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5 Phase shift of cyclotron
orbits at type–I and type–II
multi–Weyl nodes

5.1 Introduction
Electrons moving along cyclotron orbits in a homogeneous magnetic field
are subject to the quantization condition [161]

l2S = 2π(m+ γ), m ∈ Z, (5.1)

where S is the zero-field area enclosed by the cyclotron orbit in momentum
space, l =

√
~/eB is the magnetic length, and the offset γ includes

quantum corrections, which can be expanded in powers of the magnetic
field B [174]. In the semiclassical regime when the magnetic length is much
larger than the Fermi wavelength, field-dependent corrections to γ are
suppressed and the remaining number of zeroth order in B encodes valuable
information about the electronic properties of the system. In particular,
the offset includes contributions coming from topological features in the
band structure [163–165], which makes it the subject of high current
interest. Experimentally it can be deduced from quantum oscillations in
the de Haas-van Alphen or the Shubnikov-de Haas effects, widely used
nowadays to identify Weyl, Dirac, and nodal-line semimetals [175–179].

Interestingly, in some well-studied systems the offset measures the
topological features independent of the specifics of the band structure. So,
e.g., in graphene and graphene bilayer exposed to an out-of-plane magnetic
field the offset turns out to be given by a winding number—the number
of full turns made by the direction of the electron’s pseudospin degree
of freedom during a single turn around the cyclotron orbit [164]. This
integer winding number is a robust feature, determined by the type of the
band touching, and is sometimes called the topological charge of the Weyl
or Dirac fermion [180]. In contrast to the common belief, however, the
topological charge contributes to the offset in such a robust manner only
in exceptional cases, namely when particular symmetry constraints are
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5 Phase shift of cyclotron orbits at type–I and type–II multi–Weyl nodes

type I

n

kz
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type II

n

Figure 5.1: Schematic illustration of a breakthrough cyclotron orbit (figure-8 curve) at a
type-II Weyl node with topological charge n. The red part indicates quantum tunneling in
the magnetic-breakthrough region. The inset shows a cyclotron orbit at a type-I Weyl node.

satisfied [165]. In general, the offset is sensitive also to other parameters
of the band touching and it is the aim of this work to characterize this
sensitivity.

One important parameter is a linear tilt of the dispersion at the Weyl
node, which is generically present in material realizations and, most im-
portantly, leads to the occurrence of two types of Weyl nodes, as sketched
in Fig. 5.1. Upon the type-I to type-II transition, the tilt exceeds a critical
value, above which an equi-energy surface near the node cuts both bands
[58]. The closed cyclotron orbit at a type-I Weyl node is thereby replaced by
two open branches, which can be closed at large momenta by higher-order
corrections to the Weyl Hamiltonian, resulting in two cyclotron orbits, one
electron-like and one hole-like. Band details determine a critical magnetic
field, above which the two separate cyclotron orbits effectively merge into
a single orbit via magnetic breakthrough [181, 182]. This critical field is
zero if the energy and the parallel momentum are exactly at the node
where the two contours touch [81, 166], and is larger than zero if the gap
between the contours is finite. The magnetic breakdown contributes an
additional phase to the offset γ, so one would expect that the offset is even
more sensitive to details of the orbit than in the case without magnetic
breakdown.

In this work we analyze the offset for orbits at both types of Weyl nodes
and find characteristic dependence of γ on the Weyl-node parameters. Most
surprisingly, the offset of the breakthrough orbit at a type-II Weyl point
turns out to depend only on the topological charge. This striking result is
based on two facts, the universality of the phase jump of π acquired in
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5.2 Model

the magnetic-breakthrough region and a robust phase shift of nπ induced
by the topological charge. The insensitivity of the latter on details of the
orbit comes from a cancellation of a non-universal part of the phase in
the two loops of the breakthrough orbit, which are traversed in opposite
directions.

