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4 Twisted Fermi surface of a
thin-film Weyl semimetal

4.1 Introduction
The Fermi surface of degenerate electrons separates filled states inside
from empty states outside, thereby governing the electronic transport
properties near equilibrium. In a two-dimensional electron gas (2DEG)
the Fermi surface is a closed equi-energy contour in the momentum plane.
It is a circle for free electrons, with deformations from the lattice potential
such as the trigonal warping of graphene or the hexagonal warping on the
surface of a topological insulator [144]. These are all smooth deformations
which do not change the orientation of the Fermi surface: The turning
number is 1, meaning that the tangent vector makes one full rotation as
we pass along the equi-energy contour.

The turning number
ν = 1

2π

∮
Γ
C dl, (4.1)

defined as the contour integral of the curvature C in units of 2π, identifies
topologically distinct deformations of the circle in the plane, socalled
“regular homotopy classes” [145]. A theorem going back to Gauss [146]
says that a contour Γ with turning number ν has s ≥

∣∣|ν| − 1
∣∣ self-

intersections and that the sum |ν| + s must be an odd integer. Fig. 4.1
shows examples of contours with {ν, s} = {0, 1}, {1, 0}, and {2, 1}.

The turning number is preserved by any smooth deformation of the
contour. This includes socalled “uncrossing” deformations [145]: As
illustrated in Fig. 4.1, uncrossing breaks up a self-intersecting contour
Γ into a collection of nearly touching oriented contours Γi, with turning
numbers νi. The total turning number ν =

∑
i νi is invariant against

uncrossing deformations, which is another result due to Gauss [146].
All familiar 2D electron gases belong to the |ν| = 1 universality class.

Here we show that a thin-film Weyl semimetal with an in-plane magneti-
zation M and broken spatial inversion symmetry can have ν = 0: if the
Fermi level lies in between the two Weyl points the circular Fermi surface
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4 Twisted Fermi surface of a thin-film Weyl semimetal
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Figure 4.1: Three oriented contours (black curves) with turning number ν = 0, 1, 2. The red
segments show the uncrossing deformation that removes a self-intersection without changing
the total turning number ν =

∑
i νi.

is twisted into a figure-8 with zero total curvature. To avoid misunder-
standing, we emphasise that the figure-8 Fermi surface appears for Weyl
fermions with the usual conical dispersion relation. We are not considering
materials with a figure-8 dispersion relation, as studied in Refs. [147, 148].

The self-intersection introduced when the Fermi level passes through a
Weyl point, to ensure that |ν|+ s remains odd, is a crossing of Fermi arcs
on the top and bottom surfaces of the thin film (width W ). These have
a penetration depth ξ0 into the thin film that can be much less than the
Fermi wavelength of the bulk states, so that we can be in the 2D regime
of a single occupied subband 1 without appreciable overlap of the surface
states [149–151]. The effect of a nonzero surface state overlap is to open
up an exponentially small gap δk ∝ e−W/ξ0 in the figure-8, as in Fig. 4.1a.

In a perpendicular magnetic field B the signed area enclosed by the
Fermi surface is quantized in units of 2π/l2m, with lm =

√
~/eB the

magnetic length. A figure-8 Fermi surface of linear dimension kF has a
signed area much smaller than k2

F, because the upper and lower loops have
opposite orientation. We find that this twisted Fermi surface produces
edge states of width kFl

2
m — much wider than the usual narrow quantum

Hall edge states of width lm. The wide and the narrow edge states are
counterpropagating: if the wide channel moves parallel to M , the narrow
channel moves antiparallel. An applied voltage selectively populates one
of the two types of edge states, resulting in a conductance of e2/h instead
of 2e2/h — even though there are two conducting edges.

