r„ then their center on LH is

r, (1+ I/N) We .therefore get for the correlation
function g&z of these spins [cf. Eq. (2)]

3 ag„(K"„K",,K", }

BK"
r

gh gh( r g)i i c~

t}K;"(r„t)
at

+ r, VK; (r„t) =0 . (7}

This equation expresses the fact that the change of
these particular correlation functions under renor-
malization would be due only to the change in the
interaction parameters caused by the scaling of the
coordinate system in step II. Note that for the case
of Fig. 2 the second term between brackets in (7)
never vanishes. This is due to the fact that there are
no spins so on LH, whose center r, coincides with
the origin 0 [see Fig. 2(b)],'4 so that the center of
the pair of spins so is always on a different place on
LH than it was on LH.

g &2 ( I K~"( r ) ];r, }=g ~2 ( I
K;"' ( r ) j;r, ( I + I /& ) ) .

(6)

Here K;"(r) and K;"'(r) denote the interaction
parameters on the hexagonal lattices LH and L~,
respectively. The correlation functions in Eq. (6) de-

pend on the interaction parameters on all positions
r. However, as was discussed for the linear Ising
chain by van Saarloos et al. ,

' one can make a con-
nection with the correlation function of homogene-
ous Ising models by assuming thatp~q only depends
on r, through the values of the K+ (r) near r„and
is independent of the gradients V~K," (this assump-
tion is investigated in more detail in Sec. IV). Fol-
lowing the ideas of DRSRG discussed in Sec. II, one

may then expand the interaction parameters in g12
around their values at r, and take the usual limit

N~00. In cases that the spins so do survive in

successive renormalization steps, one then finds

from Eq. (6) with the above assutnptions

Let us consider what would happen if there would
exist pairs of spins s o on LH, L~, LH, . . . , for which

r, =0. For those, Eq. (7) would have read instead

3 ag(K,"(O,t),K,"(O,t),K",(O, t)) W;(O, t) =0
w;"(o, t) at

if r, =0
which implies that the correlation function of pairs
for which r, =0 remains always unchanged under
renormalization. That is, of course, in contradiction
with the general picture of renormalization-group
theory that the correlation function changes and
that the correlation length decreases as one moves
away from criticality. The above discussion may
therefore be summarized by stating that DRSRG
can never be exact if both the original and all the re-
normalized lattices have a sublattice in common that
contains spins whose center remains unchanged
under the rescaling of the coordinates of step II.

As an application of these considerations, we now
investigate the proposed transformation for the
square lattice, based on the so-called "star-square"
transformation. ' ' The latter is illustrated in Fig.
1(b}, and results from summing over the states of
the Ising spin on the center of the star. This gen-
erates nearest-neighbor, next-nearest-neighbor, and a
four-spin interaction between the remaining spins at
the corners. As these seven interaction parameters
all depend on the four nearest-neighbor interaction
parameters of the star, they are not all independent.
Consequently, while it is always possible to perform
a star-square transformation, the inverse transfor-
mation is only possible in special cases in which the
nearest-neighbor, next-nearest neighbor, and four-
spin interaction satisfy certain relations.

Consider now the square Ising lattice of Fig. 3(a)
with nearest-neighbor interactions only. By sum-
ming over the spins s, the star-square transforma-

tion yields the lattice L, of Fig. 3(b), while summa-
tion over the spins s+ of L, yields the lattice L, of
Fig. 3(c). This transformation symbolically reads

L1

S

To arrive at a renormalization-group transformation
along these lines, (9) does not suffice since we must
construct the whole renormalization sequence such
as in (4). This means that it should be possible to
transform L, of Fig. 3(c) into another smaller lattice
such as in Fig. 3(d). If that could be done, the
scaled lattice of Fig. 3(e) would be the renormalized
of L„and we would apparently have obtained a
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Ls

(b) Ls

h

I

+/ i+& x+/

sidered by HSL, two related lattices exist because
the STT can be applied in upward-pointing triangles
(step Ia of Fig. 2) as well'as in downward-pointing
triangles (step Ib}. This, however, is possible be-
cause only nearest-neighbor interactions are in-
volved. The fact that generalizations of the STT
generally also give rise to higher-order interactions
is the main problem preventing their use in
DRSRG.

We have based our interpretation of Eq. (6) on the
assumption that the correlation function is indepen-
dent of the gradients V K~. In all applications of the
theory to date, these gradients are eliminated in a
similar way at some point. In the last section we
analyze when this is possible.