5.2 Model
We consider a set of Hamiltonians that govern the physics close to topo-
logically distinct band touchings,

H0 = k−σ+ + k+σ− + u kzσ0, (5.2a)
Hn = kn−σ+ + kn+σ− + u kzσ0 + kzσz, n ∈ {1, 2, . . . }, (5.2b)

where k± = kx ± iky, (kx, ky, kz) = k are momenta (scaled by velocities),
σ± = σx ± iσy, σx,y,z are Pauli matrices, and σ0 the identity matrix. The
band touching at k = 0 described by Hn corresponds to a topologically
protected multi-Weyl node of order n [59], while H0 describes a trivial,
non-protected band touching (a gap is produced by a perturbation ∝ σz).
The parameter u > 0 controls the tilt of the Weyl cone; for u < 1 and
u > 1 the Weyl cone is of type I and II, respectively.

The magnetic field pointing in x direction moves the particles along
equi-energy contours kz(ky) at fixed energy ε and parallel momentum
component kx. The contours are determined by the Schrödinger equation

Hn|un±〉 = ε|un±〉, (5.3)

where ± denote the two bands.
In the quantization condition (5.1) one can distinguish three phase shifts

that contribute to the offset

γ = 1
2π

(φ0 + φb + φt). (5.4)

Here φ0 and φb are phase shifts that occur at singular points on the orbit.
Specifically, turning points give rise to the Maslov phase φ0 [183], in which
each turning point contributes a phase jump of ±π/2, the sign determined
by the sign of the curvature at the turning point. In particular one finds
that φ0 = π and φ0 = 0 for orbits that can be deformed into a circle and
into an 8-shape, respectively. With φb we denote the phase shifts that
occur due to magnetic breakdown. Finally, φt is the topological phase shift,
which includes the Berry phase accumulated during a full turn around the
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orbit and the effect of the orbital magnetic moment [163–165, 184]. The
explicit calculation of φb and φt is the main result of this work, which will
be presented in the following.

5.3 Topological phase shift
The topological phase shift of a closed contour at energy ε and the fixed
momentum component kx is given by [164, 185]

φt =
∮
dk′y

[
A−

dkz(k′y)
dε

M

]
. (5.5)

Here the first term is determined by the Berry connection projected onto
the contour,

A =i〈u|∇k|u〉 ·
dk
dky

= i〈u| d
dky
|u〉, (5.6)

which contributes to φt the usual Berry phase of the closed orbit. The
second term is the correction to the zero-field area S coming from the
orbital magnetic moment projected onto the direction of the magnetic field
[184],

M = i

2

[(
∂ky 〈u|

)(
ε−H

)(
∂kz |u〉

)
−
(
∂kz 〈u|

)(
ε−H

)(
∂ky |u〉

)]
. (5.7)

The eigenfunctions of the Hamiltonian Hi can be written as

|u0±〉 = 1√
2

(
∓e−iα

1

)
,

|un+〉 =
(
− sin β

2 e
−inα

cos β2

)
, |un−〉 =

(
cos β2 e

−inα

sin β
2

)
, (5.8)

where the angles α and β are defined as

cosβ = kz
k
, sinβ =

(
k2
x + k2

y

)n
2

k
,

α = Arg(kx + iky), k =
√(

k2
x + k2

y

)n + k2
z . (5.9)
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5.3 Topological phase shift

For the topologically trivial case we obtain from (5.6)–(5.9)

A0± = kx
2(k2

x + k2
y)
, M0± = 0, (5.10)

and the topological phase shift vanishes as it should,

φ±t =
∮
dk′y A0± =

∮
dk′y

kx
2[k2

x + (k′y)2]
= 0 (n = 0), (5.11)

independent of the integration contour. For the non-trivial case, we obtain

An± =
nkx

(
k2
x + k2

y

)n−1

2k(k ± kz)
, Mn± = −

nkx
(
k2
x + k2

y

)n−1

2k2 . (5.12)

To calculate the topological phase shift, we consider the explicit expression
for the equi-energy contours, which is derived from (5.3) in the form

k±z (ky) =
ε u±

√
(u2 − 1)

(
k2
x + k2

y

)n + ε2

u2 − 1
. (5.13)

For u > 1, the contours given by k±z (ky) are disjoint and we need to
introduce an additional orbit segment that connects the two open ends
of k±z (ky) at kz → ±∞. These connecting segment can be realized by
an additional mass term ηk3

zσz in the Hamiltonian, with an infinitesimal
η > 0. The reconnection then occurs at large momenta kz, with |kz| >
(u−1)/η →∞. In the expressions (5.12) for A and M the additional mass
term replaces kz → kz + ηk3

z . On the connecting segment, A and M go to
zero like η2, while the integration along the connecting segment gives a
factor of order 1/η. Hence the contribution of the connecting segment to
φt vanishes and the integration reduces to the integration along the main
contour k±z (ky).

