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1 Introduction

1.1 Preface
Spin-orbit coupling is a relativistic effect: A charged particle moving in an
electric field experiences a magnetic field in a frame of reference in which it
is at rest. This magnetic field acts on the spin magnetic moment, resulting
in a coupling of the spin to the motion (the “orbit”). For massless particles
the coupling reaches the extreme limit that the spin direction is tied to
the direction of motion. One speaks of spin-momentum locking.

Since the discovery of graphene we have become familiar with the notion
that conduction electrons can have a vanishing effective mass and thereby
exhibit relativistic effects at velocities much smaller than the speed of
light. In graphene spin-orbit coupling is very weak but the electrons have
a sublattice degree of freedom (a “pseudo-spin”) that plays a similar role:
it is oriented parallel to the momentum. Relativistic effects such as Klein
tunneling emerge in graphene because of this pseudo-spin–momentum
locking.

The topic of our thesis is to study the effects of spin-momentum locking
in materials where it is the real spin, rather than a pseudo-spin, that
is locked to the motion. We focus on two classes of materials: firstly
on electrons confined to an oxide interface and secondly on the three-
dimensional counterpart of graphene, known as a Weyl semimetal.

The remainder of this chapter is as follows. In Sec. 1.2 we introduce the
topics of spin-orbit coupling and spin-momentum locking in condensed-
matter systems. In Sec. 1.3 we discuss the electronic properties of interfaces
in oxide heterostructures, with a focus on the high-mobility conducting
system at the LaAlO3 / SrTiO3 interface and the investigation of its spin-
orbit–driven physics through magnetotransport. In Sec. 1.4 the discussion
shifts to Weyl semimetals, that offer the unique combination of gapless bulk
spectrum, with relativistic energy–momentum relation, and topological
surface states. For more accurate and self-contained treatments, references
are provided throughout the text. We conclude with summaries of the
following chapters.
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1 Introduction

1.2 Spin-orbit coupling and spin-momentum
locking

The non-relativistic limit of the Dirac theory applied to atomic electrons
leads to the Pauli Hamiltonian [1]

HSO = − ~
4m2

0c
2σ · p×∇V0 , (1.1)

that encodes the interaction between the spin magnetic moment — repre-
sented by the vector of Pauli operators σ = (σx, σy, σz) — and the kinetic
momentum p of the electron. (V0 is the electric potential of the atomic
core, ~ the reduced Planck’s constant, m0 the bare electron mass and c
the speed of light.)

In a solid crystal, electrons are subject to the periodic potential V (r) of
the ions’ lattice. The eigenfunctions of the one-particle Hamiltonian

H(r) = − ~2

2m
∇2 + V (r) (1.2)

are Bloch waves Ψnk(r) = unk(r)eik·r, where unk(r) is a periodic function
with the periodicity of the lattice, and the eigenvalues En(k) form bands
as a function of the wave vector k, labeled by the discrete index n.

The theory of electronic energy bands powerful tool that allows to
classify “ordinary” materials in two big families: insulators and metals.
The first ones have completely-filled (valence) bands that are separated by
an energy gap from empty (conduction) bands, the second ones instead
have partially-filled conduction bands. An insulator with a “small” gap
between valence and conduction band can be made conducting via extrinsic
doping, therefore it is called semiconductor. Semiconductors are the basic
constituents of the electronic devices that we use in our daily life.

Spin-orbit coupling has remarkable effects on the band structure of
semiconductors, such as splitting the spin-degeneracy of bands with finite
angular momentum and enhancing — even by order of magnitudes — the
Zeeman effect of an external magnetic field if the material lacks spatial-
inversion symmetry [2].

Recently it has been realized that spin-orbit coupling can also lead to
topological quantum states. For instance, due to large spin-orbit splitting in
certain heavy-atom materials, valence and conduction bands are “inverted”.
Although a finite gap remains for the bulk spectrum, conducting (gapless)
states appear at energies within the bulk gap, that are localized at the
boundaries of the system and robust against disorder [3–5]. A bulk insulator
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1.2 Spin-orbit coupling and spin-momentum locking

Figure 1.1: (a) Schematics of the helical spin structure of a Dirac cone at the surface of a
three-dimensional topological insulator and (b) the chiral spin structure of two-dimensional
parabolic bands with Rashba spin-orbit coupling. (c) ARPES measurements of the disper-
sion at the surface of the topological insulator Bi2 − xCaxSe3 and (d) the surface of the
normal metal Au(111) (plotted as a function of the momentum component kx at a fixed ky).
Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature,
Nature, A. Soumyanarayanan, N. Reyren, A. Fert and C. Panagopoulos, Emergent phenom-
ena induced by spin–orbit coupling at surfaces and interfaces, Nature 539, 509-517 (2016),
Copyright 2016. Adapted by permission from Ref. 6, Nature Publishing Group. (e) Sketch
of the conducting spin-polarized edge channels in a Quantum Spin Hall Insulator. From M.
König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi and S.
C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science 318, 766
(2007). Reprinted with permission from AAAS.

with conducting surfaces is topologically distinct from an ordinary insulator,
thereby it is called topological insulator.