The outline of the chapter is as follows. In the next section we formulate

1We count occupied 2D subbands by counting the number of equi-energy contours
at the Fermi energy in the (ky , kz) plane, allowing for (nearly avoided) self-intersections.
All four equi-energy contours in Fig. 4.4 correspond to a single occupied subband.
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4.2 Weyl semimetal confined to a slab

the problem, on the basis of a two-band model Hamiltonian [130, 140], and
calculate the band structure in a slab geometry. The way in which the Fermi
arcs reconnect with the bulk Weyl cones is described exactly by a simple
transcendental equation (Weiss equation). The Fermi surface in the thin-
film regime is calculated in Sec. 4.3, to show the topological transition from
turning number 1 to turning number 0 when the Fermi level passes through
a Weyl point. In Sec. 4.4 we calculate the edge states in a perpendicular
magnetic field, by semiclassical analytics and comparison with a numerical
solution. The implications of the two types of counterpropagating edge
channels for electrical conduction are investigated in Sec. 4.5. We conclude
with an overview of possible experimental signatures of the twisted Fermi
surface.

4.2 Weyl semimetal confined to a slab
4.2.1 Two-band model
We consider the two-band model Hamiltonian of a Weyl semimetal [130,
140],

H(k) = txσx sin kx + tyσy sin ky +mkσz + λσ0 sin kz,
mk = tz(cosβ − cos kz) + t′(2− cos kx − cos ky). (4.2)

The Pauli matrices are σα, α ∈ {x, y, z}, with σ0 the 2 × 2 unit matrix,
acting on a hybrid of spin and orbital degrees of freedom. The momentum
k varies over the Brillouin zone |kα| < π of a simple cubic lattice (lattice
constant a0 ≡ 1, and we also set ~ ≡ 1). The two Weyl points are at the
momenta k = (0, 0,±K), K ≈ β, and at energies E = ±E0, E0 ≈ λ sinβ,
displaced along the kz-axis by the magnetization M = βẑ and displaced
along the energy axis by the strain λ. Time-reversal symmetry and spatial
inversion symmetry are broken by β and λ, respectively.

We take a slab geometry, unbounded in the y–z plane and confined in
the x-direction between x = 0 and x = W . The magnetization along z is
therefore in the plane of the slab. We impose the infinite-mass boundary
condition [152] on the wave function ψ,

σyψ =

{
−ψ at x = 0,
+ψ at x = W.

(4.3)

This boundary condition corresponds to a mass term m0(x)σz in H that
vanishes inside the slab and tends to +∞ outside.
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4 Twisted Fermi surface of a thin-film Weyl semimetal

4.2.2 Dispersion relation
The Schrödinger equation Hψ = Eψ can be solved analytically in the
low-energy regime by linearizing in kx and applying the effective mass
approximation [153] kx 7→ −i∂/∂x. Integration of the resulting first-order
differential equation in x gives

ψ(x) = eixΞψ(0), Ξ = 1
tx
σx[E −H(0, ky, kz)]. (4.4)

To ensure that an eigenstate of H satisfies the boundary condition (4.3),
we require that

〈−|eiWΞ|−〉 = 0, |±〉 =
(

1
±i

)
, σy|±〉 = ±|±〉. (4.5)

This reduces to the following dispersion relation for E(ky, kz):

(E − λ sin kz)2 − t2y sin2 ky −m2
k = q2, (4.6)

with transverse wave number q given by

mk
q

tan(Wq/tx) + 1 = 0. (4.7)

In the mass term mk we should set kx = 0, as required by the linearization
in kx.

For imaginary q = iκtx/W the transcendental equation (4.7) takes the
form

γ

κ
tanhκ = 1, γ = −Wmk

tx
, (4.8)

which is known as the Weiss equation in the theory of ferromagnetism
[154]. A unique solution with κ ≥ 0 exists for γ ≥ 1, given by a generalized
Lambert function 2 [155]:

κ = 1
2W(2γ;−2γ;−1). (4.9)

A representative band structure is shown in Fig. 4.2.