Inserting (5.12) and (5.13) into (5.5) we obtain

φ±t = ∓
∫
dk′y

(u+ 1)nkx
(
k2
x + (k′y)2)n−1

2
[
k± ± k±z

][
k±z ∓ uk±

] . (5.14)

For a type-II cone (u > 1) we use the substitution κ = k′y/kx and obtain

φ±t =
∫ ∞
−∞

dκ
n(κ2 + 1)n−1

2
√

(κ2 + 1)n + cot2 θ

×
(√

(κ2 + 1)n + cot2 θ ± cot θ
)−1

, (5.15)
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where the parameter θ encoding contour details is defined as

θ =


atan

(
knx
√
u2−1
ε

)
u > 1

atanh
(
knx
√

1−u2

ε

)
u < 1.

(5.16)

The integral in (5.15) needs to be calculated numerically (see below); for
the special case n = 1, we find the closed-form solution

φ±t = π

2
(1∓ signθ)± θ (n = 1). (5.17)

While φ±t are the topological phase shifts of the two (electron/hole)
orbits k±z (ky), the sum φ+

t + φ−t ≡ φbr
t is the topological phase shift of

the breakthrough orbit, i.e., the figure-of-8 orbit that encloses both the
electron and the hole pocket. Using the substitution z = (κ2 + 1)n the
integral for φbr

t simplifies to

φbr
t =

∫ ∞
1

dz
1√

z
2n+1
n − z2

= nπ, (5.18)

where the θ dependent part cancels out. As a result the topological phase
shift of the figure-of-8 orbit only depends on the quantized topological
charge n, in contrast to the θ-dependent phase shifts of the separate orbits.

For type-I Weyl fermions (u < 1) k±z are two parts of a single closed
contour, which topological phase is denoted φt. A closed-form solution for
the integral (5.14) is found for n = 1,

φt = π signθ (n = 1), (5.19)

in agreement with Refs. [164, 186–188]. For n ≥ 2, we find in the limits
θ → 0± and θ → ±∞,

φt = θ→0±−−−−→ nπ signθ, φt = θ→±∞−−−−−→
√
nπ signθ. (5.20)

The full θ dependence will be discussed below.

5.4 Breakthrough phase shift
To calculate the additional phase shift of the figure-of-8 orbit due to
magnetic breakdown, we follow a standard route [182] and calculate the

98



5.4 Breakthrough phase shift

scattering matrix that relates the exact wavefunction of the magnetic-
breakdown region with the in- and out-going semiclassical wavefunctions.

We start with the non-topological Hamiltonian H0. Introducing the
magnetic field via Peierls substitution kz 7→ kz + il−2∂ky , followed by a
unitary transformation,

H̃0 = e−il
2(kz−ε/u)kyH0e

il2(kz−ε/u)ky , (5.21)

we arrive at
H̃0 = kxσx + kyσy + i u l−2∂kyσ0 + ε. (5.22)

Rescaling the variables as k = lky/
√
u, δ0 = lkx/

√
u, the Schrödinger

equation H̃0ψ = εψ reads[
σxδ0 + σyk + i∂k

]
ψ = 0. (5.23)