(e)

L2
S(c)

p
I

i'

IV. ELIMINATION OF THE GRADIENTS
FROM THE LINEAR FLOW

In this section we suppose that a proper DRSRG
transformation has been found for a given model
with interaction parameters Ki, . . . , K„and discuss
one of the limitations revealed by the structure of
the resulting renormalization-group flow equations,

BK;(r,t) = g D;,(K, (r, t), . . . , K„(r,t))
at

FIG. 3. Transformation for the square Ising model dis-
cussed in the text.

.VKJ(r, t) rVK;(r—,t) . (10)

DRSRG transformation for the square lattice.
However, the crucial transformation from the lattice
of Fig. 3(c) to the one of 3(d) can, in general, not be
performed, since the inverse of the star-square
transformation does not exist. ' Moreover, our pre-
vious argument immediately shows that the very ex-
istence of such a transformation is, in fact, in con-
tradiction with the renormalization-group picture it-
self. For if the transformation to the lattice 3(d) and
3(e) could exist, then one finds that the sublattice of
spins indicated with closed circles reappears after re-
normalization in every step. On this sublattice there
are spins whose center coincides with the origin
(e.g., the spins 1 and 2 in the figure). As we dis-
cussed above, Eq. (8) applies to such spins, implying
that the transformation as proposed in Ref. 9 cannot
lead to a proper (exact) DRSRG scheme.

Our analysis fully supports the original suggestion
of HSL that the STT is the essential tool for
DRSRG. Indeed, the basic dilemma of the theory is
that, on the one hand, one should compare lattices
of nearly the same size, while on the other hand,
these lattices may not have pairs of spins in com-
mon whose center has not been shifted by the scal-
ing. Moreover, every lattice should have two related
lattices, a "parent" and a "child. " For the case con-

This generalization of Eq. (5) to the case of n in-
teraction parameters is the prototype DRSRG flow
equation. ' We will assume that these equations are
valid in some domain in d dimensions. As before,
we will not specify the boundary conditions to be
satisfied by the functions K;(r, t), as they play no
role in the subsequent analysis.

Not only does DRSRG deal with lattices with in-

homogeneous interactions, but the inhomogeneities
are, in fact, the basic feature of the theory since the
flow in the parameter space (an infinite dimensional
function space) is driven by the gradients in the
functions K;(r}. It is therefore rather surprising
that DRSRG theory can be used at all to calculate
the exact (temperaturelike) critical properties of
homogeneous systems (no gradients). Moreover, the
conditions under which this is possible can easily be
assessed by making explicit some of the ideas that
underly the origina1 work of HSL. We will now
derive this condition and point out some of its im-
plications.

Again we first recapitulate a result of HSL. By
using the dual symmetry of the DRSRG equations
for the triangular Ising model with interaction
parameters K&, K2, and K3, HSL could show that
the subspace of functions
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C=—I (K, ( r ),K2( r ),K&( r ) )
~
sinh[2Ki ( r )]sinh[2Ki( r )]+sinh[2K2( r )]sinh[2Ks( r )]

+sinh[2Ki(r)]sinh[2Ki(r }]=1]

was invariant under the flow. This means that if
K—:(Ki(r), Ki(r), Ki(r)}GC initially, than KEC
at all later times. Since the homogeneous triangular
Ising model is critical whenever

sinh(2K i )sinh(2K& )+sinh(2K& )sinh(2K& )

85K; BD;

Bt .k BKk

+ g (D~'J 5;J r—) V 5EJ .
j

(12)

Bc

BK; c=0

It is easy to show' that the assumption that C is in-
variant under the flow (10) implies that g; is a left
eigenvector of Dj',

8

g g;(Ki, . . . , K„)D~(Ki, . . . , K„)

=pg~(Ki, . . . , K„) for all KEC . (11)

Since g; and Dti are in any application known func-

tions, p can, according to (11), be calculated as the
eigenvalue of the left eigenvector g; of the finite ma-
trix D,j. Moreover, we see that p cannot depend on
r explicitly since neither g, nor D;J does. Hence

p =@(Ki(r), . . . , K„(r)), an explicit function only
of the K;.

The linearized flow equation for arbitrary pertur-
bations 5K, around an arbitrary fixed point K (r)
reads

+sinh(2K')sinh(2K i )=1,
inhomogeneous triangular lattices for which K6C
are "locally critical" everywhere; HSL therefore as-
sociated C with the critical subspace of their flow
equations. Similar subspaces of lattices that are lo-
cally critical everywhere were found in all other ap-
plications of DRSRG. We therefore now assume
that whenever one can apply DRSRG to a given lat-
tice model which is known to be critical if
c(Ki, . . . , K„}=0, then one can also show that the
subspace

C= [(Ki(r), . . . , K„(r))
~
c(Ki(r), . . . , K„(r))=0]

is an invariant subspace of the flow equation (10). C
is associated with the critical subspace of Eq. (10),
and fixed-point solutions will be supposed to lie in
C.