The combination of spin-orbit coupling and low-dimensionality, as e.g. at
the surface of a topological insulator, gives rise to emergent physical effects
in thin films and heterostructures [6]. The Rashba effect [7] at surfaces and
interfaces describes the coupling between the inversion-symmetry–breaking
electric field E along the out-of-plane z-direction and the spin magnetic
moment of itinerant electrons. The Rashba Hamiltonian for s electrons
(without orbital angular momentum) has the form

HR = αRẑ · (p× σ), (1.3)

where αR is the coupling constant of the interaction, proportional to the
electric field and to the intrinsic spin-orbit coupling.

In semiconductor-heterostructures, the magnitude of the Rashba effect
can be electrically-modulated by means of external gates, that change
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1 Introduction

the interface electric-potential and thereby the effective magnetic field [8].
This striking feature is at the basis of the spin field-effect transistor
theoretically proposed by Datta and Das [9], where the strength of the
spin-orbit coupling controls the rate of the spin-precession, and through
that, the electrical current carried by electrons injected by a ferromagnetic
contact into a gated semiconducting region and extracted at an opposite
ferromagnetic contact.

The (spin) Rashba effect produces linear-in-momentum energy splitting
of opposite-spin states and constrains the electron spin to lie in the direction
perpendicular to the momentum. This is an example of “spin-momentum
locking”, that can be generalized as a striking feature of surface (interface)
states, such as:

• surface bands in ordinary metals [10],

• Dirac-cone states on the surfaces of three-dimensional topological
insulators [11],

• edge channels in two-dimensional topological insulators (quantum
spin Hall effect [12, 13]),

• Fermi-arc states in topological Weyl semimetals [14].

The basic picture of the Rashba effect becomes more complex when
describing particles that have, in addition to the spin angular momentum,
a finite orbital angular momentum, e.g. d electrons in oxide interfaces. In
these systems, multiorbital effects produce a strong energy–dependence of
the spin splitting and, at fixed energy, the magnitude of the splitting as
a function of the momentum often deviates from linearity [15]. We can
generalize the concept of spin-momentum locking in order to account for
additional entanglement between spin and orbital polarizations.

1.3 Oxide interfaces
1.3.1 Transition-metal oxides
Transition metals are called the elements of the periodic table whose atoms
either have an incomplete d subshell or can give rise to cations with an
incomplete d subshell (IUPAC definition). They can form compounds with
very different oxidation states: their oxide compounds (TMOs) show very
interesting properties due to combination of the “hybrid” d electrons —
partially bound to their own nuclei but with a certain freedom to interact
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1.3 Oxide interfaces

with neighboring atoms — and narrow electronic bands (between 1 and
2 eV) due to the small overlap between metal d orbitals and oxygen p
orbitals. Hence, d electrons can show both itinerant and localized proper-
ties; the narrow band-width is expected to make electronic correlations
relevant [16].

Two large subfamilies of the TMOs family are the cuprates and the
perovskites. The former are famously known to show high-temperature
superconductivity [17], the latter are among the most promising materials
for highly efficient solar cells [18].

The perovskites have chemical formula AMO3 and a cubic crystal struc-
ture, with the transition-metal (M) ion sitting at the center of the cubic
cell, surrounded by an octahedron of oxygen (O) ions. and A ions at
the eight corners. The crystal field generated by the O ions splits the
five-fold degenerate d orbitals in two subsets, the lower-energy t2g triplet
(dxy, dxz, dyz orbitals) and the higher-energy e2g doublet (dx2−y2 , dz2).

Strontium titanate (SrTiO3) has a long history as the most dilute su-
perconductor — until the discovery of superconductivity in pure bismuth
single crystals at ambient pressure and carrier density ne ≈ 1015 cm−3 [19]

— with a transition temperature Tc ≈ 300mK [20]. Although a long his-
tory of studies, the nature of the electron-electron pairing mechanism in
strontium titanate is still questioned [21]. Above Tc, the material is a
band insulator with a gap of 3.2 eV and huge dielectric constant varying
between εSTO ≈ 300 at room temperature and εSTO ≈ 10000 at sub-Kelvin
temperatures [22].

Many TMOs have almost-matching lattice constants, whereby it is
possible to grow layered heterostructures with atomic-size precision by
placing one material on top of another layer by layer, using techniques
developed in the context of semiconductor-heterostructures. Compared
to the semiconducting counterparts, complex-oxide heterostructures are
characterized by a richer mixing of different degrees of freedom — further
enriched by the quantum confinement. Many oxide heterostructures are
based on SrTiO3, due to its important dielectric properties.