The exact solution of (5.23) is known from the Landau-Zener problem [189].
To obtain the phase shift in comparison to the semiclassical solution of
(5.23), the exact wavefunctions are matched with the incoming semiclassical
wavefunctions at k � −δ0, denoted ψ±i , and outgoing ψ±f at k � δ0. From
this standard procedure (recapitulated in Sec. 5.7) we obtain the scattering
matrix S that relates the final state in the basis (ψ+

f , ψ
−
f ) to the incoming

state in the basis (ψ+
i , ψ

−
i ),

S =
(√

1−W eiα −i
√
W

−i
√
W

√
1−W e−iα

)
, (5.24)

where
W = e−πδ

2
0 , α = π

4 + δ2
0
2 −

δ2
0
2 ln δ2

0
2 + arg Γ

(
i
δ2

0
2

)
. (5.25)

The breakthrough orbit dominates if δ0 � 1, W ≈ 1, in which case each
band transition in the breakthrough region contributes a phase jump of
π/2 giving in total the phase shift φb = π for the breakthrough orbit.

For the topological case, we linearize the Hamiltonian Hn in ky, leading
to

H ′n = knxσx + nkn−1
x kyσy + kzσz + ukz. (5.26)

After Peierls substitution we apply the unitary transformation given by

H̃n = e−il
2[kz−ε/(u2−1)]kyH ′ne

il2[kz−ε/(u2−1)]ky . (5.27)

Rescaling and transforming the variables as

k = lky(u2 − 1)−1/4
√
nkn−1

x , (5.28a)

δn = l sign(ε)
√
ε2 + (u2 − 1)k2n

x

(u2 − 1)3/4k
(n−1)/2
x

, (5.28b)
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Figure 5.2: a) Parameter dependence of the offset γ of orbits at a type-I Weyl node. b)
Parameter dependence of the offset γ of orbits at a type-II Weyl node. The offsets of separate
orbits k+

z and k−z (without magnetic breakthrough) depend on the band parameter θ, while
the offset of the figure-8 breakthrough orbit only depends on the topological charge n.

we obtain the Schrödinger equation[
δn
√
u2 − 1 sin θσx + k

√
u2 − 1σy

+ i∂k(u+ σz) + δn cos θ(1 + uσz)
]
ψ = 0. (5.29)

Multiplying (5.29) from the left with M = diag[(u+ 1)−1, (u− 1)−1] and
applying a transformation given by

T = −i
( 1−u√

u2−1
u−1√
u2−1

1 1

)
σze
−iσyθ/2, (5.30)

we again arrive at the differential equation of the Landau-Zener form
(5.23),

Ĥψ̂(k) =
(
δn σx + k σy + i∂k

)
ψ̂(k) = 0, (5.31)

where ψ̂(k) = T−1ψ(k) and Ĥ = T−1M H̃T . The solution of (5.29) is
thus given by the solution of the Landau-Zener problem multiplied from
the left with the matrix T . Note that the θ phase brought into the full
solution by the matrix T is the topological phase of the full solution
induced by the non-trivial topology of the Hamiltonian.

The S matrix is obtained by matching ψ(k) with the semiclassical
solution of (5.29). Since H ′n is topologically equivalent to H1 (note that the
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5.5 Discussion

dynamical variables are ky and kz, while kx is fixed), the topological phase
shift of the semiclassical solution is given by (5.17), which cancels the θ
phase of the full solution and the result is the same θ-independent scattering
matrix (5.24), with δ0 replaced by δn. In particular, the breakthrough
phase shift φb = π also holds in the topological case.

5.5 Discussion
Having thus calculated the phase shifts, we now show the full θ-dependence
of the offset γ, defined in Eq. (5.4), in Figs. 5.2a and 5.2b. In practice, the
offset can only be measured modulo one, corresponding to one Landau-level
spacing. Nevertheless in Figs. 5.2a and 5.2b we plot the full γ for clarity
of the graphic. For the figure-of-8 orbit, the magnetic breakthrough con-
tributes an offset 1/2 and the topological charge adds an extra contribution
n/2. The θ independence is based on the cancellation of the θ-dependent
parts from the hole and the electron pockets. The universality of the break-
through phase shift is, instead, less surprising, since the same universal
value was found previously for non-topological band touchings [182]. In
contrast, without breakthrough (dashed/dotted curves in Fig. 5.2b) or in
case of a type-I Weyl node (Fig. 5.2a), the offset has a non-trivial depen-
dence on the orbit details that are encoded in θ. The only exception is the
case n = 1 of the type-I Weyl node, which shows no θ dependence owing
to the higher symmetry of the dispersion [165]. This is also the only case
with a known full quantum-mechanical solution [164, 186–188, 190, 191];
it agrees with our semiclassical result. In quantum oscillation experiments,
the measured phase shift would likely be averaged over a range of values of
the energy and of the parallel momentum kx, corresponding to a weighted
(depending on details of the experimental realization) average over the
parameter θ. In general, this averaging does not destroy the θ dependence,
still allowing to discriminate the two cases of quantized and continuously
varying γ.