Let us consider at fixed position r the vector g;
orthogonal to the surface c(Ki(r), . . . , K„(r))=0,

The critical properties at any fixed point are
governed by the flow away from criticality, i.e, the
flow in the direction of g';. For this component of
the flow we find from Eq. (12),

, am, , aoj
VK,'5K,

i
-+Q

+ $ f";(D~J r5,i) V—5KJ.

V'Kj5Kk

+ gg~(p, ~ r) VSK—J, (13)

p(Ki(r), . . . , K„(r))=r for all r . (14)

In this case the first term on the right-hand side of
Eq. (13) gives an explicit expression for the thermal
eigenvalue yT [Eq. (6.11) of HSL] which can be in-
terpreted as the eigenvalue of the homogeneous lat-
tice.

Equation (14) is an important relation: Not only
does it enable us to investigate the general properties
of the DRSRG flow equations, but it also simplifies
the calculations enormously in a given application.
For instead of solving the intricate partial differen
tial equations for the fixed-point solution obtained
by putting the left-hand side of Eq. (10) equal to
zero, we may directly arrive at the useful fixed-point
solution by solving the algebraic equations (14) to-
gether with

c(Ki (r), . . . , K„'(r))=0 . (15)

The latter equation expresses the fact that K~ should
lie in the critical subspace C.

However, besides simplifying the mathematics,

where we used Eq. (11) in the second line. Equation
(13}shows that the linear flow away from criticality
depends in general on the gradients 75K; and is
therefore nonuniversal. However, it is independent
of the gradients if and only if there is a fixed-point
solution satisfying
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the above procedure to obtain the proper fixed-point
solution by a short cut has interesting conceptual
implications too. Since p does not depend on r ex-
plicitly, Eqs. (13) and (14) always constitute d+1 in
dependent equations, where d is the spatial dimen-
sion. Obviously, for these equations to be solvable,
it is necessary that n&d+1. Thus in DRSRG
theory one needs at least d+1 parameters in order
to compute the thermal eigenvalue of a d-
dimensional lattice model. This result indicates that
the "decoration" transformation, involving two
parameters, is in a sense the "natural" transforma-
tion for DRSRG in one dimension, ' and the STT is
the "natural" one in two dimensions. In higher di-
mensions, appropriate generalizations of the STT
seem necessary. Indeed, precisely such generaliza-
tions were invented by Yamazaki et al. to apply
DRSRG to the Gaussian model ir. arbitrary dimen-
sions. For other lattice models, however, such gen-
eralizations are not known.

Although we are led again to the conclusion that
the STT is an essential tool in the present formula-
tion of DRSRG, there remain several questions to
be answered; e.g., can the basic property (14) be re-
lated to any known property of homogeneous Ising
models? Moreover, why can this relation be ob-
tained irrespective of any knowledge of the boun-
dary conditions for the functions EC;(r )?

While we have shown in this section under what
conditions the linear flow away from criticality can
be independent of the gradients, not much is known
about the question for which properties this line of

analysis can be followed. To our knowledge it is not
clear whether the fact that anisotropy is a marginal
operator for isotropic Ising models has its counter-
part in DRSRG. As regards the nonlinear flow
properties, it is unlikely that one can associate these
with properties of homogeneous systems, since the
nonlinear flow will not be independent of the gra-
dients. Indeed, Knops and Hilhorst ' studied the
nonlinear flow in the critical subspace of the tri-
angular Ising model, but were unable to relate their
findings to known properties of homogeneous Ising
models. It may therefore well be that the assump-
tion leading to Eq. (7) for the correlation function is
only justified for the linear flow away from criticali-
ty at the fixed point given by Eqs. (14) and (15).

Finally, we ought to mention that Stella has
shown how the Migdal-Kadanoff transformation
in the l~1 limit can be interpreted in the light of
the ideas of HSL. In that case bonds are redistribut-
ed uniformly over the lattice, so that no inhomo-
geneities develop. Our remarks therefore do not per-
tain to such cases. We think, however, that our
analysis is relevant if one tries to turn DRSRG into
an approximate theory in which inhomogeneities
still occur, since a requirement equivalent to Eq. (14)
must hold even in such cases.
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