1.3.2 The LaAlO3/SrTiO3 interface
A paradigmatic example of this class of materials is the heterostructure
formed by growing a thin film of lanthanum aluminate (LaAlO3) on a
substrate of SrTiO3. Both materials are individually band-insulators.
However, a breakthrough experiment reported evidence of electrical con-
ductivity with high-mobility carriers at the interface of heterostructures
grown along the (001) crystalline direction [23]. Since then, conducting
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Figure 1.2: (001) LAO / STO heterostructures are made of electrically neutral planes on
the STO side and charged planes on the LAO side. (a)–(b) Charge density ρ, electric field E
and potential V along the growth direction at the unreconstructed interface with (a) TiO2-
LaO connection and (b) SrO-AlO2 connection. (c)–(d) Electronic reconstruction, with (c)
half an electron per unit cell transferred to the TiO2 interfacial plane and (d) half a hole
transferred to the interfacial SrO plane, creates electric dipoles at the interface that leads
to oscillating electric fields and bounded potentials. Reprinted by permission from Springer
Customer Service Centre GmbH: Springer Nature, Nature Materials, N. Nakagawa, H. Y.
Hwang and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5, 204–9
(2006), Copyright 2015.

interfaces were found in many SrTiO3–based heterostructures [21]. Never-
theless most of the (theoretical and experimental) research in the field has
focused on the LaAlO3/SrTiO3 interface (henceforth, LAO/STO).

The (001) LAO / STO heterostructure is made of alternating AO and
MO2 planes — A=La(Sr) and M=Al(Ti). LAO planes are electrically po-
larized with alternating ±e charge (per two-dimensional unit cell), instead
STO planes are neutral. Two types of interface are formed depending
on the termination layer of the STO substrate: a n-type interface if the
termination layer is TiO2 (TiO2-LaO connectivity), a p-type interface in
the case SrO-AlO2 connectivity instead. The n-type interface becomes
conducting when the thickness of the LAO film exceeds the threshold
thickness of 3 unit cells, while the p-type interface does not show metallic
behavior at any thickness [23, 24].

The origin of the interface conductivity is still debated. The polar
catastrophe hypothesis [25] is consistent with many, but not all, the ex-
perimental observations. According to this hypothesis, a reconstruction
of the electronic landscape of the interface occurs at a polar/non-polar
junction in order to avoid the large cost in terms of electrostatic energy
due to an unbounded growth of the electric potential in the bulk of the
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1.3 Oxide interfaces

polar material (see Fig. 1.2a–b).
The polar catastrophe mechanism predicts an insulator-metal transition

(in n-type interfaces) as a function of the thickness of the LAO-film,
when the bottom of the STO conduction band falls below the top of the
LAO valence band, and charge-transfer is activated from the latter to the
former. This prediction is consistent with the experiments. However, the
electron density predicted by the polar catastrophe argument is much larger
than the density of mobile electrons that is measured in transport [26,
27]. The discrepancy may be explained with the remaining electrons
being bound at impurities or defects, thereby not contributing to the
interface conductivity [28]. Moreover, conducting interfaces also exist
in structures without polar discontinuity, as e.g. LAO / STO (110)–
heterostructures [29].

Alternative proposals rely on the role played by oxygen-vacancies intro-
duced in the system during the growth process [30–32].

1.3.3 Properties of the interface: superconductivity,
magnetism, spin-orbit coupling

The huge STO dielectric constant allows to use electric gates to tune
the charge-density of the interface between the fully-depleted regime and
the overdoped regime with relatively low electric fields. The electric-
field–dependence of physical properties such as spin-orbit coupling and
superconductivity was experimentally reported [33, 34], that is a striking
feature of the interface.

Regarding spin-orbit coupling, transport measurements clearly highlight
the importance of it, although we are still waiting for ARPES (Angle
Resolved Photo-Emission Spectroscopy) experiments that can resolve
spin-split electronic bands. Signatures of weak-antilocalization peaks and
their evolution as a function of the applied gate-voltage suggest that the
magnitude of the spin-orbit coupling (spin-splitting) sharply increases of
an order of magnitude at a doping level that seems to correlate with the
appearance of superconductivity [35].

The density(voltage)-temperature phase diagram reveals a supercon-
ducting dome peaked at temperature Tmaxc ∼ 300mK (very close to the
critical temperature of bulk STO) and at a density in proximity of a
Lifshitz transition [36], where the topology of the Fermi surface is altered
by the appearance of additional bands. Contrary to the dome-structure
of Tc, the magnitude of the superconducting gap measured (locally) via
tunneling spectroscopy is found to increase both in the underdoped and in
the overdoped regime [37], suggesting either the presence of a pseudogap
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phase like high-Tc superconductors [38] or that the system is spatially
inhomogeneous, with coexisting superconducting and insulating (metallic)
patches of nanometric size. In this scenario, patches with different densities
would turn superconducting at slightly different temperatures, leading to
a characteristic tail in the resistance-vs-temperature curves [39–41], unlike
the usual sharp transition in homogeneous superconductors.

Signatures of inhomogeneous ground states of the interface appeared
in magnetometry experiments [30, 42, 43] — that measured a ferromag-
netic response superimposed to a diamagnetic (superconducting) signal.
The inhomogeneity may be intrinsic, as the result of an electronic phase
separation due to self-consistent adjustments of the confining potential
that can make a homogeneous phase thermodynamically unstable [44].
However, alternative theoretical proposals pointed out that an exotic homo-
geneous phase that allows coexistence of superconductivity and magnetism,
such as the FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) phase [45], may be
established in the system.