2The generalized Lambert function W(t; s; a) is defined as the solution of the
equation eW (W − t) = a(W − s).
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4.2 Weyl semimetal confined to a slab

Figure 4.2: Dispersion relation E(ky, kz) for ky = 0.01 as a function of kz , of a thick Weyl
semimetal slab (width W = 40), calculated from Eqs. (4.6) and (4.7) for β = 1.5, λ = 0.1,
tx = ty = tz = t′ = 1. The diagram at the top shows the geometry with the trajectory
of an electron in a Fermi arc state spiralling along the surface with velocity vz = λ cos kz
in the direction of the magnetization M . The two branches of the Fermi arc visible in the
dispersion relation correspond to states on the top and bottom surface of the slab (assumed
to be of infinite extent in this calculation). For this thick slab the range of Fermi energies
in which only a single 2D subband is occupied is very narrow (between the red dotted lines).
For thinner slabs a larger energy range is available.

4.2.3 Weyl cones and Fermi arcs
In the large-W limit of a thick slab, Eq. (4.7) can be solved separately
for the bulk Weyl cones and the surface Fermi arcs. We thus recover the
familiar dispersion relations in the bulk and surface Brillouin zones of a
Weyl semimetal [14, 116, 156, 157].

The bulk states have wave number q � |mk|, quantized by q = (n +
1
2 )πtx/W , n = 0, 1, 2, . . ., with dispersion

E
(n)
bulk = ±

√
(n+ 1

2 )2(πtx/W )2 + t2y sin2 ky +m2
k + λ sin kz. (4.10)

The ± distinguishes the upper and lower halves of the Weyl cones.
The surface Fermi arcs have a purely imaginary q = imk ⇒ κ = −γ,

which solves Eq. (4.8) in the large-W limit if mk < 0. The corresponding
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.3: Penetration length ξ of the surface Fermi arc into the bulk Weyl semimetal,
calculated via ξ = 1/Im q from the solution of the Weiss equation (4.8), for the same param-
eters as Fig. 4.2. The penetration length diverges at kz = ±1.475, according to Eq. (4.13).
At this critical momentum the Fermi arc merges with the bulk Weyl cones. The minimal
penetration length ξ0 is given by Eq. (4.12).

surface dispersion (4.6) is

Esurface = λ sin kz ± ty sin ky, |kz| < β. (4.11)

The ± sign distinguishes the Fermi arcs on opposite surfaces (− at x = 0
and + at x = W ). The trajectory of an electron in a Fermi arc state
moves chirally along the surface (see top inset in Fig. 4.2), spiralling in
the direction of the magnetization M = βẑ with velocity vz = λ cos kz.
The surface Fermi arc reconnects with the bulk Weyl cone near kz = ±β.
This “Fermi level plumbing” [158] is described quantitatively by the Weiss
equation (4.7), as q switches from imaginary to real at a critical kcrit

z for
which γ = 1. The penetration length ξ = 1/Im q of the surface state into
the bulk is plotted in Fig. 4.3, as a function of kz for ky = 0. Its minimal
value near the center of the Brillouin zone is

ξ0 = tx
(1− cosβ)tz

. (4.12)

The critical wave vector k = (0, 0, kcrit
z ) at which the Fermi arc terminates

because its penetration length diverges is slightly smaller than the position
β of the Weyl point,

kcrit
z = β − tx

tzW
+O(W−2). (4.13)
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4.3 Thin-film Fermi surface

Figure 4.4: Fermi surfaces of the thin-film Weyl semimetal with a single occupied subband
(W = 15), calculated from Eqs. (4.6) and (4.7) for β = 1.5, tx = ty = tz = t′ = 1 at different
values of λ and EF. The turning number ν = 0 in the top row, while ν = 1 in the bottom
row. The figure-8 in the top row has a narrowly avoided crossing with a gap δkz = 3 · 10−5

(not visible on the scale of the figure). The color of the contour indicates whether the state
is localized on the top surface (red), on the bottom surface (blue), or extended through the
bulk (black).