With regard to the figure-8 breakthrough orbits, our calculations explain
recent numerical findings for the offset of a thin-film Weyl semimetal [192]
and a type-II Weyl semimetal [81], showing, respectively, γ = 1/2 and
γ = 0. In the case of the thin film, the Hamiltonian at the figure-8 crossing,
given in the appendix of Ref. [192], is equivalent to the non-topological
Hamiltonian H0, thus the only phase contributing is the breakthrough
phase φb = π, which explains the offset γ = φb/2π = 1/2. In case of the
type-II Weyl semimetal, the Hamiltonian is equivalent to H1, where the
additional topological phase φt = π cancels the breakthrough phase, which
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explains the vanishing offset. This contradicts a previous interpretation
that relates the vanishing offset of the latter to a vanishing Berry phase and
neglects the contribution of the breakthrough phase [166]. In Appendix 5.8
we present extensions of the numerical calculations to the cases n = 2
and n = 3, tilted type-I Weyl cones, and several values of θ. Also these
calculations are in agreement with the analytical results of this work.

5.6 Appendix A. Topological phases
Type-II (u > 1)

While the sum of the phases φ±t has been calculated in the main text, to
obtain each of the phases separately we now focus on the difference. From
(5.15) we find

φ−t − φ+
t =

∫ ∞
−∞

dκ
n cot θ

(κ2 + 1)
√

(κ2 + 1)n + cot2 θ
. (5.32)

Using the series expansion

1√
1 + q

=
∞∑
m=0

(
m− 1

2
m

)
(−q)m (5.33)

and the integral ∫ ∞
−∞

dκ
1

(κ2 + 1)α
=
√
π Γ
(
α− 1

2
)

Γ(α)
, (5.34)

Eq. (5.32) can be written as

φ−t − φ+
t = n cot θ

∞∑
m=0

(−1)m
(
m− 1

2
m

)

×
√
π Γ
(
nm+ n+1

2
)

Γ
(
nm+ n+2

2
) (cot θ)2m. (5.35)

For n = 1 the series is the expansion of 2 arctan(cot θ)/ cot θ, which gives

φ−t − φ+
t = sign(θ)π − 2θ. (5.36)

Together with (5.18), φ−t + φ+
t = nπ, this leads to

φ±t = π

2
(1∓ signθ)± θ. (5.37)
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5.7 Appendix B. Scattering matrix for magnetic breakdown

Type-I (u < 1)

For u < 1, k±z are two parts of a single closed contour. The phase φt of
the contour is thus given by the difference φt = φ+

t − φ−t , where, using
(5.14), (5.16), and the substitution κ = k′y/kx, φ±t are given by

φ±t = −
∫ κ0

−κ0

dκ
n(κ2 + 1)n−1

2
√

coth2θ − (κ2 + 1)n

(√
coth2θ − (κ2 + 1)n ± cothθ

)−1
,

(5.38)

where κ0 =
√

(cothθ)2/n − 1. The difference reduces to

φt =
∫ κ0

−κ0

dκ
n cothθ

(κ2 + 1)
√

coth2θ − (κ2 + 1)n
(5.39)

and, after the substitution z = (κ2 + 1)n, can be rewritten as

φt =
∫ coth2θ

1
dz

coth θ
z
√

coth2 θ − z
√
z1/n − 1

. (5.40)

A closed-form solution is found for n = 1,

φt = π signθ. (5.41)

For a general n we find in the limits θ → 0±

φt
θ→0±−−−−→ nπ signθ (5.42)

and θ → ±∞
φt

θ→±∞−−−−−→
√
nπ signθ. (5.43)