Interface superconductivity is a property inherited by the bulk STO
parent compound. Instead, magnetism is an emergent property of the
LAO / STO interface, since both LAO and STO are non-magnetic ma-
terials. Magnetic properties of the interface have been directly probed
by means of many different techniques — Torque Magnetometry, SQUID
Magnetometry, X-Ray Magnetic Circular Dichroism, Polarized Neutron
Reflectometry, Magnetic Force Microscopy — and indirectly through mag-
netotransport measurements, with rather controversial outcomes. Even
there are experiments that only measured finite magnetization at insulating
interfaces and no signal in the conducting regime [46]. Many different
groups have provided lots of magnetotransport whose interpretation is still
subject of active research. A number of experimental signatures have been
interpreted as originating from a Kondo–type interaction [47] between
localized magnetic moments and delocalized electrons [48]:

• non-monotonic temperature–dependence of the sheet resistance [49];

• non-monotonic low-field Hall resistivity [36];

• giant negative magnetoresistance and crystalline anisotropy, with
all-in-plane magnetic field [50];

• anomalous Hall effect [50].

However, the interaction-based interpretation of these observations was
recently challenged by new experimental results obtained by Caviglia’s
group at Delft University [51] for the case of in-plane magnetic field.
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1.3 Oxide interfaces

Figure 1.3: (a) Measured magnetoresistance of the LAO/STO interface, at temperature
T = 1.4 K for several values of the gate voltage VG (left panel) and at VG = 50 V for
various temperatures. (b) Magnetoresistance calculated within the semiclassical transport
theory, at fixed temperature T = 1.4K for various carrier-densities (left panel) and at
density n = 2.2× 1013 cm−2 for various temperatures. (c) Temperature–dependence of
the chemical potential µ and (d) density of states, calculated from the Hamiltonian 2.1
for an electron density n = 2.2× 1013 cm−2. Reprinted figures with permission from M.
Diez, A. M. R. V. L. Monteiro, G. Mattoni, E. Cobanera, T. Hyart, E. Mulazimoglu, N.
Bovenzi, C. W. J. Beenakker and A. D. Caviglia, Giant negative magnetoresistance driven
by spin–orbit coupling at the LaAlO3 / SrTiO3 interface, Phys. Rev. Lett. 115, 016803
(2015). Copyright (2015) by the American Physical Society.

Besides reporting a large negative magnetoresistance (up to 70% less than
the zero-field resistance, in agreement with previous experiments), the
experiments addressed the gate-voltage– and the temperature–dependence
of the magnetoresistance, systematically, reporting that:

• the negative magnetoresistance survives up to ∼ 20K;

• the “critical” field, namely the value of the magnetic field where the
the slope of the magnetoresistance vs. field curves becomes negative,
increases with the temperature;

• a striking similarity of the temperature–dependence (at fixed voltage)
and the voltage–dependence (at fixed T ) of the magnetoresistance.
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Figure 1.4: Confined orbitals in the quantum well at the (001) LAO / STO interface.
Reprinted with permission from G. Herranz, G. Singh, N. Bergeal, A. Jouan, J. Lesueur,
J. Gázquez, M. Varela, M. Scigaj, N. Dix, F. Sánchez and J. Fontcuberta, Engineering
two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3 / SrTiO3
quantum wells by selective orbital occupancy, Nat. Commun. 6, 6028 (2015).

These observations required an alternative explanation, that is the subject
of the theoretical work in Ref. 51. A semiclassical transport model for non-
interacting electrons, that accounts for including multiorbital effects due to
spin-orbit coupling and scattering by extended impurities, can qualitatively
reproduce the features listed above. In particular, the striking similarity of
temperature– and density–dependence of the magnetoresistance naturally
arises from the renormalization of the chemical potential as a function of
the temperature (see Fig. 1.3c).

Henceforth we refer to the mobile interface electrons as a two-dimensional
electron gas (2DEG).

1.3.4 Band-structure model of the interface electron
gas

Experiments report a dependence of the frequency of the conductance os-
cillations (Shubnikov–de Haas effect) only on the perpendicular component
of the field [27, 52], as for a conventional two-dimensional electron gas.
This means that the envelope wave function in the out-of-plane z-direction
exists only in the lowest energy subband of the quantum well, although it
can still extend over several unit cells away from the interface [53].

For the theoretical calculations of Chapter 2 we used the tight-binding
model introduced in Ref. 48, that describes the conduction band of STO sur-
face states. Restricting to the low-energy t2g subspace, the Hamiltonian is
calculated in the basis |dxy, ↑〉 |dxy, ↓〉 |dxz, ↑〉 |dxz, ↓〉 |dyz, ↑〉 |dyz, ↓〉 . The
minimum of the band is at the Γ-point.

The orbital degeneracy of the bulk bands is partially removed due to
the quantum confinement — dxy orbitals have weak bonding along the
out-of-plane direction — that results with the pair of dxy bands, “light”
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1.4 Weyl Semimetals

Figure 1.5: Band structures from diagonalization of the Hamiltonian 2.1, for three cases:
only kinetic energy HL; with atomic spin-orbit coupling HSO (center); with both atomic
spin-orbit coupling and inversion-symmetry breaking HZ (right).