4.3 Thin-film Fermi surface
For Fermi energies

|EF| <
πtx
2W
− λ sinβ, (4.14)

a single two-dimensional (2D) subband is occupied at the Fermi level,
formed out of hybridized bulk and surface states. This two-dimensional
electron gas (2DEG) regime exists for thin films of width

W . Wc = πtx
2λ sinβ

. (4.15)

The Fermi surface of the 2DEG, defined by the equi-energy contour
E(ky, kz) = EF, is plotted in Fig. 4.4 for several parameter values.

As discussed in the introduction, the turning number ν (also known
as rotation numbers, not to be confused with winding numbers) is a
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4 Twisted Fermi surface of a thin-film Weyl semimetal

topological invariant of the equi-energy contour [145]. We see from Fig. 4.4
that the Fermi surface is twisted into a figure-8 with ν = 0 when the Fermi
level lies between the Weyl points, |EF| < λ sinβ, while for larger Fermi
energies the Fermi surface has ν = 1. Because the turning number and
the number of self-intersections must have opposite parity, the topological
transition when EF passes through a Weyl point must introduce a crossing
in the Fermi surface 3.

The crossing of the equi-energy contour for small EF is possible since the
intersecting states are spatially separated on the top and bottom surfaces
of the slab. For a finite ratio W/ξ0 of slab width and penetration length
(4.12) the crossing is narrowly avoided because of the exponentially small
overlap of the states at opposite surfaces. From the Weiss equation (4.8)
we calculate that the δkz gap in the figure-8 is given by

δkz = 4tx
λξ0

e−W/ξ0 . (4.16)

When W 'Wc the gap in the figure-8 is exponentially small if Wc � ξ0,
so for

(1− cosβ)tz � λ sinβ. (4.17)

To make contact with some of the older literature [159–161], we note
that the figure-8 Fermi surface of a Weyl semimetal is essentially different
from the figure-8 equi-energy contour of a conventional metal with a saddle
point in the Fermi surface. In that case the figure-8 requires fine tuning of
the energy to the saddle point, while here the figure-8 persists over a range
of energies between two Weyl points. Moreover, the orientation of the two
lobes of the figure-8 is the same in the case of a saddle point, while here it
is opposite.

4.4 Quantum Hall edge channels
4.4.1 Semiclassical analysis
A magnetic field B in the x-direction, perpendicular to the thin film,
introduces Landau levels in the energy spectrum: For a gauge A =
(0, 0, By) the momentum kz is still a good quantum number, we seek the
dispersion En(kz) of the n-th Landau level.

3The turning number ν = 1 universality class may also have self-intersections in
the Fermi surface, but there must be a even number of them. An example with ν = 1
and two crossings is Figure 4 of: Zhuo Bin Siu, Mansoor B. A. Jalil, and Seng Ghee
Tan, Dirac semimetal thin films in in-plane magnetic fields, Sci. Rep. 6, 34882 (2016).
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4.4 Quantum Hall edge channels

Semiclassically, the n-the Landau level is determined by the quantization
of the signed area S(E) =

∮
kydkz enclosed by the oriented equi-energy

contour [162],
l2mS(En) = 2π(n+ γ), n ∈ Z, (4.18)

with lm = (~/eB)1/2 the magnetic length and γ ∈ [0, 1) a B-independent
offset. Depending on the clockwise or anti-clockwise orientation of the
contour, the enclosed area is negative or positive. Note that the signed
area enclosed by the figure-8 Fermi surface of Fig. 4.4a equals zero. The
phase shift γ = 0 in a bulk Weyl semimetal, when the equi-energy contour
encloses a gapless Weyl point [163–166]. For the thin film the numerical
data indicates γ = 1/2.

If the thin film is confined to the strip 0 < y < Wy, with Wy � lm, the
spectrum within the strip remains dispersionless, but at the boundaries
y = 0 and y = Wy propagating states appear. In the quantum Hall effect
these are chiral edge channels, moving in opposite directions on opposite
edges [167, 168]. The electrical conductance of the strip, for a current
flowing in the z-direction, equals the number of edge channels N moving
in the same direction times the conductance quantum e2/h.