5.7 Appendix B. Scattering matrix for
magnetic breakdown

Non-topological Hamiltonian

To obtain the full solution in the magnetic-breakthrough region, we solve
the differential equation [

σxδ + σyk + i∂k
]
ψ = 0. (5.44)
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Multiplying from the left with U = exp(−iσxπ/4) and inserting the ansatz
ψ = U†(η, ξ)T we obtain(

k2 + ∂2
k − i+ δ2)η = 0, (5.45)

ξ = −δ−1(k + i∂k
)
η. (5.46)

Equation (5.45) can be transformed to Weber’s equation for the parabolic
cylinder function,

η′′ −
( 1

4z
2 + a

)
η = 0, (5.47)

where
z =
√

2eiπ/4 k, a = 1
2 + iγ, γ = 1

2δ
2. (5.48)

The two solutions read

ηa = e−z
2/4

1F1
( 1

2a+ 1
4 ; 1

2 ; 1
2z

2), (5.49a)

ηb = z e−z
2/4

1F1
( 1

2a+ 3
4 ; 3

2 ; 1
2z

2), (5.49b)

where 1F1() is the confluent hypergeometric function. Its general asymp-
totic form for a large last argument reads

1F1(α, β, ik2) k→∞−−−−→ Γ(β)
(

1
Γ(α)e

ik2
(ik2)α−β + 1

Γ(β−α) (−ik2)−α
)
. (5.50)

From this we obtain the asymptotic form of the two solutions (5.49),

ηa =
Γ
( 1

2
)

Γ
(
γ i2 + 1

2
)eik2/2+iγ ln |k|−πγ/4, (5.51a)

ηb = sign(k)
√

2Γ
( 3

2
)

Γ
(
γ i2 + 1

)eik2/2+iγ ln |k|−πγ/4. (5.51b)

Inserting into (5.46), we obtain the two corresponding expressions for ξ,

ξa = − sign(k)
√

2π/γ
Γ
(
− γ i2

)e−ik2/2−iγ ln |k|+i π/4−πγ/4, (5.52a)

ξb = −
√
π/γ

Γ
( 1

2 − γ
i
2
)e−ik2/2−iγ ln |k|+i 3π/4−πγ/4. (5.52b)

Altogether, an arbitrary solution of (5.44) at |k| � δ is thus the linear
combination

ψ(k) = eiσxπ/4Ψ(k)a, Ψ(k) =
(
ηa ηb
ξa ξb

)
, a =

(
a1
a2

)
, (5.53)
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kz
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i

 �
f

 +
f

 +
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k�z (k) k+z (k)
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2
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2u

K
x
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⇡ � ✓✓

Figure 5.3: Classical trajectories along the equi-energy contours k±z (k) approaching and
leaving the magnetic-breakdown region. The in- and outgoing scattering states, ψ±i and ψ±f ,
respectively, are also indicated.

where a1, a2 are arbitrary coefficients.
The approximate semiclassical solution of (5.44) reads [182, 193]

ψs(k) = χ(k) e−i
∫ k

0 dk′kz(k′)+φt(k), (5.54)

where χ(k) and kz(k) are determined by[
σxδ + σyk + k±z (k)]χ±(k) = 0, (5.55)

k±z (k) = ±
√
k2 + δ2 (5.56)

and φt(k) is the topological phase shift accumulated on the orbit section
between ky = 0 and ky = k,

φt(k) = i

∫ k

0
dk′y χ

†
±(k)∂kχ±(k) =

∫ k

0
dk′

δ

2(δ2 + (k′)2)
= arctan(k/δ)/2. (5.57)

The first term in the exponent of the semiclassical wavefunction can be
written as∫ k

0
dk′k±z (k′) = ± sign(k)f(k) +O

(
δ2
0/k

2), (5.58a)

f(k) = 1
2
[
k2 + δ2

0
(

ln |2k/δ0|+ 1/2
)]
. (5.58b)