(small effective mass) and isotropic, having lower energy than dxz / dyz
bands, that are “light” in one in-plane direction and “heavy” in the other
one.

The intrinsic spin-orbit coupling, inherited from the atomic orbitals,
is an off-diagonal matrix in this basis, thereby it mixes spin and orbital
polarizations. The main effects on the band structure are to remove the
remaining orbital degeneracy between dxz and dyz states at the Γ point and
to produce hybridized dxy/dxz(dyz) states, opening gaps in correspondence
of band-crossing points.

Finally, hopping elements between orbitals with different parity under
(x, y, z)→ (x, y,−z) transformation are non-zero in the absence of inversion
symmetry [54]. These are next-nearest-neighbor spin-preserving processes
between the even dxy orbitals and the odd dxz/dyz orbitals.

In combination with the intrinsic spin-orbit coupling, this term produces
a strongly energy–dependent spin-splitting, that abruptly increases near
the hybridization gaps. More details about the Hamiltonian and the band
structure are provided in Sec. 2.7 of Chapter 2.

1.4 Weyl Semimetals

1.4.1 Weyl fermions in crystals
Accidental degeneracies in the band structure of three-dimensional solids
— where low-energy excitations have linear energy–momentum relation
— are not rare [55]. However these degeneracies are lifted by any weak
perturbation unless they are enforced by symmetry constraints or by the
so-called “topological invariants” of the band structure.
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Symmetry-protected Dirac points exists both in two-dimensional (e.g.
graphene) and in three-dimensional systems. Instead, the topologically-
protected Weyl points are a unique property of three-dimensional crystals.

Each Weyl point (node) is a monopole of Berry curvature (a sort of
momentum-space analog of the magnetic field) with a charge χ = ±1
depending on the flux enclosed by a sphere surrounding the point. The
sign determines the chirality (the “handedness”) of the Weyl-fermion’s
wave function in real space.

Chiral fermions must always occur in pairs of opposite chirality according
to the Nielsen-Ninomiya theorem [56] – in other words, the total Berry flux
across the Brillouin zone must vanish. The low-energy physics around the
Weyl point with chirality χ = ±1 is governed by the Weyl Hamiltonian [57],
that in momentum representation is

HW = χvF (pxσx + pyσy + pzσz), (1.4)

where σα (α=x,y,z) are Pauli matrices and pα the components of the crystal
momentum p = ~k. The low-energy excitations have isotropic conical
dispersion, with velocity vF and the spin parallel or antiparallel to the
momentum. Although Eq. (1.4) looks just like a trivial generalization of
the two-dimensional graphene Hamiltonian, the third dimension enables
topological protection to the band-touching points. Weyl cones cannot be
gapped by local perturbations, as the only effect of adding a mass term
mσα to HW is of moving the Weyl cones around the Brillouin zone. The
only way to make chiral fermions disappear is to pair them up, merging
Weyl cones with opposite chirality that lead to the creation of a gap in
the energy spectrum.

In order to acquire topological protection against local perturbations, a
Weyl semimetal must not be invariant under the product of time-reversal
and inversion symmetry. (If both symmetries are present, the Berry
curvature is identically zero at any k-point).

More “flavors” of Weyl fermions can exist in the band-structure of three-
dimensional crystals, where the effective low-energy theory is not con-
strained by Lorentz invariance, that instead forces the energy-momentum
relation of a fundamental particle to be independent of the direction where
the particle travels. Therefore, Weyl cones are often anisotropic and tilted

— the tilting is realized by adding the term ∝ pασ0 to the Weyl Hamiltonian.
In some materials the distortion can be so strong that it tips the cone over
the momentum axis pα, realizing a topologically distinct class of protected
band touchings, the type–II Weyl points. These protected crossing points
connect electron-like and hole-like states coexisting at the energy of the
Weyl point [58].
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1.4 Weyl Semimetals

Figure 1.6: Type–I (left) and type–II (right) Weyl cones as a function of the momentum
components kx, ky (at kz = 0). The type–II Weyl cone has finite density of states at
the energy of the Weyl node. Up to linear terms in the energy-momentum dispersion the
equi-energy contours near the Weyl-node energy are open. On a lattice, higher-order terms
close the contours. Reprinted by permission from Springer Customer Service Centre GmbH:
Springer Nature, Nature, A. A. Soluyanov, D. Gresch, Z. Wang, Q.S. Wu, M. Troyer et al.,
Type–II Weyl semimetals, Nature 527, 495-98 (2015), Copyright 2015.

Furthermore, combinations of point-group symmetries of the crystal
structure [59] can force more Weyl points with same chirality to merge,
producing Berry monopoles with topological charge larger than one. These
are called “multi–Weyl” points. Type–II and multi–Weyl points are studied
in Chapter 5.