The classical skipping orbits that form the edge channels in a magnetic
field can be directly extracted from the zero-field Fermi surface: The
cyclotron motion in momentum space follows the equi-energy contour
E(ky, kz) = EF with period 2πmc/eB, where

mc = 1
2π

d

dE
|S(E)| (4.19)

is the cyclotron effective mass. (The figure-8 has mc ≈ β/ty.) Because
k̇ = eṙ × B, the cyclotron motion in real space is obtained from the
momentum space orbit by rotation over π/2 and rescaling by a factor l2m.
Specular reflection at the edge (with conservation of kz) then gives for the
figure-8 Fermi surface the skipping orbits of Fig. 4.5. Note that these orbits
are 2D projections of 3D trajectories in the thin film: The intersections
that are visible in the projected orbit correspond to overpassing trajectories
on the top and bottom surfaces. (See Fig. 10b of Ref. [169] for a wave
packet simulation of such a trajectory.)

The real-space counterpart of the quantization rule (4.18) is that the
Aharonov-Bohm phase e

∮
A · dl picked up in one period of the cyclotron

motion equals 2π(n+ γ). For the skipping orbits this Bohr-Sommerfeld
quantization rule still applies if the contour is closed by a segment along
the edge, with an additional contribution to γ from reflection at the edge
[170, 171].
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.5: Classical cyclotron orbits corresponding to the figure-8 Fermi surface of Fig.
4.4a. Each edge supports counterpropagating skipping orbits. The corresponding quantum
Hall edge channel is narrow if it propagates opposite to the magnetization, while it is wide if
it propagates in the direction of the magnetization. The area enclosed by the cyclotron orbits
is shaded, the direction of the shading distinguishes positive and negative contributions to
the Aharonov-Bohm phase e

∮
A · dl.

For small n the skipping orbit should enclose a flux of the order of
the flux quantum h/e, which divides the edge channels into two types,
designated narrow and wide: The narrow edge channel propagates along
the edge in the direction opposite to the magnetization 4. It is tightly
bound to the edge over a distance of order lm, so that the enclosed area of
order l2m encloses a flux of order h/e. The wide edge channel propagates
in the direction of the magnetization and extends further from the edge
over a distance of order βl2m. It still encloses a small flux of order h/e
because contributions to

∮
A · dl from the two sides of the crossing point

have opposite sign.
The gap δkz at the crossing point has no effect on the quantization if

lmδkz � 1, which is satisfied for lm . W when

(W/ξ0)e−W/ξ0 � λ/tx. (4.20)

Because the exponent wins it is sufficient that W � ξ0 to ensure that the
figure-8 is effectively unbroken: The field-induced tunneling through the
gap then occurs with near-unit probability, so to a good approximation
the wave packet propagates in an unbroken figure-8.

The presence of counterpropagating edge channels at each edge requires
a Fermi energy in between the Weyl points, |EF| < λ sinβ, for a twisted

4Throughout the chapter we take β and λ positive. The direction of motion of the
edge channels indicated in Fig. 4.5 should be inverted if either β or λ change sign.
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4.5 Magnetoconductance

Figure 4.6: Same as Fig. 4.5, but now for the Fermi surface of Fig. 4.4c, without a self-
intersection. The equi-energy contour has a single orientation, indicated by the single di-
rection of the shading. The edge states are chiral, propagating in opposite directions on
opposite edges.

Fermi surface. When the Fermi surface is a simple contour without
self-intersections the edge channels are chiral, propagating in opposite
directions on opposite edges as in Fig. 4.6.

4.4.2 Numerical simulation
To go beyond the semiclassical analysis we have diagonalized the model
Hamiltonian (4.2) numerically, using the Kwant tight-binding code [142].
Fig. 4.7a shows the dispersion relation with four edge states at EF = 0,
two counterpropagating at each edge. The corresponding density profile
for each edge state is shown in Fig. 4.7b. The two types of edge channels,
one wide and the other narrow, are clearly visible.