The basis for the scattering matrix is formed by the semiclassical wave-
functions at k � −δ as incoming states ψi and at k � δ as outgoing states
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ψf , as indicated in Fig. 5.3. To leading order in δ/k we obtain

ψ±i = e±if(k) 1√
2

(
∓eiπ/4
e−iπ/4

)
, (5.59)

ψ±f = e∓if(k) 1√
2

(
∓e−iπ/4
eiπ/4

)
(5.60)

and combine the scattering states into matrices,

Ψi(k) = (ψ+
i , ψ

−
i ), Ψf (k) = (ψ+

f , ψ
−
f ). (5.61)

We choose the coefficients of the full solution, a, such that at ky � −δ
the full solution coincides with the incoming state, Ψici, where according
to (5.61), ci = (1, 0) corresponds to incoming state ψ+

i and ci = (0, 1)
corresponds to incoming state ψ−i . At k � δ the phase and amplitude
of the final states, combined in cf , is then determined by matching ψ(k)
with Ψfcf . Altogether, the matching conditions read

Ψi(k � −δ)ci = Ψ(k � −δ)a, (5.62)
Ψ(k � δ)a = Ψf (k � δ)cf . (5.63)

Eliminating a we obtain the expression for the scattering matrix S

cf = Ψf (k)−1Ψ(k)Ψ−1(−k)Ψi(−k)︸ ︷︷ ︸
≡S

ci, k/δ → +∞. (5.64)

Inserting the expressions Ψf (k), Ψi(k), and Ψ(k) given above, we obtain
the scattering matrix (5.24) given in the main text.

Topological Hamiltonian

We consider the Schrödinger equation[
δn
√
u2 − 1 sin θσx + k

√
u2 − 1σy

+ i∂k(u+ σz) + δn cos θ(1 + uσz)
]
ψ = 0. (5.65)

The semiclassical solution reads

ψs(k) = χ(k) e−i
∫ k

0 dk′kz(k′)+φt(k), (5.66)
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where χ(k) and kz(k) are given by[
δn
√
u2 − 1 sin θσx + k

√
u2 − 1σy + k±z (k)(u+ σz)

+ δn cos θ(1 + uσz)
]
χ±(k) = 0,

(5.67)

k±z (k) = ±
√
k2 + δ2

n. (5.68)

The phase
∫ k

0 dk
′k±z (k′) is in analogy to the non-topological case given by

(5.58) (with δ0 replaced by δn). The topological phase shift is most easily
obtained by considering the original Schrödinger equation

H ′nψ = εψ, (5.69)
H ′n = knxσx + nkn−1

x kyσy + kzσz + ukz, (5.70)

which is related to (5.65) by a kz shift introduced in (5.27) in the main
text, which leaves the phase shift accumulated between k = 0 and k = ±∞
invariant. The Hamiltonian is of the form of H1. The topological phase
shift thus calculates in analogy to the phase φ1±

t of the main text. Since
by symmetry the phase shift from k = 0 to k = ±∞ is half the phase shift
from k = −∞ to k =∞, we can use Eq. (5.17) to obtain

φn±t (k =∞) = π

4
(1∓ signθ)± θ

2
, (5.71)

which is sufficient for the in- and outgoing states at k = ±∞. Together
with the spinors from (5.67) the scattering states read

ψ±i = e±if(k)−iπ4 (1∓signθ)∓iθ/2

∓i√u−1
2u√

u+1
2u

 , (5.72a)

ψ±f = e∓if(k)+iπ4 (1∓signθ)±iθ/2

±i√u−1
2u√

u+1
2u

 . (5.72b)

To find the full solution ψ(k) we multiply (5.65) from the left with
M = diag[(u+ 1)−1, (u− 1)−1] and apply a transformation given by

T = −i
( 1−u√

u2−1
u−1√
u2−1

1 1

)
σze
−iσyθ/2, (5.73)
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Figure 5.4: (a) Landau fan diagrams for type II Weyl nodes with topological charge n = 1
(left) and n = 2 (rigth) at kx = 0.005 and kx = 0.03, respectively. Other parameters are
u = 1.6, η = 0.1, and Ncut = 2400. (b) Landau-level (LL) index m as a function of the
inverse field for n = 1, 2 at fixed energies indicated by the black dashed lines in (a). The dots
correspond to the numerical data, the dashed lines to the linear fits according to Eq. (5.77).