1.4.2 Lattice model of time-reversal–symmetry
breaking Weyl semimetals

For lattice simulations, we use the tight-binding model of a time-reversal–
symmetry breaking Weyl semimetal on a cubic lattice (with lattice param-
eter a ≡ 1) introduced in Ref.132, defined by the Hamiltonian

HW(k) = τz(σxtx sin kx + σyty sin ky + σztz sin kz)
+mkτxσ0 + βτ0σz + λτzσ0 − µWτ0σ0, (1.5a)

mk = m0 + t′x(1− cos kx) + t′y(1− cos ky)
+ t′z(1− cos kz). (1.5b)

The σ and τ Pauli matrices refer to a spin and orbital degree of freedom,
σ0 (τ0) is the 2 × 2 identity matrix in spin (orbital) space. tα and t′α
are respectively kinetic hopping and spin-dependent hopping terms —
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1 Introduction

originating from spin-orbit coupling. The mass term mk ensures that the
spectrum is gapped everywhere except at k = (0, 0,±K), with

K2 ≈ β2 −m2
0

t2z + t′zm0
(1.6)

where the origins of two Weyl cones with opposite chirality are located.
β (λ) is the parameter that breaks time-reversal (inversion) symmetry
providing a difference in momentum (energy) of the two Weyl points.

The Hamiltonian 1.5a is mathematically equivalent — up to a unitary
transformation and redefinition of the τ degree of freedom — to the model
of Ref. 63, where Weyl fermions are engineered in the phase diagram of a
multilayer heterostructure realized by alternating layers of a magnetically
doped topological insulator (such as Bi2Se3) and normal-insulator layers.
Although experimentally very challenging, the latter model is fascinating
also because by replacing the normal-insulator layers with thin films of s-
wave superconductor, it is predicted to realize a Weyl superconductor [60].
We make use of the heterostructure models in Chapter 3 in the context of
Andreev reflection in Weyl superconductor – Weyl semimetal junctions.

1.4.3 Surface states
A closed system whose bulk band structure exhibits Weyl fermions is
further characterized by a special type of surface states. To understand
how the surface states arise, let us consider two Weyl cones centered at
momenta χk0 = (χk0, 0, 0) and let us slice the 3D Brillouin zone in a series
of planes, parametrized by the momentum component kx. To each plane
corresponds a two-dimensional band structure that has a gap for all values
of kx except for kx = ±k0. A Chern number is associated to each gapped
band structure as:

Ckx = 1
2π

∫
Skx

dSkx ·Ωk (1.7)

with
Ωk = ∇k ×Ak Ak =

∑
n

i〈unk|∇k|unk〉 , (1.8)

where Ak is the Berry potential summed over all filled bands labeled by
the index n an unk are Bloch states.

By tuning the parameter kx continuously, the system undergoes a
topological phase transition with gap closing and reopening across a Weyl
point, that is accompanied by a change of the Chern number of the planes.
Planes with |kx| < k0 carry non-zero Chern numbers, hence they support
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1.4 Weyl Semimetals

Figure 1.7: (a) Pair of opposite-chirality Weyl cones in the three-dimensional Brillouin
zone. (b) Graphic argument for the development of the Fermi arcs from connecting edge
states of the Chern insulators defined by the band structure on two-dimensional slices of
the Brilluoin zone in between the Weyl nodes. (c) At kx = k1 (top) the effective two-
dimensional Hamiltonian describes a trivial insulator (Chern number ν = 0) with a gapped
bulk spectrum and no edge states. At kx = k0 (bottom) instead the band structure has
non-trivial Chern number ν = ±1, that corresponds to the presence of one edge state within
the bulk gap. Adapted from Ref. [14].

chiral states propagating along the edges. The surface bands appear on
the two-dimensional surface by joining together edge states supported by
the non-trivial planes in-between the Weyl points. The intersection of the
surface bands with the Fermi energy generates open curves that connect
the projections of the Weyl points onto the surface Brillouin zone, that
are called “Fermi arcs”.

In real space, the surface states are “chiral”, meaning that they circle
around the magnetization axis in a single direction. If inversion symmetry
is broken they acquire finite velocity along the magnetization axis; in
cylinder geometry with the Weyl points along the axis of the cylinder, the
surface states form a solenoid structure [61].

However, Fermi arcs on opposite material’s surfaces must be thought
as complementary parts of a single Fermi surface. Indeed, in thin-film
Weyl semimetals arcs on top and bottom surfaces merge to form a closed
equi-energy contour. Interestingly, when both time-reversal and inversion
symmetry are broken in a Weyl thin-film, the intersection of the constant
energy planes with the lowest energy subband produces a figure-8, that
is topologically distinct from simple deformations of the Fermi circle in
conventional 2DEGs. Magnetotransport signatures of this Fermi surface
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Figure 1.8: (a) ARPES-measured dispersion on the surface Brillouin zone and (b) in the
bulk of the recently discovered TaAs Weyl semimetal. (c) High-resolution image of two
Fermi arcs terminating at the projections of opposite-chirality Weyl nodes. From S.-Y. Xu,
I. Belopolski, N. Alidoust, M. Neupane, G. Bian, et al., Discovery of a Weyl fermion
semimetal and topological Fermi arcs, Science 349, 613 (2015). Reprinted with permission
from AAAS.

are investigated in Chapter 4.