In Fig. 4.8 we show the Landau levels in an infinite system as a function
of the flux Φ through a unit cell. The Landau fan is fitted to

~
eΦ

SE = 2π(n+ γ), (4.21)

corresponding to the semiclassical formula (4.18). The resulting offset γ is
consistent with γ = 1/2. We checked that the fitted value of SE is close
(within 2%) of the signed area enclosed by the figure-8 equienergy contour.
We also checked that the same γ = 1/2 is obtained when the equienergy
contour is a slightly deformed circle, rather than a figure-8.

4.5 Magnetoconductance
To determine the magnetotransport through the Weyl semimetal strip we
connect it at both ends z = 0 and z = L to a metal reservoir. Following a
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.7: Left: Dispersion of a thin-film Weyl semimetal strip (W = 10, Wy = 80) in
a perpendicular magnetic field (lm = 4.5), calculated numerically from the tight-binding
Hamiltonian (4.2). The material parameters are β = 1.05, λ = 0.2, tx = ty = tz = t′ = 1.
At EF = 0 this system has the figure-8 Fermi surface of Fig. 4.4a. The letters indicate
the counterpropagating edge channels, L± at one edge and R± at the opposite edge. Right:
Probability density |ψ(x, y)|2 for the four edge states at E = 0.The density is translationally
invariant in the z-direction, the color plots show a cross section in the x–y plane (separated
in two panels for clarity). Each edge has a counterpropagating pair of edge states, one with
vz < 0 tightly bound to the edge (width ≈ lm = 4.5), the other with vz > 0 penetrating
more deeply into the bulk (width ≈ βl2m = 21).

similar approach used for graphene [172], it is convenient to take the same
model Hamiltonian (4.2) throughout the system, with the addition of a
z-dependent chemical potential term −µ(z)σ0. (Physically, this potential
could be controlled by a gate voltage.) We set µ(z) = 0 in the semimetal
region 0 < z < L and take µ(z)� E0 in the metal reservoirs (x < 0 and
x > L). This corresponds to n-type doping of the reservoir. (For p-type
doping we would take µ(z)� −E0.)

We distinguish n-type and p-type edge channels in the Weyl semimetal
depending on whether they reconnect at large |E| with the upper Weyl
cones (n-type) or with the lower Weyl cones (p-type). Referring to the
dispersion of Fig. 4.7a, the channels L± at the y = 0 edge are n-type,
while the channels R± at the y = Wy edge are p-type. The distinction is
important, because only the n-type edge channels can be transmitted into
the n-type reservoirs. As indicated in Fig. 4.9, the p-type channels are
confined to the semimetal region, without entering into the reservoirs.

Upon application of a bias voltage V between the two n-type reservoirs
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4.6 Discussion

Figure 4.8: Left panel: Sequence of Landau level energies En(B) as a function of magnetic
field; levels at two values of the energy are marked by colored dots. Right panel: Landau
level index n for these two energies as a function of inverse magnetic field. This “Landau
fan” is fitted to Eq. (4.21) to obtain the offset γ. The data is calculated numerically from
the Weyl semimetal tight-binding model in an unbounded thin film (thickness W = 30), for
parameters β = 1.05, λ = 0.1, tx = ty = tz = t′ = 1.

a current I will flow along the n-type edge, with a conductance

G = I/V = e2

h
Ty=0 (4.22)

determined by the backscattering probability Ty=0 along the edge at y = 0,
so G = e2/h without impurity scattering — see Fig. 4.10.

This is not the usual edge conduction of the quantum Hall effect: As
shown in Fig. 4.11, the current flows along the same edge when we change
the sign of the voltage bias (switching source and drain), while in the
quantum Hall effect the current switches between the edges when V changes
sign. The only way to switch the edge here is to change the sign of the
magnetic field, so that the n-type edge is at y = Wy rather than at y = 0.