which leads to the differential equation of the Landau-Zener form (5.44),

Ĥψ̂(k) =
(
i∂kσ0 + δn σx + k σy

)
ψ̂(k) = 0, (5.74)

where ψ̂(k) = T−1ψ(k) and Ĥ = T−1M H̃T . As in the non-topological
case, we obtain the S matrix by matching the full solution with the
scattering states, T−1ψ±i/f , which leads to the scattering matrix (5.24)
with δ0 replaced by δn.
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5.8 Appendix C. Numerical results
To give support to the analytical calculations, we numerically compute
the offset γ for type I and type II single, double, and triple Weyl nodes
via numerical diagonalization of the Hamiltonian H ′n = Hn(k′) + ηk′z

3
σz,

with Hn given by Eq. (5.2b) of the main text, and the regularizing term
ηk′z

3
σz to ensure closed Fermi pockets in the case u > 1, as discussed in

the main text. The magnetic field in the x direction enters according to
the Peierls substitution k′ = k +A, with

k′x = kx, [k′y, k′z] = −iB . (5.75)

We make use of the ladder operators a and a† of the quantum oscillator
to construct momentum operators with the required properties. Straight-
forwardly,

k′y = (a+ a†)
√
B

2
, k′z = i(a− a†)

√
B

2
(5.76)

with [a, a†] = 1, fulfil the commutator in Eq. (5.75).
The ladder operators are calculated in the basis of the Landau-level

eigenstates (eigenstates of a†a), yielding the matrix elements (a)ij =
δi,j+1

√
j and (a†)ij = δi,j−1

√
i, respectively. The lowest l Landau levels

are obtained by sparse diagonalization of the Hamiltonian constructed
from ladder operators truncated to i, j ∈ [1, Ncut] with Ncut � l, ensuring
convergence of the eigenvalues with the value of Ncut.

The fan diagrams, shown in Fig. 5.4, are obtained by repeating this
procedure at different values of the magnetic-field strength. For type-II
Weyl orbits the limit of unit breakthrough probability is never achieved
in practice, resulting in non-monotonic contribution to Landau-level ener-
gies [182, 193], producing oscillations on top of the fans in Fig. 5.4. These,
however, are not the subject of our present analytical study. Therefore, in
order to better extract the phase shift, we suppress these oscillations for
n = 2 and n = 3 by averaging the energies over a range of magnetic fields
containing several oscillation peaks (dips).

At a fixed energy ε, we extract the intercept fields {Bm}, where Bm is
the value of the field at which the energy of the mth Landau level equals
ε. The inverse of the intercept fields are then fitted to the quantization
condition, Eq. (5.1) of the main text,

1
Bm

= 2π
S(ε)

(m+ γ) , (5.77)
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Figure 5.5: Parameter dependence of the offset γ (modulo one) for cyclotron orbits at
type-I (left) and type-II (right) Weyl nodes obtained numerically (dots), compared to the
analytical results (solid lines) of the main text [cf. Figs. 5.2a and 5.2b]. Parameters for
numerical results are u = 1.6 (u = 7), η = 0.1 (η = 1), and Ncut = 2400 (Ncut = 800)
for n = 1, 2 (n = 3). The relatively large value of u and η for n = 3 were necessary to
access large values of θ [cf. Eq. (5.16)], at the same time closing the contour at not too large
momenta.

where the zero-field area S(ε) enclosed by the equi-energy contour is
calculated numerically from the dispersion at B = 0. The offset γ modulo
one is thus obtained as the only fitting parameter.

The results, shown in Fig. 5.5, are in good agreement with the analytical
results presented in the previous sections, for all the cases that we were able
to address numerically. The phase offset γ = 1/2 corresponding to the non-
protected band-touching Hamiltonian (5.2a) was obtained numerically in
the context of figure-8 cyclotron orbits in a thin-film Weyl semimetal [192],
also in agreement with the analytical results of this chapter.
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