1.4.4 Experimental relizations
The search for a Weyl-semimetal phase initially focused on inversion-
symmetric systems with broken time-reversal symmetry. Early proposals
suggested magnetic pyrochlore iridates [62], multilayer heterostructures of
alternating magnetically doped topological insulators and normal insula-
tors [63], magnetically doped topological insulators at the critical point
of transition to a normal insulator [64]. Moreover the recently discovered
Dirac semimetals [65–67] — where the band-touching point is at leas
four-fold degenerate due to crystalline symmetries — can be turned to
a Weyl semimetal by splitting a single Dirac point into two Weyl points
with a Zeeman field. All these proposals suffer a number of experimental
challenges that prevented the realization of any of them to date.

Meanwhile, time-reversal–invariant Weyl semimetals have been brought
to life: first in tantalum arsenide (TaAs), later in niobium arsenide (NbAs)
and tantalum phosphide (TaP) [68] — all these materials break inversion
symmetry and have 24 Weyl cones in the Brillouin zone — the bulk conical
dispersion and the surface Fermi arcs where resolved with good resolution
in ARPES experiments.

Transport signatures of a magnetic Weyl semimetal were identified in
different topological Heusler compounds [69, 70] and, very recently, evi-
dences for a magnetic Weyl semimetal have been reported in photoemission
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data from the correlated manganese-tin alloy (Mn3Sn) [71], an hexagonal
antiferromagnet with a stacked Kagome lattice.

1.4.5 Chiral anomaly and related magnetotransport
signatures

Weyl fermions in condensed-matter systems are predicted to show the
chiral anomaly [72, 73] — the non-conservation of the currents carried
by the individual chiral species in the presence of parallel electric and
magnetic field [74]. The anomaly manifests itself as the pumping of chiral
electrons between oppositely charged Weyl points, leading to “valley”
polarization. The anomaly is a general feature of chiral fermions in odd
spatial dimensions. Its simplest one-dimensional version only requires
an electric field, whose action on the electron dynamics is given by the
semiclassical equation of motion dk/dt = eE/~. If right-moving and left-
moving carriers are connected at high energies (as is the case of any realistic
band-structure), change of momentum implies transferring electrons from
the left-moving to the right-moving Weyl point. As a result the difference
between the densities of left and right movers nL and nR grows according
to

d(nR − nL)
dt

= 2 e
h
E . (1.9)

This is the chiral anomaly in one-dimensional systems. The right-hand-side
of Eq. (1.9) will have an additional term that oppose to the growth of
the left-hand-side if the density imbalance can be relaxed via inter-node
scattering. In the three-dimensional space, the quantizing effect of the
magnetic field is necessary to recover an effective one-dimensional transport
problem. Indeed an external magnetic field produces Landau levels that
disperse only in the direction of the field. The Landau level with quantum
number n = 0 in a Weyl semimetal is chiral, namely it has velocity parallel
or antiparallel to field-direction, depending on the chirality of the Weyl
node from where it is generated. If an electric field is applied parallel
to the magnetic field, electrons start propagating along one-dimensional
chiral channels, that have cross-sectional area (divided by the number of
the degenerate states) A = φ0/B, the ratio between the flux quantum and
the magnetic field. Therefore, formula 1.9 holds, upon substituting E with
E · B̂ and and dividing by the cross sectional area A to obtain the three-
dimensional density. Although no current in equilibrium is allowed, in a
non-equilibrium setup the chiral anomaly result in a contribution to the
total electrical current of a Weyl semimetal that leads to the longitudinal
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negative magnetoresistance [75–77] and the chiral magnetic effect with
and without Landau levels [78, 79].

1.5 This thesis

1.5.1 Chapter 2
The study of magnetotransport effects, in connection with spin-orbit
coupling, at the LAO /STO interface requires more theoretical efforts
that may help interpret the experiments. The work presented in this
chapter extends the results of Ref. [51]. Here we address — by applying
the semiclassical transport theory to spin-coupled electrons scattered by
extended impurities on the plane of the interface — the anisotropy of
the longitudinal magnetoresistance under in-plane magnetic fields, that
was reported by several experimental groups in recent years, but not
reproduced by any theoretical model so far.

We calculate the full resistivity tensor as a function of the orientation
of the in-plane field, for different values of the field-strength and several
electron densities. The results show that the high-field angular-modulation
of the magnetoresistance has a behavior similar to what observed in the
experiments: because of the peculiar spin-orbital-momentum locking of
the states at the Fermi level, the largest contributions to the resistance
come from inter-band scattering processes, that are extremely sensitive to
the applied magnetic field. Finally, we show that a sizable Hall resistivity
is possible even in the absence of an orbital magnetic field and/or magnetic
impurities. Unlike the longitudinal magnetoresistance, the Hall signal is
due to intra-band scattering processes. We also comment on the differences
with respect to the experiments.