4.6 Discussion
We have discussed the unusual magnetic response of a two-dimensional
electron gas with a twisted Fermi surface. The topological transition from
turning number ν = 1 (the usual deformed Fermi circle) to turning number
ν = 0 (the figure-8 Fermi surface) happens when the Fermi level passes
through the Weyl point of a thin-film Weyl semimetal with an in-plane
magnetization and broken spatial inversion symmetry. We discuss several
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.9: Undoped Weyl semimetal (chemical potential µ ≈ 0) connected to heavily
doped metal reservoirs (µ � E0 for n-type doping). Edge channels in a perpendicular
magnetic field are shown in red, with arrows indicating the direction of propagation. The
L± edge channels are n-type and can enter into the reservoirs, while the R± edge channels
are p-type and remain confined to the semimetal region (dotted lines). The current I flows
along the n-type edge in the semimetal, irrespective of the sign of the applied voltage V .

transport properties that could serve as signatures for the topological
transition from ν = 1 to ν = 0.

In a magnetic field the figure-8 Fermi surface supports counterpropa-
gating edge channels, see Fig. 4.9. At EF = 0, with an equal number of
left-movers and right-movers at each edge, the Hall resistance will vanish.
This is the first magnetotransport signature. If we vary the Fermi level
and enter the regime of chiral edge channels, we should see the appearance
of a voltage difference between the edges in response to a current flowing
along the edges.

The second signature is the edge-selectivity: although both edges support
counterpropagating states, the current flows entirely along one of the two
edges, determined by the direction of M ×B. This edge-selective current
flow might be detected directly, or indirectly by introducing disorder on
one edge only and measuring a difference between the conductance G
for positive and negative B. Note that G(B) 6= G(−B) does not violate
Onsager reciprocity, since for that we would need to change the sign of
both magnetic field B and magnetization M .

A third signature is in the cyclotron resonance condition for the optical
conductivity σ. As explained by Koshino [173] in the context of a type-II
Weyl semimetal (which has a figure-8 cyclotron orbit at a specific energy
where electron and hole pockets touch [81]), the resonance frequency is
twice as small for an electric field oriented along the long axis of the
figure-8, than it is for an electric field oriented along the short axis. In the
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4.7 Appendix. Effective 2D Hamiltonian

Figure 4.10: Conductance in the geometry of Fig. 4.11 as a function of magnetic field. (The
magnetic length lm = 4 of Fig. 4.11 corresponds to a flux per unit cell of 0.01h/e.) The
regime of a single pair of counterpropagating edge channels is reached to the right of the
vertical dotted line. The conductance in this regime is e2/h rather than 2e2/h, because only
one edge is coupled to the electron reservoirs.

geometry of Fig. 4.5, the resonance frequency equals eB/mc for σyy and
2eB/mc for σzz.

In our analysis we have not included disorder effects. The counterpropa-
gating edge channels can be coupled by disorder, and this would reduce
the conductance below the quantized value of G = e2/h seen in Fig. 4.10.
There is no symmetry to protect this quantization, like there is for the
helical edge channels in the quantum spin Hall effect, but there is a spatial
separation of wide and narrow edge channels (see Fig. 4.7b), which may
provide some robustness against backscattering by disorder.

We have focused here on Fermi surfaces with turning number ν = 0 and
ν = 1. It would be of interest to compare with other values of ν. A model
Hamiltonian for ν = 2, that could be a starting point for such a study, is
given in the Appendix.

4.7 Appendix. Effective 2D Hamiltonian
We derive an effective Hamiltonian for the thin-film Weyl semimetal.
Starting from the full Hamiltonian (4.2), we discretize the x-direction by
the substitution

cos kx 7→ 1
2
(
δi,j−1 + δi,j+1

)
,

sin kx 7→ − 1
2 i
(
δi,j−1 − δi,j+1

)
.

(4.23)
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.11: Color-scale plot in the y–z plane of the occupation numbers of current-carrying
states at the Fermi level, in response to a voltage bias between source and drain. The data
is calculated numerically from the tight-binding Hamiltonian (4.2) in the geometry of Fig.
4.9 (parameters β = 1.05, λ = 0.25, tx = ty = tz = t′ = 1, W = 10, lm = 4). The chemical
potential is µ = 0 in the Weyl semimetal region (between green lines, from z = 0 to z = 60),
while µ = 0.75 in the metal reservoirs (z < 0 and z > 60). The current keeps flowing along
the same edge when source and drain are switched, carried either by a narrow edge channel
(left panel) or by a wide edge channel (right panel). The opposite edge is fully decoupled
from the reservoirs.

The Kronecker δij is set to zero if either layer index i or j is outside of
the set {1, 2, . . . ,W}, corresponding to hard-wall boundary conditions at
the top and bottom layer. Substitution in Eq. (4.2) leads to

Hij = δij
[
σy sin ky +Mkσz

]
− 1

2δi,j−1
(
σz + iσx

)
− 1

2δi,j+1
(
σz − iσx

)
+ δijλσ0 sin kz, (4.24)

Mk = 2 + cosβ − cos kz − cos ky. (4.25)

For simplicity we have set tx = ty = t′ ≡ 1. Since the λ term is a scalar,
we can set it to zero for now and then add it at the end of the calculation.

After the unitary transformation H 7→ U†HU with U = eiπσz/4eiπσy/4

we have

Hij = δij
[
σz sin ky +Mkσx

]
− 1

2δi,j−1
(
σx + iσy

)
− 1

2δi,j+1
(
σx − iσy

)
. (4.26)

The square H2 is block-diagonal in the σ index,

(H2)ij = δijσ0 sin2 ky +
(
Zij 0
0 Z ′ij

)
, (4.27a)

Zij = (M2
k + 1− δiW )δij −Mk(δi,j−1 + δi,j+1), (4.27b)

Z ′ij = (M2
k + 1− δi1)δij −Mk(δi,j−1 + δi,j+1). (4.27c)
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Figure 4.12: Dispersion relation at ky = 0.01 given by the effective Hamiltonian (4.31)
(red curve), compared to numerical results from the full Hamiltonian (4.2) (blue dots). The
parameters are the same as in Fig. 4.2.

The two W ×W matrices Z and Z ′ have the same eigenvalues ζ, given
by

Det (Z − ζ) = (DetZ)
[
1− ζ TrZ−1 +O(ζ2)

]
= 0. (4.28)

The low-energy spectrum is therefore given

E2 = sin2 ky + ζ0, ζ0 = 1
TrZ−1 � 1, (4.29)

which evaluates to

ζ0 = M2W
k

1 + 2M2
k + 3M4

k + 4M6
k + · · ·+WM2W−2

k

=
M2W
k

(
1−M2

k

)2
1−M2W

k

[
1 +

(
1−M2

k

)
W
] . (4.30)

For Mk � 1 we have simply ζ0 ≈M2W
k .

The corresponding effective low-energy Hamiltonian takes the form

Heff = σx
√
ζ0 + σy sin ky + λσ0 sin kz, (4.31)

where we have reinsterted the λ term. A comparison of the energy spectrum
of the effective Hamiltonian with the result from an exact numerical
diagonalization of the full Hamiltonian is shown in Fig. 4.12.
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.13: Fermi surface at E = 0 with turning number ν = 2 given by the Hamiltonian
(4.32), for the parameters W = 40, β = 1.5, λ = 1, µ = 0.6.

In closing, we note that a simple modification of this effective 2D
Hamiltonian can be used to describe Fermi surfaces with turning number
greater than unity. As an example, the Hamiltonian

H̃eff = Heff + µ (2− cos kz − cos ky)σ0 (4.32)

has the ν = 2 Fermi surface shown in Fig. 4.13.
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