1.5.2 Chapter 3
A Weyl semimetal with broken time-reversal symmetry (magnetic Weyl
semimetal) has a minimum of two species of Weyl fermions, distinguished
by their opposite chirality. Therefore, a hydrogen-atom model of the band
structure of a (unbounded) magnetic Weyl semimetal consists of a pair of
Weyl cones at opposite momenta ±K that are displaced in the direction
of the internal magnetization. In the presence of inversion symmetry, the
(pseudo)spin degree of freedom of a Weyl fermion with positive (negative)
chirality is tied parallel (antiparallel) to its kinetic momentum.

At a normal-metal/superconductor junction, an electron injected from
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Figure 1.9: (Top) Experimental measurements of the longitudinal (ρxx) and Hall (ρxy)
resistivity of a Hall-bar device patterned at the LAO/STO interface, as a function of the
angle φB between the current and an in-plane magnetic field. The chemical potential is pre-
sumably above the Lifshitz point. Reprinted with permission from A. Joshua, J. Ruhman, S.
Pecker, E. Altman and S. Ilani, Gate-tunable polarized phase of two-dimensional electrons
at the LaAlO3 / SrTiO3 interface, Proc. Natl Acad. Sci., 110, 9633 (2013). (Bottom)
Theoretical calculations of the in-plane magnetoresistance and Hall resistivity (renormal-
ized by the maximum at B = 10 T), from Ref. [80]. (These quantities have same angular
modulations as ρxx and ρxy respectively.)

the metal contact at energy lower than the superconducting gap can
be reflected by the interface as a hole, with an additional Cooper pair
transferred to the superconductor. This process, called Andreev reflection,
converts a dissipative current into a (dissipationless) supercurrent.

In the specific case of the interface between a Weyl semimetal in the
normal state (N) and a superconductor (S) that pairs electrons at ±K,
Andreev reflection must involve a switch of chirality, otherwise it is blocked
as long as inversion symmetry is preserved and the internal magnetization
of the Weyl semimetal lies in the plane parallel to the NS interface.

The blockade requires the combination of conical dispersion of the Weyl
semimetal and spin-momentum locking, thereby it is not a general property
of materials with relativistic dispersions. A Zeeman field at the interface
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or breaking inversion symmetry can activate Andreev reflection.

1.5.3 Chapter 4
The spectrum of a Weyl semimetal confined to a slab-geometry has a gap
for the bulk states, while the dispersion of the surface states is insensitive
to the spatial confinement as long as there is no overlap between states on
opposite surfaces. Therefore, at energies close to the Weyl points of the
unbounded system electrons in the slab have hybrid surface/bulk character
depending on the momentum.

The Fermi surface of a conventional two-dimensional electron gas is
equivalent to a circle, up to smooth deformations that preserve the orien-
tation of the equi-energy contour. Instead, we show in this chapter that
a thin-film magnetic Weyl semimetal with additionally broken inversion
symmetry can have a topologically distinct two-dimensional Fermi surface,
twisted into a figure-8 — opposite orientations are coupled at a crossing
which is protected up to an exponentially small gap due to overlap between
wave-functions localized at opposite surfaces.

The topology of the Fermi surface can be probed via quantum oscil-
lations of magnetization (De Haas–Van Alphen effect) or conductance
(Shubnikov–De Haas effect) in the presence of an external magnetic field.
The frequencies and phase shifts of the oscillations can be extracted from
the semiclassical Landau levels, that for this particular system we have
computed numerically.

The spectral response of the twisted Fermi surface is distinct from that of
a deformed Fermi circle, because the two lobes of a figure-8 cyclotron orbit
give opposite contributions to the Aharonov-Bohm phase acquired by the
electron wave-function when completing a full orbit. In a strong magnetic
field, two counter-propagating types of quantum Hall edge channels appear
at the boundaries, when the system is further confined to a strip. However,
when an electrical current is driven through the system between two
metal reservoirs, only one of the two co-propagating channels is populated,
providing unique magnetotransport signatures. For instance, the edge
along which the current propagates can be changed by reversing the
direction of the magnetic field.

1.5.4 Chapter 5
The work of this chapter was motivated by one of the main results of
Chapter 4, that is the value of the phase offset γ = π obtained as the
quantum correction to the semiclassical quantization condition applied to
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the figure-8 cyclotron orbit in a thin-film Weyl semimetal. This valued of
the phase offse differs from the value γ = 0 offset found for a different type
of figure-8 cyclotron orbit, as the energy of the Weyl point in a type–II
Weyl semimetal [81].

This apparent inconsistency and the increasing interest in identifying
topological semimetals in quantum-oscillation experiments, require a better
understanding of how the phase shift encodes information about the
topological features of the band structure.

Here we predict the characteristic parameter dependence of the phase
shift for Weyl fermions with tilted and overtilted dispersion (type–I and
type–II Weyl fermions) and an arbitrary topological charge, including
elliptical and 8-shaped Fermi surfaces. Remarkably, for type–II Weyl
fermions the phase shift only depends on the quantized topological charge,
being insensitive to the specifics of the band structure.
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